A Boosting Inspired Personalized Threshold Method for Sepsis
Screening

Chen Feng?, Paul Griffin®, Shravan Kethireddy®, and Yajun Mei®

2School of Industrial & Systems Engineering, Georgia Tech, Atlanta, GA; PRegenstrief
Center for Healthcare Engineering, Purdue University, West Lafayette, IN; ¢Critical Care
Medicine, Northeast Georgia Medical Center, Gainesville, GA

ARTICLE HISTORY
Compiled January 15, 2020

ABSTRACT

Sepsis is one of the biggest risks to patient safety, with a natural mortality rate
between 25% and 50%. It is difficult to diagnose, and no validated standard for
diagnosis currently exists. A commonly used scoring criteria is the quick sequential
organ failure assessment (qSOFA). It demonstrates very low specificity in ICU pop-
ulations, however. We develop a method to personalize thresholds in qSOFA that
incorporates easily to measure patient baseline characteristics. We compare the per-
sonalized threshold method to qSOFA, five previously published methods that obtain
an optimal constant threshold for a single biomarker, and to the machine learning
algorithms based on logistic regression and AdaBoosting using patient data in the
MIMIC-III database. The personalized threshold method achieves higher accuracy
than qSOFA and the five published methods and has comparable performance to
machine learning methods. Personalized thresholds, however, are much easier to
adopt in real-life monitoring than machine learning methods as they are computed
once for a patient and used in the same way as qSOFA, whereas the machine learning
methods are hard to implement and interpret.
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1. Introduction

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response
to infection, and it is one of the biggest patient safety risks in healthcare settings
[10, 20, 35, 19]. Nearly half of patients who die in hospitals are septic, and the natural
mortality rate for sepsis is between 25% and 50% [10]. Recently, screening as a decision
support mechanism for early detection of sepsis has been widely advocated, since early
identification of sepsis and the timely medical intervention could significantly decrease
sepsis-related mortality and are cost-effective [3, 14, 21, 27, 38 42 48, 53]. In 2016,
a task force committee [39] recommended patient screening for sepsis by the scoring
criterion termed quick Sequential (sepsis related) Organ Failure Assessment (qSOFA),
and conducting laboratory tests to further assess sepsis if needed. The qSOFA score is
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essentially a constant thresholding technique regardless of patients’ baseline informa-
tion, and it uses three easy-to-measure biomarkers: systolic blood pressure, respiratory
rate, and Glasgow Coma Scale score (a score for mental status).

The main statistical approach in qSOFA criteria is to dichotomize each biomarker
X, and raise a screening warning if X > ¢ (or X < ¢) for some constant threshold
c. The constant thresholds in gSOFA are determined based on physiology, clinical
experience, and statistical analysis. Indeed, there has been extensive research in the
statistical literature to find the optimal threshold. The five most popular methods are:
1) the minP approach [20], 2) the Youden index [51], 3) the closest-to-(0,1) criteria
[29], 4) the concordance probability method [24], and 5) the index of union [17]. All
of those five methods are based on Receiver Operating Characteristic (ROC) curve
statistical analysis [33, 30].

Unfortunately, there are some drawbacks to the qSOFA score. It demonstrates very
low specificity in ICU populations [6, 40]. At emergency department (ED) triage,
qSOFA scores poorly in identifying sepsis, and is likewise poor in both pre-hospital
and ED triage for predicting intensive care unit (ICU) stays of three or more days
[2, 5, 11, 46]. One possible explanation is that the current gSOFA uses thresholds that
are constant for all patients, regardless of patients’ demographic differences, leading
to the low prediction accuracy.

In this paper, we propose to improve qSOFA by self-learning suitable personalized
thresholds for different sepsis patients. Our key idea is inspired by boosting [4, 9, 15],
a popular machine learning technique, to obtain the personalized thresholds based on
patient-related information. As a result, our method can better identify sepsis patients
who could benefit from time critical interventions. In addition, our method is similar
to original qSOFA, and it is easy to interpret and can be used for real-time monitoring.

Besides screening, another concept in sepsis is assessing, where the patient needs to
take more expensive and time-consuming laboratory tests to get more information on
various biomarkers so as to further assess the status of sepsis. In such a case, those
biomarkers are collected much less frequently, allowing machine learning methods to be
applied for sepsis assessing, see [16, 17, 19, 25, 30, 41, 43-45]. For instance, Giannini
et al. [12] applied the Random Forest classifier to predict patients at elevated risk
of developing severe sepsis and/or septic shock by using Electronic Health Record
(EHR) data; Shimabukuro et al. [37] studied a machine learning-based severe sepsis
prediction system for reductions in average length of stay and in-hospital mortality
rate; Nemati et al. [28] developed and validated an Artificial Intelligence Sepsis Expert
algorithm for early prediction of sepsis. However, the context of sepsis screening in ICU
is very different from those of sepsis assessing, in that the medical machines or sensors
automatically measure those key biomarkers as frequently as per minute. Thus these
black-box machine learning methods are not as appropriate a method for screening
due to lack of interpretation and implementation difficulties for real-time monitoring.
Here, our paper essentially follows the idea of control charts in the field of statistical
process control (SPC), where we keep monitoring the frequently observed data, and
raise an alarm once any abnormal observation occurs. Here the abnormal observation
is defined if a process exceeds the pre-specified cutoff, or equivalently, if the maximum
(or minimum) value of the process exceeds the pre-specified cutoff. Instead of using
the universal cutoff value, our paper proposes a personalized cutoff value, based on a
patient’s characteristic data (e.g., age, gender, etc.).

The organization of the remaining sections are as follows. Section 2 introduces the
necessary background knowledge, including the details of sepsis and gSOFA score, ex-
isting methods to obtain the optimal constant threshold and boosting machine learning



method. Section 3 describes the proposed boosting inspired method to estimate the
personalized threshold , in which the exponential loss and gradient descent algorithm
were applied. Section 4 explores the data we use to demonstrate the method. Section 5
presents the application in sepsis screening and compares the performance of the pro-
posed method to the original gSOFA criteria, other standards used, constant threshold
approaches, and machine learning methods. We provide conclusions in Section 6.

2. Background

In this section, we introduce the background information of sepsis and qSOFA score,
the existing approaches to obtain constant thresholds, and the boosting method in
three subsections, respectively.

2.1. Sepsis and qSOFA

Sepsis is not a specific illness but rather a syndrome producing a similar innate immune
response as infection. It is differentiated from infection in a dysregulated host response
and the presence of organ dysfunction [39]. Considerable changes have been made on
how it is defined based on a better understanding of the underlying pathobiology.

The initial definition of sepsis was developed in 1991, and it was assessed by the
Systemic Inflammatory Response Syndromic (SIRS) to infection, which includes a pa-
tient’s temperature, heart rate, respiratory rate, and white blood cell count [I, 23].
In this definition, sepsis is defined as infection with at least 2 of the 4 SIRS crite-
ria satisfied. However, SIRS criteria do not necessarily indicate organ dysfunction or
failure. In 2016, therefore, a task force developed the current definition of sepsis, and
recommended two stages of monitoring sepsis: screening and assessing [39]. Instead
of the widely used SIRS criteria, the 2016 definitions recommended clinically charac-
terizing a sepsis patient by the Sequential Organ Failure Assessment (SOFA) score,
which is used to identify organ dysfuntion. Moreover, the 2016 task force committee
recommended a new score criterion termed quickSOFA (qSOFA), a bedside screening
measurement identifying patients with suspected infection.

The qSOFA score relies on three important variables for sepsis: respiratory rate,
systolic blood pressure, and Glasgow Coma Scale (GCS) score, and the current gSOFA
guideline is to check whether these three observed variables are normal or abnormal as
compared to their respective constant critical threshold values. A screening alarm is
raised if two out of three variables are abnormal. To be specific, in the gSOFA criterion,
one is monitoring 1) whether the alteration in mental status occurs (GCS score is less
than 15), 2) whether systolic blood pressure is <100 mm Hg, or 3) whether respiratory
rate is > 22 breaths/min. These constant critical thresholds are derived from the two
group comparisons of sepsis versus non-sepsis patients, and do not take into account
the patient’s baseline demographic characteristics such as age, sex, admission location,
admission type, ethnicity, insurance, and marital status.

2.2. FExisting Methods to Obtain the Constant Threshold

The most common approaches to determine the threshold for a biomarker are via
Receiver Operating Characteristic (ROC) curve analysis. The ROC curve is a mapping
of the sensitivity versus 1-specificity for all possible thresholds. Thresholds dichotomize



the test values, and therefore provide the diagnosis whether the subject is diseased or
not. A threshold is referred to as optimal when it classifies most of the individuals
correctly. Let X be a continuous biomarker that is assumed to be predictive of disease
Y (Y =1 for diseased and Y = —1 for not diseased). For any possible cut-point ¢ of
X, the data can be formed into a 2 x 2 table,

X>c| s=s
X<clu=ulc) v=uv(c)

Sensitivity(Se) and specificity(Sp) are defined as follows,

S v
) S =P X<cY=-1)= .
S+u p(c) ( C| ) r—+v

Se(c)=P(X >clY =1)=

Various criteria for the optimal threshold value ¢ have been proposed [24, 26, 29,
, 51] based on above 2-by-2 table. We briefly describe them here.

minP Approach [26]: The optimal threshold ¢ is selected so as to maximize the
standard chi square statistic,

(s+7r+u+v)(sv—ur)?

2 _
xile) = (s+r)(utv)(s+u)(r+o)

Youden Index [51]: Youden index, Se(c)+ Sp(c) — 1, combines sensitivity and speci-
ficity into a single measure. Maximizing the Youden index, one is able to find
the cut point that has the largest value in the sum of sensitivity and specificity
or in the difference between sensitivity and the false positive rate.

Closest-to-(0,1) Criterion [29]: Ideal point (0, 1) on ROC curve represents zero
false positives and perfect sensitivity. The “optimal” threshold is defined
as the point on the ROC curve closest to (0,1), i.e., find ¢ to minimize
V1= Se(@)? + (1 - Sp(0))2.

Concordance Probability [24]: The concordance probability method defines the
optimal threshold as the point ¢ maximizing the product of sensitivity and
specificity Se(c)Sp(c). The concordance probability of dichotomized measure at
threshold ¢ can be expressed as the area of a rectangle associated with the ROC
curve. The threshold ¢ maximizing Se(c)Sp(c) actually maximizes the area of the
rectangle.

Index of Union [17]. The method defines the optimal cut-point value ¢ as the point
minimizing the summation of absolute values of the differences between AUC
and sensitivity and AUC and specificity, |Se(c) — AUC| + |Sp(c) — AUC]|.

All these methods are based on the biomarker itself and the outcome variable alone,
and do not take into account any individual-specific information. In real clinical prac-
tice, patient-related variables are usually available besides the biomarker, such as the
easily accessible demographics. How to utilize the extra information to determine a
personalized threshold for screening purpose has rarely been considered.



2.3. Boosting Method

Boosting is an ensemble technique that attempts to create a strong classifier from
a number of weak classifiers. One well-known boosting algorithm is called ”Ad-
aBoost.M1.” proposed by Freund and Schapire (1997) [3]. Since our proposed method
borrows some of the ideas in boosting, in this section, we will briefly introduce the
boosting method.

Given a binary outcome Y € {—1,1} and a vector of predictor variables X, a
classifier f(X) is a sign function of some statistics, producing a prediction taking one
of the two values {—1,1},

M
F(X) =sign (g(X)), where g(X) = ) am fn(X), (1)
m=1

and f,(z), m = 1,2,..., M, are weak leaners and ¢g(X) combines them together to
make a better classification. One of the key ideas in boosting method is to replace
the discrete 0-1 classification error by the exponential loss. To be more concrete, in
classification with a -1/1 response, the error rate of training data is

1 & 1 &
ﬁzﬁz (y; # sign (g *NZ -sign (¢(X)) < 0). (2)

Observations with y; - sign (¢(X)) > 0 are correctly classified, while those with
y; - sign (¢(X)) < 0 are misclassified. The error rate is not a smoothing function, and
therefore it is not a favorable loss function for classification. Boosting method replaces
the term I(y; - sign (¢(X) < 0)) by a novel exponential loss function

L(y,9(X)) = exp(—y - 9(X)). (3)

It has been proven that the exponential loss is a monotonic continuous approximations
to misclassification loss. In the training process, the exponential criterion concentrates
much more influence on observations with negative y - g(X).

Boosting method essentially is a gradient descent algorithm that finds the parame-
ters o, s to minimize the exponential loss function on the training data. It turns out
that it can also be thought of as applying different weights to training observations
(Xi,vi),i=1,2,..., N. Those observations that were difficult to predict (misclassified
by weak leaners) will have larger weights, whereas less weights will be assigned to
those easy-to-predict observations that were classified correctly by weak learners.

Our proposed method in Section 3 borrows the following ideas from Boosting: 1)
Using a sign function as the classification rule for a binary outcome; 2) Optimizing a
novel exponential loss function that approximates the error rate; 3) Assigning different
weights on observations based on their influences.

3. Our Proposed Personalized Threshold Method

In this section, we propose a boosting alike method to obtain the personalized
threshold. Suppose we have a training data of the form (Y;, X, ui1, uio, ..., uiq), for



i=1,---,N, where ¥; € {—1,1} is the binary outcome, X; is the frequently mea-
sured biomarker whose threshold needs to be determined for monitoring purpose,
U;1, Ui2, .-, Uiq are g baseline characteristics that will be manually entered to the sys-
tem when the patient is admitted to ICU. We define u; = (1, ui1, w2, ..., uiq)T € Rt
where 1 corresponds to the intercept in proposed model. The biomarker X; could
be respiratory rate, systolic blood pressure, etc., and the binary Y; is predicted by
comparing X; with threshold ¢(w;). Here the threshold c(u;) is a function of baseline
characteristics u;, while the existing methods estimate the optimal constant threshold
without using the extra information, such as a patient’s gender, age, weight, etc. We
define the classification rule as:

A 1 if X, > ;
g b A Xz o — o)), (1)
—1, otherwise
and we assume
clw;) = Bo 4+ w1 + - + uigfy = ul B, (5)

where B = (8o, B1, Ba-.., By)T € RITL. Note that for the case where YV, =1if X; < c(uy),
we could let X/ = —X;, and then fit X/ in model (4).

Below we will present our proposed method to obtain the threshold c¢(u;) in two
subsections. Section 3.1 formulates an optimization problem, and section 3.2 introduces
the algorithm to solve the problem.

3.1. Optimization Problem

The personalized threshold can be obtained by solving an optimization problem. To be
more concrete, the (¢+ 1)-dimensional unknown parameters 3 in (5) can be estimated
by minimizing the misclassification rate. The remaining multiple challenges include:
First, the function sign(X;—c(u;)) in (4) is not continuous; second, the 0-1 loss function
I{Y; # sign(X; — ¢(u;))} is non-smoothing; third, the consequences of misclassifying
sepsis and non-sepsis patients are different, due to the high mortality rate of the sepsis.

In order to address those challenges, we modify the boosting method by minimizing
a smooth surrogate weighted exponential loss function,

i(wy e VilXs ﬂT"‘)), (6)

=1

Z\H

where the weight wy; depends on outcome Y;. We define wy, = w4 when Y; = +1, and
wy, = w_ when'Y; = —1. Equivalently we can write wy, = (wy-(Y;+1)+w_-(1-Y;))/2.
The values of wy and w_ are user specified.

Then the unknown coeflicients 3 can be estimated as below,

B = argmin J(3). (7)

BeR@+D)

This provides a personalized threshold ¢; = u;f[; in (5) for the i-th subject for i =
1,---,N.



The motivation of the proposed weighted exponential loss function (6) is based on
the fact that our classification rule in (4) is very similar to that in boosting method
(1). To see this, we define f; = X; — c(u;), then the prediction on the outcome Y; is

A

Y; = sign(f;). (8)

Therefore we borrow the idea from boosting and replace the 0 — 1 loss function I(Y; #
sign(f;)) by the exponential loss exp(—Y; f;). Besides, boosting method assigns different
weights to observations, and inspired by this, we introduce two different weights, w
and w_, depending on whether Y; = +1 or —1, in order to take into account the
different consequences of misclassification. These lead us to consider the loss function

LY, fi) =wy - eV [(Vi=1) +w_ - eV [(V; = 1),

The weighted exponential loss function (6) is then derived from J(8) =
~ i LY ).

3.2. Gradient Descent Algorithm

We apply the gradient descent algorithm to solve the parameter B in (7). The pro-
cedure can be divided into forward propagation and backward propagation steps.
The forward propagation step constructs the cost function vector J in (6). If
the observed data is {Yi, Xi, w1, wi2, ..., uiq}, we denote X = (X1, X0, .., XN)T,
Y = (Yl,YQ,...,YN)T, U = (ul,ug,...,uN), and u; = (l,uil,uiQ,...,uiq)T. The un-
known parameter is B = (8o, 1, 82, -, B3¢)T. The weights in (6) are denoted by
W = (wy,, Wy,, ..., wyy ), where wy, £ (wy - (Vi +1) +w_ - (1 = Y;))/2, with wy,
being wy if Y; =1 and w_ if Y; = —1.

In order to minimize the average cost, we use backwards propagation by finding
the derivative of J with respect to 3 using the chain rule, and then moving in the
direction to reduce total cost. This is repeated until convergence. If we denote d3 as
the derivatives of J with respect to B in current iteration, then the value of B will
be updated by B < 8 — adB. The learning rate « is a given small number. After T
iterations, we obtain 3 as the final estimation of unknown (¢ + 1)-dim parameter 3,
then the estimated thresholds can be calculated as ¢ = U”3 in (5).

In summary, our proposed algorithm for personalized threshold c¢(u;) in (5) through
solving the optimization problem in (7) can be presented as follows.

The following proposition shows that ¢ = UTB always exists and is well-defined as
a point estimate of the optimal threshold.

Proposition 3.1. The weighted exponential loss function J(B) in (6) is a convex
function with respect to 3, and thus the gradient descent algorithm converges if we
choose a small enough learning rate and long enough optimization steps.

The proof of Proposition 3.1 is postponed to the Appendix A. By formulating the
parameter estimation as a convex optimization problem that has a unique solution,
we simplify both the numerical computation and the tuning process for the algorithm
parameters. It is now straight forward to evaluate the prediction errors of the classifier
in (4) through the testing data and cross-validation.

Remark 1. We propose a knowledgable-based machine learning method that keeps



Algorithm 1 Our Proposed Algorithm for Personalized Threshold

Require: Y, X, U, N, w_ >0, wy >0, o, T
1: Initialization: 3; <~ 0Vi € {0,1,2,...,q}, W = (wr(Y +1) +w_(1-Y))/2
2: for allt=1,2,...,7 do
3 f=X-U"B

4 L =-exp(-Y * f) {x: Element-wise product} Forward Propagation
5 J=LLTW

6: df:—%W*Y*exp(—Y*f)

7. dB=-Udf Backward Propagation
s B B—adB

9: end for

10 e=UTP

the simple thresholding idea, but at the same time, mimics the idea of boosting. Be-
sides, it is easy to notice that our method is close to the logistic regression model
with the coeflicient of biomarker fixed at 1. Although classical machine learning meth-
ods are becoming increasingly popular in improving health care, they are usually a
black box for physicians and nurses and are not suitable for screening due to inter-
pretation and implementation difficulties. Therefore, constant thresholding method
is still commonly adopted in real life for monitoring frequently measured biomarkers
in ICU. As a special case of logistic regression model, our personalized thresholding
method is a surrogate that combines the easily implemented thresholding method with
machine learning techniques, improving the predictive accuracy without adding too
much computational burden or complexity, allowing nurses and physicians to identify
and interpret the triggers of the sepsis alert, and guaranteeing timely interventions by
early detection of suspicious conditions. In Section 5.3, we will compare our proposed
method with logistic regression and AdaBoosting in the context of sepsis screening.

Remark 2. Our proposed method can be extended to multiple biomarkers. When
applying our proposed method to sepsis screening, we need to estimate the personalized
thresholds for both respiratory rate and systolic blood pressure in qSOFA criteria, but
for GCS score, the constant threshold of 15 is kept in that it is a combination of
three sub-scores and is scored manually by nurses and physicians based on human
judgements and multiple biological indexes, obtaining the personalized threshold for
such complicated discrete biomarker is out of scope of this article. We define ¢;; and
c;o to be the personalized thresholds of respiratory rate and systolic blood pressure,
respectively, depending on variables u;js that are subject’s baseline characteristics.
We assume c;, = Bor + w1 S1k + - - - + UigBqk, for some unknown parameters 3;;’s, with
k =1,2. Ideally, we want to find suitable choices of the 2(¢+ 1) parameters 3;;’s from
the training data, so that the qSOFA criteria could have good predictive performance
for the testing data. However, it is non-trivial to jointly estimate them simultaneously
from the training data. We therefore decompose the 2(¢q + 1)-dimensional estimation
problem into 2 different (¢ + 1)-dimensional estimation problems, and estimate the
(g + 1)-dimensional vector (Bog, - - , Bgk) in the personalized thresholds c;; recursively
one at a time for each k = 1,2. In general this might lose statistical efficiency since
we ignore the intercorrelation between the biomarkers, but it will gain computational
efficiency. Moreover, it is a reasonable approach for the sepsis screening context, as the
three biomarkers (respiratory rate, systolic blood pressure, and Glasgow Coma Scale
(GCS) score) characterize different physical and mental aspects of sepsis patients. In



particular, the classifier is considered to have good properties only if each biomarker
yields a good prediction of binary outcome, and the constant thresholds of the current
qSOFA guideline are also based on the component-to-component optimization.

4. The Data Set

We use the Medical Information Mart for Intensive Care III (MIMIC-III) database
(version 1.4) [18, 31], a large and freely-available database comprised of de-identified
health-related data associated with over forty thousand patients who stayed in critical
care units of the Beth Israel Deaconess Medical Center between 2001 and 2012. There
were a total of 46,520 patients in the data set. The International Classification of
Diseases, Ninth Revision (ICD-9) coding was used to identify sepsis and non-septic
patients. ICD-9 is a list of codes intended for the classification of diseases and a wide
variety of signs, symptoms, abnormal findings, complaints, social circumstances, and
external causes of injury or disease.

Below we will present the details in four subsections. In section 4.1, we introduce
how the study group and control group are selected. Section 4.2 shows the interested
variables. We discuss the summary statistics of those variables in Section 4.3 and
conduct exploratory analysis on qSOFA biomarkers in Section 4.4.

4.1. Study Population

The details of cohort selection from the MIMIC-IIT data is provided in Appendix B.
There are 36,543 adult patients (aged 18 years or older), 4,233 of which have sepsis-
related ICD-9 codes (995.91 for sepsis, 995.92 for severe sepsis, and 785.52 for septic
shock). In some cases, a patient is assigned more than one ICD-9 code, and if any of
the ICD-9 codes is sepsis related, we consider them as being diagnosed with sepsis.
We retrieve comprehensive clinical data, including patient demographic and clinical
measurements for gSOFA biomarkers. After excluding those sepsis patients who have
no observations in the gSOFA variables within the first 24 hours after admission, we
generate a study group of 3,771 adult patients with sepsis.

We form a control group by randomly sampling 4,000 adult non-sepsis patients
from the MIMIC-III database after excluding those patients with sepsis related ICD-9
codes, having infection plus meeting SIRS criteria, and with missing observations in
the qSOFA variables.

4.2. Observed Data

The observed data can be written in the form {Y;, X1, Xio, Xi3, w1, ui2, ..., ui7} for
i =1,2,...., N, where Y; = —1 or 1 indicates whether the i-th subject is diagnosed
without or with sepsis. The triplet (X1, Xj2, X;3) denotes the gSOFA variables of
respiratory rate, systolic blood pressure, and GCS scores observed for the i-th subject
within the first 24 hours after ICU admission. The (u;1, u;2, ..., u;7) variables represent
the demographic variables of age, gender, admission location, admission type, ethnicity,
insurance, and marital status. The total number of patients N is 7, 771, including 3, 771
with sepsis and 4,000 without sepsis. Variable definitions are provided in Table 1.



Table 1. Variables and corresponding definitions.

Variables  Definitions

Y Sepsis indicator for patient ¢

Xi1 Maximum respiratory rate within first 24 hours for patient ¢

Xio Minimum systolic blood pressure within first 24 hours for patient

X3 Minimum Glasgow Coma Scale (GCS) score within first 24 hours for patient ¢
Uil Age for patient ¢

;2 Sex for patient

U3 Admission location for patient ¢ (1=Emergency room admit; 0=Others)

Uig Admission type for patient ¢ (1=Emergency and Urgent; 0=Others)

Uis Ethnicity for patient 4 (1=White; 2=Black; 3=Hispanic; 4=Others)

Ui Insurance type for patient ¢ (1=Medicaid; 0= Self pay)

wi7 Marital status for patient ¢ (1=Married; 0=Others)

Histograms of GCS Score Histograms of Respiratory Rate Histograms of Systolic Blood Pressure
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Figure 1. Histograms of qSOFA variables.

4.3. General Characteristics

Descriptive statistics are calculated for all variables of interest, and shown in Appendix
C. The mean and standard deviation (SD) are compared across sepsis and non-sepsis
groups using two-sample t-tests for continuous data. Categorical data are presented as
counts and percentages, and they are compared between two groups by Fisher’s exact
test or Chi-square test. All of the selected variables are significantly correlated with
the sepsis outcome (p < 0.05).

4-4. Exploratory Analysis on ¢SOFA Variables

Histograms for the qSOFA variables are shown in Figure 1. Sepsis patients tend to
have lower GCS score, higher respiratory rate, and lower systolic blood pressure as
compared to non-sepsis patients. However, the difference of GSC scores among the two
cohorts is not strong, and most of the patients have GCS score 14 or 15 (conscious
mental status). In our study, we focus on obtaining the personalized thresholds for
respiratory rate and systolic blood pressure, and keep the constant cutoff 15 for GCS
score, as discussed in Remark 2. The scatter plot of systolic blood pressure against
respiratory rate for the two groups is presented in Figure 2. Most of the sepsis cohort
lie on the lower right (high respiratory rate and low systolic blood pressure), while
most of the non-sepsis cohort lie on the upper left (low respiratory rate and high
systolic blood pressure). qSOFA criteria with constant thresholds may classify those
patients well, however, the two cohorts overlap in the middle of the plot, and hence
constant thresholds may lose power in identifying sepsis patients among them.

10
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Figure 2. Scatter plot of systolic blood pressure against respiratory rate

5. Application to Sepsis Screening

In this section, we apply our proposed personalized threshold method to MIMIC-III
data set for sepsis screening. For the purpose of comparison, we consider 6 baseline
methods, including the original gSOFA criteria and five other standard methods, minP,
Youden Index, Closest-to-(0,1), Concordance Probability, and Index of Union. Since
our focus is on the prediction and classification, we use the random cross-validation
to evaluate performances of all methods. Specifically, for each iteration, we randomly
divide the real data into training (80%) and testing (20%) sets, and apply our method
and the six baseline methods on the training set to obtain the thresholds for respiratory
rate and systolic blood pressure, respectively, and then the obtained thresholds are
used to classify subjects as septic or non-septic in the testing set to calculate the
classification accuracy, sensitivity, and specificity. We then repeat this process 100
times, and report the averaged testing error statistics.

In our proposed personalized threshold method, we replace the constant thresholds
for respiratory rate and systolic blood pressure by the personalized thresholds in the
qSOFA criteria and keep the constant threshold of 15 for GCS score, i.e., the altered
mental status occurs when GCS score is less than 15. The parameters T = 30000,
a = 0.001, wy =1, and w_ = 1 are selected based on a grid search to maximize the
averaged accuracy in a five-fold cross validation on the training data set.

For better presentations, we split this section into four subsection. Section 5.1 dis-
cusses the tuning parameters in our proposed method. Section 5.2 and Section 5.3
compare our method with other existing constant threshold methods and machine
learning techniques, respectively. In Section 5.4, we provide the interpretation of our
personalized threshold method and illustrate how to implement it in practice.

11
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Figure 3. The weighted exponential loss versus the number of iterations with different learning rate o

5.1. Tuning parameters

In this subsection, we illustrate how the learning rate « and the total number of
iterations T" influence the speed of convergence in our gradient descent algorithm 1. In
addition, we discuss the tradeoff between sensitivity and specificity from tuning the
weights w4 and w_ in the proposed cost function (6).

Figure 3 shows how the learning rate influenced the loss function (w4 and w_ were
set to be 1) over all of the training data. The learning rates of 0.05, 0.1, 0.15, and
0.2 were chosen to ensure the algorithm reached the global optimal. Indeed, larger
learning rates tend to converge faster.

In our application, the parameters T = 30000 and o = 0.001 are selected by grid
search to maximize the averaged accuracy in a five-fold cross validation on the training
data (80% of all data) . Notice that the algorithm with 7" = 30000 and o = 0.001 might
not converge on the training data, but it led to the highest cross validation classification
accuracy. This observation is in line with “early stopping” concept in machine learning,
which is to avoid overfitting when training a learner with an iterative method, such
as gradient descent [13, 32, 34, 50, 52].

Figure 4 shows the averaged accuracy, sensitivity, and specificity in the five-fold
cross validation for fixed w_ = 1 and different values for wy. The learning rate and
number of iterations are set as = 0.001 and T = 30000. The overall accuracy is
essentially constant when we change the values of wy. There is an obvious increasing
trend of sensitivity as we increase w,., since it penalizes more for the misclassification
of patients with sepsis. This demonstrates the flexibility of Algorithm 1.

5.2. Comparison to qSOFA criteria with constant thresholds

We compare the personalized threshold method with the original gSOFA criteria and
five other standard methods, minP, Youden Index, Closest-to-(0,1), Concordance Prob-
ability, and Index of Union. The averaged classification accuracy, sensitivity, and speci-
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Figure 4. The accuracy (left), sensitivity and specificity (right) with different w4’s and fixed w— = 1.

Table 2. Overall accuracy

Individual Biomarker

Methods Respiratory Rate  Systolic Blood Pressure = Combined in gSOFA
Personalized threshold 0.6781 0.6889 0.6850
qSOFA threshold 0.5464 0.5899 0.5853
minP 0.6456 0.6359 0.6497
Youden 0.6466 0.6371 0.6524
Closest-to-(0,1) 0.6467 0.6379 0.6536
Concordance Probability 0.6466 0.6380 0.6534
Index of Union 0.6468 0.6377 0.6528

ficity of different methods based on each individual biomarker and their combination
in qSOFA criteria are compared as shown in Tables 2, 3, and 4, respectively. When
using respiratory rate alone to classify, we identify a patient as having sepsis if the
measurement is greater than the obtained threshold, while for systolic blood pressure,
a sepsis patient is identified if it is less than the optimal threshold. When combining
them in the qSOFA criteria, a patient is identified to be of high risk of developing
sepsis if two of the following three criteria are satisfied: respiratory rate is greater than
the obtained threshold, systolic blood pressure is less then its corresponding threshold,
and GCS score is less than 15.

The personalized threshold method yields the largest overall accuracies. The accu-
racies for constant thresholds in the gSOFA criteria are the lowest. The five standard
methods, minP, Youden Index, Closest-to-(0,1), Concordance Probability, and Index
of Union, have similar classification accuracies, which are higher than those for gSOFA
with constant cutoffs but lower than our personalized method.

In Table 3, gSOFA with constant thresholds corresponds to the highest sensitivi-
ties: 92.94% for respiratory rate, 88.41% for systolic blood pressure, and 89.66% for
their combination, while using our personalized threshold method, the sensitivities are
65.09%, 69.24%, and 63.54%, respectively. Other standard methods have sensitivities
ranging from 61.79% to 62.41% for respiratory rate, from 58.16% to 63.28% for systolic
blood pressure, and from 56.47% to 59.47% for them combined.

The classification specificities are detailed in Table 4. gSOFA with constant thresh-
olds has the lowest specificities (18.51% for respiratory rate, 31.25% for systolic blood
pressure, and 29.17% for their combination in gSOFA), while using the personalized
thresholds, the specificities are increased to 70.38% for respiratory rate, 68.57% for
systolic blood pressure, and 73.18% for their combination in qSOFA. The specificities
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Table 3. Sensitivity

Individual Biomarker

Methods Respiratory Rate  Systolic Blood Pressure =~ Combined in gSOFA
Personalized threshold 0.6509 0.6924 0.6354
qSOFA threshold 0.9294 0.8841 0.8966
minP 0.6179 0.5816 0.5647
Youden 0.6240 0.6156 0.5858
Closest-to-(0,1) 0.6238 0.6328 0.5947
Concordance Probability 0.6241 0.6296 0.5931
Index of Union 0.6240 0.6210 0.5886

Table 4. Specificity

Individual Biomarker

Methods Respiratory Rate  Systolic Blood Pressure =~ Combined in qSOFA
Personalized threshold 0.7038 0.6857 0.7318
qSOFA threshold 0.1851 0.3125 0.2917
minP 0.6718 0.6871 0.7301
Youden 0.6680 0.6574 0.7152
Closest-to-(0,1) 0.6680 0.6426 0.7092
Concordance Probability 0.6681 0.6458 0.7103
Index of Union 0.6679 0.6534 0.7135

of other standard methods range from 66.79% to 67.18% for respiratory rate, from
64.26% to 68.71% for systolic blood pressure, and from 70.92% to 73.01% for them
combined in qSOFA.

In general, the personalized threshold method yields the largest prediction accuracy
and the best balance of sensitivity and specificity. Note that in this application, we
choose the parameters wy = w_ = 1 in our cost function, however, we can adjust the
balance between sensitivity and specificity by choosing different values of w4 and w_.

5.3. Comparison with other machine learning techniques

We also apply logistic regression and AdaBoosting to predict sepsis using the qSOFA
variables respiratory rate, systolic blood pressure, and GCS score, together with base-
line demographic variables age, sex, admission location, admission type, ethnicity,
insurance, and marital status. As described previously, the models are built on the
training set (80%) and then applied on the testing set (20%) to classify the subjects
with 100 repetitions of randomly splitting. The comparisons between qSOFA (constant
and personalized) with logistic regression and AdaBoosting are presented in Table 5.

The averaged classification accuracy of the personalized gSOFA is close to those
obtained from logistic regression and AdaBoosting. The averaged sensitivity of the
personalized qSOFA is less than those from the machine learning methods, but the
specificity of the personalized gSOFA is the largest. In general, the personalized SOFA
is comparable to the more difficult-to-interpret machine learning methods.

Using the personalized qSOFA for sepsis screening is also efficient, since there is
only a one time calculation of the personalized thresholds for each patient. Machine
learning methods, on the other hand, require an update each time there is a new ob-
servation. In addition, there are challenges in implementing machine leaning methods
in a practical way for sepsis screening in the intensive care units. First, sepsis screen-
ing is essentially to test the null hypothesis of no sepsis repeatedly and frequently
whenever there is a new observation, and thus standard machine learning methods
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Table 5. Comparison with other machine learning techniques

Methods Overall Accuracy  Sensitivity  Specificity
Personalized gSOFA 0.6850 0.6354 0.7318
Logistic Regression 0.7182 0.7277 0.7094

AdaBoosting 0.7171 0.7146 0.7196

will yield significantly large false alarm rate due to the multiple tests over the time
domain. Second, machine learning methods are often difficult to interpret, making it
impossible for physicians, nurses, and patients, etc. to quickly interpret and assess the
corresponding results. In other words, in the current healthcare environment, even the
most complicated machine learning methods are still incapable of fully substituting
for health professionals in the context of Sepsis screening. Meanwhile, the qSOFA is
a control-chart based statistical method that is widely used by physicians and nurses.
Our approach is to combine machine learning with control chart to develop personal-
ized qSOFA method that can be easily implemented, manipulated and interpreted by
physicians and nurses. It does not require deep statistical training or any advanced
equipment supports. Once fixed at admission, the personalized thresholds can be used
exactly the same way as the currently used constant thresholds in the gSOFA.

5.4. Interpretation and Implementation of Personalized qSOFA

After applying the proposed model to the data, we obtain the estimated personal-
ized thresholds for each individual. Here, we are going to explore how the estimated
thresholds are related to the patients’ baseline information. Figure 5 plots the predicted
personalized threshold for respiratory rate against age. The personalized cutoffs show
a decreasing trend as age increases. This suggests that for older patients with lower
respiratory rate, the threshold should be set lower than that set for their younger
counterparts. Patients with the same age may differ in other baseline characteristics,
however, which would lead to different recommended personalized thresholds to im-
prove overall classification accuracy.

An advantage of our approach is that we only use easily accessible demographic
variables to estimate the personalized thresholds. Therefore, the threshold can be
calculated and fixed as soon as the patient is admitted. The personalized threshold
can be treated and manipulated in exactly the same way as the constant threshold in
sepsis screening. Figure 6 illustrates this. It shows two selected examples of screening
for respiratory rate using the personalized threshold and the constant threshold 22 in
gSOFA criteria: one for a non-sepsis patient, and the other for a sepsis patient. As can
be seen from the plots, the respiratory rate is frequently measured by medical machine
about once every hour. We keep monitoring the measurements and raise an alarm if
any one of them reaches the personalized threshold, which is a fixed line for each
patient just as the constant gSOFA threshold but are different for different subjects.
However, it is not straightforward for any machine learning method to estimate the
thresholds for such regularly measured biomarkers. Therefore, to use the machine
learning methods for monitoring, one has to update the prediction results each time
there is a new observation, which make it hard to implement.
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Figure 5. The predicted personalized threshold for respiratory rate against age.

6. Conclusions

Sepsis is difficult to identify and diagnose, and unfortunately, there is not a validated
standard diagnostic test for sepsis at present. The idea of “screening” plus “ assessing”
as recommended by the 2016 Task Force [39] is attractive, but there are some draw-
backs in using the gSOFA score. The most important limitation is that it has rather
low specificity in identifying sepsis patients in ICU.

We developed a personalized threshold method that is able to adjust the thresholds
in the qSOFA criteria based on the subject’s baseline characteristics, age, sex, admis-
sion location, admission type, ethnicity, insurance, and marital status. We assumed the
personalized thresholds were a linear function of those demographic variables and de-
veloped a boosting inspired method to obtain the personalized thresholds for efficient
screening of sepsis. The gradient descent algorithm was applied to obtain the unknown
parameters in the linear function to calculate the personalized thresholds. The method
provided an efficient personalized monitoring, enabling the subject-specific interven-
tion in early stages of sepsis, which could significantly reduce the mortality rate in the
future.

Our method was applied to the MIMIC-III data (ICU populations) to find the op-
timal personalized thresholds for the gSOFA variables of respiratory rate and systolic
blood pressure. The constant thresholds in qSOFA were replaced by those obtained
from our method for classifying patients as septic or non-septic. We compared per-
sonalized qSOFA with the original qSOFA criteria and five other standard methods
to obtain the optimal constant threshold for a single biomarker (minP, Youden Index,
Closest-to-(0,1), Concordance Probability, and Index of Union). Our method yielded
the largest overall testing accuracy for identifying sepsis patients. The constant gSOFA
had a high sensitivity but a very low specificity in ICU populations, while our personal-
ized gSOFA yielded a better balance. In general, the five standard methods performed
better than constant gSOFA but worse than the personalized qSOFA.
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Figure 6. Left: Screening for non-sepsis patient. Right: Screening for sepsis patient.
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The personalized gSOFA has comparable performance to logistic regression and
AdaBoosintg, and has the benefit of being easily implemented and interpreted by
physicians and nurses. Our personalized gSOFA method only requires a one time
calculation of the personalized threshold for each patient, and once fixed at admission,
the personalized threshold can be used exactly the same way as the constant one. In
addition, the balance of sensitivity and specificity can be easily adjusted in our method
by tuning the weighting parameters.

There are several limitations that should be mentioned. When obtaining the person-
alized thresholds for respiratory rate and systolic blood pressure in qSOFA criteria, we
did not jointly estimate them, and therefore ignored the possible correlation between
them. Although we did preliminary analysis and found that the baseline character-
istic variables age, sex, admission location, admission type, ethnicity, insurance, and
marital status were significantly correlated with sepsis outcome, we did not consider
variable selection when putting them in the model to estimate the thresholds. In fu-
ture studies, more clinical variables may become available, and therefore performing
variable selection will likely be necessary. Finally, we only focused on the scenario
where the threshold is a linear function of those baseline characteristics, which might
not always be the case.

It is worth noting that although we demonstrated the use of personalized thresholds
for sepsis screening, the general approach can be applied to other clinical screening
applications. Examples include personalizing the HAVOC score, a clinical score for
predicting atrial fibrillation in patients with cyptogenic stroke or transient ischemic
attack [22] and the Fong clinical risk score for predicting colorectal cancer recurrence

[7]-
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Appendix A. Proof of Proposition 3.1.

It suffices to show that the weighted exponential loss function J(8) in (6) is a convex
function with respect to 3. Recall that 8 = [5o, ..., ﬂq]T and without loss of generality,
we can rewrite that u; = [uio,...,uiq]T with w9 = 1, for any 7 € {1,...,N}. It is
sufficient to prove that for any z € Rt 27[V2J(B)]z > 0, where V2J(3) is the
Hessian matrix of J(8). First, we compute the first order derivative of J(3) with
respect to 3. For any j € {0,...,q}, we have
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Second, we compute the second order derivatives. For any j € {0,...,q} and any
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Since wy, > 0 for all 4 € {1,..., N}, we have that 27 [V2.J(8)]z > 0 for all z. O
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Appendix B. Flowchart of Cohort Selection from MIMIC-III Data

46520 visits (corresponding to 46520 distinct patients) in MIMIC Ill v1.4

36543 distinct adult visits included

Sepsis related ICD-9 codes
(995.91: sepsis; 995.92: severe
sepsis; 785.52: septic shock)

4233 adult visits

462 visits excluded:

No observations of

qSOFA variables within «———
24 hours after admission

Study group: 3771 distinct visits

32310 adult visits

23520 adult visits

22522 adult visits

Figure B1. Flowchart of cohort selection

9977 visits excluded: <18 years old

Not sepsis related

8790 visits excluded:
Infection+ SIRS

998 visits excluded:

No observations of
qSOFA variables within
24 hours after admission

————

Randomly sample
4000 visits

Control group: 4000 distinct visits

Appendix C. Descriptive Statistics of Interested Variables

Table C1. Descriptive statistics of interested variables.
Variables Sepsis Non-Sepsis p-Values
(N =3771) (N = 4000)

Max Respiratory Rate, mean (SD) 30.6 (8.9) 26.5 (7.4) 7.6 x 107106

Min Systolic Blood Pressure, mean (SD) 82.3 (17.4)  93.5(18.1) 7.2x 107163

Altered mental status, count (%) 1580 (41.9) 1407 (35.2) 1.2 x 107°

(Min GCS < 15)

Age, mean (SD) 65.3 (15.6)  61.6 (16.6) 9.9 x 10=2

Sex, count (%) Male 2148 (57.0) 2397 (59.9) 8.1 x 103
Female 1623 (43.0) 1603 (40.1)

Admission location, count (%) Emergency Room 1767 (46.9) 1528 (38.2) 1.3 x 1014
Others 2004 (53.1) 2472 (61.8)

Admission type, count (%) Emergency and Urgent 3635 (96.4) 3110 (77.8) 0
Others 136 (3.6) 890 (22.3)

Ethnicity, count (%) White 2728 (72.3) 2830 (70.8) 3.6 x 106
Black 349 (9.3) 280 (7)
Hispanic 125 (3.3) 143 (3.6)
Others 569 (15.1) 747 (18.7)

Insurance, count (%) Medicaid 2703 (71.7) 2302 (57.6) 0
Self pay 1068 (28.3) 1698 (42.5)

Marital status, count (%) Married 1719 (45.6) 2075 (51.9) 3.0 x 1078
Others 2052 (54.4) 1925 (48.1)
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