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Abstract— Reconfigurable logic enables architectural updates 
for embedded devices by providing the ability to reprogram 
partial or entire device. However, this flexibility can be leveraged 
by the adversary to compromise the device boot process by 
modifying the bitstream or the boot process with physical or 
remote access of device placed in a remote field. We propose a 
novel multilayer secure boot mechanism for SoCs with a two-stage 
secure boot process. First stage uses device bound unique response 
as a key to decrypt application logic. The security function is 
extended at runtime by integrating intermittent architecture and 
application locking mechanism to reveal correct functionality. 

Keywords— Secure boot, Physical Unclonable Function, FPGA  

I. INTRODUCTION 
The capability of hardware reconfigurability in FPGAs can 

patch the hardware bugs in the IoT device with the ability to 
adapt the architectural needs with the changing requirements. 
The reconfigurable fabric is used by vendors to update the 
architecture on-the-fly with the changing requirements of the 
application. The reconfigurability makes a device adapt to new 
requirements over time, it also opens a new door for malicious 
physical and remote attacks.  

In SRAM FPGAs, the configuration for the Programmable 
Logic (PL) fabric is performed by a bitstream. A bitstream 
consists of initialization values for all logic components, 
memory components and the interconnects that exist on the 
fabric. The bitstream is loaded onto the fabric at every boot-up. 
If an attacker has physical access to the device, it can copy the 
bitstream from the device onto another device of the same kind, 
thus performing IP cloning[1]. An attacker can also induce 
hardware trojan[2]. Being connected to the network creates 
possibilities for remote attacks, such as man-in-the-middle 
(MitM), and eavesdropping attacks that can lead to IP cloning. 
Additionally, remote attacks can also lead to spoofing attacks, 
where an attacker can pose as a backend server which can send 
a compromised bitstream to the device. To counter these threats, 
the secure boot process should be able to mutually authenticate 
the remote server and secure the boot process.  

We propose a novel secure boot and runtime logic locking 
process for mitigating FPGA bitstream piracy. The bitstream is 
encrypted with a key that is only available to the device enrolled 
with the trusted content provider. The key is not stored on a non-
volatile memory and is generated on fly using a Physical 
Unclonable Function (PUF). In this scheme, second stage of the 
boot process integrates logic locking, and logic camouflaging 
scheme to add runtime security to the bitstream. The scheme 
provides mutual authentication between the field device and the 
trusted server. The paper is organized in the following five 

sections. Section II describes the existing work; section III 
presents the proposed architecture. Section IV discusses the 
experimental setup and section V presents the conclusion. 

II. BACKGROUND STUDIES 

A. Secure Boot for FPGAs 
Bitstream encryption is a common security mechanism 

provided by FPGA vendors[3][4]. Encrypted bitstream is stored 
on the storage medium. FPGAs have on-board eFuses or battery 
backed RAM (BBRAM) to hold encryption keys for decrypting 
the bitstream that is to be loaded onto the board. The limitations 
of this approach of key storage needs are expensive and in low 
power IoTs, it’s not feasible as it requires constant power supply 
to hold the key values. On the other hand, eFuses are one time 
programmable and if in by anyway the key is leaked, the 
encryption is defeated, and there is no way to update the key.  

The implementation for Secure Boot does not extend  
beyond the First Stage Boot Loader and the bitstream. [5] shows 
the second stage boot loader can be targeted to load any 
malicious code secured by this process. Additionally, the 
encryption block and other related security blocks are 
proprietary and therefore cannot be verified. Furthermore, non-
invasive attacks have been proven to be effective against the 
memory elements used to store the secret keys[6][7]. Latest 
technology FPGAs [8] provide added security features, such as 
the use of Physical Unclonable Functions (PUF) to encrypt 
symmetric keys. However, the security comes at a premium 

cost, as these devices cost above thousands of dollars. There are 
other solutions which make use of self-authentication 
techniques[9][10]. The target bitstream consists of a static block 
and a reconfigurable block. The static block consists of a PUF 
and an encryption block. The response of the PUF block 
generates the encryption key for the reconfigurable partition. It 
limits portability of the reconfigurable block. The limitation of 
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Fig. 1. Attack vectors for an in-field FPGA device. 

56

2019 20th International Workshop on Microprocessor/SoC Test, Security and Verification (MTV)

2332-5674/19/$31.00 ©2019 IEEE
DOI 10.1109/MTV48867.2019.00019

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore.  Restrictions apply. 



giving resources to the security block has an area overhead 
attached to it, thus is limiting for resource constrained 
applications. Additionally, the private symmetric key exists on 
the same fabric as the application logic at the same time. This 
can lead to private key exposure to the application logic, as well 
as to any remote attacker having access to the device.  

An alternate approach is used by[11], where a backend 
server is involved in the boot process. In this solution, the fabric 
consists of a similar configuration to [9], whereas the PUF 
challenge input is provided by the backend server. Once the 
server can attest the board by verifying the PUF output, the 
server pushes the entire bitstream for the reconfigurable partition 
that consists of the application logic. There is an area overhead 
associated with this approach. Additionally, this approach 
requires a higher bring up time for the board as the entire 
partition is transferred over the network. 

Keeping in mind the state of security for reconfigurable IoT 
devices and its limitations, this paper proposes an architecture 
for providing secure boot and secure over-the-air-updates. This 
research focusses on providing secure boot mechanisms for 
FPGA bitstreams. Existing works divide the logic fabric into 
two, one for holding application logic and the other for holding 
security functions. This approach adds overhead on the fabric 
that takes away space from the application logic. In this work, 
we propose an architecture that mitigates the security overhead 
away from the application logic by proposing a two-stage secure 
boot mechanism that as its first stage uses device bound unique 
response as a key to decrypt application logic. The security 
functionality is extended at runtime by adding logic locking 
mechanisms in the application logic. To establish trust between 
the IoT device and the backend, the scheme implements a 
mutual authentication scheme. 

B. Logic Locking 
Logic Locking is a design for trust technique to lock the 

netlist by inserting key gates in the original design, such that 
the circuit functions correctly with the correct keys and when a 
different key is given to the circuit it results in a corrupted 
output[12]. The functionality of the circuit is hidden, and the 
key can be stored in the tamper proof memory to prevent access 
by attackers. Thus, an encrypted bitstream can be generated 
from the locked netlist. The application bitstream will be locked 
and only with run-time authentication, the bitstream can be 
unlocked by using the correct key. The application produces 
corrupted outputs if the adversary tries to access or modify the 
encrypted bitstream.  

Stage two of multilayer secure boot consists of runtime 
authentication of the device, where the application logic is 
locked and verified by the device holding the key. Locking the 
functionality and generating the locked bitstream makes it 
difficult and resilient to physical attacks by an adversary. 
Different algorithms have been developed to decide which best 
location is suited to insert the XOR gates [13].  Logic locking 
techniques such as Random Logic Locking(RLL), Fault 
analysis-based Logic Locking(FLL), Strong Logic Locking 
(SLL), etc are vulnerable to SAT attack[14]. SAT attack is a 
key pruning attack that breaks combinational logic locking 
technique. It uses SAT solvers to search and compute DIPs on 

the locked netlist and eliminates the incorrect key. Anti-SAT 
countermeasure exponentially increases the total execution 
time of SAT iterations making it infeasible for SAT attack but 
is vulnerable to signal probability skew attack[15].   

SARLock (SAT Attack Resistant Logic Locking) corrupts 
the output for an incorrect key and is resilient to SAT attack 
[16] where it maximizes the required number of distinguishing 
input patterns to recover the secret key. This technique uses a 
comparator and a mask block to protect the original circuit. The 
comparator generates a flip signal that is asserted for specific 
input and key combinations, and the flip signal is XORed with 
one of the primary outputs. Mask logic is used to prevent the 
flip signal from being asserted for the correct key. Hence, for a 
correct key, no error is injected in the circuit and for an incorrect 
key, an error is injected into the circuit leading to an incorrect 
output. Security analysis of SARLock implementation shows 
the one-point function (one-bit flip) can be provably 
obfuscated, thus providing the adversary no advantage beyond 
having a black-box access to the implemented netlist[17]. 
Therefore, the proposed scheme locks the encrypted application 
bitstream using SARLock technique.  

In the proposed scheme, the original application netlist is 
locked by the SARLock technique to hide the functionality of 
the circuit which is shown in Figure 2. SARLock thwarts the 
SAT attack where a single bit flip can drastically corrupt the 
output bits resulting in a small Hamming distance(HD) for the 
incorrect keys. The critical logic cones are protected, and the 
netlist is resilient to reverse engineering. 

III. PROPOSED SECURE BOOT SCHEME 
The secure boot scheme consists of trusted first stage boot 

loader, and remote server for sharing the correct configuration 
of application bitstream referred as content provider. The 
backend content provider server is secure and is in trusted 
environment. The server authenticates and shares the correct 
logic implementation to legitimate client FPGA devices through 
mutual authentication. For every update occurring on the 
system, it provides a client device with an update bitstream. 
Each client has two kinds of non-volatile memories, a Read Only 
Memory (ROM) holds trusted pieces of code and design, and a 
separate application NVM (ANVM) to store all application logic 
and data. ANVM can be any form of mass storage, e.g. flash 
memory, SD card, QSPI memory, etc. 

In the proposed scheme, there are two bitstreams, namely 
Attestation Bitstream (AUB) and the Application Bitstream 
(APB). Attestation bitstream AUB consists of the embedded 
PUF logic that is used for unique bitstream generation to attest 
a device on the field. APB consists of encrypted logic locked 

Fig. 2. Logic Locking using SARLock 
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and LUT camouflaged version of the application bitstream. 
There are multiple stages in this framework, device enrollment, 
attestation, logic unlocking and LUT configuration for selected 
frames. The secure boot process during enrollment and infield is 
shown in Figures 3a and 3b respectively, and is discussed in the 
later sections.  

Device enrollment is done in a trusted environment to ensure 

only legitimate enrolled devices can receive updates that are 
crafted for them individually. In the first stage, Authentication 
Bitstream (AUB) has a PUF to generate unique per device keys 
to decrypt the second stage application bitstream and a unique 
bitstream (APB) is generated per device which consists of sliced 
and corrupted frames at the LUT granularity. Finally, the correct 
LUT configuration for the device is sent by the server after 
successful light-weight device authentication. 

A. Device Enrollment 
Before an FPGA device can be deployed in the field, it is 

first enrolled with the server in a trusted environment. AUB 
design consists of an FPGA based PUF. For this demonstration, 
HELPUF implementation is used for attestation bitstream that is 
used for generating unique per device decryption key [18].  

1) PUF Enrollment Process: 
HELP PUF, shown in figure 4, use the manufacturing variations 
in the path delays of a functional unit. The functional unit in the 
paper is AES engine, where the paths have complex 
compositions consisting of fanouts and convergent paths with 
complex interconnection structure. The clock phase differences 
are used as soft path delays, that are used for bit generation 
using margining and dual helper data. The details of the bit 
generation and mutual authentication are discussed in [21].  
 

HELPUF is based on path delay variations. Unlike other 
implementations of PUF, such as Arbiter and Ring Oscillator 

PUF designs, HELP PUF integrates itself into the existing 
hardware functions. In this design, HELP is integrated with 
AES functional unit. Input vectors are provided to the HELP 
controller. These vectors sensitize different paths on the chosen 
AES circuit and digitize the entropy of the path delays. The 
delays of the paths noted from the initial launch flip flop to the 
terminating capture flip-flop (called the Latch-Capture Interval 
(LCI)), provides the source of entropy to this PUF[19]. The 
PUF is strong and provides exponential challenge-response 
pairs (CRPs). This feature is used for mutual authentication, 
discussed in [20][21]. 

B. Multilayer Camouflaged Secure boot: 
During enrollment, the server sends the AUB to a client and 

is stored on the ROM of the client node. The AUB is loaded onto 
the FPGA fabric during the boot process. The server stores 
responses from the client node for a large set of common input 
challenges. The server stores the set of challenge-response pairs 
(CRPs) in a database and are used in the attestation process. 
Once the AUB has been loaded on the target FPGA, the server 
sequentially sends the input challenges to the AUB design. 
Responses are gathered from the PUF and stored on the server. 
Server selects a unique challenge input string (c) and stores it on 
the device’s ANVM. Challenge c is then used as input to the 
Physical unclonable function and generate response Rs. The 
response Rs is treated as a private decryption key by the device. 
The private key Rs is not stored on a non-volatile memory on the 

Fig 4: HELP PUF [21] 

Fig 5:  Client FPGA memory view after enrollment 

Fig. 3b. FPGA Secure Boot in field Process. 

Fig. 3a. FPGA Secure Boot Enrollment Process. 
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device throughout the lifecycle of its operation, to mitigate 
chances for private key exposure. The server uses Rs to encrypt 
APB. This encrypted APB is then stored onto the ANVM on the 
client FPGA device. The APB, that is logic locked and LUT 
camouflaged, has the associated keys stored on server in a secure 
database. 

The First Stage Boot Loader (FSBL), along with AUB is 
stored on the ROM. It is used to load the bitstream onto the 
Programmable Logic (PL) fabric. The bitstream is loaded and 
the control is given to the next stage software, which can be a 
second stage boot loader (e.g. Uboot) or it can also be a 
baremetal application.  

To implement mutual authentication, a device should also be 
able to authenticate the server. Asymmetric Public key of the 
server is stored on the ROM of a client device. We are using 
RSA based digital signatures in this system, however, any other 
signing scheme can also be used[22]. The applications and 
associated data are also stored in the ANVM, and that can be 
also encrypted, it is not presented in this paper. The final view 
of the on-board memory of a client device is given in Figure 5. 
After enrollment, the device can be placed in the untrusted field. 

C. Device Attestation and LUT Camouflage and Logic 
Unlocking 
Once the device is placed in the field, it is securely connected 

with the backend server. The device boots up, and the zeroth 
stage boot loader BootROM executes. BootROM code brings 
the device up and locates the FSBL code from the ROM. The 
FSBL code initializes the memory, peripherals connected to the 
device, and any onboard security features. Once the 
initialization is complete it copies the APB from the ROM over 
the main memory and then onto the Programmable Logic (PL) 
fabric. 

The AUB consists of a PUF implementation, the PUF 
responses Rs are captured and copied onto the main memory. 
The FPGA device communicates with the server initiating 
attestation request. All messages originating at the server are 
asymmetrically signed using the private key pair. The server 

selects a random subset of challenges from the challenge subset 
and sends them to the client FPGA. Using public key Ps, the 
client device performs digital signature verification of all 
incoming traffic from the server. The client sends back the PUF 
responses to the server. Dual Helper Data (DHD) scheme 
discussed in [21], that is used to reduce bit-flip errors and for 
the mutual authentication using fuzzy matching 

We propose a novel authentication protocol using the LUT 
camouflaged configuration that is unique per device. The client 
node and server share the list of devices specific LUTs that are 
modified/corrupted unique for the given device, this list is 
referred as sliced frame list (SF). The list is encrypted with the 
device PUF response Rs and is stored in a secure database on the 
server and stored on the client in ANVM. The client uses the 
stored challenge c to regenerate Rs and decrypts the list of sliced 
frames (SF) list. The timestamped SF list is encrypted again by 
Rs and is sent to the server for authentication. The client uses the 
PUF response Rs to decrypt APB using the onboard AES block, 
that is copied onto the main memory.  

The server compares decrypted SF lists from the enrolled 
devices using the PUF responses for each client node stored in 
the enrolled database. The SF list and PUF response for a given 
challenge c is unique per device, the search process maps the 
encrypted SF list to a device. This process achieves mutual 
authentication. The server decrypts the SF, verifies the 
timestamp and compares the SF list with the SF list stored in the 
secure database is the same. After the client identification, the 
server sends the associated key bits and LUT configuration 
encrypted with Rs. The client decrypts the encrypted message 
from the server and programs the APB bitstream with the correct 
LUT configuration. The decrypted and correctly LUT 
configured APB is programmed onto the PL fabric. As a part of 
the cleanup process, the value of Rs, the keys and decrypted APB 
values are removed from the main memory. The scheme is 
illustrated in Fig. 6. 

1) LUT Configuration 
The decrypted bitstream is secured by camouflaged LUT 

level corrupted interconnections and frame configuration. These 

Fig. 6. Attestation  and Application Bitstream programming 
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LUT configurations are modifications that are unique per 
device. The Device Configuration Port (devcfg) is used to 
configure the corrupted/modified frames. A complete frame 
address list for the programmable logic PL is generated for the 
given bitstream, to target exact frame addresses. In each frame 
write request, an extra dummy frame is appended at the end of 
the request. Once all the frames have been committed to PL 
memory, the device is brought up again. Figure 7 shows the 
steps of LUT frames configuration updates on the 
programmable logic using devfg. 

2) Runtime Locking  
The next step after LUT configuration is the APB locking 

mechanism which reveals the correct functionality of the 
application. The application bitstream APB is programmed onto 
the PL is logic locked using SARLock to protect the original 
circuit from the adversary.  

A logic locked bitstream is implemented on RTL 
synthesized to the netlist using Nangate open cell library. The 
python scripts read the netlist and integrated key gates and mask 
to lock the netlist, and the corresponding keys combination is 

shared with the server. The locked Verilog file is given to 
Vivado from Xilinx to obtain the locked application bitstream. 
Figure 7 shows the flow of the bitstream locking. 

The keys generated from the locked circuit, are stored on the 
server. The key input is given to the logic locked application 
bitstream. After the device authentication is completed, the 
server sends the correct key to the client to successfully unlock 
the bitstream. If the system is physically accessed by the 
adversary to modify or to copy the bitstream, it produces a 
corrupted or wrong output which makes it unfeasible to clone 
the IP.  Logic locked circuit provides secured bitstream 
protection. Multi-Level combinational circuit called Dedicated 
ALU from MCNC benchmark suite has been used for the 
demonstration of LUT configurations. It has 75 inputs and 16 
outputs.  The key insertion scheme SAT attack-resilient logic 
locking (SARLock) is used to lock the circuit. The obfuscation 
is done using insertion of XOR/XNOR gates. 190 Key bits are 
used. 

The locked application bitstream is SAT resilient model and 
applicable for FPGA designs that extends the security of the 
device. During run time execution, until the correct key is 
provided as input from the server, the application’s original 
functionality is unknown and difficult to break. This acts as an 
additional security layer between the client and the server. The 
programmed PL fabric is unlocked after the device attestation 
stage with the correct key from the server. The key combination 
is sent from the server to the device to unlock the APB.  

IV. EXPERIMENTAL RESULTS 
This work has been implemented and tested on a Xilinx 

Zynq 7020 Zedboard. Key components for implementing 
security in this framework is the PUF component, the key 
locking mechanism implemented on the fabric, and LUT level 
design modification using corrupted LUT configuration. This 
scheme is tested using HELPUF. The HELP PUF 
implementation is based on the SBOX in an AES engine. The 
SBOXs are non-linear and complex and path delays provide 
large entropy.  

The locked netlist and original netlist of the application 
circuit is tested for functionality on Vivado platform and the 
generated locked bitstream is flash programmed onto Zynq 7020 
Zedboard. The VIO block is used to give inputs to the locked 
netlist. Switches act as the key inputs and the LEDs act as the 
outputs to test the functionality of the locked application 
bitstream. Experiment shows the experimental results of logic 
locking scheme implemented in the Zedboard with a correct 8-
bit key (01101000) 

Fig. 9. Logic Locking implementation with correct key: 

Fig 7:  Writing a frame addresses 0x0000239b 

Fig. 8 Bitstream Locking 
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The LUT configurations that are corrupted per device are 
unique addresses, and thus require the device identification 
before the correct configuration can be sent to the FPGA client 
node. The step of LUT configuration using devfg is shown in the 
figure 10, where the original frame content and the modified 
content for the PL is shown. This device level uniqe PL frame 
modification is a countermeasure for the IP cloning, as the same 
design will not work on any other device. 

V. CONCLUSION 
The paper proposes a multilayer secure boot process, that 

utilizes device level unique physical unclonable function for 
unlocking the design and updating the LUT frame unique per 
device to mitigate the security vulnerabilities of maliciously 
modifying the boot image of bitstream to program the 
programmable logic. This multilayer secure boot allows the 
remote attestation server to mutually authenticate, and verify the 
design running on the fabric with logic locking and LUT frame 
modification.  
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