The Fast and The Frugal: Tail Latency Aware Provisioning for
Coping with Load Variations

Adithya Kumar, Iyswarya Narayanan, Timothy Zhu, Anand Sivasubramaniam
Pennsylvania State University

Abstract

Small and medium sized enterprises use the cloud for running
online, user-facing, tail latency sensitive applications with well-
defined fixed monthly budgets. For these applications, adequate
system capacity must be provisioned to extract maximal performance
despite the challenges of uncertainties in load and request-sizes. In
this paper, we address the problem of capacity provisioning under
fixed budget constraints with the goal of minimizing tail latency.

To tackle this problem, we propose building systems using a
heterogeneous mix of low latency expensive resources and cheap
resources that provide high throughput per dollar. As load changes
through the day, we use more faster resources to reduce tail latency
during low load periods and more cheaper resources to handle the
high load periods. To achieve these tail latency benefits, we introduce
novel heterogeneity-aware scheduling and autoscaling algorithms
that are designed for minimizing tail latency. Using software proto-
types and by running experiments on the public cloud, we show that
our approach can outperform existing capacity provisioning systems
by reducing the tail latency by as much as 45% under fixed-budget
settings.

ACM Reference Format:

Adithya Kumar, Iyswarya Narayanan, Timothy Zhu, Anand Sivasubrama-
niam. 2020. The Fast and The Frugal: Tail Latency Aware Provisioning for
Coping with Load Variations. In Proceedings of The Web Conference 2020
(WWW ’20), April 20-24, 2020, Taipei, Taiwan. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3366423.3380117

1 Introduction

Many small and medium sized businesses (SMBs) run online,
user-facing, latency sensitive web services such as image recogni-
tion [7, 76], voice search [45, 79], etc. These businesses are moving
their workloads to the cloud because of the economic benefits real-
ized in terms of reduced capital and operating expenditures [21, 82].
Albeit economically attractive from different perspectives, the pay-
as-you-go cloud model can rapidly run up the costs, making it im-
perative to cap the expenditures over some time horizon while still
meeting the desired performance over this period. Further, cloud
platforms are also exposing various hardware configurations with
different performance price-points [3], making it challenging to
apportion the budget over these resources at every instant.

Small and medium sized businesses have two main needs: 1)
Constrained by fixed budgets for their IT infrastructure [49], they
desire low and predictable expenditures, despite unpredictability in

This paper is published under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporate Web sites with the appropriate attribution.

WWW 20, April 20-24, 2020, Taipei, Taiwan

© 2020 TW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380117

180 ¥
160 | = FastCluster —— FrugalCluster
n
€ 140
2 120
$ 100
K
— 80.
.a 60.
= Missed
Q a0 <«——opportunity?
& ol Potential of
heterogeneity
o r r r r r r
o 500 1000 1500 2000 2500 3000 3500

Arrival rate (RPS)

Figure 1: Load in Requests Per Second (RPS) vs. P99 Tail la-
tency of an image recognition web service on a FastCluster and
a FrugalCluster for the same cost. Fast server is 5x faster and
15X more expensive than a Frugal server. See Section 6 for de-
tails.

their demand. 2) As they run user-facing applications, minimizing
the tail latency1 of user requests is critical than optimizing for the
average behavior [11, 12]. In this direction, this paper presents a
novel approach to using heterogeneity as a capacity provisioning
knob for reducing tail latency under a fixed budget constraint.

Distinction from prior capacity-provisioning and heterogene-
ity works: The state-of-the-art approach in capacity provisioning is
to autoscale the capacity of the cluster dynamically based on load
conditions (e.g., [22, 23, 44, 84]). However, these approaches do not
satisfy a fixed budget constraint as variability in demand, specifi-
cally its “unpredictability” can lead to variability in cost, which is
undesirable for businesses that want predictable IT expenditures. In
order to ensure a fixed budget constraint, one often resorts to fixed
capacity provisioning based on the peak? load.

Figure 1 illustrates the trade-off in a fixed budget scenario (iso-
cost) where one can afford a few expensive “fast” resources that
provide low ail latency or many cheap “frugal” resources thatl
provide high throughput per dollar. A classic example of such re-
sources would be server class Xeon core machines and mobile class
Atom/ARM core machines. This trade-off also exists in other scenar-
ios such as a fast (costly) accelerator (GPU/ASICs) vs. a frugal (slow)
CPU, and “fast” Non-Volatile Memory (NVMe) storage [48, 90]
vs. “frugal” network based storage [27, 77]. Supposing that a work-
load’s arrival rate varies between 1000-3000 requests per second
(RPS) (Figure 1), peak provisioning would result in using the slow
resources that exhibit poor latency. A better approach, which we use
as our baseline for comparison, is to use the fast resources during
low load and the frugal resources during high load. We propose to

I this paper, we use the 99th percentile of latency (P99 Tail Latency) as our tail latency
metric.

2Provisioning for anything less than the peak load results in periods of poor performance
and performance instability, affecting both the mean and tail latency.

WWW '20, April 20-24, 2020, Taipei, Taiwan

improve upon this by exploring how to use a heterogeneous mix
of such variety of resources to achieve tail latencies in the shaded
region of Figure 1.

While there is a large body of prior work [43, 72, 73, 94] that
leverage heterogeneous mixes of fast and frugal resources, they have
not been studied for user-facing applications where dynamic load
variations and tail latencies pose important challenges. Such studies
have neither investigated the suitability of heterogeneity to address
the variability in load nor do they optimize for tail latency which are
two important goals for user-facing applications.

Heterogeneity as a provisioning knob: Our novel idea is to
dynamically adjust the mix of fast and frugal server types according
to the load while adhering to a desired cost. Fast servers minimize
the tail latency and the frugal servers enables us to scale well under
load variations. When load increases, we gradually swap a few of
the costly fast servers for many frugal but slower servers, and vice
versa when load decreases. For instance, if the frugal servers are half
the cost of fast servers, we would swap one fast server for two frugal
servers. By using heterogeneity as a provisioning knob, we can adapt
to load increases by changing the heterogeneity composition rather
than incurring additional cost via more servers.

Challenges of heterogeneous clusters: In a heterogeneous clus-
ter of fast and frugal servers, one might expect that the tail latency
is somewhere between that of a homogeneous cluster consisting of
only-fast (FastCluster) or only-frugal (FrugalCluster) servers. We
observe that simply replacing homogeneous servers with a hetero-
geneous set of servers (i) does not provide the tail latency benefits
of a FastCluster and (ii) does not scale as well as a FrugalCluster.
We find that this is because even state-of-the-art load balancers and
schedulers [4, 70] naively send large requests to the slower servers,
which significantly impacts tail latency. Tail latency is notoriously
difficult to handle, and we demonstrate in this paper that it is criti-
cal to design schedulers for both heterogeneity and tail latency to
realize the benefits of a heterogeneous cluster. Our work is not just
applicable for fast and slow compute servers but goes further to
exploit performance trade-offs arising out of heterogeneity in other
resources namely, memory capacity and storage systems (Section 7).

Three-pronged solution: First, we introduce our tail latency
aware heterogeneous capacity provisioning system for user facing
applications that dynamically adjusts the heterogeneity composition
of the cluster based on load and a desired cost. Second, we design
a new heterogeneity-aware scheduling policy for minimizing tail
latency. The policy preferentially schedules requests to faster servers
over the slower servers, and when it detects that a faster server is
under-utilized, it steals a mismatched request from the slower servers
and restarts it on the faster server. Third, we support two modes of
allocating the fixed budget across time. While equally dividing a
monthly budget across time periods (e.g., an hour) is simplest, we
show that allocating cost in proportion to the estimated load can
yield more stable performance. This is mainly due to the ability of
our system to gracefully adapt to load mispredictions by adjusting
the heterogeneity composition dynamically.

Contributions:

o In this work, we make a case for dynamically adjusting the het-
erogeneity composition of a cluster based on load in order to

Adithya, lyswarya, Timothy, Anand

minimize tail latency. Heterogeneity allows flexibility in the trade-
off between low latency clusters and high throughput scale-out
clusters. Under a fixed budget constraint, this flexibility is critical
for dealing with load fluctuations throughout the day.

o To attain the benefits and flexibility of heterogeneity, we introduce
a novel scheduling policy that effectively combines the benefits of
low-latency servers and scale-out servers. Our scheduling policy
optimizes for tail latency and is robust to the presence of request-
size variability.

e We evaluate our solution on real-hardware using an in-house
cluster with 75 Atom servers and 5 Xeon servers. Our in-house
prototype system performs capacity provisioning for two represen-
tative latency sensitive applications (an image recognition deep
neural network and the sphinx speech-to-text application) with
diurnal load variations. Our evaluation on these two applications
shows that we can reduce the tail latency of the applications by
42% - 45% on average using our heterogeneous design.

e We also evaluate a database application in the public cloud and
show how the “fast” and “frugal” trade-off can apply to memory
capacity as well as storage systems.

o The broader implication of our study is that heterogeneity can be
a useful knob to even mitigate the impact of mispredictions of
load, which is a common problem in capacity provisioning for
high variability workloads.

2 Background
2.1 Hardware diversity on the cloud

Heterogeneity exists in plethora of forms on the cloud. In this
work, we consider heterogeneity arising from hardware configu-
rations with cost and performance differences. For instance, high
performance Xeon-servers can deliver 10x more performance than
Atom-servers, but are 50— 100x more expensive. Cloud vendors have
begun to offer ARM core machines [5], Raspberry-Pi clusters [6, 63],
and Atom core machines [19]. Beyond compute, heterogeneity exists
in storage tiers as well. Solid state disks (SSDs) and the recently
introduced Non-volatile memory (NVMe) disks are extremely fast
and expensive while traditional disk-based and network based stor-
age are cheap and slow. Very recently in the cloud space, providers
like AWS have introduced schemes [47] with flexibility in choosing
instance types with a commitment towards usage (in $/hr).
2.2 Workload variability

A user-facing application’s load often varies over time. For exam-
ple, Figure 2 shows the load on Wikipedia for a typical one week
period. As seen, there is diurnality in the load through the day and
week resulting in 2-8x gap between the peak and low load. It is
inherently difficult to accurately predict the application load even
using sophisticated prediction mechanisms [17]. For example, we
analyze the load unpredictability of Wikipedia by comparing the
relative difference in load for each time slot across the three weeks
following the trace shown in Figure 2. We compare the correspond-
ing day-of-the-week and hour-of-the-day behavior and find that the
load can vary by 1%-10% of the peak compared to the Figure 2 load
in the corresponding time. Workload variations and uncertainties
pose a critical challenge while provisioning as resource deficiency
causes performance violations of the application especially the tail.
This is further complicated by request level variations in the amount
of work to be done (referred to as job size). This work proposes to

The Fast and The Frugal

2
© 2000

1000

Arrival R

0 2000 4000 6000 8000
Time (minutes)
Figure 2: Wikipedia trace for one week [85].

use heterogeneity as a knob to cope with the variability and unpre-
dictability in the workload.

3 Motivation

Small and medium sized businesses require a strict control over
their I'T expenditures for survival [71]. Under this constraint, there
are two approaches to handle the key challenge of load variation and
uncertainty in capacity provisioning. One could equally subdivide
the budget across time (e.g., $3,000/mo — ~ $4/hr). In homoge-
neous clusters, this translates to fixed capacity provisioning and
under-utilization during low loads. Alternatively, one could subdi-
vide the budget based on estimated load within the budget planning
horizon (e.g., month or week). This is the autoscaling analogy in
fixed budget capacity provisioning, but mispredictions could result
in insufficient capacity and poor performance. Instead of trying to
predict load, this paper shows how the flexibility of dynamically
adjusting heterogeneity compositions can be used to solve the prob-
lems in both of the approaches for handling load variation under a
fixed budget.

3.1 Heterogeneity to address provisioning challenges

We focus on hardware heterogeneity where a fast resource type
provides low latency albeit at a high expense whereas a cost opti-
mized resource type provides high throughput per dollar albeit at
higher latency. While much of the prior effort in tackling capacity
provisioning challenges (e.g., [24, 59, 74]) use homogeneous clus-
ters, we explore how leveraging a heterogeneous mix of resources
can improve tail latency in fixed cost budget constrained environ-
ments.

Figure 3 illustrates where heterogeneity can help in handling load
variation. Figure 3 (a) shows a snippet of the Figure 2 Wikipedia
trace (scaled, See Section 6) and Figure 3 (b) adds a heterogeneity
configuration to Figure 1. At low load regions (marked as @) in
figure 3), a few fast servers can handle the entire load and provide
low tail latency because of their superior processing speed. This
is much better than a “FrugalCluster” configuration with slower
processing speeds. That is, at low load regions, it is better to scale-
up within a server to improve service times than to scale-out the
number of servers. However, at high load regions (marked as (I) in
figure 3), it is too expensive to provision only fast servers, so scaling
out with slower servers is necessary to adhere to low fixed budgets.

The above observation may suggest that an “FrugalCluster” or
“FastCluster” option may be ideal, as long as we are allowed to switch
between these two options based on the load. We refer to this as rem-
poral heterogeneity where the cluster is always homogeneous, but it
can change between all-fast and all-slow configurations over time.
While prior works have exploited temporal heterogeneity mainly to
optimize for energy during different load periods [36, 54, 57, 75],
temporal heterogeneity does not achieve the desired performance

WWW '20, April 20-24, 2020, Taipei, Taiwan

in the region highlighted in Figure 1. This region corresponds to a
medium load region (e.g., 3 in Figure 3 (a)), which often constitutes
alarge fraction of time (e.g., 49% of the time in the Wikipedia trace
is between 1500 and 2800 RPS). In this paper, we show that spatial
heterogeneity composed of a mix of fast and frugal servers, can help
in reducing tail latency in this region as illustrated by the Heteroge-
neous line in Figure 3 (b). When the budget is equally subdivided
across time, our system dynamically switches between different
spatial heterogeneity (henceforth referred to as heterogeneity) com-
positions based on the measured load. That is, as load increases, we
swap out fast servers with multiple frugal servers and vice versa as
load decreases. The flexibility of gradually transitioning between
heterogeneity compositions allows our system to scale to the current
load while maintaining a fixed cost, albeit with varying performance.

When the budget is subdivided based on estimated load, the flexi-
bility of changing heterogeneity compositions is also helpful in han-
dling load mispredictions. If load is higher than expected, then our
system will transition to a heterogeneous composition with slightly
more frugal servers so as to handle the extra load. By contrast, a
system that only supports temporal heterogeneity is often stuck with
an all-slow configuration when there are mispredictions.
3.2 Challenges in scheduling with heterogeneity

The benefits of spatial heterogeneity over temporal heterogeneity
rely upon the assumption that a heterogeneous mix of servers yields
better performance than an all-fast or all-slow cluster at the same cost.
We find that this is not always true, and a critical factor for providing
low tail latency in a heterogeneous cluster is the scheduling policy.
If one extends the random load balancing policy to be heterogeneity-
aware by assigning dilferent weights [or [ast and slow servers, il
surprisingly does not provide any performance benefit for any iso-
cost heterogeneous mixture. Figure 4 shows the arrival rate vs mean
latency for different heterogeneous mixtures of fast and slow servers.
Even for mean latency, there is no benefit; tail latency results (not
shown) are similar. Even though the weighted load balancing policy
is heterogeneity-aware and balances the load according to the speed
of each server, this is not sufficient for optimizing latency for either
the mean or tail. As we will explore in depth later in Section 4.1, our
more sophisticated scheduling policies are needed in heterogeneous
configurations for reducing latency, especially for tail latency.

4 Navigating the design space with queueing theory

In designing our solution, we decompose our problem into three
key pieces. First, we need to design a heterogeneity-aware schedul-
ing policy that avoids getting large requests stuck at slow servers,
which widens the tail latency. Second, we need to decide when to
switch to different heterogeneity compositions based on load and
budget. Third, we need to choose a policy for subdividing an over-
all (e.g., weekly) budget across time slots (e.g., minutes). Towards
this, we explore solutions for this coupled provisioning-scheduling
problem with fixed cost budgets by using queueing theory to derive
insightful heuristics. Using these insights, we build and evaluate an
actual prototype leveraging heterogeneity (Section 5).
Queuning simulation setup: A queueing simulator allows us to study
interactions between different aspects of the application behavior
(load variations, request size variations), hardware properties (hetero-
geneous cluster size, service rates), and the system policies (schedul-
ing, resource allocation); a very wide design space that is not easily

WWW '20, April 20-24, 2020, Taipei, Taiwan

Adithya, lyswarya, Timothy, Anand

4000 180 ¥
7 160 = FastCluster
_ € —— FrugalCluster
U 3000 - 1 < 140
o > — Heterogeneous
3 3 120 1
c
] @ 100 | 1
® 2000 - 3 +
g B go-
s =
2 'S 60 ?
< 1000 =
< 2 o 404
2 201 2
0 , . . . ; ° r r - . - .
0 100 200 300 400 500 600 o 500 1000 1500 2000 2500 3000 3500

Time (minutes)
(a) Wikipedia trace showing diurnal arrival rate pattern

Arrival rate (RPS)
(b) Relationship between arrival rate and tail latency (iso-cost)

Figure 3: Motivation for heterogeneity under varying loads.

|1 — FastCluster

50 1 heterogeneity

<«—w/ smart scheduling

m 5] — FrugalCluster Naive .

€) heterpgeneous mixes
T 150 w/o smart scheduling
>

g 125

2

& 100 -

c 751 Region to

3 benefit using

=

25

1] T T T T T T
0 500 1000 1500 2000 2500 3000 3500
Arrival rate (RPS)

Figure 4: Analytical calculation by taking a weighted probabil-
ity on the closed form expression for mean latency of individ-
ual M/M/1 queues. Fast servers are 5x faster than slow servers.
Highlights the need for better scheduling for effective utilization
of heterogeneous resources.

T T
— FastCluster — JSQ ECF
‘E‘.zoo- —— FrugalCluster — LWL — CQ-WS
g 150 L - J
g —- 1
- 7
© -~ e n w—
= 100 ALt
B !
o
& 50
2 4
0 T v T v T T
[500 1000 1500 2000 2500 3000 3500

Arrival rate (RPS)
Figure 5: Comparing the P99 tail latency for different schedul-
ing policies with homogeneous and heterogeneous mixes with
the same cost. A fast server costs 15x a frugal server.

feasible to study on an actual platform. We methodically analyze this
design space using an in-house simulator parameterized as follows.
The cluster is modeled as FIFO queues with N; servers each with
service rates y; (i: 1 — n). When arequest arrives, a load balancer
assigns it to one server based on the scheduling policy. For the policy
with a central queue, there is a single central FIFO queue and all
servers get work assigned from that central queue. Request arrivals
follow a Poisson process with exponential request size distributions®.
Experiments are repeated 100 times with different random seeds and
the mean values are plotted.

Metric of interest: We use the metric of iso-cost performance (as in
Figure 3(b)) to study the trade-offs between different heterogeneous

3 Results from more varying hyper-exponential request size distributions [58] with
larger squared coefficient of variation (CV? value >> 1) follow similar trends.

cluster compositions of the same cost. That is, we measure the 99th
percentile tail latency across different heterogeneity compositions
with the same cost across the load spectrum. We study these curves
and propose heuristics to plan, allocate, and operate resources, which
we implement and evaluate in Sections 5 and 6.
4.1 Scheduling

Given a mix of heterogeneous servers, how do we extract the max-
imum performance? As shown in Section 3.2, naive load-balancing
strategies fail to extract good performance, so we next explore dif-
ferent scheduling policies for assigning requests to servers.
Join-the-Shortest-Queue (JSQ): This policy assigns requests to
the server with the shortest queue length (e.g. Nginx [70]). Figure 5
shows that JSQ is better than weighted random load balancing and
provides some benefits under heterogeneous provisions but is not
ideal as it treats all requests alike i.e., it does not know request sizes.
Least-Work-Left (LWL): Unlike JISQ, LWL sends the request to
the queue which has the minimum amount of work left to do. Apart
from the queue lengths, the scheduler also needs to know the remain-
ing request sizes at each queue. As seen in Figure 5, LWL offers
better performance than JSQ. However, it is oblivious of server
heterogeneity while assigning an incoming request to a server.
Earliest-Completion-First (ECF): We propose extending LWL to
be heterogeneity aware by biasing requests towards fast servers
when available. Our scheduler, Earliest-Completion-First, selects
the server where the request would be completed earliest. With ho-
mogeneous servers, ECF is equivalent to LWL. With heterogeneous
servers, the fast servers will be used first until there is sufficient
queueing at all the fast servers where running the request on a frugal
server is faster. As seen in Figure 5, ECF, which accounts for both
heterogeneity and request size variability, provides better perfor-
mance at the tail compared to all other policies.
Central Queune + Work-stealing (CQ-WS): Both LWL and ECF
require explicit knowledge of request sizes, which may not be avail-
able in practice [67]. Under such conditions, the scheduling policy
should dynamically identify and adapt to request size variability
while accounting for the different processing speeds of the servers.
To handle request size variability, we utilize an idea from queueing
theory: systems that use a common central queue are equivalent to
systems that immediately dispatch requests to servers based on the
request size aware LWL policy [39]. Hence, we propose to enhance
the central queue approach to be heterogeneity aware by (i) biasing
requests towards the fast servers when available, and (ii) having the
fast servers steal work from the slower frugal servers when idle.

The Fast and The Frugal

180 T
—— FastCluster
= FrugalCluster
—— Heterogeneous

160 -
140
120

20%-80%
0%-60%
0%-40%

100 -

P99 Tail latency (ms)

N & O o
© © © © ©
| L L L

0 500 1000 1500 2000 2500 3000 3500
Arrival rate (RPS)

Figure 6: Graphical representation of iso-cost curves. Hetero-
geneous mixes are denoted by fraction of budget allocated to
fast/frugal servers as Fast%-Frugal %.

Our CQ-WS scheduling policy works as follows. On request arrival,
the request gets assigned to a fast server if there is one free. If all
fast servers are busy, it gets assigned to a free frugal server if avail-
able. If all servers are busy, it joins the central queue. Whenever
any server becomes free, it pulls a request from this central queue.
To mitigate the pitfalls of having a large request assigned to a slow
frugal server in a request size oblivious manner, we have the fast
servers perform work stealing (i.e., the request is canceled on the
frugal server and restarted from the beginning on the fast server).
Through experimenting with many work stealing policies,4 we find
that a good and simple policy is to have a fast server steal from a
random frugal server when it finishes a request and finds an empty
central queue.
Key Takeaway: A good scheduler needs to account for both request
size as well as service time variability in a heterogeneous cluster. If
request sizes are known, ECF is a good scheduling policy, and when
unknown, the CQ-WS policy does quite well.
4.2 Dynamically adjusting heterogeneity

Assuming that a heterogeneity-aware scheduling policy is chosen,
we next consider how (o select the best helerogeneous mix ol servers
given a fixed budget for a time slot. As the answer depends on the
arrival rate of requests, we first generate offline graphs of the system
performance at various arrival rates and heterogeneity compositions.
We call the results “iso-cost curves”, which capture the following
information: (Cost, Arrival rate, % Composition of (fast/frugal)
servers, Tail latency). We narrow the data based on the given budget
and then identify the heterogeneity composition with the lowest tail
latency for each arrival rate. Figure 6 shows a visual representation
of the iso-cost curve. Using the iso-cost curve for the given budget,
we measure the current arrival rate and select the heterogeneity mix
with the lowest tail latency as indicated by the iso-cost curve. As the
change in heterogeneity composition between time slots is gradual,
there is a limited overhead in switching the servers, which we find
to be small (see Section 6.1) in our system evaluation. For systems
that exhibit larger overheads, it is possible to preemptively start the
transition beforehand, though we leave this to future work. Similarly,
we leave more frequent adjusting of heterogeneity to future work.

4Variants include hoarding a pool of requests exclusively for the fast servers and stealing
the longest/shortest running request amongst frugal servers.

WWW '20, April 20-24, 2020, Taipei, Taiwan

Key Takeaway: Using offline precomputed data about system per-
formance for each heterogeneity composition, we select the best
configuration for the allocated budget at the measured arrival rate.
4.3 Budget allocation across time slots

Given an overall (e.g.,
monthly, weekly) budget, 100 -

. . . !
we consider two policies - -Equal - Load Proportional _°

0
1 E 75 re
for d1v1@1ng the budget 5 < Under
across t@e slots (e.g., 2 50 |over . ¢a|locat|on
hours, minutes): equal al- = allocation -~
location and load propor- § B
o

tional allocation. o
Equal allocation: With 1000 1500 2000 2500

no a priori knowledge of Arrival rate (RPS)
the load, the simplest pol- Figure 7: Better balance of latency

icy is to equally apportion with load proportional allocation

the available budget across all time slots. Under such a policy, our
approach of dynamically adjusting heterogeneity will allocate more
frugal servers during high load and more fast servers during low load.
This will result in a performance that varies with load. By contrast,
a temporal heterogeneity solution will have poor performance in all
but the low load periods.

Load proportional allocation: To compensate for load variability,
we propose a load-proportional cost allocation policy where each
time slot gets a fraction of the total budget proportional to its esti-
mated load. Figure 7 compares this policy with the equal allocation
policy wherein we observe a higher tail latency with equal alloca-
tion policy. Unlike the equal allocation policy that is constrained to
spend during high loads, the load proportional policy saves spending
during low load periods in order to obtain a more balanced latency
across time.

Key Takeaway: If load estimates are available, load proportional
budget allocation is better than equal allocation for lowering perfor-
mance variability over time assuming we dynamically control the
heterogeneity composition and use a good scheduling policy.

5 From insights to system prototype

Using the insights from Section 4, we implement a system pro-
totype and deploy it on a heterogeneous cluster in our laboratory
comprising Intel Xeon ES 2680 servers and Intel Atom N570 servers
as well as the cloud. Figure 8 shows the three components in our
implementation: the Offline profiler, the Online resource provisioner
& scheduler, and the Online load estimator & budget allocator.
Offline profiler: The offline profiler is responsible for measuring
the application performance on the heterogeneous resources and
generating iso-cost curves described in Section 4.2. It runs the appli-
cation on each server type (e.g., Xeon server and Atom server) and
obtains the maximal application service rates that can be processed
by one server for each type. To accelerate the generation of the iso-
cost curves, we resort to simulation using the measured service rates.
As identifying the best performing heterogeneity composition for a
given load is a relatively simple task (as compared to performance
prediction), we find that simulation works reasonably well. We use
the simulator to sweep over a range of load values between the his-
torical minimum and maximum load values of this application for
each heterogeneity composition to generate the iso-cost curves.

WWW '20, April 20-24, 2020, Taipei, Taiwan

<«—— Horizon ——» Timeslot
Week 1 Week2 o—o

v v~ \

N
NNy

Adithya, lyswarya, Timothy, Anand

Iso-cost curves

AL
ATEY
W

3 Resource
provisioner
Fast
A Frugal

Load estimator &

bud T Budget

udget allocator

. , —
Load Proportional

® Equal

Workload

Scheduler “-.

K ECF / CQ-WS

<
J

.' Synthetic
Load generator /

Online

Offline profiler

Figure 8: Our implementation consisting of 3 components: (i) Offline profiler, (ii) Online resource provisioner & scheduler, (iii) Online

load estimator & budget allocator.

Online resource provisioner & scheduler: The online resource
provisioner is responsible for selecting the heterogeneity composi-
tion for the current time slot. At the beginning of each time slot, this
module uses the iso-cost curves for the time slot’s budget to deter-
mine the best mix of servers to provision for the current load. The
module acquires new servers as needed in the desired heterogeneity
composition, and it then warms up the newly allocated servers.

The list of servers, along with whether the server is fast or fru-
gal, is updated at the scheduler. The scheduler is responsible for
load balancing requests among the servers in the cluster. Our sched-
uler is currently implemented on the gRPC [30] framework for the
img-dnn and sphinx applications (deployed as an RPC service)
that we use in our evaluations. Our scheduler can be easily integrated
to work with any application deployed using gRPC. We implement
the ECF and CQ-WS scheduling policies (and the other schedul-
ing policies for comparison). We use ECF when the application is
able to estimate request sizes accurately. Otherwise, it defaults to
a CQ-WS scheduling policy, where it keeps track of the idle/busy
state of every server. The scheduler leverages request tracking (done
in existing production systems [70]) to keep track of the system’s
state. Based on the scheduling decision, the request is forwarded
to the appropriate server by making an RPC call. On average this
hand-off incurs an overhead of <100 us per request and the overall
framework is lightweight and implemented in 2 KLLOC in C++.
Online load estimator & budget allocator: The online load esti-
mator and budget allocator is responsible for estimating load within
a planning horizon and dividing the budget across time slots within
the planning horizon. In our implementation, we break the entire
execution duration into planning horizons of one week (as shown in
Figure 8), but the ideas extend to other horizons (e.g., month, day).
At the beginning of each horizon, we perform a load prediction for
this horizon at the granularity of 5 minutes (time slots) using the
day-of-week-plus-time-of-day prediction [52]. During bootstrapping
where load predictions are unavailable, we simply use a constant
load predictor (i.e. equal cost allocation). This load estimation is
used to split the total budget for the horizon into a budget for each
time slot of 5 minutes.

6 Evaluation using real hardware

6.1 Experimental setup

Cluster: We evaluate our prototype both on in-house clusters and
public cloud offerings. Our in-house hardware cluster comprises 5

Details img-dnn(Image) sphinx(Speech)
. Fast: 220 Fast: 1

service rate (RES) Frugal: 40 Frugal: 0.25

Ave, service time (ms) Fast: 4.55 Fast: 1000
Frugal: 25 Frugal: 4000

Memory (MB) 400 120

Startup latency (ms) 1105 706

Peak rate used in
3000 20

Wiki trace (RPS)

Table 1: Details of the applications used for evaluation.

Xeon [51] ES-2680 cores @ 2.5GHz (fast) each costing 15 units and
75 Atom [50] N570 cores @ 1.66GHz (frugal) each costing 1 unit.
All machines are bare-metal running the Linux 2.6.32 kernel with
gigabit ethernet networking. Descriptions for experiments on the
public cloud are deferred to Section 7.

Application: We examine two applications: (i) img—dnn — an
OpenCV based image recognition application that classifies input
images using a deep neural network, and (ii) sphinx — a speech
processing application based on the sphinx library from CMU [55].
Both are taken from the tailbench suite [53] and modified to work
in our prototype built with the gRPC framework. The details of the
application, their memory requirements, service times, and startup
overheads are listed in Table 1. On each server, they run as a single
threaded application launched with real-time priority with requests
serviced in FIFO order. An RPC call takes a set of images or an audio
file as input and returns the image classifications or the transcribed
text for img—dnn and sphinx respectively.

Workload: We use the Wikipedia trace as a proxy workload for a
web facing application shown in Figure 2 with peak arrival rates
scaled for our cluster (see Table 1). The trace provides diurnal traf-
fic patterns that are common in online, user-facing workloads. We
generate the load according to a time-varying Poisson process. For
img—-dnn, we incorporate request size variability by coalescing
different numbers of images into one request. Since user input size
is not predictable for a speech application, we assume no knowledge
of request size for sphinx. Although we only have space to show
results for exponentially distributed request sizes in this paper, we
have experimented with other distributions with higher coefficients
of variation, and they show that our ideas are still applicable.

The Fast and The Frugal

Application setup & overheads: There are three sources of system
overheads that occur every time slot (S-minutes) when the hetero-
geneity composition potentially changes: (i) iso-cost curve lookup
to determine the heterogeneous cluster composition, which takes
< 200ps, (ii) application startup latency, and (iii) container startup
latency (if used). Figure 9 shows the break down of overheads, which
are less than 1% of a time slot.

Cost & budget Settings: The cost
of one fast server and one frugal
server is fixed at 15 units and 1 unit
per time slot respectively matching
the price and performance ratios we
see in practice. Note that having a
budget that is too loose or too strict
will result in choosing homogeneous
compositions as the only reasonable
solution. Consequently, we set a cost img-dnn sphinx
budget at 85% of a FastCluster au-
toscaling solution, which amounts to Figure 9: Overheads (<1%).
222,000 and 335,070 units for img-dnn and sphinx respectively.
Baseline policy for resource provisioning In selecting a baseline
strategy for comparison, we consider state-of-the-art solutions for
scheduling and autoscaling while enforcing a fixed cost budget con-
straint. We find that under existing known scheduling policies, the
FastCluster and FrugalCluster configurations provide better tail la-
tency than any mix of fast and frugal servers. Therefore, we consider
an autoscaling baseline that takes advantage of temporal hetero-
geneity to automatically switch between a FastCluster and a Fru-
galCluster. Based on load, our baseline selects the best server type
(fast/frugal) and elastically scales the number of servers [22, 23]. In
addition, the baseline’s scheduling policy (LWL) is selected to opti-
mize tail latency under homogeneous systems [42]. We have experi-
mented with other alternative baselines such as sending (short/long)
requests [18, 40, 41] to (frugal/fast) servers respectively. This is
not simple in practice as it requires setting an empirically deter-
mined threshold for short/long requests, and this parameter is highly
sensitive to the arrival rate and server load conditions.
Qutline: Our goal is to show that dynamically controlling hetero-
geneity compositions can provide low and predictable performance
under fixed cost budget constraints despite uncertainties in applica-
tion behavior. We start by showing how our approach can adapt to
load variations (Section 6.2). We then conduct a sensitivity study on
how adjusting heterogeneity compositions can cope with load mis-
prediction (Section 6.3). We next evaluate the effectiveness of our
CQ-WS scheduling policy for dealing with the lack of request size
knowledge, as is often the case in real-world applications such as
speech processing (Section 6.4). These aforementioned experiments
demonstrate how our solution applies to compute heterogeneity, and
we show our approach scales to a moderately sized cluster (~75
machines). Lastly, we consider other forms of heterogeneity in terms
of memory capacity and storage systems, which we evaluate in the
public cloud (Section 7).
6.2 Adaptability to load variation

We start by studying the ability of heterogeneity to deal with load
variability over time while assuming that there is perfect knowledge

Container @ Application B3Table lookup
1600 0.5%

1200 0.3%

o
K
8

=
5
8

Overheads per 5-min time-slot {ms)

o

WWW '20, April 20-24, 2020, Taipei, Taiwan

of request sizes (this will be relaxed in Section 6.4). We study the
performance for the following policies:

o Eq-Homo-LWL (baseline): This policy apportions the cost bud-
get evenly across all time slots. It switches between the homoge-
neous FastCluster and FrugalCluster provisioning options based
on load. It uses the request size aware LWL scheduling policy,
which works well for homogeneous clusters.

o Eq-Hetero-ECF: Here again, the budget is equally apportioned
across all time slots. However, the policy can choose to provision
a heterogeneous mix of fast and frugal servers when needed, and
it uses the request size aware ECF scheduling policy.

o LP-Homo-LWL (baseline): This policy is similar to Eq-Homo-
LWL, but performs load proportional budget allocation based on
the estimated load. As mentioned earlier, load estimation is done
using day-of-week-and-time-of-day prediction.

o LP-Hetero-ECF: This policy is like Eq-Hetero-ECEF, but divides
the cost budget in proportion to the estimated load.

Figures 10b and 10c capture the 99th percentile tail latency (y-
axis) of the img—dnn application for a period of one week (x-axis)
when replaying the Wikipedia load trace (Figure 10a). We show the
results from the first 3 days of the trace as rest are similar. Overall, we
observe that irrespective of budget allocation policies, heterogeneous
cluster mixes help to achieve better tail latency for the entire horizon
of one week. Heterogeneity reduces the tail latency by 26% - 83%
when compared to homogeneous provisioning strategies across all
time slots. This illustrates the importance of exploiting heterogeneity
in fixed budget scenarios, and its benefits in delivering consistently
good tail latency with incomplete knowledge of future load.

Looking at Figure 10b in more detail, we see that equal budget
allocation, which does not require a priori load knowledge, results
in tail latency that varies with load. Using heterogeneous mixes of
fast and frugal servers (Eq-Hetero-ECF) allows for lower tail latency
that gradually increases and decreases as compared to switching
between homogeneous FastCluster and FrugalCluster configurations
(Eq-ITomo-LWL) where tail latency oscillates significantly. The
standard deviation of tail latencies across different time slots are
significant in the homogeneous cluster (¢=42.25 ms) compared to
the heterogeneous cluster (¢=7.62 ms). This shows that by exploiting
heterogeneity, we can achieve low and less-varying performance
(compared to a homogeneous design) even under a naive budget
allocation policy.

Heterogeneity offers much better performance when operating
with estimates of load variations. Figure 10c shows that under the
load proportional budget allocation policy, the heterogeneous cluster
achieves 76% lower latency compared to the homogeneous cluster
across all time slots. Moreover, the standard deviation of tail laten-
cies across the slots for the heterogeneous cluster is only 2.04 ms
whereas under LP-Homo-LWL it is 29.17 ms (10 reduction) and
under Eq-Hetero-LWL it is 7.62 ms (3x reduction). This shows that
dynamically adjusting heterogeneity compositions combined with a
carefully designed scheduling policy and budget allocation policy
can help achieve the key goals of low and consistent performance
across the entire planning horizon despite load variations.

Figures 10d and 10e give insight into where heterogeneity is
helpful. Under the LP-Hetero-ECF policy (Figure 10d), fast servers
help provide low tail latency and frugal servers help scale-out to

WWW '20, April 20-24, 2020, Taipei, Taiwan

ANV AN

o 200 400 600 800 1000

Time Slot (1 unit = 5 mins)

B
(=]

w
[=]

=
(=]

Arrival Rate (x100) (RPS)
N
(=]

(=]

(a) One week Wikipedia trace

—— Eq-Hetero-ECF -=-- Eq-Homo-LWL (Baseline)

P99 Tail latency (ms)

0 200 400 600 800 1000
Time slot (1 unit = 5 mins)

(b) Equal budget allocation

@ 150

£ —— LP-Hetero-ECF --- LP-Homo-LWL (Baseline)

> Lo o podimeaies S AV
g0y T A A N '
3 | THERTY) YWy o

© { IEETE 1] 1] |

= 50 i :;':' i'! l '

® I }

r 2 oA Y

g NWW%JMWWW
a O :

0 200 400 600
Time slot (1 unit = 5 mins)
(c) Load proportional budget allocation

N
4000 200
- Fast W Frugal —— Cost Allocated]
o =)
'S 3000 =
] °
8 2
3 2000 00 ®
®]
8 =
'E 1000 <
14
o o §

4 200 400 600 800 1000

Time slot (1 unit = 5 mins)
(d) Capacity provisioned with LP-Hetero-ECF

10000

Fast WM Frugal —— Cost Allocated

Total capacity
Cost Allocated (Units)

g

200 800

400 600
Time slot (1 unit = 5 mins)
(e) Capacity provisioned with LP-Homo-LWL (baseline)

Figure 10: Adaptability of a heterogeneous design to load vari-

ations. Application: img-dnn.

the load. By contrast, the LP-Homo-LWL policy (Figure 10e) can
use fast servers only during periods of very low loads, fluctuating
between FastCluster (low latency) and FrugalCluster performance
(high latency).
6.3 Coping with load misprediction

In the prior experiment, we either did not predict the load, or
used a fairly accurate day-of-the-week-and-time-of-day predictor.
To study the ability to deal with prediction inaccuracies, we next
compare the LP-Homo-ECF and LP-Hetero-ECF schemes under
load misprediction. Note that the load proportional budget allocation
employs the load estimates to divide the budget across time slots.
However at runtime, the application behavior could deviate from
the estimated load behavior. We perturb the input load by adding a
Gaussian noise with a mean of 5% of the peak load (which amounts

Adithya, lyswarya, Timothy, Anand

to a p=150) for every time slot while replaying the trace. Figure 11

4000

Arrival rate (RPS)
= N w
(=] (=3 [~
(=] (=3 [~
o (=] o

(=

o 200 400 600 800 1000
Time slot (1 unit = 5 mins)

(a) Wikipedia trace with 5% Gaussian noise

=
a
(=]

—— LP-Hetero-ECF --- LP-Homo-LWL (Baseline)
P
)| ! “-'

200 400 600 800 1000
Time slot (1 unit = 5 mins)

=
(=3
o

P99 Tail latency (ms)
u
-3

o

(b) Load proportional budget allocation with mispredictions

Figure 11: Heterogeneity copes well under load misprediction.
Application: img—-dnn.

shows the performance of both the homogeneous and heterogeneous
provisioning strategies for img—dnn in the presence of load mis-
predictions. As can be seen, both strategies incur an increase in the
number of time slots with higher tail-latencies compared to oper-
ating under perfect load estimations seen previously in Figure 10c.
However, the contrast is much more stark for the homogeneous clus-
ter compared to its heterogeneous counterpart. With mispredictions,
LP-Homo-LWL is degraded by 16% on average compared to LP-
Hetero-ECE, which is degraded by 10% on average. Even when load
is mispredicted, L.P-Hetero-ECF has multiple heterogeneous options
for satisfying the measured load. By contrast, LP-Homo-LWL only
has the FastCluster or FrugalCluster configurations to choose from.
This demonstrates that the flexibility of dynamically choosing from
a range of heterogeneous configurations can compensate for load
mispredictions.
6.4 Coping with lack of request size knowledge

Until now, we have assumed the size of each request is known
to the scheduler (ECF), but there exists classes of applications (e.g.,
speech recognition) where it is impractical to estimate request sizes.
For some applications, it is difficult to estimate the size of each
request, even when it arrives [67]. To study these, we compare the
following schemes, which have no knowledge of request sizes:

o LP-Homo-CQ (baseline): This scheme employs load propor-
tional budget allocation and switches between the homogeneous
FastCluster and FrugalCluster provisioning options based on load
similar to LP-Homo-LWL. The difference is it uses the central
queueing (CQ) policy, which does not require request size knowl-
edge, but is equivalent to the request size aware LWL scheduling
policy, which works well for homogeneous clusters.

o LP-Hetero-CQ-WS: This scheme divides the budget proportion-
ally based on estimated load and provisions a heterogeneous mix
of fast and frugal servers similar to LLP-Hetero-ECF. The differ-
ence is it uses the central queue and work-stealing scheduling
policy described in Section 4.1, which does not require request
size knowledge.

The Fast and The Frugal

N
_§ = LP-Hetero-CQ-WS --- LP-Homo-CQ (Baseline)
3
£
[}
»
&
=
-
o
)
a O
200 400 600 800 1000
Time slot (1 unit = 5 mins)
(a) img-dnn (CQ-WS)
‘@ 20000
E —— LP-Hetero-CQ-WS --- LP-Homo-CQ (Baseline)
3
<
]
>
L]
H
F
o
2 o

0 200 400 600 800 1000
Time slot (1 unit = 5 mins)

(b) sphinx (CQ-WS)
Figure 12: P99 Tail Latency for the Wikipedia trace under our
CQ-WS policy. Heterogeneous provisioning can provide a lower

and more consistent tail latency than homogeneous provision-
ing, even without request size knowledge.

In this experiment, we consider both the sphinx and img-dnn
applications with no knowledge of request sizes. As Figures 12a
and 12b show, the ability to adjust heterogeneity (LP-Hetero-CQ-
WS) still performs much better (42% and 45% on average across all
time slots for img—dnn and sphinx respectively) than switching
between FastCluster and FrugalCluster (LP-Homo-CQ). LP-Hetero-
CQ-WS achieves this by preferentially using fast servers initially,
and using the frugal servers only upon exhausting the fast servers.
Subsequently, when fast servers become free, they can steal (poten-
tially long) requests from frugal servers.

6.5 Is heterogeneity always effective?

The benefit of heterogeneity depends on the overall cost budget.
‘We examine the time slots in the planning horizon that can benefit
from heterogeneous design (L.P-Hetero-ECF) under different frac-
tions of overall cost budgets for the img—dnn application. The mag-
nitude of tail latency improvement is discretized into 3 bins, 1% -30%
gain, between 30%-60% gain, and > 60% gain, marked by 3 separate
regions in Figure 13.
In region 1 with
a stringent budget 2500 EE >60% gain EEE 30-60% gain 1L 1-30% gain
no scheme is ade-
quate. At the other
extreme in region
3, a clearly exces-
sive budget would
enable the homo-

o4
20 30 40 50 60 70 80 20 100
geneous FaStChlS Budget as a fraction of a FastCluster autoscaling solution (%)

ter to perform the pjgyre 13: Visualizing the effectiveness of

best. However, the pqierogeneity across different cost budgets
intermediate region

2 clearly shows the benefit of heterogeneity over homogeneity for a
fairly broad budget spread. On the left of this region, we begin to see
the benefit of heterogeneity, with much of the latency gains being
under 30%. The benefits start amplifying as we move to the right,
with 30-60% gains, and even some time slots seeing more than a
60% improvement in tail latency. As we move further, the budget

1 2 3
2000

1500

1000

Number of Time-slots

500

WWW '20, April 20-24, 2020, Taipei, Taiwan

becomes high enough to neutralize the benefit of heterogeneity as
FastCluster becomes the ideal solution when one can afford them.

7 Heterogeneity of other resource types on the public

cloud

While we have reaped the benefits of heterogeneity for compute
intensive applications, data intensive applications are dependent on
other resource types such as memory capacity and storage tech-
nology. To show heterogeneity in provisioning can be extended to
other resource types, we run two experiments on Amazon AWS, a
public cloud provider. We run the YCSB-C [10] workload on a read-
only MySQL database application deployed on iso-cost clusters of
VM instances provisioned on AWS for different target arrival rates.
ProxySQL [69] serves as the load balancer for the cluster running
MySQL-5.7. The load generator and the load balancer are provi-
sioned on separate m5 xlarge instances. The dataset of 2.5M records
is pre-loaded on all the instances to serve read (SELECT) queries.
7.1 Memory capacity

To demonstrate the effects of different heterogeneity compositions
when memory capacity is a key resource, we select the t3.large
(2vCPU, 8GB memory) and t3.medium (2vCPU, 4GB memory)
instances as the fast and frugal server types. While both the instances
have similar compute capabilities, the fast server is 2x the cost
and has twice the memory capacity over the frugal server. Thus,
the frugal server has a higher service time than the fast server as
requests now access storage more often. Figure 14a shows that a

|—Fast ——Frugal —Hetero-CQl | ———Fast ——Frugal —— Hetero-CQ |

3
£2.5

ency (ms)
o~

P99 Tail latency (ms)

P99'I<'§|il laten:
o nn ~

0 10000 20000 30000 40000 50000
Arrival rate (RPS)

25000 35000 45000 55000 65000
Arrival rate (RPS)

(a) Memory Capacity (b) Storage systems
Figure 14: Heterogeneity arising out of other resource types
running on AWS.
heterogeneous mix is effective in reducing the tail latency by about
11%-15% (across various load levels) as compared to a FrugalCluster
while offering 50% more throughput than a FastCluster.
7.2 Storage system

To demonstrate the effects of different heterogeneity compositions
when storage is a key resource, we consider the c5d.xlarge and
al.xlarge instances types. The c5d.xlarge is a Xeon processor server
backed by a fast local NVMe storage device, and the al.xlarge
consists of the newly launched ARM processor servers backed by the
comparatively slower Elastic Block Store (EBS). The fast c5d.xlarge
instance is 1.8x more expensive than a frugal al.xlarge instance.

As seen in Figure 14b, the heterogeneous mix of servers gives a
better performance at the tail by about 15%-20% as compared to a
FrugalCluster while offering significantly more throughput than a
FastCluster.

These two experiments demonstrate the effectiveness of using het-
erogeneity as a design knob not just for compute but other resource
types as well.

WWW '20, April 20-24, 2020, Taipei, Taiwan

8 Related work

The related work can be classified into three categories: (i) solu-
tions which design with heterogeneity, (ii) techniques which profit
under incidental heterogeneity, (iii) systems which do not explicitly
consider heterogeneity.

Design with heterogeneity: Heterogeneity is a powerful tool that
has been previously applied in cloud for web applications and other
data analytic applications with unique challenges and constraints.

In the cloud, researchers have studied heterogeneous designs us-
ing combinations of different VM instance types such as reserved
instances (long term), on-demand instances (priced hourly), and
spot instances [20, 34, 62, 68, 78, 81, 88, 91, 94]. Spot instances do
not guarantee availability making them unsuitable for tail latency
sensitive applications as unpredictable resource availability can be
catastrophic on the performance. Extending our provisioning ap-
proaches to be aware of availability for user facing applications is a
direction of future work. Reserved instances as advertised are best
suited for steady-state usage [46]. They are cheaper when the cost is
amortized over a long-term commitment. Typically [15], reserved
instances are provisioned for the long-term steady state load and
on-demand instances offering the same performance (homogeneous)
are provisioned for the short-term time-varying load. Our solution
complements these approaches especially when provisioning the
on-demand instances. The equal cost allocation policy can be used
to provision heterogeneous reserved instances and the load propor-
tional cost allocation policy can be used for provisioning on-demand
instances. Most of these works explore heterogeneity with respect to
availability and cost rather than performance. By contrast, our work
studies heterogeneity in the context of performance, where request
scheduling and arriving at the correct heterogeneity composition
become challenging problems.

Recently, [16] explores the scaling of a heterogeneous mix of big
and small cores on a single node while considering the tail-latency
performance under iso-cost configurations. These solutions improve
the performance and/or energy efficiency of a single node, but do
not address how to manage a cluster of nodes in the cloud. In these
contexts, the cost for the node is already paid for upfront, and it is
not possible to dynamically change the heterogeneity mix on the fly.
Incidental heterogeneity: Incidental heterogeneity is natural in a
datacenter because of hardware upgrades occurring over time. [1, 26]
deal with managing this on clusters for the map-reduce application
by proposing efficient scheduling mechanisms for energy and perfor-
mance. [35, 61] exploit the incidental heterogeneity to match varying
resource requirements (in terms of CPU/memory) of different appli-
cations. Prior works [13-15, 56, 83] have also explored cluster scale
job placement and scheduling to match jobs to (incidentally) hetero-
geneous hardware in order to maximize application performance or
minimize performance interference between the applications. While
these works focus on fixing the problems introduced by preexisting
heterogeneity, our work shows a way to modulate heterogeneity to
improve performance (e.g., minimize tail latency).

While heterogeneity aware load balancing like HALO [25] is
generally a good idea, there are many scenarios which we specifically
consider and address in our work. Furthermore, in contrast to our
work, HALO does not consider the possibility of using heterogeneity
as a tunable knob to maximize application performance.

Adithya, lyswarya, Timothy, Anand

Heterogeneity oblivious resource provisioning: Capacity provi-
sioning of datacenters is a well studied area [2, 9, 28, 31, 32, 38,
64, 65, 86, 92, 93]. Contrasting to those approaches, which involve
right-sizing capacities by forecasting demand over the time-scale of
years, our work targets the cloud setting, which operates on the order
of minutes. This leads to a different set of resource management
problems. In the cloud, our work is more closely related to dynamic
capacity provisioning (i.e., autoscaling) techniques. This is also a
well studied area consisting of proactive and reactive approaches [22—
24, 29, 33, 66, 80, 84, 87, 89] with sophisticated workload pre-
dictions [8, 29, 74], and only a few consider budget constraints
(e.g., [59, 60]). All these autoscaling works do not consider hetero-
geneity and more importantly the associated scheduling challenges.
Thus, our work improves upon this body of literature by showing
how heterogeneity can be flexibly used as a knob for handling load
variations and load mispredictions. To our knowledge this is the
first paper to design and build clusters with heterogeneous mixes of
servers to address tail latency under a fixed budget constraint.

9 Concluding remarks and future work

This paper proposes heterogeneity as an effective knob for meet-
ing the time-varying scaling needs of web applications that have to
operate within a specified budget over a given time horizon. While
there are some load and/or budget extremes where homogeneous
options turn out to be optimal, there is a fairly large middle ground
where heterogeneous clusters can leverage the high service rates of
fast servers and the scale-out benefits of frugal servers simultane-
ously to improve performance and make it more predictable.

Using queuing theory, we have studied a range of load aware
and request size aware scheduling policies to gain insights on good
policies for reducing tail latency. Based on these insights, we have
built an actual heterogeneous cluster using real hardware both in our
laboratory and on the public cloud, running various applications. Our
implementation dynamically provisions heterogeneous resources
over time and also includes a request scheduler that implements the
policies we developed. We have evaluated this system to show that (i)
heterogeneity is a much more nimble knob to adapt to a wide range
of fluctuating loads than homogeneous options; (ii) heterogeneity
provides a low and consistent tail latency despite zero knowledge of
future load; (iii) with some load prediction, heterogeneity can help
smooth out the effects of any mispredictions; and (iv) our central
queue + work stealing policy works well to reduce tail latency even
without request size knowledge. 'I'hus, our proposed system provides
consistently low tail latencies across a wide spectrum of load and
budget availability regions.

In this work, we have considered a restricted class of applications —
namely those that are easy to scale in a distributed fashion, incur low
overheads for starting/stopping instances [15], and have insignificant
costs associated with replication/restart. Although our applications
do not share state, our solution can be extended to such applications
by using prior works like [37]. We intend to extend our work to a
wider spectrum of multi-tier stateful applications.

Acknowledgments

We thank anonymous reviewers for the constructive critique
and useful feedback. This research was supported by National Sci-
ence Foundation grants NSE-1909004, 1714389, 1629915, 1629129,
1526750, 1763681, 1912495 and a DARPA/SRC JUMP award.

The Fast and The Frugal

References

]

[10

[11

[12]

[13

[18

[19

[20

[21]

[22

[23

[24

Faraz Ahmad, Srimat T Chakradhar, Anand Raghunathan, and TN Vijaykumar.
2012, Tarazu: optimizing mapreduce on heterogeneous clusters. In Proceedings
of the Internarional Symposium on Computer Architecture (ISCA), Vol. 40. ACM,
61-74.

Douglas Alger. 2005. Choosing an optimal location for your data center. Build
the Best Data Center Facility for Your Business (2005).

AWS. 2018. AWS EC2 Pricing. https://aws.amazon.com/ec2/pricing/. [Online;
accessed 20-Jan-2020].

AWS. 2018. How Elastic Loadbalancing works. https://docs.aws.amazon.com/
elasticloadbalancing/latest/userguide/how- elastic- load- balancing- works.html.
[Online; accessed 20-Jan-2020].

AWS. 2019. Amazon EC2 Al Instances. hitps://aws.amazon.com/ec2/instance-
types/al/. [Online; accessed 20-Jan-2020].

Mythic Beasts. 2019. Raspberry Pi. https://www.mythic-beasts.com/order/rpi.
[Online; accessed 20-Jan-2020].

Bespecular. 2018. Bespecular. https://www.bespecular.comy/. [Ouline; accessed
20-TJan-2020].

Rodrigo N Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya. 2015.
‘Workload prediction using ARIMA model and its impact on cloud applicationsdAZ
QoS. IEEE Transactions or Cloud Computing 3, 4 (2015), 449-458.
Byung-Gon Chun, Gianluca Iannaccone, Giuseppe Iannaccone, Randy Katz,
Gunho Lee, and Luca Niccolini. 2010. An energy case for hybrid datacenters.
ACM SIGOPS Operating Systems Review 44,1 (2010), 76-80.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. ACM, 143-154.

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74-80.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store. In
ACM SIGOPS operating systems review, Yol. 41. ACM, 205-220.

Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware sched-
uling for heterogeneous datacenters. In ACM SIGPLAN Notices, Vol. 48. ACM,
77-88.

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient
and QoS-aware cluster management. In ACM SIGPLAN Notices, Vol. 49. ACM,
127-144.

Christina Delimitrou and Christos Kozyrakis. 2016. Hcloud: Resource-efficient
provisioning in shared cloud systems. ACM SIGOPS Operating Systems Review
50,2 (2016), 473-488.

Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s law for tail latency.
Commun. ACM 61, 8 (2018), 65-72.

Sheng Di, Derrick Kondo, and Walfredo Cirne. 2012. Host load prediction in a
Google compute cloud with a Bayesian model. In Proceedings of the International
Conference or High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 21.

Diego Didona and Willy Zwaenepoel. 2019. Size-aware Sharding For Improving
Tail Latencies in In-memory Key-value Stores.. In NSDI. 79-94.

Digicube. 2019. Digicube. http://digicube fr/rapidserveurs. [Online; accessed
20-TJan-2020].

Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,
Kevin D Bowers, and Michael M Swift. 2012. More for your money: exploiting
performance heterogeneity in public clouds. In Proceedings of the Third ACM
Symposium on Cloud Computing. ACM, 20.

Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica. 2009. Above the
clouds: A berkeley view of cloud computing. Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS 28, 13 (2009), 2009.
Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut, and Li Zhang. 2014.
Adaptive, Model-driven Autoscaling for Cloud Applications.. In ICAC, Vol. 14.
57-64.

Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch.
2012. Autoscale: Dynamic, robust capacity management for multi-tier data centers.
ACM Transactions on Computer Systems (TOCS) 30, 4 2012), 14.

Anshul Gandhi, Sidhartha Thota, Parijat Dube, Andrzej Kochut, and Li Zhang.
2016. Autoscaling for hadoop clusters. In Cloud Engineering (IC2E), 2016 IEEE
International Conference on. IEEE, 109-118.

Anshul Gandhi, Xi Zhang, and Naman Mittal. 2015. HALO: Heterogeneity-Aware
Load Balancing. In Modeling, Analysis and Simularion of Computer and Telecom-
munication Systems (MASCOTS), 2015 IEEE 23rd International Symposium on.
IEEE, 242-251.

Rohan Gandhi, Di Xie, and Y Charlie Hu. 2013. PIKACHU: How to Rebalance
Load in Optimizing MapReduce On Heterogeneous Clusters.. In USENIX Annual
Technical Conference. 61-66.

[27]

[28]

[29]

s
i

>
wn

136

[37

=
2

R
=2

WWW '20, April 20-24, 2020, Taipei, Taiwan

Garth A Gibson and Rodney Van Meter. 2000. Network attached storage architec-
ture. Commun. ACM 43, 11 (2000), 37-45.

Inigo Goiri, Kien Le, Jordi Guitart, Jordi Torres, and Ricardo Bianchini. 2011.
Intelligent placement of datacenters for internet services. In Internasional Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 131-142.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. Press: Predictive elastic
resource scaling for cloud systems. In Nerwork and Service Management (CNSM),
2010 International Conference on. leee, 9-16.

Google. 2018. GRPC Framework. https://grpc.io/. [Online; accessed 20-Jan-
2020].

Albert Greenberg, James Hamilton, David A Maliz, and Parveen Patel. 2008. The
cost of a cloud: research problems in data center networks. ACM SIGCOMM
computer communication review 39, 1 (2008), 68-73.

Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta Sen-
gupta. 2009. VL2: a scalable and flexible data center network. In ACM SIGCOMM
computer communication review, Vol. 39. ACM, 51-62.

Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and Bjérn B
Brandenburg. 2017. Swayam: distributed autoscaling to meet SLAs of machine
learning inference services with resource efficiency. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference. ACM, 109-120.

Tian Guo, Upendra Sharma, Timothy Wood, Sambit Sahu, and Prashant Shenoy.
2012. Seagull: intelligent cloud bursting for enterprise applications. In Proceed-
ings of the 2012 USENIX conference on Annual Technical Conference. USENIX
Association, 33-33.

Vishal Gupta, Min Lee, and Karsten Schwan. 2015. Heterovisor: Exploiting re-
source heterogeneity to enhance the elasticity of cloud platforms. ACM SIGPLAN
Notices 50,7 (2015), 79-92.

Vishal Gupta and Karsten Schwan. 2013. Brawny vs. wimpy: Evaluation and
analysis of modern workloads on heterogeneous processors. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International. IEEE, 74-83.

Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. 2018. ElMem: To-
wards an Elastic Memcached System. In 2018 IEEE 38th International Conference
on Distributed Compuring Systems (ICDCS). IEEE, 278-289.

Ronny Hans, Ulrich Lampe, and Ralf Steinmetz. 2013. QoS-aware, cost-efficient
selection of cloud data centers. In Cloud Computing (CLOUD), 2013 IEEE Sixth
International Conference on. IEEE, 946-947.

Mor Harchol-Balter. 2013. Performance modeling and design of computer systems:
queueing theory in action. Cambridge University Press. 274-275 pages.

Mor Harchol-Balter, Mark E Crovella, and Cristina Murta. 1998. On choosing a
task assignment policy for a distributed server system. (1998).

Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew R Young. 2009. Surprising
results on task assignment in server farms with high-variability workloads. ACM
SIGMETRICS Performance Evaluation Review 37, 1 (2009), 287-298.

Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal.
2003. Size-based scheduling to improve web performance. ACM Transactions on
Computer Systems (TOCS) 21, 2 (2003), 207-233.

Herodotos Herodotou, Fei Dong, and Shivnath Babu. 2011. No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics. In Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 18.

Yu-Ju Hong, Jiachen Xue, and Mithuna Thottethodi. 2011. Dynamic server
provisioning to minimize cost in an IaaS cloud. In Proceedings of the ACM
SIGMETRICS joint international conference on Measurement and modeling of
computer systems. ACM, 147-148.

Hound. 2008. Hound App by SoundHound Inc. https://soundhound.com/hound.
[Online; accessed 20-Jan-2020].

Amazon Web Services Inc. 2019. Amazon EC2 Reserved Instances. hitps:
/laws.amazon.com/ec2/pricing/reserved- instances/. [Online; accessed 20-Jan-
2020].

Amazon Web Services Inc. 2019. New 4AS Savings Plans for AWS Compute Ser-
vices. https://aws.amazon.com/blogs/aws/new-savings- plans- for- aws- compute-
services/. [Online; accessed 20-Jan-2020].

NVM Express Inc. 2018. NVM Express. htips://nvmexpress.org/.
accessed 20-Jan-2020].

Uptime Institute. 2018. Data center industry survey results. https://uptimeinstitute.
com/2018-data- center-industry-survey-results. [Online; accessed 20-Jan-2020].
Intel. 2018. Intel Atom Processors. https://www.intel.com/content/www/us/en/
products/processors/atom.html. [Online; accessed 20-Jan-2020].

Intel. 2018, Intel Xeon Processors. https://www.intel.com/content/www/us/en/
products/processors/xeon.html. [Online; accessed 20-Jan-2020].

Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. 2016. Morpheus: Towards Automated SLOs
for Enterprise Clusters.. In OSDI. 117-134.

[Online;

WWW '20, April 20-24, 2020, Taipei, Taiwan

[53]

[54]

[58

[59

[60

[61]

[62]

[63]

[64

[65]

=
=

N
]

[69

[70

(71

(72

(73

Harshad Kasture and Daniel Sanchez. 2016. TailBench: A benchmark suite and
evaluation methodology for latency-critical applications. In Workload Characteri-
zation (IISWC), 2016 IEEE International Symposium on. IEEE, 1 10.

Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler,
and Randy H Katz. 2010. Napsac: Design and implementation of a power-
proportional web cluster. In Proceedings of the first ACM SIGCOMM workshop
on Green networking. ACM, 15-22.

Paul Lamere, Philip Kwok, Evandro Gouvea, Bhiksha Raj, Rita Singh, William
Walker, Manfred Warmuth, and Peter Wolf. 2003. The CMU SPHINX-4 speech
recognition system. In IEEE Intl. Conf. on Acoustics, Speech and Signal Process-
ing (ICASSP 2003), Hong Kong, Vol. 1.2-5.

Gunho Lee and Randy H Katz. 2011. Heterogeneity-Aware Resource Allocation
and Scheduling in the Cloud.. In HorCloud.

Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocber-
ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer,
et al. 2012. Scale-out processors. In ACM SIGARCH Computer Architecture News,
Vol. 40. IEEE Computer Society, S00-511.

Myron H MacDougall. 1987. Simulating computer systems: techniques and tools.
MIT press.

A Hasan Mahmud, Yuxiong He, and Shaolei Ren. 2015. BATS: budget-constrained
autoscaling for cloud performance optimization. Tn 2075 IEEFE 23d International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems. IEEE, 232-241.

Ming Mao, Jie Li, and Marty Humphrey. 2010. Cloud auto-scaling with dead-
line and budget constraints. In Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on. IEEE, 41-48.

Jason Mars and Lingjia Tang. 2013. Whare-map: heterogeneity in homogeneous
warehouse-scale computers. In Proceedings of the International Symposium on
Computer Architecture (ISCA), Vol. 41. ACM, 619-630.

Ishai Menache, Ohad Shamir, and Navendu Jain. 2014. On-demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud.. In ICAC,
177-187.

Mininodes. 2019. Raspberry Pi 3 Server. https://www.mininodes.com/product/
raspberry-pi-3-server/. [Online; accessed 20-Jan-2020].

Iyswarya Narayanan, Aman Kansal, and Anand Sivasubramaniam. 2017. Right-
Sizing Geo-distributed Data Centers for Availability and Latency. In Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference on. IEEE,
230-240.

Iyswarya Narayanan, Aman Kansal, Anand Sivasubramaniam, Bhuvan Urgaonkar,
and Sriram Govindan. 2014. Towards a Leaner Geo-distributed Cloud Infrastruc-
ture.. In HotCloud.

Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad
Singhal, Arif Merchant, and Kenneth Salem. 2007. Adaptive control of virtualized
resources in utility computing environments. In ACM SIGOPS Operating Systems
Review, Vol. 41. ACM, 289-302.

Jun Woo Park, Alexey Tumanov, Angela Jiang, Michael A Kozuch, and Gre-
gory R Ganger. 2018. 3sigma: distribution-based cluster scheduling for runtime
uncertainty. In Proceedings of the Thirteenth EuroSys Conference. ACM, 2.

Eric Pettijohn, Yanfei Guo, Palden Lama, and Xiaobo Zhou. 2014. User-Centric
Heterogeneity-Aware MapReduce Job Provisioning in the Public Cloud.. In /CAC.
137-143.

ProxySQL. 2018. ProxySQL. https://proxysql.com. [Online; accessed 20-Jan-
2020].

Will Reese. 2008, Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

Harvard Business Review. 2011. IT Project. https:/hbr.org/2011/09/why- your-it-
project-may-be-riskier-than- you-think. [Online; accessed 20-Jan-2020].
Eduardo Roloff, Matthias Diener, Emmanuell Diaz Carrefio, Luciano Paschoal
Gaspary, and Philippe OA Navaux. 2017. Leveraging cloud heterogeneity for cost-
efficient execution of parallel applications. In European Conference on Parallel
Processing. Springer, 399-411.

Eduardo Roloff, Matthias Diener, Emmanuell D Carreiio, Francis B Moreira,
Luciano P Gaspary, and Philippe OA Navaux. 2017. Exploiting Price and Perfor-
mance Tradeoffs in Heterogeneous Clouds. In Companion Proceedings of thelOth
International Conference on Utility and Cloud Computing. ACM, 71-76.
Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient autoscaling
in the cloud using predictive models for workload forecasting. In Cloud Computing
(CLOUD), 2011 IEEE International Conference on. IEEE, 500-507.

Daniel Schall and Volker Hudlet. 2011. Wattdb: an energy-proportional cluster of
wimpy nodes. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of dara. ACM, 1229-1232.

SenseTime. 2018. SenseTime. https://www.sensetime.com/. [Online; accessed
20-TJan-2020].

Amazon Web Services. 2018. AWS Elastic Block Store. https://aws.amazon.con/
ebs/. [Online; accessed 20-Jan-2020].

Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant Shenoy. 2015.
Spotcheck: Designing a derivative iaas cloud on the spot market. In Proceedings
of the Tenth European Conference on Computer Systems. ACM, 16.

[79]

[80]

(85

[86]

(87

(88

(89

[90

Adithya, lyswarya, Timothy, Anand

Shazam. 2009. Shazam App. https:/www.shazam.com/.
20-TJan-2020].

Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
scale: elastic resource scaling for multi-tenant cloud systems. In Proceedings of
the 2nd ACM Symposium on Cloud Computing. ACM, 5.

Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and Prashant
Shenoy. 2015. Spoton: a batch computing service for the spot market. In Proceed-
ings of the Sixth ACM Symposium on Cloud Computing. ACM, 329-341.
Byung-Chul Tak, Bhuvan Urgaonkar, and Anand Sivasubramaniam. 2011. To
Move or Not to Move: The Economics of Cloud Computing.. In HorCloud.
Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-
Balter, and Gregory R Ganger. 2016. TetriSched: global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Proceedings of the Eleventh
European Conference on Computer Systems. ACM, 35.

Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, and Pawan Goyal. 2005.
Dynamic provisioning of multi-tier internet applications. In Autonomic Computing,
2005. ICAC 2005. Proceedings. Second International Conference on. IEEE, 217—
228.

Erik-Jan van Baaren. 2009. Wikibench: A distributed, wikipedia based web
application benchmark. Master’s thesis, VU University Amsterdam (2009).
Kashi Venkatesh Vishwanath, Albert Greenberg, and Daniel A Reed. 2009. Mod-
ular data centers: how to design them?. In Proceedings of the 1st ACM workshop
on Large-Scale system and application performance. ACM, 3-10.

Muhammad Wajahat, Alexei Karve, Andrzej Kochut, and Anshul Gandhi. 2017.
MLscale: A Machine Learning based Application-Agnostic Autoscaler. Sustain-
able Computing: Informatics and Systems (2017).

Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, George Kesidis, and Qianlin
Liang. 2017. Exploiting Spot and Burstable Instances for Improving the Cost-
efficacy of In-Memory Caches on the Public Cloud. In Proceedings of the Twelfth
European Conference on Computer Systems. ACM, 620-634.

Ji Wang, Weidong Bao, Xiaomin Zhu, Laurence T Yang, and Yang Xiang. 2015.
FESTAL: fault-tolerant elastic scheduling algorithm for real-time tasks in virtual-
ized clouds. IEEE Transactions On Computers 64,9 (2015), 2545-2558.
Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance analy-
sis of NVMe SSDs and their implication on real world databases. In Proceedings
of the 8th ACM International Systems and Storage Conference. ACM, 6.

Zichen Xu, Christopher Stewart, Nan Deng, and Xiaorui Wang. 2016. Blending
on-demand and spot instances to lower costs for in-memory storage. In Computer
Communications, IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on. IEEE, 1-9.

Guihai Yan, Jun Ma, Yinhe Han, and Xiaowei Li. 2016. EcoUp: Towards Eco-
nomical Datacenter Upgrading. IEEE Transactions on Parallel and Distributed
Systems 27,7 (2016), 1968-1981.

Sungkap Yeo and Hsien-Hsin Lee. 2011. Using mathematical modeling in provi-
sioning a heterogeneous cloud computing environment. Computer 44, 8 (2011),
55-62.

Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. 2015. Exploiting
cloud heterogeneity to optimize performance and cost of mapreduce processing.
ACM SIGMETRICS Performance Evaluation Review 42, 4 (2015), 38-50.

[Online; accessed

