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We study the O(N)3 supersymmetric quantum field theory of a scalar superfield ®,;,, with a tetrahedral
interaction. In the large N limit, the theory is dominated by the melonic diagrams. We solve
the corresponding Dyson-Schwinger equations in continuous dimensions below 3. For sufficiently
large N, we find an IR stable fixed point and computed the 3 — ¢ expansion up to the second order of
perturbation theory, which is in agreement with the solution of DS equations. We also describe the 1 + ¢
expansion of the model and discuss the possibility of adding the Chern-Simons action to gauge the

supersymmetric model.
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I. INTRODUCTION AND SUMMARY

In recent literature, there has been strong interest in
theories whose dynamical fields are tensors of rank 3 or
higher (for reviews, see [1-3]). Such theories possess a
number of interesting features. For example, only the
melonic diagrams dominate in the large N limit, in contrast
to the vector models, where only snail diagrams dominate
[3], and the matrix models, where all the planar diagrams
survive in the large N limit. This fact makes the tensor
models similar to the famous Sachdev-Ye-Kitaev (SYK)
model [4-6]. The SYK model contains a disordered
coupling constant, making it hard to use standard tools
of quantum field theory. The SYK model is believed to
describe quantum properties of the extremal charged black
holes [7-9] and therefore may help to serve as a toy model
for understanding the AdS/CFT correspondence [10-12].
It is already used for understanding the properties of the
traversable wormholes [13—-16]. While the tensor models
[1] exhibit the same properties at the large N limit, they do
not have disorder therefore giving us hope that they can be
understood at finite N via standard techniques of quantum
field theories. These techniques have already brought many
interesting results [17-27].

We shall consider a supersymmetric analog of such
theories, which has been recently considered as a gener-
alization of SYK model [28-30] or as a quantum mechani-
cal supersymmetric tensor model [31-34]. Here we will
present a similar model in continuous dimension d. We
consider a minimal A/ = 1 supersymmetric model, where
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we have some number of scalar superfields ®,;.(x, 8), and
indices a, b, ¢ run from 1 to N. These fields are coupled via
a “tetrahedral” superpotential,’

1
S= / ddXJze |:§ (Daq)abc)z + gq)abcq)ab’c’q)a’bc’q)ab’c’ .
(1.1)

This theory, which is renormalizable in d < 3, possesses
O(N) x O(N) x O(N) symmetry rather than O(N?) [the
superpotential breaks such a symmetry, while the free
theory, of course, possesses the O(N?) symmetry]. This
model has been proposed in the paper [21] as a generali-
zation of the scalar melonic theory. It was proved that the
nonsupersymmetric analog of this theory has a so-called
melonic dominance in the limit when N — oo, g — 0 but

gN% is kept fixed [36]. The proof of this peculiar fact relies
on the combinatorial properties of the potential, and
therefore is applicable in any dimensions and in various
theories, provided that the combinatorial properties are left
the same. In the case of the supersymmetric theories, the
Feynman diagrams, written down in terms of the compo-
nents, look quite complicated and, at first glance, do not
possess a melonic limit as in the case of scalar model or the
SYK model. However, one can develop a supersymmetric
version of the usual Feynman diagrams technique and work
explicitly with the superfields ®,,. and see that the
combinatorial and topological properties are the same as
in the case of the scalar tensor models. Therefore, the proof
of the dominance of melonic diagrams [20,21,36-38] is
applicable in this case and the theory (1.1) also possesses a

'Here we will refer to the Appendix and the paper [35] for the
notations and the other helpful formulas that will be used through
the paper.
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melonic dominance in the large N limit. We generalize the
theory (1.1) where the tetrahedral term is replaced by ¢g-
valent maximally single-trace operator to study models
with different numbers of the internal propagators in each
melon [37,39].

The properties of such theories in the IR limit can be
investigated by solving the Dyson-Schwinger (DS) equa-
tions, which are drastically simplified if the theory is
melonic. Namely, the dominance of the melonic diagrams
in the large N limit can be understood as a suppression of
the corrections to the vertex operators in the system of DS
equations. The solution of the DS equation in the IR yields
a conformal propagator, suggesting that the theory in the IR
flows to the fixed point, which is described by some
conformal field theory. The existence of the stress-energy
tensor with the correct dimension and the spectra of the
operators confirm this hypothesis. Therefore, one can
wonder whether it is possible to describe such a transition
from the UV scale (where we have a bare conformal
propagator determined by commutation relations) to the IR
region by means of renormalization group (RG) flow and ¢
expansion. Several attempts have been made toward this
idea. For example, the melonic scalar theory in four
dimensions [40] has been considered at the second order
of the perturbation theory. For this theory, a melonic fixed
point of RG flow was found, even though the correspond-
ing couplings are complex. The complex couplings indicate
that the theory is unstable. For example, the dimensions of
some operators have imaginary part. One of the reasons of
instability could be that the potential is unbounded from
below, leading to the decay of the vacuum state. The theory
(1.1), being supersymmetric, lacks such a disadvantage.

It is quite interesting that if one drops the fermionic part
of the action (1.1) and integrates out the auxiliary field, the
theory still possesses the melonic dominance in the large N
limit. Such a “prismatic” theory was considered in the
paper [41]. The solution of this theory was found in the
large N limit, and the RG properties were investigated at
two loops. As opposed to the standard melonic theory [40],
the fixed point is real and first order of € expansion recovers
the exact solution in the large N limit.

In this paper, we solve the model (1.1) in the large N
limit, assuming that the supersymmetry is not broken and
that in the IR region the theory is described by the
conformal propagator. The solution is found for general
dimension d and general g-valent maximally single trace
(MST) potential [37,39]. The dimension of the operators at
given d and spin s can be found as a solution of the
corresponding transcendental equation. It is shown that at
any dimension d, there is always a stress-energy operator of
dimension d and a supercurrent operator of dimension
d— %, which indicates that the theory is indeed described by
a conformal field theory. While the model (1.1) exists only
in the fractional dimensions between one and three dimen-
sions, the counterpart SYK model with ¢ = 3 can work at

the integer dimension d = 3 and describe a good conformal
field theory with the melonic dominance in the large N
limit. After that we derive a perturbation theory in 3 — €
dimensions of the theory (1.1) to find a fixed point that
could describe the IR solution of the large N limit of the
model (1.1). We find that the € expansion is consistent with
the exact large N solution up to the first order in €. The two-
loop analysis also suggests that the found melonic fixed
point is IR stable.

The structure of the paper is as follows: in Sec. II, we
discuss the properties of the theory (1.1) in the large N limit.
The dimensions of the operators are found and the DS
equation is solved in the superspace formalism. In Sec. III,
we consider g = 3 supersymmetric SYK model and study
the stability of such a theory. In Sec. IV, we study the RG
properties of the quartic super theories in three dimensions
and compare to the exact solutions in the large N limit. In
Sec. V, we discuss the possibility of introducing higher order
supersymmetry and speculate about the consequences of
gauging the supersymmetric tensor models. The Appendix
provides supplemental materials including the notations and
useful formulas that are used throughout the paper.

II. SOLUTION OF THE LARGE N THEORY

In this section, we will try to find the solution of DS
equations for the theory (1.1) in the large N limit. As
mentioned in the introduction, the theory possesses a
melonic dominance in the large N limit. This means that
only specific diagrams survive in the large N limit, namely
the ones generated recursively by the DS equation (sche-
matically depicted in Fig. 1). The resulting equation for
scalar or fermion field theories was investigated analyti-
cally and numerically for many different theories [6,21,42].
For example, the DS equation can be solved in the IR limit
and the solution possesses a conformal symmetry in that
limit. In the case of the supersymmetric theories, one of the
important differences is that one can demand the solution to
respect supersymmetry. In order to do it manifestly, the DS
equation should be formulated in terms of the superfields.
Of course, one can do this calculation in terms of the
components as in the paper [31] and check that these two
approaches give the same answers. To make the discussion
more general, we consider the case where there are g — 1
internal propagators in the melon diagrams and suitable
MST operator is considered [37]. The DS equation in the
supersymmetric case reads as

G(p;0,0) = Go(p; 0.0

/q 1 ddk,
X
r (2m)

=

q
x(p Z/a) (p:6,.0),

1
+E/12/d291d292G0(p,9,9])

kl; 91, 92)(2ﬂ)d5d

(2.1)
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FIG. 1.

where Goy(p;0,6') is a bare superpropagator (A10),
G(p;0,0) is an exact superpropagator, and g = AN? is a
’t Hooft coupling. Analogously to the scalar case, we
consider a conformal propagator as an ansatz for the
solution. But if we also demand to preserve supersymmetry
and O(N) x O(N) x O(N) symmetry, that yields only one
form of the solution

<(Dabc(p7 Q)q)a’b’c’(_p’ 9/)> = éaa’5bb’5cc’G(p; 0, 0/)’
D*5(6—¢
L D0-0)

p2A

G(p:0.0') = (2.2)

where A < Ay =1 for the solution to be valid in the IR
limit [7] (namely, we can neglect by bare propagator in
comparison to the exact one Gj! <G7!, p—0).
Substituting the ansatz in the DS equation (2.1), we get

D2 _0 DZ _0
4 5(62?A ) _ 5(92 9)+M2/a,zeldzé,2
p p

D?5(0—6,)
p2

—~

 D?3(6) ~0,) D6(0; - 9/)

klZA p2A

(2.3)

As soon as A < 1, we can neglect the lhs of the equation by
the rhs in the limit p — 0. After that, one can integrate out
Grassman variables using identities for the superderivative
to get

/IZA‘qu/ ddk

q—1
1
Y ki )y = -1
>p2A—2

i=1

-5 (2m)46¢ <p
(2.4)

This equation gives the dimension of the superfield to be

A= d(q;iz)ﬂ and
PPN ko LAl el JR
e e R '

The solution suggests that we cannot work directly in

2g—2
dcrit(Q) = %
not suppressed in the IR limit and change the solution. For
example, for the case of tetrahedral potential ¢ = 4,
d.;c = 3; therefore, the tensorial melonic theory is not

dimensions because the bare propagator is

DN

A supersymmetric version of the Dyson-Schwinger equation for melonic theories in the large N limit.

conformal in three dimensions. Nevertheless, we can still
study the theory slightly below three dimensions and
compare it with the ¢ expansion.

If one chooses the case of ¢ = 3, the critical dimension is
d.i =4 and such a melonic theory should describe a
conformal field theory in three dimensions. In the next
section, we will review this model in more details.

We calculated the propagator (2.2) in the momentum
representation. One can carry out the calculation in the
coordinate space. With the use of the relation,

[
N / (gj;d

= 5%, (2.6)

e D250 - )

e (1 - ik"0'y,0 + k*0'0'00)

the propagator in the coordinate representation is

B
G(x,0,0) = —
|x, —6y,6]
1 F(d_l)r(d -1 -4
a2 d-1 dq (2.7)
" 427 F( )F( s+ 1)’

Another way to see that the dimension of the superfield is

dql is to rewrite the action in terms of the components and

impose the conditions A, = A, +1 3 then the action con-
tains a term
W(®) =

D! = W(p) =™ y? = [W]

d—1
Ap="m.
q

=d=(q-2)A;+2A, =d, (2.8)

The solution (2.2) suggests that in the IR limit, the theory is
described by some conformal field theory (CFT). One of
the interesting questions that one may ask is, what is the
spectrum of the bipartite conformal operators in this
theory? The supersymmetric theory (1.1) has different
types of the bipartite operators, as the prismatic one
[41]. We should consider these families separately. The
most simple ones have the following structure [29]:

VFF =
VBB =

q)abc (X, e) Dhq)abc (xv (9) ’

@, (x,0)"D*D ;. (x,0). (2.9)
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These operators should be considered as a collection of
operators with different spins and dimensions that trans-
forms through each other when the supersymmetry trans-
formations are applied. For shorthand, we will omit the
indices, assuming that the operators are singlet under the
action of O(N)’s groups. These operators could be rewrit-
ten in the terms of components (A3) as

Ver(x,0) = ¢(x) 0" (x) + p(x) Oy (x)6,
+ 0*(p(x)O"F(x) + O"gp(x) F(x)
+ 9 (x) Oy (x)),

Vg (x,0) = g0 + (FOw, + 0" Fy,

+ (r'w) 0,0 + (r*O'y) ,0,0" ) 6"
+ 6%(0,00"0,¢ + ipy*0"0,y + FO'F).
(2.10)

A similar set of the operators was considered in the paper
[29] in two dimensions and [31] in one dimension. Later,
we shall compare the results of these papers with the
continuous solution for arbitrary d. We can try to put more
D? in (2.9) to get more families, but with the use of the
identity (D?)? = [J, one can descend these operators to the
BB or FF series. That is why we can consider only these

|

two families to get the whole spectrum of bipartite
operators with the lowest component having spin s = 0.

As usual, the corrections to the bilinear operators in the
large N limit are given by the ladder diagrams (but again, in
comparison to [7,21], these diagrams should be considered
to be in superspace). We assume the following ansatz in
momentum space for the three-point correlation function
for these families:

Grr(k,0,0") = (Vep®@(—k,0)D(k,0'))
_6(0-9)
_20-9)
2 /
G (k.0.0) = (V£ 0)(k. ) = 2020,
(2.11)

where we have set the operators Vg, Vgg to be at infinity
and made a Fourier transformation with respect to the
spatial coordinates, and Ay is the corresponding dimen-
sions of the operator. The derivation of the equations for the
dimensions Ay, is just a straightforward generalization of
the analogous calculation for the scalar model [21] or the
SYK model [6]. Here we will show the derivation of such
equation for the BB operators.

The addition of one step of the ladder can be considered
as the action of the kernel operator (Fig. 2)

K=K(p.k;0,0'.0,,0,) =

We act on the (2.9) by one step of the ladder,

. dk
(KGBB)(p,Q,H/) :/d291d292/(Z—H)dK(p,k;@,9/,91,92)GBB(k,91,92).

. ddq, D5( 91 —0,)D*5(0—0,)D5(0,—0)
b H p P

2A 2A

d5d<2q —(p- k) (2.12)

(2.13)

The Grassman variables can be integrated out with the use of identities from Sec. I. After that, we are left with a

simple integral

(RGyy)(p.0.0) = (q — 1AY2D?5(0 - @) /

= gB<AV)GBB(pv 0, ‘9/),

where

=—(qg-1)—™2

d'k 4= diq; 1
(27) H(zﬂ.)d 2A kAV+2A 553 (27) 5d<z qi = P—k))
(2.14)
e L e LA e 10 U R e 2.15)

gp(A
»(A) S

—1)(d— .
P -3+ f -4+ )

q

In order for the operator to be primary, the equation gz(Ay) = 1 must hold. An analogous equation can be written for the

Ver operator, but one can see that

gr(Ay) = gg(Ay = 1).

(2.16)

This suggests that we might build a bigger multiplet and enhance the supersymmetry to be N' = 2 (later we shall see that
this does not actually happen, because there is no additional fermionic counterparts to finish supermultiplet).
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FIG. 2. The corrections to the bipartite conformal operator can
be summed with the use of the Bethe-Salpeter equation. The
diagrams should be considered to be in the superspace.

From now on, we shall consider the case only g = 4 to get
3 — e expansion unless the other is specified. Thus, we can
get the e expansion in the large N limit of the ®? operator
(Fig. 4)

2 +24
Ay =1 +€+3€2—L€3+O(€4). (2.17)
The plot of the A4, as a function of the dimension is depicted
in Fig. 3. Analogously, we get the dimension of ®D>®
operator

2+ 24
TR + O(e*).

Apprgp =2+ €+ 3> — (2.18)
We can discuss dimensions of nonsinglet operators of the
form ®,,.®,,.. The equation for the dimension of this
operator can be rewritten as
gB(Aua’) =q-1 (219)
where a factor ¢ — 1 appears from the combinatorics [43],
and A, is the dimension of the operator. The e expansion
near three dimensions for ¢ = 4 has the following form:

1 2
A =1--+2 6+ O(e*).

€+ (2.20)

Later, we shall show that the solution coincides with the e
expansion in the second level of perturbation theory.
From this, the next step would be to study the spectrum
of the higher-spin operators. A generalization for the
higher-spin operators is
|

[(2440=2)) la=D(a=1)

4

Ay

> d

1.5 2.0 2.5 3.0

FIG. 3. The dimension of the operator @ as a function of the
dimension. As d — 1, the dimension goes to zero.

Vig = ®(x,0)00,,...0, @(x.0),

Vig = @(x,0)09,,...0, D*®(x,0),

(2.21)

with the corresponding modifications for the ansatz. For
example, for higher-spin spectrum of the BB operators, the
ansatz is

GZI...ﬂS.BB(k’ 0. 9/) = <V;1ﬂz.“/4x,BB(b(_k’ G)q)(k’ ‘9/)>

D*5(0 -0k, ...k
_ D o = (2.22)

kAv-&-%-H

In this case, we consider an arbitrarily chosen null-vector &
and consider the convolution of the ansatz (2.22) with the
vector £ After that, one can integrate out the Grassman
variables and carry out the integration over the real pace
with the use of a relation [40]

¢-x)’
[
[L@-a+s)E-pl(a+p-9 ()
C(QT(BC(d+s—a—p) yot2-d

=T

(2.23)

Eventually, the equation for the dimension at given spin s
reads as

TG -1 2201 -4 - L+ 44 2o

One would expect that there is a solution at any d and s = 2
with A = d, because of the existence of the stress-energy
tensor. However, one cannot find this solution. The reason

)F((q—l)q(d—l) _ M)F(%’ 4

2 =1 (2.24)
d | Av+
- _|_VTS)

1
2 q

is quite simple. First of all, there is no stress-energy tensor
in the field decomposition of the BB and FF operators.
Second, the stress-energy tensor has a superpartner Sy

026020-5
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k(h)
A

N
T

‘ -
N )

/ﬂ
-
-

FIG. 4. The dimension of the operator ®> can be found
graphically. The plot of k(h) is drawn for the case of d = 2.5.

. . . 3
(corresponding to supertranslations) that has spin 3, and

therefore to find it we should consider a whole different
family of operators, with lowest component being a Rarita-
Schwinger field. Namely, let us consider a Fermi conformal
primary operator

VBEu,. oy (x,0) = 8,247'+1<I>(x, 0)D,®(x,0), (2.25)

where the odd number of the space-time derivatives should
be inserted to get a primary operator. Indeed, if we consider
a zero number of the derivatives

1
VBF = (Duthaq)ahc = ED"(q)lebC)’

(2.26)
it is just a descendant of the FF operator. To get a
supercurrent multiplet, we have to project the operators
(2.25) on the specific component. The ansatz for the three-
point function has the following form:

D,5(0-60")
(Ver®@(k, 0)@(—k.0')) = T (2.27)
The derivation of the equation for the spectrum of the
dimensions is straightforward,

gBF(dv AVvS) = —0B (d, Ay —%,S —;> =1, (2~28)
where the spin should be chosen to be of the form
s =2n-— % Now we can try to find the stress-energy
momentum and its partner. And indeed, at any d, ¢, and
s = %, there is an operator with dimension A = d —% that
corresponds to the usual stress-energy supermultiplet.

At this point, one can wonder whether the current J ,/,
responsible for the O(N)’s transformations, is a primary
operator. The supersymmetric multiplet containing the
current should be also a Fermi supermultiplet with spin
s = 1/2 [this operator is not a singlet operator and there-
fore (2.25) is not applicable]. The current should satisfy the
equation [43]

(4 Av.5) =3 omel(d Ay.s) =1, (2.29)
at any d and ¢ there is always a solution Ay, = d — 3/2. One
can see that the dimension of square of this operator is given
by the direct sum of the dimensions A ;3 =2A, =2d —3. This
operator becomes relevant when A;; =2d-3<d-1,
where minus 1 comes from accounting the dimension of
the superspace. From this, one can see the operator becomes
marginal in d = 2 and relevant as d < 2. This extra marginal
operator in d =2 may destabilize the CFT. The only
exception is the case N = 1, where the theory does not have
any continuous symmetry and has superpotential ®*. In
d =2, this theory flows to the m =4 superconformal
minimal model, which has central charge ¢ = 12

The relation (2.24) can be thought as a generalization of
the equation for the kernel at two dimensions derived by
Murugan et al. [29]. In this case, they introduced two

A—s

dimensions, h = % and h = 25, and one can check that

k(h,h)=gg(d=2.h+h,h—h)

—(g-1) r*(1-1/q)r(1/q=h)T(1/q+h)
r2(1/g)r(1-1/g—)C(h+1-1/q)’
(2.30)

which coincides with Eq. (7.17) in [29].

The relation (2.28) also shows that if there is a scalar
bilinear multiplet with dimension 4, there is no BF operator
with higher spin and the dimension A = A + % This shows
that we cannot complete the N/ = 2 supermultiplet and the
enhancement does not happen. It is interesting that there is
an argument in d = 1 stating that it actually must happen.
Basically, it comes from the fact that group of diffeo-
morphism of supertransformations in one dimension com-
prises the N = 2 superalgebra [29].

Finally, we discuss the dimension of the quartic oper-
ators, because there is a fundamental relation between their
dimensions and the eigenvalues of the matrix g—q;. We can

find the dimensions of some quartic operators in the large N
limit. For example, in the matrix models, the anomalous
dimension of a double trace operator is just the sum of the
anomalous dimensions of the corresponding single trace
operators. By the same analysis, we get that the anomalous
dimension of the double trace operator is

Analogous analysis gives that
Apitow = 28,0 =2+ O(€?). (2.32)

’I would like to thank LR. Klebanov for pointing out these
facts.
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g*%se(h,1)

93’3BB(hs°)

-

1

5/\

FIG. 5. Plots for g%é(h, 1) and g%‘é(h, 0) that can help to understand the structure of the spectrum of the theory (3.1).

Finally, the dimension of the tetrahedral operator can be
determined as the dimension of the operator ®,, . D*® .
(namely, it follows from the equations of motion) and it
gives us

Atera = 2 + € + O(€?). (2.33)

A. The € expansion near one dimension

One can try to study the behavior of the model (1.1) near
one dimension. The case of d = 1 supersymmetric tensor
models was considered recently (see [31]). It was found that
the supersymmetry is broken in the IR region. The easiest
way to see this is to assume a conformal ansatz and plug it in
the DS equation (2.1). The solution suggests A = 0 in one
dimension, but constant or logarithmic function does not
satisfy the DS equation. The conformal solution found in [31]
shows that the dimensions of the superfield components are
not related to each other by usual supersymmetric relations. It
might be the case that for the system in one dimension the
conformal solution does not describe the true vacuum state,
while the true vacuum respects supersymmetry and the
propagators exponentially decay at large distances. It might
be shown by studying the stability of the conformal solution
in a way described in [16] for two coupled SYK models.

Also, if one considers a limit d — 1 in the equations
derived in the previous sections, the propagator does not
have a smooth limit in one dimension and the kernel is
equal to the constant lim,_,;gg(d, h,s) = —1. The last fact
confirms that in one dimension the conformal IR solution
does not respect the supersymmetry. But, in the vicinity of
dimension one, everything works fine. Thus, one can study
the 1 4 e expansion. We shall consider the case of tensor
models and set ¢ = 4. For example, the dimension of the
®? operator is

2

n 3¢(3
A¢z:e—ﬁ€3+ 1(6) et + O(e),
2
3
Appro =1 +€— ZS + i(6) et +O(e). (2.34)

And the dimension of the colored operators @, . P, is

9¢(3)
128

3 3
Aaa/ =€ E

3
17256 T

et + O(e). (2.35)
It would be interesting to derive these results by
considering a one-dimensional supersymmetric melonic
quantum mechanics and lift the solution to 1 + ¢ dimen-
sion. Or just derive these results starting with the conformal
solution found in one dimension [31] and show that in
higher dimensions the supersymmetry is immediately
restored.

I1I. SUPERSYMMETRIC SYK MODEL
WITH ¢=3 IN d=3

In the previous section, we mostly work with the tensor
models in noninteger dimensions. The main problem that
did not allow us to work directly in three dimensions was
that the critical dimension for such an interaction is

2q-2

d,, === =3, meaning that directly at three dimensions
q

the conformal IR solution does not work. Nevertheless, if
one considers ¢ = 3 case, the critical dimension becomes
d.,, =4 and therefore should work perfectly in three
dimensions. Unfortunately, we do not know any g =3
tensor model and in order to somehow study this melonic
model we shall consider a SYK-like model with disorder,
which is a special case of the models [29].
Thus, we shall try to study the following model:

1
S = /dd)Cd29 |:§ (D‘D,)z + Cijkq)iq)jq)k 5
2

Ws 9N7

(Ch) = ijok=1,.. (3.1)
where we consider a quenched disorder for the coupling
Cijx- One might worry that such a theory violates the
causality, because the field C;j; is assumed to have the same

value across the space-time and therefore the excitation of
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such a field changes the value of it everywhere, thus
violating causality. But the procedure of quenching requires
first to fix the value of C;; that makes the theory casual and
after that average over this field. It means that we cannot
excite the field C;j; and violate causality.

This model is similar to the tensor one considered in the
previous section, because again only melonic diagrams
survive in the large N limit, but with two internal
propagators in each melon. Therefore, the formulas derived
in the previous section are applicable in this case and with
the replacement of 1 — J and setting ¢ = 3, we can recover
the large N solution of this model. For example, the
propagator in this case is

B 1
G(x.0,0)=—— B =

x, — 07,0 C12V3532

(3.2)

and the dimension of the field ®; is A =32. Again, the
spectrum of the operators could be separated into three
sectors, described in the previous section. The equation for
the BB operators is determined by the equation

PIVC N CI RN o G
gon(h.s) = - \/1_<i ;27 §> (g i i), (3.3)
3F(6)F(§ -2 + E)F(E + 2 + 5)

where s is the spin and should be chosen even. One can try to find the spectra of low lying states (5) (Fig. 5).

g5 =

[
[Do(® )}9 05 =1/2
[©0,,0,,®],_s =2
[D

(@D, O <I))]0:0s =5/2

M1~ Ha

h = 1.69944,3.42951,5.38013, 7.36259,9.354, ...
h =2.19944,3.92951,5.88013, 7.86259,9.854, ...

h =3.51911,5.39016, 7.3654,9.35514, 11.3496, ...
h =4.01911,5.89016, 7.8654,9.85514, 11.8496, ...

It is easy to see that the spectrum has the following
asymptotic behavior at large spins:

hzg+2n+s+(9(1/n,1/s), n— 00,s — oo.
On a principal line h = 4 + ia, the kernel is complex; it is
connected to the fact that there is no well-defined metric in
the space of two-point functions [29]. Therefore, there are no
problems with the complex modes, that could possibly
destroy the conformal solution in the IR [16]. Thus, g = 3
supersymmetric SYK model is stable at least in the BB
channel. Also, one can check there are no additional solutions
to the equation g3 (A, s) = 1 in the complex plane except the
ones on the real line. The spectrum of the FF operators
coincides with the spectrum of the BB operators but shifted
|

with h — h + 1; therefore, we do not have to worry about the
instabilities of the theory in this sector.
Analogous calculations could be conducted for the BF

series
1 1
33
- h S I Y
gBB < 2 s 2)

where the spin s should be in the form s = 2n — 5 One can
notice that there is a solution g (5 /2,3/2) =1 correspond—
ing to the existence of the supercurrent and energy momen-
tum tensor (the energy momentum is not seen directly
because it belongs to the supermultiplet of the supercurrent,
but if one studies the theory in terms of the components, he or
she will of course find the energy momentum tensor). There
is a list of some low lying operators in the FF sector (5).

gBF(h 5) = (3.4)

9,D,®],_

[

[Dy(9,®D q>)]
0,,0,,0,.®D cp]
[0,

K12 T s
ﬂz MD/’(@D“@)]H:O

= % th =2.5,4.76759,6.79738, 8.80934,10.8157, ...

s =2:h=3,526759,7.29738,9.30934, 11.3157, .
:% h = 4.15398,6.28752, 8.30627, 10.3143, 12.3189, .

=4:h =4.65398,6.78752, 8.80627, 10.8143, 12.8189,

The spectrum has the following form of asymptotic behavior:

hzg+2n+s—|—(9(1/n,l/s),

n — oo.

The kernel is again complex on the principal line, but if one chooses s = 1, there would be an additional solution of the
equation 9133’3 = lath =1+ 0.496i, but as soon as it is not on the principal line and s is not permissible, we do not have to
worry about this complex mode and expect that it could break the conformal solution. Thus, this ¢ = 3 supersymmetric
SYK model could provide us with a conformal field theory that is melonic and stable at integer dimensions. It would be
interesting to study the 4 — e expansion for this model, where it will be close to its critical dimension.
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IV. 3-¢ EXPANSION

In this section, we continue the investigation of the
supersymmetric tensor model (1.1) from the point of view
of the € expansion. The calculation is similar to the ones
performed in the papers [40,41,44]. We include all possible
O(N)? symmetric marginal interactions that respect the
supersymmetry. Thus, the superpotential has the following
form:

2]
W((D) =0 q)abcq)ab’c’ q)a’bc’ q)a’b’c +? ((Dabcq)a’bcq)ab’c’ q)a’b’c’

+ q)abcq)ab’cq)a’bc’ q)a’b’c + q)abcq)abc’ (I)a’b’cq)a’b’c')

where we imposed a symmetry under the exchange of the
colors. In comparison to the “prismatic” theory [41], which
has eight coupling constants, the supersymmetric theory
has only three; this is a significant simplification.

Let us first consider the general renormalizable d = 3
theory of N' = 1 superfields ®', i = 1, ...n,

Yiin
41

S[®;] = / d3xJ29B(D<I>,-)2+ O,0,0,®,|, (42)

where Y, is a real symmetric tensor. Adapting the results
from [45,46], we find that the two-loop corrections to the

2 \2
+93(Pgpc )" (4.1) gamma and beta functions are
|
@ _ 1
Yab = Wyajklybjkh
1
2
ﬂt(zl)cd = WYijkl(ijmchdi + YiunY caai + Y juicYacai + Y jkia¥ avei)

2
+ W (YanomYbfomYnfcd + YanomchomYnfbd + YanomYdfomYnfbc + YbnomchomYnfad

+ Ybnom Ydfom Ynfac + chom Ydfom Ynfab)'

(4.3)

These two-loop results are closely related to those in a nonsupersymmetric theory with Yukawa coupling %Y A k!
(see [46]), except the supersymmetry requires Y, to be fully symmetric.
Substituting Y;;; corresponding to the superpotential (4.1), we find from (4.3)

= 5aa’5bb’5cc’7q)
1

0]
yabaa’b’c’

r® =—12929:(1 + N+ N?) 4+ 6g5(2 + N*) + 3g1(2 + 3N + N?)

T

and

~ 6
+ G3(5 + 9N + 3N? + N3) + 36939 N + 12g39,(1 + N + N?)]

(4.4)

2
B =—€q, +W(691(IZg§(N3 +11) + g3 (N3 +6N? + 30N +29) 4+ 12939, (2N* + 5N +5))

+9g3 (N3 412N +8) + 1893 (g2 (4N? + TN +16) +24g3N) + 265 (9, (2N? + 13N +24) + 72¢3)),

2
fr=—€g, +ﬁ(gz(729%(N3 +11) + g3 (TN? +36N? + 162N +194) + 36939, ((5N> +9N + 16)) + 544 (N* + N +4)

+18¢3(g2(N? +3N? +27N +26) + 185 (N +2)) + +18¢29; (92 (TN? + 21N +32) +48g3(N + 1))),

2
fy=—€g; +ﬁ(10893 (N3 +4) +2529,3(N> + N+ 1)+ 763 (N> +3N +5)

+18¢%(2g3(N3 +3N +2) + g5 (N> + N +4)) +27gIN + 126395 (N> +3N? + 15N + 14)

+369,(2¢5(N + 1) +2g392(2N? +2N +5) +21g3N)).

(4.5)

If one sets g, = g, = 0, the symmetry gets enhanced to O(N?) and corresponds to the O(n) vector model, which was
considered in [45].° For the supersymmetric O(n) model with superpotential g(®'®)2,

*Please note that they considered SU (n) case that corresponds to N = 2n and their definition of y® includes a factor of 2.
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24(n +4)

Py =—€9+ 793 +0(9). (4.6)

in agreement with [45].

If we choose N = 1, the couplings g;, ¢», g3 becomes
degenerate because they describe the same operator.
Therefore, the beta functions should be added to get the
right expression. And indeed, if we choose N = 1 and sum
up the couplings, we get

d(g1+ 9 +g:
B +ﬁ2+ﬂ3zﬂ(ldﬂm

120 5
=—e(g1+n+g)+t—(91+9+9),

77;2

(4.7)

which is the correct beta function for the theory with
superpotential (g, + g» + g3)®* for a single chiral super-
field @. This special case of our theory is conformal in the
entire range 2 <d < 3. Indeed, in d =2, the N =1
supersymmetric theory with superpotential @™ for one
superfield @ flows to the superconformal minimal model
with central charge

=3(amrn)

Therefore, the N = 1 case of the supertensor model gives
the m =4, ¢ =1 superminimal model in d =2. For
N > 2, the O(N)? supertensor model is expected to be
conformal in 2 < d < 3, but not in d = 2.

Let us consider the large N limit where we scale the
coupling constants in the following way:

(4.8)

91—2 N 92—2 N 93—2 N .

The scaling is taken to be the same as in the paper [40].
Applying this scaling to the formula (4.5), we get

2

1
—_= 6—’
7o 4

ﬂz == —/12 + 2],2/1% + 613 5

Bs=—23+2(225 + 1) A2 +343.
(4.10)

From this, one can find the fixed point in the large N limit.
Namely,

A=kl IS =F6, AP =43,

d-2 1 €
Do=2"24yo=2-5. 4.11
@ 3 + 7o 571 ( )

We may try to compute the 1/N corrections to these results
to get

TABLE I. The approach of the finite N fixed points in 3 — ¢
dimensions to the large N limit. We note that the fixed point exists
for all values of N.

N A A A3
i &) 3
100 000 1.000 1.000 1.000
10000 1.000 1.001 1.002
1000 1.000 0.995 0.995
100 1.001 0.953 0.950
10 1.033 0.691 0.670
5 1.068 0.546 0.527
2 1.049 0.350 0.322
1 1.093 0.273 0.139

16 1 o 1 € 1

The anomalous dimension of the matter field operator ®
coincides with the exact dimension of the field by solving
the DS equation found above. This might indicate that the
higher-loop corrections to the RG equations (4.5) are
suppressed in the large N limit. It would be interesting
to study these suppressions in N for a general super-
potential (4.1) from a combinatorial diagrammatic point of
view and compare the results with the investigation of the
finite N solutions of Eq. (4.5).

If one considers the large N fixed point (4.11) of the RG
flow governed by Eq. (4.5) and tries to descend to finite N,
one can find that the solution always exists (see Table I) and
quite close to the found fixed point (4.11) (of course with
the appropriate chosen scaling), in comparison to the
“prismatic” model, where the melonic fixed point exists
only at N > 54 [41].

We can study the dimension of various operators in the
fixed point (4.11). One of these operators is ®2, , which
belongs to the BB spectrum. We can find that the
anomalous dimension of this operator is

Ag2 = A%z + 20+ Y2 =1+€+ 0(62), (4.13)

where we have used the relation yg2 = 6y¢, Which is true
only at the second level of perturbation theory. The answer
coincides with the exact solution found earlier (2.17).

As one can see, the fixed point (4.11) is IR stable, which
means that the dimensions of the operators are bigger than
the dimension of the space-time. Indeed, the linearized
equations of RG flow near the fixed point (4.11) have the
following eigenvalues:
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) 14322 0 0
( afl) = Mo +188  —1428 0 :
/ 420+ ) +92 22 —14+42
A=[2,1,3], (4.14)

but as it is known the eigenvalues of this matrix give the
dimensions of quartic operators

A, =d—-—e+ A, (4.15)
Thus, we get
Agt =2 —€+3e=2+2¢+ O(e),
Apillow =2-¢ +e= 2 + 0(62)’
Aera =2—€+2e=2+¢+ O(?). (4.16)

This is in the agreement with the large N solution. As one
can see, A; > 0, indicating that the fixed point is IR stable.
The agreement found between the exact large N solution
and perturbative ¢ expansion indicates that there is a nice
flow from the UV scale to the IR one where the bare, free
propagator flows to the one found by direct solving the DS
equations (2.1). The study of the higher loop corrections
might help to understand this relation better.

V. N =2 SUPERSYMMETRY AND GAUGING

One can try to consider N' = 2 supersymmetry and study
the properties of such a model. Here we are not going to
present the solution of the corresponding DS equation, but
we will just calculate the beta functions and find the fixed
point of the resulting equations. The SYK model with N =
2 supersymmetry at two dimensions was considered in the
paper [30].

The theory is built analogously to the A/ = 1 case. It can
be obtained by dimensional reduction from A/ = 1 super-
symmetry in four dimensions. In this case, we have a set of
chiral superfields ¥,;,. with the action

S= / Bxd*0d*0% P . + / Exd*0W (¥ ) +H.c.,

D% 4y =0, (5.1)

where the superpotential is taken to be the same as in the
case of N'=1 supersymmetry. The beta function for a
general quartic superpotential was considered in the paper
[47]. The beta function receives corrections only from the
field renormalizations, meaning that it has the following
form:

Bios = (—e+4r%)g125

1
y® = @(12g2g1(1 + N+ N?) + 6632+ N?)

+397(24+ 3N + N%) + g3(5 + ON + 3N + N?)

The fixed point is determined by demanding that the
anomalous dimension of the field must be Ay = Ay +y® =
%, as we got for a general melonic theory in arbitrary
dimensions. Apparently, for N' = 2 models, this fact comes
not from the melonic dominance, but from the consider-
ation of the supersymmetric algebra that fixes the
dimensions to be proportional to the R charge of the
corresponding operator. This condition defines a whole
manifold in the space of marginal couplings. Applying the
scaling (4.9), in the large N limit, we get the equation

201

P da i) = F = (53)

It is quite interesting that this equation does not fix 4,, 43 in
the large N limit. One can study the stability of these fixed
points at arbitrary 4,3. The RG flow near the fixed point
could be linearized to get the stability matrix

5

The given solution is marginally stable, because of the
existence of two marginal operators. These two zero
directions correspond to the previously discussed existence
of a whole manifold of IR fixed points.

From this consideration, it would be interesting to study
the large N limit of the considered N =2 theory and
corresponding DS equations. This model must have the
same combinatorial properties as the A/ =1 and scalar
tensor model, but some cancellation happens that drasti-
cally simplifies the theory.

One can try to examine a gauged version of A/ =2
theory. The gauging of the tensor models is one of the
important aspects that makes them different from the SYK
model. In the latter, due to the presence of the disorder in
the system, the theory can possess only the global O(N)
symmetry and cannot be gauged, while in the tensor models
there are no such obstructions and one can add gauge field
and couple to the tensor models at any dimensions.

Gauging should be important for understanding the actual
AdS/CFT correspondence. In one dimension, the gauging
singles out from the spectrum all nonsinglet states from the
Hilbert states. There have been many attempts to understand
of the structure of the tensorial quantum mechanics of

00
22, 0 0
22; 0 0

, with eigenvalues A = [2,0,0].

(5.4)
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Majorana fermions from numerical and analytical calcula-
tions [48-51]. These gave some interesting results, such as
the structure of the spectrum of the matrix quantum mechan-
ics and the importance of the discrete symmetries for
explaining huge degeneracies of the spectra. Still, the general
impact of gauging of the tensorial theory is not clear and
demands a new approach. Here, we will give some comments
of the combinatorial character and study how the gauging of
N = 2 theory, studied in the previous section, changes.

In three dimensions, one can gauge a theory by adding a
Chern-Simons term instead of the usual Yang-Mills term

S— / PxAPOI—K(D,T4)? + |(Dy + g7, ) T,

+ W(q)abc)]’ (55)
where W(®,,.) is the same as in the (4.1), T* are the
generators of the group O(N) x O(N) x O(N), and T'* are
vector superfields that have a gauge potential A}, as one of
the components. If one rewrites the kinetic term for the gauge
field in terms of usual components, he will get a usual Chern-
Simons theory. Since the theory is gauge invariant, we can
choose an axial gauge to simplify the action” Af, = 0, which
eliminates the nonlinear term from the theory and the Fadeev-
Popov ghosts decouple from the theory. Therefore, the Ag,,
Aj, can be integrated out to get an effective potential. For
example, such a term appears in the action

k
+ perm.,

W, Nl/ d3q (q)athaq>ah’C’)(q)(®a’b(rDa¢a’b’c")(_q)
o (27)? q1

(5.6)

which can be considered as a nonlocal pillow operator
with the wrong scaling, because the level of Chern-
Simons (CS) action usually scales as k = AN. Therefore,
some diagrams would have large N factor and diverge in the
large N limit. To fix it, we should consider the unusual
scaling for the CS level k = AN2.

One can check that only specific Feynman propagators
containing the nonlocal vertex (5.6) contribute in the large
N limit [44]. Namely, only snail diagrams contribute in the
large N limit and usually are equal to zero by dimensional
regularization for massless fields. Therefore, one can
suggest that the gauge field in the large N limit does not
get any large corrections and does not change the dynamics
of the theory. This argument being purely combinatorial
should be applied for any theory coupled to the CS action.

We can confirm this argument by direct calculation of the
dimensions of the fields in the ¢ expansion for the ' = 2
supertensor model at two-loops and see whether the
dimensions of the fields gets modified. The beta functions
for a general NV =2 theory coupled to a CS action was

*I would like to thank S. Prakash for the suggested argument.

considered in the paper [47] and have the following form at
finite N:

o 3N(N-1)

642k (5.7)

Praz=(—e+4)g23. 1F =7

where y? is the same as in Eq. (5.2). As k ~ N2>, N — oo the
corrections to the gamma-functions vanish in the large N
limit. Thus, the gauging in three dimensions indeed does
not bring any new corrections to the theory. It would be
interesting to study such a behavior in different dimensions.
For example, if in one dimension the gauging does not
change structure of the solutions, one may conclude that the
main physical degrees of freedom are singlets and there is a
gap between the nonsinglet and singlet sectors. Also, it
would be interesting to confirm this observation by a direct
computation for the prismatic theories and for Yang-Mills
theories.

VI. CONCLUSION

We have studied supersymmetric extensions of the tensor
field theories with O(N)? symmetry, such as the one with
the tetrahedral superpotential [21]. Using the Dyson-
Schwinger equations, we solved for operator scaling
dimensions in the large N limits as a function of dimension
of space-time d. It is useful to compare our results with those
in the prismatic model [41] where there are no fermions,
while the scalar interactions are the same as in the super-
symmetric model. Both models are renormalizableind < 3,
but in the large N prismatic model, there is a transition in
behavior at d.;; ~ 2.8. For d < d., the dimension of one of
the operators becomes complex so that the prismatic model
becomes a complex CFT [52,53]. There is no such transition
in the supersymmetric models, and they seem to be conven-
tional CFTs in the range 1 < d < 3. However, in d = 2, the
theory may get destabilized by the presence of current-
current marginal operators. Since in d = 1, the supersym-
metry is not consisted with a conformal solution; it therefore
appears that there are no superconformal tensor models in
any integer dimensions.

Continuing the search for melonic CFTs in integer
dimensions, we considered the SYK-like supersymmetric
theory with random cubic superpotentials. This theory
is renormalizable for d < 4 and appears to be stable in
d = 3. This provides us with an example of the higher-
dimensional field theory which possesses a melonic large N
limit. It would be interesting to explore the AdS/CFT
correspondence for this d = 3 superconformal model.
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APPENDIX: SUPERSYMMETRY IN THREE
DIMENSIONS

In this section, we will introduce the notations and useful
identities for the N' = 1 supersymmetric theories in three
dimensions. We will mostly follow the lectures [35]. The
Lorentz group in three dimensions is SL(2,R); that is a
group of all unimodular real matrices of dimension two.
The gamma matrices can be chosen to be real

0= 0 -1 . 0 1
1 0) 1 0/
1 0
2 _ , /4’ vl — Qv
v <0 _1> {r'.r}=2n
There is no y> matrix, so we cannot split the spinor
representation into small Weyl ones. Because of this, the

smallest spinor representation is two-dimensional and real.
It is endowed with a scalar product defined as

(A1)

_ 1-
& =&na = %", 07 =500 (A2)
Because of these facts, the A/ = 1 superspace, in addition
to the usual space-time coordinates, will include two real
Grassman variables 0= . The fields on the superspace can be
decomposed in terms of fields in the usual Minkowski
space. For instance, a scalar superfield (that is our major
interest) has the following decomposition:

D(x,0%) = P(x) + Oy (x) + 6°F(x). (A3)

As usual, the algebra supersymmetry in superspace can be
realized via the derivatives that act on the superfields (A3)
and mix different components

Qu = 0u+ irhy9,.  {Qu.Qp} = 2iry0,.

where 0, stands for differentiation with respect to the usual
space-time variables and 0, for the anticommuting ones.
One can define a superderivative that anticommutes with

(A4)

supersymmetry generators and therefore preserves the
supersymmetry

Dy = 0, — iy}s0°0,, {D,.0s} =0. (A5)

Out of these ingredients, namely (A3) and (AS5), we can
build an explicit version of a supersymmetric Lagrangian.
For example, we can consider the following Lagrangian:

S = / dPxd0 [—%(Dad))anW(CD) . (A6)

where the integral over Grassman variables is defined in the
usual way with the normalization | d*000 = 1. Writing out
the explicit form of (A6), we get

1 .
S = /d3x [E (0,9)* + i YOy’ + F?

FWE W) (A7)
The field F does not have a kinetic term and therefore
is not dynamical and can be integrated out (that we will not
do). For a further investigation, we have to develop the
technique of super Feynman graphs. We start with con-
sidering the partition function of the theory (A6),

ZlJ) = / [dD]exp { / d>xd*6 G (D, @)+ W(P)+ JCD)]

l2)
« / [d®] exp [ / Pxd0 chmnpw@)} (A3)

The last integral is Gaussian and therefore can be evaluated
and is equal to

2 =exp (w(35) ) exo = [ oo 50) ).
(A9)

From this, one can recover the usual Feynman diagram-
matic technique, where the vertex is taken from the
superpotential W(®) rather than the integrated version,
and the propagator is defined as

2
_ D_ 52

(D(x1,0,)D(x2,0,)) = %52(91 —-0,) = 0 (0, —6,),

(A10)

which can be calculated by double differentiation of the
partition function (A8), and the operator [ is the usual
Laplacian.
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