Psychiatry Research 284 (2020) 112732

Contents lists available at ScienceDirect

Psychiatry Research

Psychiatry Research

journal homepage: www.elsevier.com/locate/psychres

Artificial intelligence approaches to predicting and detecting cognitive
decline in older adults: A conceptual review

Check for
updates

:

Sarah A. Graham™"°, Ellen E. Lee®>“Y, Dilip V. Jeste®™“** Ryan Van Patten®"°,
Elizabeth W. Twamley™"™“? Camille Nebeker™*!, Yasunori Yamada®, Ho-Cheol Kim“",
Colin A. Depp™>©

2 Department of Psychiatry, University of California San Diego, La Jolla, CA, United States

b Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
€ IBM-UCSD Artificial Intelligence for Healthy Living Program, La Jolla, CA, United States

4 VA San Diego Healthcare System, San Diego, CA, United States

€ Department of Neurosciences, University of California San Diego, La Jolla, CA, United States

f Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
8 Accessibility and Aging, IBM Research-Tokyo, Tokyo, Japan

b Scalable Knowledge Intelligence, IBM Research-Almaden, San Jose, CA, United States

ARTICLE INFO ABSTRACT

Keywords:

Dementia

Mild cognitive impairment
Machine learning

Sensors

Natural language processing

Preserving cognition and mental capacity is critical to aging with autonomy. Early detection of pathological
cognitive decline facilitates the greatest impact of restorative or preventative treatments. Artificial Intelligence
(AD in healthcare is the use of computational algorithms that mimic human cognitive functions to analyze
complex medical data. Al technologies like machine learning (ML) support the integration of biological, psy-
chological, and social factors when approaching diagnosis, prognosis, and treatment of disease. This paper serves
to acquaint clinicians and other stakeholders with the use, benefits, and limitations of Al for predicting, diag-
nosing, and classifying mild and major neurocognitive impairments, by providing a conceptual overview of this
topic with emphasis on the features explored and Al techniques employed. We present studies that fell into six
categories of features used for these purposes: (1) sociodemographics; (2) clinical and psychometric assessments;
(3) neuroimaging and neurophysiology; (4) electronic health records and claims; (5) novel assessments (e.g.,
sensors for digital data); and (6) genomics/other omics. For each category we provide examples of Al ap-
proaches, including supervised and unsupervised ML, deep learning, and natural language processing. Al
technology, still nascent in healthcare, has great potential to transform the way we diagnose and treat patients
with neurocognitive disorders.

1. Introduction progress to dementia (major neurocognitive disorder) annually

(American Psychiatric Association, 2013; Mitchell and Shiri-

The World Health Organization (WHO) defines healthy aging as the
process of developing and maintaining the functional ability that enables
well-being in older age (World Health Organization, 2019). Cognitive
health is one of the most important determinants of functional ability of
older adults (Beaton et al., 2015; Dodge et al., 2005; Gross et al., 2011),
is critical to aging with autonomy (Depp and Jeste, 2006; Willis et al.,
2006). Healthy aging is associated with some cognitive decline in select
abilities (e.g., processing speed, fluid reasoning, episodic memory
(Der et al., 2010; Eckert, 2011)), a proportion of older adults develop
mild cognitive impairment (MCI; labeled mild neurocognitive disorder
in the DSM-5 (American Psychiatric Association, 2013)), and 5%-15%

Feshki, 2009, 2008; Petersen, 2011). Worldwide, 50 million people
have dementia (World Health Organization, 2019). As there is no
known cure for dementia, tools for the earliest possible detection of
cognitive decline are necessary to achieve the greatest impact of current
and novel treatment approaches to delay pathological cognitive aging
(Graham and Depp, 2019).

Unfortunately, early detection of cognitive impairment is a chal-
lenging psychometric endeavor due to the insidious progression of
symptoms, which, in the early stages, may be mistaken for normal age-
related cognitive impairment (Deary et al., 2009; Petersen et al., 2001).
MCI can be difficult to clearly identify, due to multiple sets of
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diagnostic criteria and need for longitudinal follow-up (Brodaty et al.,
2017). Furthermore, MCI may precede varying types of dementia and
does not lead to dementia in a sizable proportion of patients. Knowing
which patients warrant a comprehensive cognitive screening can be
challenging for clinicians, and neuropsychological test batteries are
time-consuming and require trained administration. An ideal diagnostic
tool must be sensitive to the earliest signs of cognitive decline, non-
invasive, practical, and scalable for use in clinics worldwide. Similar
efforts are already underway (Balota et al., 2010; Patten et al., 2018;
Silverberg et al., 2011) with incremental progress, but there remains
much room for improvement.

The purpose of this conceptual review is to provide a primer for
clinicians on the understanding and use of an exciting new approach to
supporting clinical decision-making such as diagnosis, prediction, and
differentiation between the various types of MCI and dementias - i.e.,
artificial intelligence (AI). Al refers to the scientific field within the
discipline of computer sciences concerned with building systems or
machines (computers) to accomplish tasks that typically require human
intelligence, such as making decisions. Machine learning (ML), deep
learning (DL), and natural language processing (NLP) are techniques of
Al For a machine to act intelligently, it needs to learn from data
(trained with data). In ML, algorithms are used to enable the machine to
learn through structured data input and past experience to detect pat-
terns in the data and use uncovered patterns to predict future human
data. ML can be supervised (i.e., tested against dependent variable data
that are known or labeled) or unsupervised (i.e., with data that are
unknown or unlabeled). DL is a subset of ML that is useful when there is
a large amount of complex and unstructured data. DL involves multiple
layers of algorithms called artificial neural networks (ANN), each pro-
viding a hierarchically different interpretation to the data. NLP is fa-
mily of techniques that focuses on analysis of natural human language
(usually written) and can be integrated with any of the ML approaches.
Al applications specifically for drug discovery, causal disease modeling,
clinical trials recruitment, and neuropsychiatric symptoms are outside
the scope of this review and have been previously examined in the
literature (Jiang et al., 2017; Zhavoronkov et al., 2019).

2. Artificial intelligence primer for predicting and detecting
cognitive decline

Al in healthcare is the use of computational algorithms and software
that mimic human cognitive functions to analyze complex structured
and unstructured medical data like images or clinical notes (Jiang et al.,
2017; Yu et al., 2018). Al tools use these high-dimensional (i.e., multi-
feature) data to determine potential predictors of normal versus pa-
thological changes in cognitive functioning. Al analytic techniques are
ideally suited to handle large volumes and complexity of datasets and
can do this more efficiently than humans (Raghupathi and
Raghupathi, 2014; Wang et al., 2016). Machine learning (ML) is a
subset of Al that involves various methods of enabling an algorithm to
learn from datasets, or update itself based on new data (Chen et al.,
2017; Nevin, 2018). Standard statistics emphasize fitting a specific
model and hypothesis testing to understand underlying mechanisms. In
contrast, ML algorithms do not require a priori hypotheses about re-
lationships among variables, and instead, emphasize prediction accu-
racy and can often detect unforeseen relationships and complicated
nonlinear interactions within data (Graham et al., 2019). The results or
“performance” of an Al algorithm depend on the model selected,
available data, and the input features the researchers selected to predict
an outcome. Below we narrate the most common classes of ML used for
healthcare purposes: supervised and unsupervised machine learning (SL
and UL) (Bzdok et al., 2018; Fabris et al., 2017; Miotto et al., 2016), and
deep learning (DL) (Esteva et al., 2019; Miotto et al., 2017) (Fig. 1a),
which may or may not involve natural language processing (NLP)
(Demner-Fushman et al.,, 2009; Hirschberg and Manning, 2015)
(Fig. 1b).
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Supervised Learning (SL) approaches require pre-labeled data (e.g.,
diagnosis of cognitive impairment vs. unimpaired) that serve as known
outcomes for training an algorithm along with features derived from
additional datastreams (e.g., clinical notes, neuroimaging) (Bzdok
et al., 2018; Fabris et al., 2017). The algorithm then determines which
features are most predictive of the pre-labeled outcome. The diagnosis
of cognitive impairment could be based on either categorical classifi-
cation (yes or no) or continuous regression (e.g., score on a neurocog-
nitive assessment) (Fig. 1a). The validity of SL algorithms rely heavily
on the “ground truth” behind the labeled outcomes, which may require
longitudinal follow-up or other information to bolster the determina-
tion of outcomes such as cognitive impairment.

Unsupervised Learning (UL) algorithms are provided with unlabeled
data. While the data may contain, for example, individuals with cog-
nitive impairment and those without, the algorithm is not privy to this
information (Miotto et al., 2017). Instead, the algorithm searches un-
structured data (e.g., clinical notes) for relationships or clusters with
the goal of segmenting the data by some shared characteristics, or de-
tecting anomalies that do not belong to a particular group. Identified
clusters generally require clinical expertise to derive their meaning
(Fig. 1a).

Deep Learning (DL) functions using both SL and UL but is capable of
exploiting the unknown structure from data using artificial neural
networks (ANNs) that automatically derive features from raw data (i.e.,
feature engineering) when they learn, instead of requiring human input
for obtaining features from raw data (Esteva et al., 2019; Miotto et al.,
2017). This type of learning requires very large datasets in comparison
to other forms of ML that can work with smaller data size and extensive
computation power. Complex, high-dimensional data like neuroima-
ging and speech are well suited to DL (Fig. 1a).

Natural Language Processing (NLP) refers to how computers un-
derstand natural language (e.g., speech, text) in terms of language
translation, semantic understanding, and summarization (Demner-
Fushman et al., 2009; Hirschberg and Manning, 2015). The process of
NLP is to transfer text from an unstructured into a structured format to
enable analyzes. Studies that use NLP generally follow with one of the
aforementioned learning techniques (SL, UL, DL) to determine the ac-
curacy of using speech/text data to model cognitive function (Fig. 1b).

2.1. Performance metrics of Al results

Al studies most commonly report results of algorithm performance
as percent accuracy and receiver operating characteristic area under the
curve (ROC AUC). Accuracy is the proportion of correct predictions:
true positives + true negatives divided by all observations (true posi-
tives and negatives + false positives and negatives) (Hossin and
Sulaiman, 2015; Huang and Ling, 2005). In comparison, AUC provides
information about the tradeoff between sensitivity (true positive rate)
and specificity (true negative rate) at various threshold settings. The
benefit of using AUC instead of, or in addition to, percent accuracy, is
that unlike accuracy this metric is not affected by class imbalance (e.g.,
a smaller number of subjects in the sample with dementia compared to
healthy controls) (Hossin and Sulaiman, 2015).

When evaluating the efficacy or quality of the results of Al studies,
we should pay close attention to the validation methods used to arrive
at the performance metrics. A study has been internally validated if
methods like cross validation (CV) were used. CV is considered “in-
ternal” validation because all of the data are used at some point in the
training phase (e.g., leave one out CV; 5-fold CV) (Blagus and
Lusa, 2015). The performance is reported as the average across the
testing folds. CV enables the researcher to double-check the accuracy of
a model on different subsets of data, though the algorithm has not been
vetted on a population external to the one used for training. In contrast,
external validation involves testing the algorithm performance on a
completely different dataset than the training set (Park and Han, 2018).
This step is crucial before an algorithm's clinical usefulness can be
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Fig. 1. (a) The most common subcategories of machine learning (ML) used for healthcare purposes. NN =neural network. (b) The most common subcategories of

natural language processing (NLP) used for healthcare purposes.

determined.

3. Overview of select studies focused on Al for cognitive decline

We did not perform a meta-analysis of all studies related to neuro-
cognitive disorders and Al. Instead, our goal was to provide a guide to
aid clinicians in understanding the heterogeneity and potential value
and limitations of a variety of neurocognitive features for Al applica-
tions. Using a broad MEDLINE inquiry with several search terms
[(“artificial intelligence” or “machine learning” or “NLP”) AND (“cog-
nition” or “cognitive testing)],” we then selected studies to illustrate the
diversity of data sources and research questions addressed using Al
preferring those with larger sample sizes and clear explanations of the
ML approach.

We selected studies that showcased common classes of features used
for detecting, classifying, or predicting cognitive status and that em-
ployed the most common Al techniques emerging in healthcare: SL, UL,
DL, and NLP (Jiang et al., 2017). Six feature categories (i.e., types of

datasets) emerged from the studies selected: sociodemographic data,
clinical and psychometric assessments; neuroimaging and neurophy-
siological data; electronic health record (EHR) and claims data; novel
assessments (e.g., handwriting and speech analyzes); and genomic and
other omic data. Table 1 showcases different Al techniques used with
each feature category, with its strengths and limitations.

3.1. Sociodemographic data (Table 1 section A)

Sociodemographic and other forms of population data offer rich
information from large datasets (e.g., the US Health and Retirement
Study (Institute for Social Research, University of Michigan, 2019.
Health and Retirement Study.); Aging and Retirement in Europe
(SHARE-ERIC, 2019); Korean Longitudinal Study of Aging (Korean
Employment Information Services. 2015. Korean Longitudinal Study of
Aging. https://survey.keis.or.kr/eng/klosa/klosa01.jsp)). De Langavant
et al. (2018) developed an UL-based algorithm for identifying partici-
pants with high likelihood of dementia from population-based surveys,



Table 1

Summary of characteristics of selected studies of Al for cognitive impairment.

Authors/Journal/Location ~ Primary Aim Subjects/Dataset Predictors (features) Al Validation Best algorithm and performance/Main finding  Strengths and limitations
used by AI algorithm method (s) of using these features
SLULDL CV Insample Out of with AI analytic
NLP sample approaches
test
Sociodemographic data (section A)
De Langavant et al., 2018  Identify participants with n = 18,165 training Survey-based data UL X Algorithm: Hierarchical clustering: identified = Strengths:

Journal of medical
internet research
University of Paris,
Créteil, France

Na, 2019
Scientific reports
Gachon University
College of Medicine,
Incheon, Republic of
Korea

high likelihood of dementia
in population-based surveys
without clinical diagnosis

Predict cognitive
impairment using variables
commonly collected in
community

health care institutions

(59% F)

n = 58,202 test

(57% F)

Training: US Adults >50 years from
Health & Retirement Study (HRS;
2002-2003) (n = 856 received
in-home assessment of dementia
using clinical criteria)

Test: European adults >50 years
from SHARE; 2010-2012

N = 3,424 community-dwelling
older adults Age 70.4 *+ 7.0 years,
without cognitive impairment based
on MMSE (53.7% F)

Data from KLoSA 2014 to 2016

including demographics,
health, health care
utilization, & cognition

Socio-demographic, SL
health, functional, &
subjective well being

3 clusters based on functional & motor
(walking, climbing) limitations
Performance: Cluster 3 (high risk for
dementia)

accuracy =93.1% AUC=0.91

Main findings: UL identified high likelihood of
dementia in population-based surveys, even

without

cognitive & behavioral measures & without

clinical diagnosis of dementia
Algorithm:GBM

Performance:AUC = 0.921

Main findings:Cognitive decline best
predicted by: age, MMSE, & education.

-More generalizable to
other samples due to
being commonly collected
data

-Larger sample sizes due
to public registries
-Inclusive of all
demographic groups
-Contains social
determinants of health
-Beneficial for resource
poor areas with limited
primary care access &
limited

cognitive testing
capacities.

Limitations:

-Lack clinical/biological
information that may
allow for more precise
diagnoses

Clinical and psychometric assessments (section B)

Lins et al., 2017
Computer Methods
and Programs in
Biomedicine
Federal Rural
University of
Pernambuco,
Northeast Brazil

Moreira and Namen 2018
Computer Methods
and Programs in
Biomedicine
North Fluminense
State University, Rio
de Janeiro, Brazil.

Predict MCI & dementia
from demo-graphic &
standard neuro-cognitive
test features

Determine whether

unstructured mining of
medical texts improves
diagnosis of MCI & AD

N = 151 (25% held out as test set);
n = 70 adults with clinical diagnosis
of MCI71.3 + 7.5yrs;n = 56 adults
with dementia 76.9 + 7.5 yrs; 25
HCs 69.1 = 5.1 yrs

Database from Molecular Markers in
Degenerative Diseases

N = 605; characterized in model as
=65 or <65 years (gender not
specified but also included in model)
patients

attending the Alzheimer & Parkinson
Center in the city of

Campos dos Goytacazes

Gender, age, level of education, SL
study time, & scores from cognitive
tests (MMSE, Semantic Ver- bal
Fluency Test, CDR, & Ascertaining
Dementia).

Demographic, clinical, neuro-psych NLP /
screening tests, and clinical notes ~ UL /

SL

Algorithm:RF: only cognitive tests

Performance:

Accuracy =96.8%,

sensitivity = 0.98, specificity =0.96

Main findings:Using only cognitive testing (MMSE,
CDR, AD8) was best for predicting cognitive status.

Algorithm:Best model for AD: J48 with AdaBoost
ensemble method including UL x-means clustering
Performance:accuracy = 0.80 & AUC = 0.85
Algorithm:Best model for MCI: NB with Bagging
including UL k-means or x-means clustering
Performance:accuracy = 0.85; AUC = 0.87

Main findings: greater effectiveness of a hybrid (UL/SL)
model for diagnosing AD and MCI; clinician notes
contain important information that should not be
ignored.

Strengths:

-Direct assessment of
cognitive functioning
-Standard scoring metrics and
comparison to validated
norms

-High relevance to clinicians
Limitations:

-Certain assessments require
clinical suspicion and more
resources to obtain (e.g.,
neuro-psychological testing)
-Cognitive data are derived
from contrived testing
situations

(continued on next page)
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Table 1 (continued)

Clinical and psychometric assessments (section B)

Senanayake et al., 2017 Distinguish between CN & N = 1037; 70-90 years (57% F) Between 28 and 35 neuro- DL X Algorithm: SAE:
ICPRAM MCI using neuro-psycho-  Community-dwelling psychological test scores CN vs. MCI
UNSW, Sydney, logical test scores non-demented adults (MMSE score (depending on enrollment wave) Performance:
Australia =24) Accuracy =83%; AUC=88%%
MCI (CDR=0.5 criteria) further MCI subtypes
divided into aMCI & naMCI Accuracy =76%; AUC=80%%
Data from the Sydney Memory & Main findings:Neuropsychological
Aging Study (MAS) measures can differentiate
between MCI and its subtypes. DL SAE has significant
advantages over conventional
classifiers; SAE can be used as an unsupervised feature
extractor; model will further improve with higher
dimensional data
Neuroimaging and neurophysiologic data (section C)
Fan et al., 2018 Discover the altered spatio- N = 123 adults from Multiscale SL X X Algorithm:LASSO: Strengths:
Frontiers in Neuro-science  temporal patterns of EEG the Dementia Clinic at the Entropy of EEG, a HC vs. AD3 -Systematic approach to complex, multi-
North-eastern University, complexity associated with AD Neurological Institute, Taipei complexity measure of Performance: accuracy = =79.5%% layered imaging data. (In other fields, Al
Boston, MA pathology in different severity Veterans time series signals AD1 vs. AD3 accuracy = 82%% techniques can detect imaging
levels General Hospital in Taiwan (AD AD2 vs. AD3 accuracy = 72.4%% abnormalities on par with trained
diagnosed with NINCDS-ADRDA Main findings:Temporal & occipitoparietal physicians)
Criteria) brain -Potential to improve interpretability and
HC N = 15; AD1 (CDR=0.5) regions were more discriminative for classifying clinical utility of certain commonly-
N = 15; AD2 (CDR=1) N = 69; & severe AD vs.NC, but more diverse & distributed obtained but incompletely-understood
AD3 (CDR=2) N = 24 patterns of EEG complexity in the brain were imaging data
exhibited across individuals in early stages of AD
-Hypothesis-generating potential for
brain-based mechanisms
-Can guide development of targeted
therapies using neurostimulation
approaches.
Limitations:
-Expensive (thus, smaller sample sizes,
less generalizability)
-Heterogeneity of datasets (imaging
Modalities, machines, processing
approaches) that make it challenging to
harmonize data
-Less tightly correlated with real-world
functional outcomes than clinical and
neuropsychological data
Gamberger et al., 2017 Identify different prognostic N = 562; 74.0 = 7.5 years Clinical, cognitive, & UL X Algorithm: Multi-layer clustering; two clusters

Scientific Reports
Duke University Medical
Center

cognitive trajectories of MCI
patients through discovering
homo-genous clusters based on
neuro-imaging, clinical Data, &
cognitive tests

Data from ADNI database: ADNI-1 &
ADNI-2 late MCI subjects with at
least one post-baseline visit (criteria
available in ADNI procedures
manual [http://www.adni-info.org/
D

(39% F)

biomarker (volumetric
brain

MR, amyloid PET,
FDG-PET, spinal fluid)
tests

identified—rapid vs. slow decliners.
Performance:

Best predictor: baseline ADAS13 > 19.50
yielded 92% sensitivity & 93.7% specificity in
ADNI1

& 98.4% sensitivity & 90% specificity in ADNI2
Main findings: Pathological differences
between rapid vs. slow decliners included an
almost 5-fold greater rate of converting to
dementia in rapid vs. slow cluster, & a lower rate
of reverting back to cognitively normal (0% vs.
13%)

(continued on next page)
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Table 1 (continued)

Neuroimaging and neurophysiologic data (section C)

Grassi et al., 2018 Prediction of 3-year conversion to n = 75 older adults with DSM- Clinical & neuro- SL X Algorithm:SVM
International Psycho- AD in subjects with MCI & Pre- criteria diagnosis of AD; age NR psychological testing, Performance: AUC=
geriatrics MCI from clinical & MRI data n = 197 HC; age NR cardiovascular risk, 0.996 for AD vs. HC
Mount Sinai Medical n = 61 older adults meeting CDR rating of MRI data Results out of sample:
Center, Miami Beach, criteria for MCI (out of sample) SVM: AUC = 0.821 MCI
Florida, & the Community 70+ years (60% F) Main findings:Clinically available data can be
& Memory Disorders used to predict 3-year conversion from MCI to
Center at the University of AD
South Florida
lizuka et al., 2019 Diagnose DLB & AD from brain n = 240 (80 each for DBL SPECT images with DL X X Algorithm:CNN
Scientific Reports SPECT scans 77.9 + 5.3 years, AD 77.8 + 5.42 emphasis on CIS Performance:accuracy for differentiating
Fukujuji Hospital, Japan years, & NL 77.7 + 5.0 years) DLB-NL = 93%; DBL-AD = 89%; AD-NL=92%%
training; AUG:s for differentiating DLB-NL = =0.95;
n = 60 (20 each) for training DLB-AD = =0.94; AD-NL = =0.94
DLB, AD, & NL (McKeith criteria & Main findings:DL was useful for differentiating
NINCDS-ADRDA) DLB from
(52% F) AD, & for predicting clinical features of DLB. CIS
was more involved in discrimination of DLB-AD
rather than DLB-NL
EHR and claims data (section D)
Nori et al., 2019 Predict ADRD 4-5 years in advance N = 44,945 with ADRD over 10,000 clinical, SL X Algorithm:LASSO & regularized logistic Strengths:
Plos One from adminis-trative claims data N = 2,901,044 NC Age pharmaceutical, and regression -Potential to detect at-risk patients
Optum Labs, 77.2 + 7.0 yrs training data; demographic variables Performance:AUC 0.69 test data seeking healthcare for reasons other than
Cambridge, MA, (62% F training) Main findings:Patients identified by the = cognitive decline
(27% training; 73% test) model 6.4 times more likely to be -Large and longitudinal datasets
ADRD diagnosis (medical diagnosed with dementia in the near-term Limitations:
claim codes) -Quality and quantity of EHR data for
Data from 2001-2015 from the individuals are dependent on external
Optum Labs Data Warehouse factors (severity of illness, insurance rules,
( OLDW); all 50 states psychosocial resources, regional practices
represented and resources). For example, sicker
patients will likely have more contact
with the healthcare system and more
documentation within the EHR.
- EHR data may not reflect assessments or
work-up that were recommended by
providers but declined by the patient.
-EHR data is heterogeneous in
organization and level of detail on the
provider, clinic, and system-levels, e.g., a
geriatric specialty clinic may order a
different panel of tests and assessments
compared to a primary care clinic.
Shao et al., 2019 Identify cases of undiagnosed n = 1,861 Veterans with (79.8 Structured data UL / SL X Algorithm: LDA

BMC Medical
Informatics & Decision
Making

VA Puget Sound

dementia from both structured &
unstructured EHR data

yrs) & n = 9,305 without
(79.5 yrs) ICD-9 dementia
codes

(3.3% F)

Data from the clinical

data warehouse (CDW) within
the Veterans Affairs
Informatics

& Computing Infrastructure
(VINCD)

(diagnosis [ICD codes],
procedures [CPT codes],
medications, & clinical document
types); unstructured

data (clinical document text)

Performance:

853 features identified (290 topics, 174
non-dementia ICD codes, 159 CPT codes,
59

medications, & 171 note types)

Main findings:imperfect

data (e.g., ICD codes in combination with
other EHR

features) can be used to detect Veterans
with undiagnosed dementia

(continued on next page)
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Table 1 (continued)

EHR and claims data (section D)

Wang et al., 2019
JAMA network open
Harvard Medical
School, Boston,
Massachusetts

Predict mortality from demographic
& clinical notes, highlight topics
that best predict mortality to detect
patients that may benefit from
palliative services

Wang et al., 2018 Evaluated topic models for

AMIA Annual important themes mentioned in care
Symposium provider notes about dementia
Proceedings patients; explored patterns & trends

Harvard Medical
School, Boston, MA

of topics over the final 2 years of life

Patients with dementia
Training: n = 24,229 [60% F,
74.8 + 13.2 years]

Test: n = 2,692 [61% F,

75.0 + 12.6 years]

Data from Partners HealthCare
System patients who visited
from 1/1/11 through 12/31/
17

n = 7,875; Age 84.3 + 9.5
years at death with dementia
(54.5% F) (432,007 clinical
notes)

n = 133,394 HC Age

71.9 + 16.5 years at death
Patients with dementia from
two PHS hospitals: Brigham &
Women's Hospital & Faulkner
Hospital

959,628 clinical notes, DL /
demographics, death status NLP
All types of inpatient & UL/
ambulatory notes—office visit NLP

notes,

progress notes, discharge
summaries, emergency
department notes, consultations,
nutrition notes, social work notes,
phone calls

X

X

Algorithm: LSTM

6-month mortality

Performance:

AUC 0.978 test data

1-year mortality

AUC 0.956 test data

2 -year mortality

AUC 0.943 test data

Main findings:Top-ranked latent topics
associated with 6-month, 1- & 2-year
mortality

included palliative & end-of-life care,
cognitive function, delirium, testing

of cholesterol levels, cancer, pain, use of
health care services, arthritis, nutritional
status, skin care,

family meeting, shock, respiratory failure,
& swallowing function

Algorithm: Topic modeling (LDA)
Performance:generated 224 stable topics
classified into 72 unique categories
Main findings:Patterns & trends of
identified topics

provided unique findings & insights not
documented in EHR; e.g., functional
status, mental status, & palliative care.

Novel assessments (speech, handwriting, sensors) (section E)

N = 97 older adults 80 + years
from Portland, Oregon,

Motion detected with passive infra-red SL X
motion sensors & walking speed

Akl et al., 2015 Detect MCI using home-
IEEE Trans Biomed based sensing technology
Eng.

University of
Toronto, Canada

metropolitan area living alone
either CIN or MCI (CDR
criteria)

(90% F)

Algorithm:SVM
Performance:AUC=0.97

Strengths:
-Potential to discover new

Main findings:

Trajectories of weekly walking speed, CoV of walking
speed, CoV of morning & evening walking speeds, age, &
gender were most important for detecting MCI in older
adults

biomarkers and biological
mechanisms of cognitive decline
-Potential for monitoring in real-
world settings

-Continuous, longitudinal
monitoring enables pattern
identification

Limitations:

-Less is known about relationships
between novel measures and
cognitive decline

-Particularly if used in isolation
from other measurements, may
have lower accuracies due to
exploratory nature of these data
-Current research is exploratory
and has smaller sample sizes

- High heterogeneity across
individuals and environments

(continued on next page)
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Table 1 (continued)

Novel assessments (speech, handwriting, sensors) (section E)

Angelillo et al., 2019 Detect dementia n = 65 total Handwriting information: x & y SL X Algorithm:Ensemble classifier
IEEE Access automatic-ally from results n = 29 HC Age 65 *+ 13 years  coordinates of pen position; pen Performance: accuracy = 84%; AUC =87%%
University of Bari, of a digital version of the  n = 36 with diagnosis of inclination; pen pressure; pen airtime Main findings:Digitalization of the AMT enables capturing
Italy attentional matrices test dementia Age 75 * 9 years vs. contact time; horizontal & vertical a larger set of performance measures
(AMT) (%F NR) Shannon entropy than can be obtained by the paper-based test; the best
variable for screening for cognitive impairment was
prolonged in-air time
Ashraf and Taati 2016 Predict cognitive status by N = 27 participants; Video-tapes of hand-washing in one SL X Algorithm: RF
IEEE Journal of monitoring hand-washing ~ 82.4 = 9.5 years; (81.4% F) bathroom at a long-term care facility 4-class classifier (aware, mild, moderate, severe)
Biomedical & Health ~ behaviors with MMSE scores ranging from Performance: all features accuracy =52.1%;
Informatics no to severe impairment collapsed features =70.4%%
University of Main findings:Computer-rated aspects of handwashing
Toronto, (occupancy of sink areas & hand motions) can predict
Canada MMSE scores & classifications
Gwak et al., 2018 Classify MCI vs. CH using N = 69 older adults PPG & gait accelerometer & gyroscope SL X Algorithm:RF & logistic regression
In Proceedings PPG & gait sensor data 72.5 + 10.6 years recruited sensor data Performance:RF accuracy =82% PPG data only; logistic
APSIPA Annual for the regression accuracy = 86%%
Summit & Conference longitudinal aging study from Main findings:Classification accuracy using the optimal
University of the Department of Neurology, feature subset was higher than when only using a neuro-
California Los Psychiatry, & Computer Science psychological test
Angeles (1% F) score (CVLT) (76% & 79%)
Toth et al., 2018 Detect MCI based on n = 48 adults with clinical Acoustic parameters from spontaneous NLP X Algorithm: SVM with manual feature selection
Current Alzheimer acoustic features from diagnosis of MCI Age 73 years  speech recall of 2 short black & white SL Performance:accuracy = 71%, AUC=71%
Research spon-taneous speech (55-93) films Algorithm:RF with automatic feature selection
Memory ambulance & n = 38 HC Age 64 years Performance:accuracy = 71%, AUC=70%
of the University of (57-84) Main findings:Most significant differences between groups
Szeged, Hungary (65.5% F) in speech tempo from delayed recall task, & number of
pauses for question-answering task
Genomic and other -omic data (section F)
Jamal et al., 2016 Predict probable AD- Entrez gene database at the 56,405 genes belonging to SL X Algorithm:NB Strengths:
BMC Genomics associated National center for Biotechnology =~ Homo sapiens species Performance: -Existence of large databases
Jawaharlal Nehru University, genes from a large pool of  Information (NCBI) Accuracy = 80%% -Discover new roles of genes in the
New Delhi, India genes & identify 458 genes which may cause AD; Main findings:Identified 13 novel candidate genes that pathology of cognitive decline
therapeutic targets 55,947 non-AD could have a potential role in AD pathology; -Genes are purported to play a
genes demonstrated that AL-108, an investigational AD- large role in neurodegenerative
specific drug, had strong binding affinity for all novel  pathogenesis
drug targets -Discover new drug targets for
Haran et al., 2019 Identify numerous N = 108 nursing home residents Longitudinal stool samples UL Algorithm: t-distributed stochastic neurodegenerative diseases like AD

mBio

University of Massachusetts
Medical School, Worcester,
Massachusetts

microbial taxa &
functional genes that act as
predictors of AD in
comparison to elders
without dementia or with
other dementia types

(47.2% no dementia 83.0 = 10.2
years, 22.2%

AD 84.7 = 8.1, & 30.6% other
dementia types 87.9 = 7.9 (CDR
scores)

(49% F)

for intestinal microbiota (P-
glycoprotein expression)

neighbor embedding (tSNE)

Performance: identified lower proportions

of key butyrate-producing species in AD; Jaccard
distances

between AD samples more similar than those from
individuals

with no dementia or other dementia types

Main findings: Microbiome of AD shows a lower
proportion & prevalence of bacteria with the potential
to synthesize butyrate, & higher abundances of taxa
known to cause pro-inflammatory states

Limitations:

-Lack of access to biological
samples

-Not routinely collected

-Often used in the absence of other
clinical information (lowers
accuracy)

-Limited phenotypic data in many
large genetic databases

(continued on next page)
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Table 1 (continued)

Genomic and other -omic data (section F)

Algorithm:DNN
Performance:

X

DL

MRI, PET (93 ROIs) & SNP

(3,023 features)

+ 7.5

ADNI dataset 190 CE 75.2

Predict AD & its prodromal
status from multimodal
imaging & genetic data

Zhou et al., 2018

years, 389 MCI 74.9 + 7.3 years,

Mach Learn Med Imaging.

MRI + PET + SNP highest accuracy = 65%

26 HC 75.8 = 5.0 years (43% F)

University of North Carolina,

Chapel Hill

Main findings: The combination of brain imaging &
genetic features produced the highest accuracy in

classifying AD vs. MCI vs. HC

control;

=clinical dementia rating; CN=
healthy control;

area under the curve; CDR

artificial intelligence; AMT = attentional matrices test; AUC=

Alzheimer's Disease; ADNI= Alzheimer's Disease Neuroimaging Initiative; Al=

AD=

gradient boosting model; HC=

female; GBM =

=deep neural network; F=

deep learning; DNN

long short-term memory; MCI

cross validation; DL

coefficient of variation; CV

convolutional neural network; CoV

CNN=

natural

random forest; ROl =region of interest; SAE =stacked auto-encoder; SHARE = Survey of Health, Aging & Retirement; SL=supervised learning; SNP= Single

Nucleotide Polymorphism; SVM = support vector machine; UL

naive bayes; NLP =

mild cognitive impairment; MMSE = mini mental state examination; NB =

latent Dirichlet allocation; LSTM

photoplethysmography; RF

Korean Longitudinal Study of Aging; LDA

language processing; PPG

KLoSA

unsupervised learning.
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without clinical diagnosis, using both American and European subjects,
with the potential to flag individuals within a large population-based
sample for cognitive screening. The Na study (Na, 2019) used variables
commonly collected in community health care institutions (socio-
demographics, health, subjective well-being) and foundage and edu-
cation were particularly important in predicting cognitive decline in a
community sample of Korean adults.

A benefit of such data is that they are often stratified geographically
and cover various demographic groups. They are also easy to collect for
reasonable cost and can be widely disseminated. Such data can poten-
tially help with early risk stratification and subsequent identification of
high-risk individuals in need of more detailed assessments
(De Langavant et al., 2018). These data may also contain social de-
terminants of health (e.g., education), often overlooked in other clinical
data. Because many countries collect population data regarding health,
socioeconomic status, and social and family networks of older adults,
such information may also provide an opportunity to compare out-
comes across different countries and infer global health estimates of
dementia burden. However, simply identifying putative risk and pro-
tective factors for cognitive decline from sociodemographic data may
be of limited use for predicting future cognitive impairment for an in-
dividual. Furthermore, the findings from one country/setting may not
relate directly to participants in other nations, e.g., extrapolating from a
Korean sample to a US sample or vice versa. However, when combined
with clinical measures like the Mini-Mental State Examination (MMSE),
as shown by Na (2019), sociodemographics could be a useful addition
to a ML algorithm. Multi-modal variables are most meaningful when
their complex interactions are analyzed comprehensively, and long-
itudinally (e.g., (Na, 2019)), using ML models.

3.2. Clinical and psychometric assessments (Table 1 section B)

Clinical assessment data offer readily available, inexpensive, and
rich sources of information. The three studies highlighted in this cate-
gory show how AI techniques can be used to streamline a cognitive
assessment battery for dementia (Lins et al., 2017), incorporate in-
formation from clinical notes to improve diagnostic accuracy of MCI
and dementia (Moreira and Namen, 2018), and best distinguish be-
tween normal cognition and MCI using neuropsychological measures
(Senanayake et al., 2017). The three studies differ widely in sample
size, input data, and algorithms, demonstrating the varied applications
of such data. Given that every major healthcare provider collects clin-
ical variables, these data promote generalizability of ML algorithms and
can potentially involve large samples if every individual in an area or
healthcare system is included. Similar to population-based socio-
demographics, clinical data may be best for identifying high-risk in-
dividuals who need additional assessments and clinical interventions to
help focus resources most efficiently. However, clinical assessments are
not streamlined or standardized (primary versus subspecialty settings),
and different clinicians may use different measures (e.g., the Montreal
Cognitive Assessment (MoCA) versus the MMSE). AI may be able to
address the limitations of heterogeneous data by using a heterogeneous
training set, or by testing models in different populations. ML techni-
ques may also help to rank the factors that are critical for assessing
cognitive impairment and thus help to focus on these factors. The
quality and accuracy of clinical data can be variable and require de-
tailed record-keeping and access to the data to be useful for AL

3.3. Neuroimaging and neurophysiological data (Table 1 section C)

Neuroimaging and neurophysiological techniques have grown con-
siderably in the past decade. Research continues to demonstrate their
use for providing important information about the brain's structure and
function (Khandai and Aizenstein, 2013). Brain imaging is often used to
detect neurological causes (e.g., tumors, stroke), but not psycho-
pathology (Vernooij et al., 2019). In the interpretation of radiological
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images, Al techniques can outperform specialists in detecting early or
“preclinical” degradation of neuroanatomy because Al is particularly
well suited to detecting abnormalities within image and signal data
through training (i.e., pattern recognition) (Ahmed et al., 2019;
Hosny et al., 2018). Al offers the potential to improve interpretability
and clinical utility of neuroimaging and neurophysiological data that
are commonly obtained but incompletely understood. We may learn
from AI about new aspects of brain function and connectivity and
generate new hypotheses regarding brain-based mechanisms of neu-
ropsychiatric diseases. The four examples of Al used with brain imaging
data show how different EEG (Fan et al., 2018) and brain imaging
profiles (Gamberger et al., 2017; Grassi et al., 2018; lizuka et al., 2019)
can be used to identify cognitive impairment (Fan et al., 2018;
lizuka et al, 2019) and predict prognostic trajectories
(Gamberger et al., 2017; Grassi et al., 2018) in different populations.

Neuroimaging and neurophysiological data are considered high di-
mensional data—data where the number of features often greatly ex-
ceeds the number of observations. Because most statistical analyzes are
better suited for lower dimensional data, ML is an ideal alternative for
traditional neuroimaging/neurophysiology analyzes. Given recent in-
itiatives to grow open source datasets like the Alzheimer's Disease
Neuroimaging Initiative (ADNI) (e.g., (Gamberger et al., 2017)), the
“big data” required for optimal Al techniques are also available. Ulti-
mately, combining AI techniques with rich biological information
contained in neuroimaging will enable faster, safer, cheaper, and more
accurate imaging results, usable for informing diagnoses, prognoses,
and treatment decisions. However, neuroimaging and neurophysiolo-
gical assessments are not commonly offered in all medical settings be-
cause of high costs and safety issues like radiation exposure. There is
also considerable heterogeneity among datasets regarding imaging
modalities (magnetic resononce imaging or MRI versus positron emis-
sion tomography or PET), machines (different strengths of MRI ma-
chines), and processing approaches which continue to evolve.

3.4. Electronic health record (EHR) and claims data (Table 1 section D)

The EHR includes huge amounts of patient-specific information
containing both structured (coded) and unstructured (free text) entries
(Hayrinen et al., 2008). EHR may also contain some sociodemographic
and clinical data mentioned above, depending on the vendor and/or
health organization. The four highlighted studies in this section used
nationwide administrative claims data (Nori et al., 2019), EHR from a
regional Veterans Affairs (VA) healthcare system (a publicly adminis-
tered program) (Shao et al., 2019), EHR from a regional not-for-profit
academic healthcare system (Wang et al., 2019), and EHR from two
hospital-based samples (Wang et al., 2018). These datasets record and
help to manage patient care and offer a relatively inexpensive source of
information collected over long time periods on large numbers of pa-
tients. The large size of these databases (i.e., thousands of individuals)
enables studies of rare conditions, and the longitudinal aspect of the
data enables researchers to investigate effects of treatment(s) over time.

Nori et al., 2019 and Wang et al., 2019 utilized the longitudinal
nature of EHR data to find features related to increased incidence of
near-term (4-5 years) dementia (Nori et al., 2019) and mortality (Wang
et al., 2019). ML algorithms can deal with very large numbers of po-
tential input features (e.g., Nori et al., 2019) used over 10,000 clinical,
pharmaceutical, and demographic variables) and rapidly develop pre-
dictive models without specific selection of variables, enabling auto-
mated selection of high value predictors. However, EHR data alone
have relatively limited predictive power when analyzed in the absence
of other social determinants of health (e.g., population-based socio-
demographic data) (Freij et al., 2019).

EHR systems are primarily designed for streamlining billing pur-
poses; thus, the data for deciphering and supporting clinical decision-
making may not always be available. The quality and quantity of EHR
data are also dependent on external factors (e.g., severity of illness,

10

Psychiatry Research 284 (2020) 112732

insurance rules, regional practices, availability of resources) and are
heterogeneous in organization and level of detail. For example, the
findings from a regional VA health system (as in Shao et al., 2019) may
be more representative of care at other VA health systems, whereas
there may be considerable regional differences within other nationwide
insurers (e.g., Blue Cross Blue Shield versus Kaiser Permanente) due to
different patient populations and plan structures. Al will be particularly
useful with these data if it can “learn” the different styles of doc-
umentation from different providers and different healthcare systems -
a excellent area for NLP applications. Finally, Al could help healthcare
providers to better and more efficiently understand their patient's
clinical history and guide their decision-making process.

Claims data, like those used by Nori et al., 2019, are generated
primarily for the administration of payment for health services deliv-
ered. These data offer structured information on patient interactions
with a healthcare system (e.g., billed services, prescriptions) and has
the ability to link records with other large registries (e.g., death records,
cancer databases). Unlike EHRs, claims only offer limited information
on clinical severity and patients’ health status, without laboratory,
imaging, and other diagnostic test results. Furthermore, claims records
do not reflect treatments and assessments that were suggested by
clinicians and refused by patients. Claims data have the advantage,
however, of collecting data from various sites that may not be included
in a single EHR and result in a nationally representative sample. They
may help to identify and reduce common biases in healthcare, e.g.,
when combined with other clinical data, they can help determine which
conditions were undiagnosed in some patients, and at what point in
time, so that future ML algorithms can detect early markers and in-
dicators of future disease. Potential disadvantages to claims data in-
clude differences in values between billed and paid claims, con-
fidentiality issues, and negative consequences like premiums based on
personal traits potentially affecting insurability.

3.5. Novel assessments (sensors, handwriting, speech) (Table 1 section E)

Novel features like sensor (digital) data, handwriting (text), and
speech (audio), offer unique opportunities to identify new indicators of
cognitive decline (Kourtis et al., 2019). The five exemplar studies in
Table 1 include home-based motion sensors (Akl et al., 2015), com-
puterized handwriting analyzes (Angelillo et al., 2019), videotaped
handwashing tasks (Ashraf and Taati, 2016), multi-modal wearable
activity monitors (Gwak et al., 2018), and audio-recorded speech data
(Toth et al.,, 2018) for detecting cognitive impairment. These data
(particularly environmental and wearable sensors) have the potential
for continuous, longitudinal tracking of cognitive changes. For example,
Akl et al. (2015) installed passive infrared motion sensors in partici-
pants’ homes to assess movements and general activity by location that
may be indicative of MCI over a 3-year period. They found that novel
features like the trajectories of weekly walking speed were among the
most important for detecting MCI in older adults. However, current
relationships of these novel data with cognitive status are not yet well
characterized. Furthermore, the sensor data contain artifacts (visitors,
noise) and have considerable heterogeneity across individuals and en-
vironments (one- versus two-faucet handles, microphone position).
Nonetheless, sensors offer an opportunity for tracking real-world be-
haviors in more ecologically valid environments than traditional la-
boratory or clinic settings. Longitudinal sensor data are particularly
difficult to visualize, understand, and manage without specialized al-
gorithms provided by ML.

3.6. Genomic and other omics data (Table 1 section F)

Genomic data are probably the best example of the big data ideally
suited to ML analytic techniques. DL, in particular, is most useful when
large amounts of data are available, and the human genome comprises
more than 3 billion base pairs with a multitude of complex processes
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governing the expression of different genes (Libbrecht and
Noble, 2017). Despite major advances in genomics, we still do not fully
understand the various genes’ functions and how they impact our
physiology and health. Gene expression data can be used to learn to
distinguish among different disease phenotypes and identify potentially
valuable disease biomarkers. Alzheimer's Disease (AD), for example, is
partially heritable and genetically complex. Large genome databases
can offer enough training data to build accurate prediction models re-
lating to gene expression, genomic regulation, or variant interpretation
associated with AD and other cognitive impairments. The three studies
highlighted in this section include a study of specific genes from a large
NIH database (Jamal et al, 2016), gut microbiome analyzes
(Haran et al., 2019), and single-nucleotide polymorphism (SNP) data
integrated with brain imaging (Zhou et al., 2018). The field of genomics
is central to the precision medicine movement, as the illnesses an in-
dividual may experience are determined to a variable extent by their
genes. ML has also enabled direct-to-consumer applications of genomic
analyzes like “23andMe” and “Ancestry.com.” ML approaches have
been leveraged to annotate a variety of genomic sequence elements
(e.g., splice sites, promotors, enhancers), differentiate among different
disease phenotypes, identify disease biomarkers, and investigate me-
chanisms underlying gene expression. However, genome-wide associa-
tion studies (GWAS) for polygenic diseases like AD require extremely
large sample sizes, which may limit the depth of phenotypic data and
thus reduce the accuracy of these algorithms (e.g., 80% for
Jamal et al. (2016); 65% for Zhou et al., 2018).

4. Discussion
4.1. High-dimensional data for AI

Different feature types for helping to detect, classify, and predict
early pathological cognitive decline in older adults have varied
strengths and limitations. The best-performing Al algorithms will re-
quire multi-feature data (Jiang et al., 2017) to personalize the findings
to the level of the individual patient with their unique bio-psycho-social
makeup (Havelka et al., 2009). For example, models based on only EHR
data are likely to be biased due to the lack of important information
about everyday functioning (e.g., physical function, social connections)
that is also critical for health aging (Jeste et al., 2019). Based on this
small subsample of studies, a wide variety of features (socio-
demographic and clinical factors, specific cognitive tests, functional
impairments, mobility problems, speech patterns, electro-
encephalogram (EEG) measures, MRI-derived brain structures, PET and
single-photon emission computerized tomography (SPECT) scan find-
ings, and genes) were found to be associated with or predictive of
cognitive impairment. To improve diagnosis and prognosis for adults
with cognitive decline, Al research will require large, comprehensive,
multi-feature datasets that are collected longitudinally to better predict
cognitive trajectories over time (Chi et al., 2017).

Developing such datasets entails several inherent challenges.
Ongoing efforts to continually curate large-scale datasets like the ADNI
and the UK Biobank databases will be key to the clinical success of Al,
though they are costly and labor-intensive. Some claims and EHR
companies are currently in search of feasible and legal ways to link
these data with health risk assessments, sociodemographic data, and
vital signs on a broad basis to create a more holistic picture of patients’
health (Freij et al., 2019). Furthermore, large-scale availability of novel
features may be limited by proven clinical utility. For example, while
neuroimaging or biosensor data can provide rich, multi-feature input
for an Al algorithm, such data would not be available without broad
insurance coverage and access to laboratory facilities (Crown, 2015).

4.2. Future directions for Al and neurocognitive research

Al's strength lies in its ability to accommodate large quantities of
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multimodal data. Thus, Al can aid better understanding of unique fac-
tors and behaviors associated with cognitive decline that have been
previously difficult to quantify, e.g., loneliness or social isolation
(Biddle et al., 2019; Linggonegoro and Torous, n.d.), resilience and
wisdom (Meeks and Jeste, 2009), and behavioral symptoms like agi-
tation and psychosocially (Cheng, 2017; Feast et al., 2016). Capturing
these factors and behaviors will require leveraging technology and
novel inputs like mobile devices and sensor signals that are continually
increasing in popularity and place low burden on the healthcare system
(Kourtis et al., 2019).

The temptation may be to include the “kitchen sink” when devel-
oping a ML model because these algorithms enable a much larger set of
predictor variables than commonly used in clinical research. However,
features should still be evaluated for their validity in terms of potential
relationships to the outcome of interest. It is also possible to create
increasingly precise algorithms with additional features or continually
fine-tuning the ML algorithm - though this may raise the likelihood of
overfitting the model such that the algorithm is too customized for the
particular training data and would not transfer well to another sample
(Park and Han, 2018).

ML methods are subject to the same challenges and sources of bias
encountered in observational data analyzes using traditional statistical
approaches. While small and labeled datasets for specific tasks are ea-
sier to collect, the resultant algorithms may not transfer to other da-
tasets. In contrast, large and unlabeled datasets are also fairly easy to
collect, but require a shift toward semi-supervised or unsupervised
learning techniques that are harder to train (Esteva et al., 2019). Im-
plementation of standards for AI/ML studies will be key to ensuring
study quality. The US Food and Drug Administration (FDA) recently
released a white paper (US Food and Drug Administration, 2019) so-
liciting advice (by June 3rd, 2019) from stakeholders to help developers
bring AI devices to market. The considerations discussed therein pertain
to transparency, interpretability, and replication as components of
“good ML practices”. The World Economic Forum has also re-
commended a governance structure, safety and efficacy regulations,
and responsible practices in the development of technological tools
(World Economic Forum). Governmental regulation may be essential to
establish regulatory guidelines for Al applications in research like those
endorsed by the EQUATOR network (Equator Network. 2019.
Enhancing the QUAlity and Transparency Of health Research). The
Computing Community Consortium also recently published a 20-year
community roadmap for Al research (Gil and Selman, 2019), citing
integrated intelligence (e.g., creating open-shared repositories of ma-
chine-understandable world knowledge); meaningful interaction (e.g.,
techniques for productive collaboration in mixed teams of humans and
machines); and self-aware learning (e.g., developing causal and steer-
able models from numerical data and observations) as research prio-
rities to realize societal benefits.

All of the studies presented in this overview focused on diagnosis or
prediction of a neurocognitive disease. Algorithms to detect neuro-
cognitive impairments may be able to support the decision-making
capabilities of an experienced clinician, but they will not replace clin-
ical expertise. No studies to date have directly compared clinical di-
agnostic accuracy of a neurocognitive disorder head-to-head with an Al
approach, so the efficacy of these algorithms remains to be determined,
with a few exceptions (Brinker et al., 2019; Lindsey et al., 2018;
Nam et al., 2019). An accurate prediction of a patient diagnosis also
does not provide clinicians with direction to change that outcome.
However, Al could potentially expedite patient diagnoses if it can flag
patients that are in need of immediate care or follow-up (Savage, 2019).
If Al could further supplement clinical knowledge with less common
datastreams, it may lend considerable support to individualizing
prognoses and treatment decisions. Clinicians will require background
knowledge regarding Al to decipher results and gauge the utility of such
information (for an excellent guide applied to radiology, see (Park and
Han, 2018)). Collaboration between clinicians and AI experts will be
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key to continual development of Al models, as clinicians can share their
deep understanding of clinical populations — and the heterogeneity
among individuals and over time — that will aid Al researchers in re-
fining Al algorithms and transferring them to other populations.

4.3. Ethics of using Al for neurocognitive disorders

The ethical and social implications of using Al for detection and
prediction of neurocognitive disorders include the need to weigh ben-
efits against potential risks to patients. The benefits could be better
healthcare; however, it is important to consider bias and accountability
(Challen et al., 2019). For example, a risk may stem from whether the
algorithm was built upon data that are not representative of the patient
in question (e.g., older adults from underrepresented minorities), and
subsequently presents a diagnosis that is questionable. Moving forward,
there will need to be procedures to account for, and take action to
mitigate, potential bias to avoid exacerbating inequities. Al models
must be deployed in diverse samples to ensure generalizability. More-
over, how a decision is derived by the algorithm needs to be transparent
to the clinician (Samek et al., 2017) so that a questionable re-
commendation can be examined before action is taken.

Within the context of diagnosing and predicting the trajectory of
dementia, there are many disease-specific concerns. Once an individual
is diagnosed with dementia, there can be serious legal and financial
consequences, including the ability to make decisions, live in-
dependently, and even drive motor vehicles (Cornett and Hall, 2008).
Algorithms can increasingly be applied to smartphones and other pro-
ducts that are widely distributed, based on inputs such as keyboard
typing patterns (White et al., 2018). While highly scalable, data own-
ership and privacy issues are a concern especially since regulations to
protect user privacy are lacking, which may expose more people to
surreptitious cognitive health surveillance. For example, passive sur-
veillance tools applied to smartphone usage or social media posts could
negatively impact ones job security, driving license, and insurance
premiums (Rosenfeld and Torous, 2017). With such high stakes, the
medical community must follow evidence-based practices to diagnose
and treat their patients and pharmacotherapies must undergo rigorous
clinical trials prior to approval by the FDA. Similarly, Al-derived al-
gorithms must meet clinical standards. However, the threshold of proof
and utility of Al models is not yet established.

Adopting Al algorithms in clinical practice carries the additional
challenge of establishing trust in the model. The “black box” of ML
presents a unique problem in how we reconcile the Al model's results
with our clinical experience and the scientific literature. The movement
to develop Explainable AI (XAI) may aid the ability of clinicians to
communicate these findings with other clinicians as well as with pa-
tients and their families to guide clinical decision-making
(Gunning, 2017). XAI involves efforts to address a machine's ability to
explain its decisions and actions to users. The goal is explainable
models that still have a high level of performance. Ultimately, health-
care liability remains with the clinician; thus, Al tools need to best
support clinicians.

4.4. Limitations of this review

Caution is necessary when generalizing the results of the studies
presented in this paper, as they are not exhaustive, and therefore, not
representative of the entire body of literature on Al and neurocognitive
disorders. Due to the use of multiple definitions of MCI, the a priori
labeling of MCI versus dementia groups may not reflect the longitudinal
outcomes. There are potentially more recent exemplar studies within
these feature categories that we did not capture. We also have not
summarized these studies in any quantitative manner, as our goal was
to highlight the breadth and range of studies that use AI methods to
examine features of datasets relevant to neurocognitive disorders. This
research is in too early a stage and consists of too much heterogeneity in
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methods to enable meaningful systematic analysis.
5. Conclusion

Al technology holds remarkable promise for transforming the way
we diagnose and treat patients with neurocognitive disorders. There
exist a large variety of potential features that in combination can
comprehensively characterize the bio-psycho-social determinants of a
unique individual and thus enable more personalized understanding of
cognitive decline. The performance and potential clinical utility of ML
algorithms for detecting, diagnosing, and predicting cognitive decline
using these features will continue to improve as we leverage multi-
feature datasets on large datasets. Establishing guidelines for research
involving Al applications in healthcare will be necessary to ensure the
quality of results, as will engagement of clinicians (as well as patients
and their caregivers) so that they may contribute their expertise in the
refinement of Al algorithms. With the assistance of Al, early detection
of cognitive decline may not be as difficult as it is today.
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