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ABSTRACT

JESSIE is a robotic system that enables novice programmers to
program social robots by expressing high-level specifications. We
employ control synthesis with a tangible front-end to allow users
to define complex behavior for which we automatically generate
control code. We demonstrate JESSIE in the context of enabling clin-
icians to create personalized treatments for people with mild cog-
nitive impairment (MCI) on a Kuri robot, in little time and without
error. We evaluated JESSIE with neuropsychologists who reported
high usability and learnability. They gave suggestions for improve-
ment, including increased support for personalization, multi-party
programming, collaborative goal setting, and re-tasking robot role
post-deployment, which each raise technical and sociotechnical
issues in HRI. We exhibit JESSIE’s reproducibility by replicating
a clinician-created program on a TurtleBot 2. As an open-source
means of accessing control synthesis, JESSIE supports reproducibil-
ity, scalability, and accessibility of personalized robots for HRI
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1 INTRODUCTION

Healthcare is an important domain to support key stakeholders
by creating customized robot programs [7, 29, 30]. 15-20% of the

Research reported in this paper is supported by the National Science Foundation under
Grant No. IIS-1915734 and the Computing Research Association DREU program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HRI 20, March 23-26, 2020, Cambridge, United Kingdom

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6746-2/20/03...$15.00
https://doi.org/10.1145/3319502.3374836

RIGHTS LI N Kiy

121

Figure 1: JESSIE employs control synthesis with a tangible
front-end to enable people to create customizable programs
for social robots within the context of neurorehabilitation.

world’s population has a disability [94], and as aging trends in-
crease, this number will also increase [79]. This greatly impacts
independence of many people; however, the availability of full time
care providers are exceeding existing resources around the world
[95]. Thus, human robot interaction (HRI) researchers are exploring
robots to fill these care gaps, particularly home-based social robots
deployed longitudinally (3, 7, 10, 20, 25, 28, 44, 76, 80-82, 87, 89].
AsHRIresearchers collaborate with clinicians, community health
workers, and family members, many have reported challenges
stymieing their progress [5, 12, 43]. First, they lack the tools to
enable clinicians to create tailored, personalized interventions and
modify robot behavior at a high level. Personalization is critical
in any robotics healthcare application, as no care receiver is the
same and requires uniquely tailored interventions to support their
health. Another challenge is that HRI researchers must manually
and painstakingly create customized programs for each stakeholder
domain, limiting the scalability and potential impact of their work.
Most stakeholders, particularly clinicians, lack the time to learn
how to program robots to exhibit custom behavior, especially if
they must consider each individual action the robot should perform
(e.g. what to say, how to move). This can cause unusable code or un-
expected robot behavior, and must be extensively tested, else risks
unintended consequences on potentially vulnerable populations.
While prior work exists to support novice programmers via
visual, aural, and tactile languages (i.e., via End User Programming
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(EUP)) [9, 24, 61, 68, 84, 85], these frameworks are almost entirely
procedural, require understanding code structure, and do not allow
high level specification of desired behavior, including constraints
on the robot’s actions. For example, a novice user can typically
program a sequence of actions (e.g. pick, then move, then place),
but implementing multiple conditions and constraints on behavior
is more difficult (e.g. pick, place, and play music if the user is bored,
and turn on lights if it is dark). For complex behaviors, users would
have to compose constructs such as if statements and for loops,
which can be difficult and error prone even in EUP contexts.

To address this gap,we leverage our prior work on control syn-
thesis for robot behavior from high-level specifications [54, 96].
Such techniques and tools take a description of robot behavior,
typically in temporal logic, and automatically synthesize a robot
controller guaranteed to satisfy the task, if one exists. Control syn-
thesis enables users to reason about the overall behavior, then auto-
matically creates the specific implementation for the robot. It auto-
matically transforms complex behaviors (e.g. sequences of actions,
reactions to external events, constraints on robot behavior) into
code. It removes the burden of deciding a program structure, which
is non-trivial and difficult for non-programmers, and eliminates
implementation errors. However, using existing control synthesis
tools requires understanding of temporal logic and typically lack
an interface to easily to express the desired behavior, prohibiting
novice users from taking advantage of control synthesis.

To address these gaps, we present Just Express Specifications,
Synthesize, and Interact (JESSIE), an end-to-end system that en-
ables programmers of any level to quickly and easily program social
robots to exhibit complex behaviors. JESSIE leverages existing con-
trol synthesis methods coupled with an accessible high-level speci-
fication interface to enable users to specify and synthesize social
robot controllers which afford personalized activities, reactions, and
behavioral constraints. Thus, users need not concern themselves
with specific implementation details or individual robot actions,
and can instead focus on overarching goals (e.g. therapeutic).

To demonstrate our approach, we implemented our system on
a Kuri robot in the context of developing cognitive training treat-
ments for people with mild cognitive impairment (MCI). MCI is an
intermediate state between typical aging and dementia which can
cause challenges in cognitive functioning (see Section 2.1).

We evaluated JESSIE with six neuropsychologists, its envisioned
end-users. Overall, participants without prior programming expe-
rience successfully created personalized, interactive therapies for
people with MCI (PwMCI), and reported positive comments with
regard to its usability. Furthermore, they gave suggestions for im-
provement including increased support for personalization, varying
the robot’s status, and collaborative goal setting (Section 5).

The contributions of this paper are as follows: First, we present
an end-to-end system that allows non-programmers to specify com-
plex robot behavior through a tangible interface, and automatically
generates the associated robot control. This will help inform future
real-world HRI research by enabling on-the-fly robot customization.
Second, we demonstrate JESSIE in the context of cognitive therapy
for MCI, an important application area for social robotics. We re-
port our findings from our evaluation with six neuropsychologists,
representative end-users who did not have prior programming ex-
perience. To our knowledge, this is the first evaluation of a control
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synthesis framework by end-users. Third, we demonstrate the repro-
ducibility and extensibility of the system by executing a clinician-
created behavior on another platform, the TurtleBot 2. Finally, as
an artifact to support reproducibility for other HRI and robotics
research contexts, all software, documentation, and supplemental
materials discussed in this paper are available as open-source at
https://github.com/UCSD-RHC-Lab/JESSIE.

2 BACKGROUND
2.1 Neurorehabilitation and MCI

We focus on using a robot to support neurorehabilitation for PwMCI
at home. MCl is a stage between typical aging and dementia, and
the prodromal stage for several neurodegenerative disorders, in-
cluding Alzheimer’s disease and vascular dementia [62, 69]. PwWMCI
struggle with instrumental activities of daily living (IADLs), includ-
ing problem solving and managing medication and finances. Up to
20% of people aged over 65 experience MCI, and annually 10-15%
of PwMCI convert to dementia [35, 58, 86]. There are currently no
pharmacologic treatments that lower this [36, 53, 70], so many are
exploring non-pharmacologic interventions [57, 71].

Behavioral treatments can improve cognitive functioning, slow
the onset of disability, and prolong the independence of PwMCI [11].
Cognitive training (CT) is particularly effective [50, 52]. It teaches
PwMCI metacognitive strategies to minimize the impact of MCI on
their daily lives, such as planning techniques and environmental
re-organization. CT personalization is critical to maximize applica-
bility to individuals, thus improving engagement and sustainment.
Our work facilitates this by enabling clinicians to specify a variety
of games to help PwMCI practice different cognitive strategies with
the robot, and change how the robot reacts to the PwMCL

We teamed with neuropsychologists interested in building robots
to be deployed longitudinally in the home to support CT. We de-
veloped a tangible specification interface (Section 3.4), that enables
them to write high-level specifications for a social robot and incor-
porate the types of CT they view as clinically relevant.

2.2 Control Synthesis

Control and program synthesis are techniques to automatically
transform high-level specifications into control or programs guar-
anteed to satisfy the specification. In robotics, researchers typically
use different temporal logics to express tasks and automatically
transform them into robot behaviors [55]. Thus, users can reason
about the robot’s overall task rather than implementation details.

In this work, we build on reactive synthesis from linear temporal
logic (LTL) specifications [34]. Roughly speaking, LTL formulas are
composed of atomic propositions (Boolean variables), logical and
temporal operators as follows:

¢ =rnl-¢level OeleUe

where “not” (=) and “or” (V) can be used to create “and” (A) and
“implies” (—), and the temporal operators “next” (O) and “until”
(U) can be used to create “eventually” (¢) and “always” (O).

The formal semantics of LTL formulas can be found in [34].
Intuitively, a formula Qg is true if ¢ is true in the next time step,
Og is true if ¢ is always true during the execution, and ¢¢ is true if
at some point in the execution, ¢¢ is true.
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LTL allows users to encode assumptions about the behavior of
the robot’s environment (e.g., the state of the PwMCI) and require-
ments on the robot behavior (e.g., if the PwMCI is not engaged,
play music). Furthermore, there exist algorithms that automatically
transform an LTL formula into a finite state controller [55] that is
then used for robot control. For computational reasons, we use the
GR(1) fragment of LTL [14] as the underlying formalism.

We leverage free and open-source tools for LTL synthesis and
execute the resulting controller with the Robot Operating System
(ROS [77]). For LTL synthesis, we use slugs [33], which computes a
symbolic representation of the controller from the specification. At
runtime, slugs provides the next state for LTLstack [96] to execute.

LTLstack is a tool for mapping the propositions in the LTL for-
mula to ROS nodes and executing the synthesized controller. At
each time step, LTLstack reads information from the sensor nodes,
finds the next state in the controller, and activates behavior nodes.

2.3 End-User Programming

End-user programming (EUP) methods enable those with limited or
no programming experience to write programs, and provide visual,
aural, tangible, and tactile interfaces for programming [8, 9, 24, 48,
61, 68, 84, 85]. A main concept in EUP is empowered computing — al-
lowing users to personalize systems to their needs and preferences
[37]. They are used widely in educational contexts [40, 47, 65, 88],
and are used in HRI, home automation, and healthcare contexts
[16, 17,19, 26, 29, 39, 41, 49, 64, 67, 73, 83, 84]. However, these meth-
ods are typically procedural, so users require a basic understanding
of coding constructs. Thus, creating a correct implementation with
the desired behavior is highly dependent on the user’s coding skills.
For simple behaviors (e.g. sequencing actions), users of all levels
can produce programs with minimal instruction. However, increas-
ing complexity of implementation (i.e. there are conditionals and
possibly conflicting behaviors) can lead to incorrect programs and
excessive testing before achieving the desired behavior.

In robotics, visual programming environments (VPEs) are the
most commonly employed EUP technique [2, 26, 29, 32, 38, 39, 49, 60,
64, 67, 74]. For instance, Choregraphe [75] is used to program robots
such as Nao, and TagTrainer [90] is used to create rehabilitation
exercises. VPEs such as these require users to reason about the
implementation of the code - for and while loops, if statements,
etc. In contrast, JESSIE provides a specification interface to the user
and automatically generates the code implementation. Reasoning at
the specification level enables users to specify constraints, such as
what the robot should not do, reactions to external events (without
worrying about the code structure to implement them), sequences,
conditionals, etc. While anything specified in JESSIE can be written
as code in a VPE, reasoning about the required behavior rather than
the implementation of the behavior lowers the barrier of entry for
end-users, such as therapists, to create custom robot behavior.

While there is recent work on incorporating formal methods (e.g.
model checking for verification, SMT solvers for synthesis) into
such languages [73, 74], the use of reactive synthesis as we employ
in this work (i.e. generating a controller with multiple possible
correct executions rather than a trace) has not been demonstrated.

Due to disparate backgrounds of stakeholders in our application
domain, including people with low technology literacy [21, 59], we
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implement a card-based tangible specification interface inspired by
prior work [8, 13, 24, 47,48, 61, 65, 84, 85]. Tangible EUP systems typ-
ically feature icons on blocks that are strung together in sequence,
similar to what JESSIE supports, but unlike our work, tend to be
procedural. While a few tangible EUP approaches have been demon-
strated in therapeutic contexts [15, 31], to our knowledge making
control synthesis accessible to this population is unexplored.

3 SYSTEM OVERVIEW

JESSIE enables end-users to specify high-level robot behavior, such
as constraints and reactions, and automatically generates and exe-
cutes a robot controller using LTLStack. It comprises ROS nodes
representing sensor information and behaviors for a social robot,
made accessible to users through a tangible specification interface.
We implemented JESSIE in the context of cognitive training pro-
grammed by neuropsychologists and administered via a Kuri robot.

3.1 Proposed Approach

JESSIE is comprised of LTL synthesis with a tangible specification
front-end to enable novice programmers to leverage control synthe-
sis to program robots via high-level specifications. These specifica-
tions enable programmers to define desired robot behavior without
grappling with unfamiliar code or creating the implementation.
Additionally, the synthesis approach is correct-by-construction, so
the generated controller is guaranteed to satisfy the specification,
eliminating “bugs” that may be introduced by novice programmers.

One goal for our specification interface is to clearly convey the
possible robot actions and behaviors, as well as how each one fits
in the overall program execution. As people may not be familiar
with the robot’s capabilities or fundamental computer science con-
cepts (e.g. conditionals), we abstracted these ideas in an intuitive
form while still communicating the robot’s possible behaviors. In
neurorehabilitation, the ability to quickly develop unique programs
is essential for clinicians to create customized programs for each
individual they work with, each with distinct needs and preferences.

3.2 Computational Back End

3.2.1 Specification to Execution Flow. Fig. 2 summarizes our use
of LTL synthesis via a specification interface. First, the end-user
programmer uses our tangible interface (Section 3.4) to define the
robot behavior through activities, or activity modules (e.g. play
music, play a number game) (Section 3.2.2). They can also specify
constraints for behaviors (e.g. congratulate the user only when
they achieve a high score on a game). Then, JESSIE automatically
transforms these activities and constraints into LTL specifications
by reading the identifying QR tags to determine the order in which
the cards were placed. LTLstack [96] then calls slugs [33] and syn-
thesizes a controller to execute the specified activity nodes and
reactive behaviors based on sensor input at runtime (Section 3.2.3).

3.2.2  ROS Nodes. The specifications are transformed into LTL for-
mulas over a set of atomic propositions. These propositions are
grounded to sensor data and robot behaviors, used to execute the
controller. We consider three types of propositions and their ground-
ing as ROS nodes: Activity module nodes represent behaviors the
robot can execute during the session (e.g. give a greeting, practice
number game). Activity completion nodes signal the completion of
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Figure 2: Overview of JESSIE. Users specify the robot’s activities and behaviors with our tangible interface. A specification
file is then created which includes the desired sensor and actuator nodes, the robot’s initial conditions, event ordering, and
sensor-reaction maps. LTLstack then synthesizes a controller to execute the associated ROS nodes.

activity modules. Sensor nodes are associated with stimuli the robot
should respond to (e.g. whether the person touched the robot).
Activity modules represent a particular action which clinicians
can have the robot execute. They choose the order of activities for
interactive sessions (e.g. they can create a program to first play a
number game then congratulate the PwMCI on their performance).
These modules consist of dialogue, movement, and other actions.
For instance, the Greeting module utilizes Kuri’s ability to move its
head, speak, and play sounds to convey excitement about meeting
the person. In the Mindfulness exercise module, Kuri asks the PwMCI
to close their eyes, then talks them through a script to improve
self-awareness. When executed, each activity varies in duration,
spanning from between a few seconds to up to ten minutes.
Clinicians can also use activity modules to specify robot reactions
to sensor stimuli. For instance, rather than always congratulating
the PwMCT after a game, clinicians may choose to do so only if
they scored above some threshold. We created 14 activity modules,
including cognitive training games and mindfulness exercises devel-
oped with input of our clinical collaborators [51], giving greetings,
providing instructions, and administering cognitive assessments.
Each activity module node has a corresponding completion node
to signal when that activity has completed. While these nodes are
necessary for LTLstack to transition between a sequence of activ-
ities, we automatically create and link one to each activity. Thus,
users need not worry about their implementation or execution.
Sensor nodes enable the robot to perceive its environment. They
leverage Kuri’s built-in sensors to translate environmental data to
a higher-level understanding of the person interacting with it. For
instance, the If tactile interaction... node uses Kuri’s capacitive touch
sensor to detect when the person is physically interacting with it.
While we created these nodes specifically for our platform and
application domain (Section 3.3), researchers can create other ROS
nodes and cards for their desired application and platform by fol-
lowing the guide in our supplementary materials. We demonstrated
the reproducibility of our system by implementing ROS nodes for
a TurtleBot 2, and synthesizing and executing programs clinicians
created for the Kuri. Actions and stimuli are mapped to the new
platform (e.g. TurtleBot made a sound whereas Kuri nodded its
head). These nodes can be found in our supplemental materials
to enable a side-by-side comparison. Note that no other files were
modified to execute our approach on a new platform.

3.2.3  Synthesis and Execution. For control synthesis and execution,
we used LTLstack, which consists of ROS packages for running
with correct-by-construction controllers [96]. It takes a mapping
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between propositions and ROS nodes and a slugs specification file
(LTL formula), and generates and executes an associated controller
by listening to sensor and completion nodes and activating activity
nodes. The specification file encodes the constraints and require-
ments that should be satisfied throughout the program’s execution,
including environment assumptions and system guarantees [14, 33].
To our knowledge, JESSIE is the first end-to-end reactive syn-
thesis framework demonstrated in an HRI context, and the first
evaluated by end users. This evaluation informs future control
synthesis specification and framework design (Section 5).

3.3 Platform

JESSIE is intended to facilitate reproducibility and systems engi-
neering in HRI, and thus is intended to be used on any platform and
within any context. In this work, we demonstrated our system on
Kuri, a social robot from Mayfield Robotics (Fig. 1), in the context of
neurorehabilitation. It contains a multitude of sensors to perceive
its environment, including an RGB-D camera, microphones, and
bump and touch sensors. It can communicate through numerous
modalities, such as expressive eyes, a multi-color chest light, speech,
motion, and sound. To minimize the risk of older adults tripping
over Kuri, we deploy it as a tabletop robot, though it is capable of
being mobile as well. Kuri runs ROS Indigo on Ubuntu 14.04.

We developed an iPad application (iPad Air, iOS 12.4.1) that
connects to Kuri via a websocket as another means of interaction.
Clinicians do not interact directly with the Kuri or iPad; they control
the behavior and display by selecting which activities to execute.

3.4 Tangible Specification Interface

We created a tangible specification interface as an intuitive way to
program social robots via control synthesis. Users simply input ac-
tions and reactions, with no need for extensive training or external
programmers. Thus, clinicians can create custom treatments for
PwMCI via high-level specifications without altering source code.
We designed the interface to be both intuitive and descriptive so
it is easy to learn while encompassing the actions of an interaction.
Each card depicts a symbol and short descriptor (Fig. 3, left) that
represents actions programmers may include, associated with ROS
activity module and sensor nodes described in Section 3.2.2. Activity
module nodes are blue, and sensor nodes are orange. The arrow
on sensor nodes reflects conditionality, analogous to the logical
“implies” symbol. Each card has a unique marker to facilitate the
automatic translation from cards to specifications to code.
Programmers may place activity cards in any order, from top-
to-bottom, left-to-right (Fig. 3, right). Sensor cards can be placed
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Order of activity modules

—greetingComplete = —min fulnessInstructions’

—min fulnessInstructionsComplete = —min fulnessExercise’
—mindfulnessExerciseComplete = —numberGamelnstructions’
—numberGamelnstructionsComplete = —numberGame’
—numberGameComplete = —wordGamelnstructions’
—wordGamelnstructionsComplete = —wordGame'

Sensor nodes and reactive behaviors
(scoreHigh'and—congratulateComplete') = congratulate’

(tactileInteraction’and—giggleComplete') = giggle’

Figure 3: Left: Example cards and descriptions from our tangible interface. Blue cards are activities the robot can do; orange
cards represent stimuli the robot can sense and react to. Right: A program created by a clinician and a partial implementation
in LTL. Programmers lay out activity module cards in the order of execution they desire, in addition to reactions to stimuli.

anywhere, as they run in parallel with main activity modules. Users
simply place the desired reaction below the sensor card, such that
the arrow points to it. Then, the sensor nodes will allow the robot
to react to the associated stimuli throughout program execution.

4 EVALUATION

To evaluate the JESSIE system and determine how to improve it, we
conducted a study with six neuropsychologists interested in using
it. We assessed the system’s usability, specifically for clinicians with
no programming experience. We taught participants how to use
our specification interface to create a program, then allowed them
to design their own sessions for PwMCI to complete with Kuri.
Our study was approved by the UC San Diego Institutional Review
Board, under protocol number 181341.

After giving informed consent, we introduced participants to
Kuri and gave an overview of the study. As most participants did
not have experience with robots, we showed them a video demon-
strating some capabilities they can use in their programs. We then
explained how to use our tangible interface, computer science con-
cepts (e.g. conditionals), and actions Kuri can perform.

We then began the programming phase. We asked participants
to create an interactive session for a PwMCI they are working with
and encouraged them to ask the researcher for help if needed. We
recorded the time it took participants to complete their programs.
Then, they watched Kuri execute their program!. To conclude the
session, we conducted an open interview to receive feedback on our
system, including ease of use, how often they would recommend
people interact with it, and other features they would like imple-
mented in the future, and they completed written questionnaires.

We employed mixed methods approaches in our data collection
and analysis. Quantitative measures included the System Usability
Scale (SUS) score [18] which measures perceived usability, task
completion time, and card usage. Qualitative measures included
post-study interviews and researcher observations of challenges
participants faced during the study. Questions we asked included
Would you consider using this kind of system to support your work?,
What other features would you like to see implemented?, and Did you
feel like you could express the robot behavior you desired with the
card-based language? We recorded and transcribed all interviews.

! Automatically generating specifications from the tangible interface was not fully
implemented during evaluation, so a researcher conducted a manual translation. Auto-
matic translation is now complete and available in our open-source code.
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Two researchers employed a grounded theory [22] approach, and
individually coded the audio recordings to find emerging themes
through an inductive coding process. They then compared codes
and identified three overarching themes among the participants,
specifically: increased support for personalization (Section 5.1),
means to longitudinally vary the robot’s operating mode and inter-
action style (Section 5.2), and collaborative goal setting (Section 5.3).

5 RESULTS

We recruited six clinical researcher participants through word of
mouth, all of whom work with PwMCI. These included four neu-
ropsychologists, a psychiatry professor, and a research coordinator.
Five were female and one was male; their ages were 28-49 years old
(mean = 34 years, SD. = 7.67 years). They had between 14 months to
23 years of experience working with people with cognitive impair-
ments (mean = 6.53 years, SD = 8.31 years), had little to no general
programming experience, and none had ever programmed robots.

All participants were able to successfully program at least one
interactive session for a PwMCI, each of which could run to comple-
tion on Kuri. Four participants each created one program, and two
participants each created two programs, yielding a total of eight
programs. These programs can be found in the supplementary ma-
terials. On average, participants spent 2:15m (SD = 1:40m) creating
a program. They spent an average of 12:35m (SD = 7:45m) viewing
their programs. They used an average of 8.25 cards (SD = 4.37) with
an average of 7.38 activity cards (SD = 3.78) and 0.88 sensor cards
(SD = 0.83) in each program. Greeting (8) and Congratulate (8) cards
were used most often, and Tell a joke (1) and Sneeze (0) the least.

On SUS, participants scored JESSIE an average of 90.83 (SD = 9.31)
which is above average compared to other systems [6]. Participants
described using the system as, “easy,” “simple,” and “straightfor-
ward”. One participant commented: “I’ve never interacted with a
robot before, so it’s brand new for me, but it’s easy to use. I thought it
was fairly engaging.” Overall, no participants explicitly expressed
frustration or confusion using the system, though they suggested
improvements, discussed below. While several of these suggestions
can be easily incorporated into the JESSIE system by creating more
ROS nodes, other articulate future research directions.

5.1 Increased Support for Personalization

Personalized sessions are critical for PwMCI because their needs
and goals can change as their condition progresses [23]. Participants
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described a range of different PwMCI for whom they imagined us-
ing the system, such as people managing comorbidities (e.g. heart
disease) interfering with their planning abilities, and people living
alone who often forget to bring important objects when they went
out. Participants suggested three main ways JESSIE could be ex-
tended to enable increased personalization: feedback customization,
communication modalities, and adaptation.

5.1.1  Feedback Customization. The frequency and type of feedback
the robot provides can greatly impact people’s engagement and
perception of it [23], so it is imperative that it provides personalized
feedback and encouragement. Participants stated that feedback
style can significantly impact the PwMCI’s recollection of different
cognitive strategies and how they apply them outside of treatment.
For example, the robot could vary its feedback depending on the
activity type and person’s performance. One participant explained:
“In the word game... if the robot could give [the PwMCI] feedback...
‘When you use this strategy, you really benefited and your recall is
better.... For the number game, ... [therapists] will give more trial-
by-trial feedback, [so the robot could give] some indication that [the
PwMCI] had gotten one wrong and [needs] to get back on track.”

In contrast, clinicians may not always want the person to receive
immediate feedback. For instance, a participant who primarily con-
ducts research assessments for PwMCI stated, “We don’t normally
tell [PwMCI] how they perform, ...during the research tests, [we] don’t
want them to know how they’re doing, because it could discourage
[or encourage] them on the next test ”

5.1.2  Communication Modalities. Depending on the person’s sen-
sory abilities and personal preferences, they may require the robot
use and respond to different communication modalities. Partici-
pants wanted to be able to specify which modalities the robot use at
a given time or for certain populations. One participant expressed,
“For older participants, it might be nice to have some more verbal
cues, in case they don’t keep up with the robot.” However, they also
mentioned that during certain activities, such as mindfulness where
Kuri asks the person to close their eyes, visual output on the tablet
may be distracting. Thus, more control over each modality, such as
speech, the tablet, and movement, would help clinicians tailor each
session to individual needs and preferences.

In addition to the tablet, participants discussed other ways PwMCI
could communicate with the robot, both explicitly and implicitly.
One commonly requested modality was speech, especially as an
alternative for people with tremors or difficulty spelling. They also
suggested that the robot sense different behaviors about the PwMCI
to infer their state, such as sedentary time, social activity, and mood.

5.1.3  Adaptation. 1t is important for the robot to be able to adapt to
the PwMCI, especially as their preferences, cognitive abilities, and
moods may change over time, in order to keep them engaged and
support consistent interaction with the robot. As one participant
suggested, “Depending on a particular person and what they like,
their strengths and weaknesses, the robot might say different things
or suggest different strategies.” And another said: “If the participant
seems frustrated, [it could] give them encouragement... if they scored
low [it could say], ‘Don’t worry. Not everyone gets them all right.””
Another important aspect of cognitive training is forming habits
to routinize tasks [50], so participants wanted the ability to specify
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the frequency and schedule of activities. Then, either the clinician
and PwMCI could work together to define a schedule, or the robot
could facilitate scheduling. Participants also wanted to tailor the
length and difficulty of activities to help them better integrate with
a person’s schedule, and thus better support adherence.

5.2 Varying Robot Status

All participants indicated that being able to change the state of
the robot at various points would be useful. Since MCI can be
progressive, people’s needs, goals, and abilities can change over
time. Thus, participants identified three categories for which they
might want the robot to differ its interaction style, discussed below.

5.2.1 Staged Robot Deployment Support. Depending on the MCI
stage, clinicians may have different goals for the robot, such as
monitoring, education, or intervention delivery. One participant
mentioned, “The first work we do [with PwMCI] is getting their pat-
terns down. Sometimes they can provide you with what a typical day
looks like, but they might be over or underestimating... The first step
would be to use Kuri to play more of an observational role in their
home environments.” This can also help clinicians identify the ideal
intervention strategy. “Part of us identifying interventions is, how
can we help individuals remain independent?” Thus initially, the
robot could observe the PwMCI to help clinicians understand their
behavioral patterns and establish a baseline for usual behavior.

Once a baseline is established, the robot could transition to ed-
ucating the PwMCI on how to navigate their life with MCI, and
support independence. For instance, it can help PwMCI form habits
and stick to a schedule, which our participants noted is an impor-
tant step to living with MCL “Perhaps they re beginning to form those
habits. That’s done by pairing it with day-to-day activities that have
become habitual, so [these] things don’t rely on memory as much.”
During this stage, it may also be more explicit when communicat-
ing the reason behind each activity. One participant noted that, ‘T
liked when it gave a break, that it also explained the benefits of taking
breaks, because I know that’s part of the [cognitive training].”

As the MCI progresses, the clinician may want to use the robot
for further intervention, and allow the PwMCI to rely on it more. For
instance, “If this can help someone retain some level of efficiency and
functioning, I think that’d be really important. I'm definitely thinking
of those who are on the extreme end of the impairment spectrum.” To
help facilitate these stage transitions, clinicians wanted affordances
to manage different programs and settings on the robot.

5.2.2  Active vs. Passive Robot Interaction Style. An open problem
in HRI is how active or passive a robot should be during interac-
tion [46, 66]. Our participants also raised this concern, particularly
when the robot is interacting with the PwMCI. Participants noted
that at first, the PwMCI may be more independent, so a passive
approach would probably be preferred. They suggested the robot
conduct observations, and inform the PwMCI during their normal
interactions if any different behaviors were observed.

In other cases, the clinician may want the robot to take on a
more active role and give the PwMCI suggestions about how to
handle their condition. For instance, a participant suggested having
“moments where we’re checking in and saying, ‘Well, how stressed are
you feeling?’ Or, ‘How is your mood right now and how much have
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you exercised so far?” Those could be moments where we tell them it’s
time to go on a walk rather than just monitoring their behavior”

Participants also discussed initiative - should the robot initiate
interaction, or wait for the PwMCI to do so? They imagined being
able to leverage Kuri’s physical embodiment to have it prompt peo-
ple when it is time to begin the session. “But the benefit potentially
of having this kind of thing is that... it could remind the patient to
do the [activity].” Another participant mentioned that at set times
each day, ‘It would present an option of ‘Would you like to play the
word game now? Yes or no.” Then provide those word game options.”

Other times, it might make sense for the person to initiate en-
gagement with the robot. Participants wondered how this might
occur given the varying ability levels of PwWMCL For instance, ‘T'm
wondering [if] somebody who might be not as mobile would maybe
need to wave their hands to get its attention. Or if they’re not even
able to do that well, are there instructions such as saying, Kuri’, or a
specific codeword that activates the robot.”

5.2.3 Research vs. Intervention Mode Switching. Many of our partic-
ipants work with PwMCI across both clinical and research contexts,
which each have different goals, and the role of the robot in them
may change significantly. Thus, clinicians wanted a way to easily
create and switch between “modes” on the robot.

The first main context for which participants imagined using
the system was for clinical intervention. In this context, “We are
interested in what sorts of problems [people with MCI] are having in
their daily life. And then the intervention, we use it as sort of like a
crutch to help people who already have some impairment. We can’t
cure their impairment. We can teach them strategies to get by.” In
intervention mode, PwMCI would regularly interact with the robot
in their home, as prescribed by the clinician.

5.3 Collaborative Goal Setting Support

Participants wanted ways to collaboratively set goals with PwMCL
This is an important aspect of cognitive training, where clinicians
and PwMCI work closely to identify goals in training, and set
actions to address them [4]. Participants identified three types of
relationships where this may occur: the clinician and PwMCI, the
robot and PwMCI, and between clinicians. These activities might
occur in clinic or at home, and may be clinician-led or PwMCI-led.

5.3.1 Clinician - PwMCI. Participants expressed interest in a way
of working with PwMCI to create sessions that support their goals
by specifying aspects such as schedules, activities, and reminders.
For instance, one participant mentioned that during a session, they
“work with the patient in developing the [session]. ‘Based on your
routine and the time you get up, what time do you think we should
have this thing remind you to take your medications? Or check the
mail?” Similarly, “A clinician and the patient can collaboratively
work to decide, ‘We are noticing these are your patterns. We’ve identi-
fied these patterns are certain risk factors or protective factors. Let’s
work towards helping Kuri to be that point of contact when you’re at
home. How can we set up these cards to then help nip certain behaviors
in the bud before they turn a little bit more worrisome?’"
Alternatively, the clinicians could also specify higher-level goals
for or with PwMCI, then allow them more freedom to choose spe-
cific activities. One participant suggested, “They could pick, ‘Today
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I 'want to do a [mindfulness exercise].” Or I could pick, ‘Today I want
them to [practice mindfulness].” Or focus, attention, exercise, [etc.] ”
Another participant stated, ‘T think there should be several standard
things that could be informed by what we know of the patient popu-
lation that this is being targeted towards. Then certain customizable
options that talk about how certain instructions can be changed or
activities can be changed but the underlying programming wouldn’t
change.” Then, the person could choose a specific activity that
exercises the broader area each time they interact with the robot.

5.3.2 PwMCI - Robot. Participants discussed how the PwMCI
might work with the robot to develop their goals and cater to their
preferences. As the clinician will usually not be with the PwMCI
when they interact with the robot, PwMCI need ways to work di-
rectly with the robot to develop and assess their goals. For instance,
one participant mentioned, “Kuri can [...] recognize those patterns
together and intervene in those moments of providing that feedback
to that person to be able to help them assess points to improve.”
However, they noted that the card-based specification interface
might not be the best means of interaction between the person
and the robot directly, particularly those who are not familiar with
technology. While participants believed they might be able to create
an activity using the cards, they also mentioned that they might
have trouble taking a picture of the program for the robot to process
and execute. Instead, they suggested allowing the person to interact
with the robot primarily directly through the tablet or verbally.

5.3.3 Clinician - Clinician. PwMCI may be working with multiple
healthcare providers in addition to a neuropsychologist, such as
their primary care physician. Our participants were mindful of
this, and suggested that our system allow for multiple providers
to program the robot. “I’'m not a primary care physician, so I don’t
know what that person might need in terms of exercise, or what their
physical limitations might be. I'm not allowed to prescribe an hour of
exercise a day. So there might be [...] a way for multiple providers to
program [the robot].”

6 DISCUSSION

By making the benefits of control synthesis accessible, JESSIE en-
abled clinicians, who had no prior experience programming robots,
to program cognitive therapy sessions with personalized activities,
reactions, and constraints after little time, training, and without er-
rors. Our observations and assessments of participants’ experience
with JESSIE suggest that our system enables novice programmers to
leverage control synthesis techniques to create complex, interactive
sessions on a social robot, which would take more time to write
and test with procedural programming languages.

Our evaluation using Kuri to execute programs written by clini-
cians, and the subsequent replication and execution of these pro-
grams on a TurtleBot reflects the reproducibility and extensibility
of our approach to numerous robot platforms. Researchers can
modify our provided ROS nodes to replicate our behaviors on dif-
ferent platforms, or create entirely new behaviors to leverage our
approach for many different applications, such as in manufacturing
or entertainment. The approach presented in this paper will expand
the accessibility of control synthesis for social robots for people of
all programming skill levels across many domains.
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6.1 Key HRI Considerations

In our discussions, participants raised some crucial HRI concepts
that have yet to be thoroughly explored, which we discuss below.

6.1.1 Robot Roles. Since a person’s needs and goals may change
as the MCI progresses, participants imagined the role of the robot
would change accordingly. For instance, they envisioned the ro-
bot would take a passive role during the beginning stages of the
condition, such as monitoring the person’s baseline behavior. As
their condition progresses and they need to rely more on the robot,
it could take a more active role in educating them about different
cognitive strategies, completing interactive sessions, and serving
as a virtual assistant. The ability to fulfill different roles is a funda-
mental aspect of adapting to the individual’s needs and preferences.
This capability to shift between the foreground and background
when interacting with the PwMCI aligns with other HRI research.
Participants also discussed how PwMCI may see the robot as a
“companion” as they complete the cognitive training activities. This
raises the question of the robot’s role in the relationship between
the clinician and PwMCI. Whether the robot should be a companion,
serve as a point of connection between them, or act as a personal
assistant, programming languages and robotic systems need a way
for programmers to specify and explore this concept of robot role.
Participants suggested ways the PwMCI might initiate the inter-
action with the robot as well as how the robot could initiate the
interaction. As suggested by other HRI research [1, 66], the initiat-
ing party and methodology depends heavily on factors such as the
robot’s role. This work helps to inform the problem of initiative,
particularly in longitudinal HRI where users interact with the robot
over long periods of time. Additionally, it is currently unclear how
we might design a language to reflect this sort of robot behavior.

6.1.2 Timing. The concept of timing is an important aspect of
social interaction and robotics research. Participants identified mul-
tiple levels of timing to specify for different people and purposes,
such as scheduling trial-by-trial feedback, feedback after numerous
sessions, and setting the duration of different activities. Thus, our
system may need to integrate complex representations of timing to
give programmers more control over the timing of activities. How-
ever, the specifics of how these details can be both implemented
within LTLStack and reflected in the tangible interface requires
further research, the results of which will improve the accessibility
and expressivity of end-to-end systems for social robots.

6.1.3  Multi-party programming and longitudinal HRI. In addition
to supporting a single novice user programming a robot to perform
a task in longitudinal HRI settings, our study illustrated that multi-
ple stakeholders with different goals and backgrounds may need
to program the robot at various points throughout its deployment,
including neuropsychologsts, PwMCI, family members, and other
clinicians. This raises a series of interesting questions about how to
support these differing needs within a system like JESSIE, particu-
larly with users (PwMCI) who may be experiencing rapid changes
to their brains in ways where it is difficult for others to keep up.

6.1.4 Cultural Considerations. Cultural background plays a key
role in determining an individual’s preferences, such as the robot’s
communication style [56, 92]. For instance, in Western culture, the
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robot may adopt a more direct, proscriptive communication style.
Contrastly in Finland, where people tend to have more reserved
communication styles [63], people may prefer a more passive robot.
Even non-verbal aspects of communication (e.g. eye contact) may
impact a person’s interaction with a robot. This can significantly
impact adherence to treatment plans [45] and robot adoption. More
research is needed to explore how to support this variablity.

6.1.5 Ethical Considerations. As we designed this system to sup-
port PwMCI, a vulnerable population, there were several ethical
considerations that arose in our discussions with participants. Many
participants wanted the robot to monitor PwMCI and send reports
back to the clinician. They imagined the robot could monitor daily
patterns to establish baselines and identify abnormal behavior, as
well as to produce compliance reports about treatment adherence.
While this may have clinical benefits, it raises privacy concerns, par-
ticularly for people whose MCI is more advanced or who may have
lower levels of technological literacy, which impacts informed con-
sent [42, 66, 78, 91, 93]. This requires thoughtful consideration and
additional research to identify how to best balance these potentially
conflicting constraints both with JESSIE and more broadly.

6.2 Limitations and Future Work

There are some limitations of this work that must be considered
researchers build on our system. First, we only tested with our
expected end-user, neuropsychologists. While their input was in-
valuable for our particular system and context, other end-users may
want other features implemented for their applications, and con-
straints unique to their domain. Additionally, we pre-programmed
activity module and sensor nodes to represent behavior specific to
cognitive training. To alter existing behaviors or create additional
ones, one needs some familiarity with ROS and Python or C++.
Nevertheless, JESSIE is a simple and accessible means for novice
programmers to specify high-level robot behavior for PwMCL

As we continue to research this area, we plan to continue an iter-
ative design process with stakeholders, including usability improve-
ments, longitudinal deployments, and evaluations with PwMCIL.

6.3 Conclusion

In this work, we presented JESSIE, an end-to-end system that af-
fords control synthesis techniques to enable novice programmers
to generate high-level behaviors for a social robot. Robots have
shown great potential to support people with MCI [27, 72], and this
system will extend the scalability, accessibility, and personalization
of social robots. Additionally, this paper presents the first evalua-
tion by possible end-users of a system whose back-end employs
control synthesis layered with a tangible front-end. The evaluation
and feedback from participants shows that the system is easy to use
and articulates future research challenges the community should
address. As an open-source, intuitive way of utilizing control syn-
thesis, and artifact to support reproducibility, this work will enable
the robotics community to leverage our approach to customize
robot behavior, adapt to end-user preferences, and promote longi-
tudinal HRI within their own application domains. We hope that
this work inspires researchers to make robot programming more
accessible and collaborative, expanding the potential for robots to
support people throughout the HRI community.
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