2019 20th International Workshop on Microprocessor/SoC Test, Security and Verification (MTV)

Multilayer camouflaged secure boot for SoCs

Ali Shuja Siddiqui, Geraldine Shirley Nicholas, Sam Reji Joseph, Yutian Gui, Jim Plusquellic*, Marten Van Dijk”, and Fareena Saqib,
Dept. of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, North Carolina
* Dept. of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
~ Dept. of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut
{asiddiq, gnichola, sjoseph8, ygui}@uncc.edu, marten.van_dijk@uconn.edu, jimp@ece.unm.edu and fasqib@uncc.edu

Abstract— Reconfigurable logic enables architectural updates
for embedded devices by providing the ability to reprogram
partial or entire device. However, this flexibility can be leveraged
by the adversary to compromise the device boot process by
modifying the bitstream or the boot process with physical or
remote access of device placed in a remote field. We propose a
novel multilayer secure boot mechanism for SoCs with a two-stage
secure boot process. First stage uses device bound unique response
as a key to decrypt application logic. The security function is
extended at runtime by integrating intermittent architecture and
application locking mechanism to reveal correct functionality.

Keywords— Secure boot, Physical Unclonable Function, FPGA

[. INTRODUCTION

The capability of hardware reconfigurability in FPGAs can
patch the hardware bugs in the IoT device with the ability to
adapt the architectural needs with the changing requirements.
The reconfigurable fabric is used by vendors to update the
architecture on-the-fly with the changing requirements of the
application. The reconfigurability makes a device adapt to new
requirements over time, it also opens a new door for malicious
physical and remote attacks.

In SRAM FPGAs, the configuration for the Programmable
Logic (PL) fabric is performed by a bitstream. A bitstream
consists of initialization values for all logic components,
memory components and the interconnects that exist on the
fabric. The bitstream is loaded onto the fabric at every boot-up.
If an attacker has physical access to the device, it can copy the
bitstream from the device onto another device of the same kind,
thus performing IP cloning[l]. An attacker can also induce
hardware trojan[2]. Being connected to the network creates
possibilities for remote attacks, such as man-in-the-middle
(MitM), and eavesdropping attacks that can lead to IP cloning.
Additionally, remote attacks can also lead to spoofing attacks,
where an attacker can pose as a backend server which can send
a compromised bitstream to the device. To counter these threats,
the secure boot process should be able to mutually authenticate
the remote server and secure the boot process.

We propose a novel secure boot and runtime logic locking
process for mitigating FPGA bitstream piracy. The bitstream is
encrypted with a key that is only available to the device enrolled
with the trusted content provider. The key is not stored on a non-
volatile memory and is generated on fly using a Physical
Unclonable Function (PUF). In this scheme, second stage of the
boot process integrates logic locking, and logic camouflaging
scheme to add runtime security to the bitstream. The scheme
provides mutual authentication between the field device and the
trusted server. The paper is organized in the following five

This work is funded by NSF grant numbers: 1819687, 1819694
and 1814420

sections. Section II describes the existing work; section III
presents the proposed architecture. Section IV discusses the
experimental setup and section V presents the conclusion.

II. BACKGROUND STUDIES

A. Secure Boot for FPGAs

Bitstream encryption is a common security mechanism
provided by FPGA vendors[3][4]. Encrypted bitstream is stored
on the storage medium. FPGAs have on-board eFuses or battery
backed RAM (BBRAM) to hold encryption keys for decrypting
the bitstream that is to be loaded onto the board. The limitations
of this approach of key storage needs are expensive and in low
power IoTs, it’s not feasible as it requires constant power supply
to hold the key values. On the other hand, eFuses are one time
programmable and if in by anyway the key is leaked, the
encryption is defeated, and there is no way to update the key.

The implementation for Secure Boot does not extend
beyond the First Stage Boot Loader and the bitstream. [5] shows
the second stage boot loader can be targeted to load any
malicious code secured by this process. Additionally, the
encryption block and other related security blocks are
proprietary and therefore cannot be verified. Furthermore, non-
invasive attacks have been proven to be effective against the
memory elements used to store the secret keys[6][7]. Latest
technology FPGAs [8] provide added security features, such as
the use of Physical Unclonable Functions (PUF) to encrypt
symmetric keys. However, the security comes at a premium

Backend Network Client

yF N
A 4

e Eavesdropping

Trusted Mf’m in the IP cloning

Server Middle Trojans
Replay Private Key
Spoofing exposure

Fig. 1. Attack vectors for an in-field FPGA device.

cost, as these devices cost above thousands of dollars. There are
other solutions which make use of self-authentication
techniques[9][10]. The target bitstream consists of a static block
and a reconfigurable block. The static block consists of a PUF
and an encryption block. The response of the PUF block
generates the encryption key for the reconfigurable partition. It
limits portability of the reconfigurable block. The limitation of

2332-5674/19/$31.00 ©2019 |IEEE 56
DOI 10.1109/MTV48867.2019.00019

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore. Restrictions apply.

giving resources to the security block has an area overhead
attached to it, thus is limiting for resource constrained
applications. Additionally, the private symmetric key exists on
the same fabric as the application logic at the same time. This
can lead to private key exposure to the application logic, as well
as to any remote attacker having access to the device.

An alternate approach is used by[11], where a backend
server is involved in the boot process. In this solution, the fabric
consists of a similar configuration to [9], whereas the PUF
challenge input is provided by the backend server. Once the
server can attest the board by verifying the PUF output, the
server pushes the entire bitstream for the reconfigurable partition
that consists of the application logic. There is an area overhead
associated with this approach. Additionally, this approach
requires a higher bring up time for the board as the entire
partition is transferred over the network.

Keeping in mind the state of security for reconfigurable IoT
devices and its limitations, this paper proposes an architecture
for providing secure boot and secure over-the-air-updates. This
research focusses on providing secure boot mechanisms for
FPGA bitstreams. Existing works divide the logic fabric into
two, one for holding application logic and the other for holding
security functions. This approach adds overhead on the fabric
that takes away space from the application logic. In this work,
we propose an architecture that mitigates the security overhead
away from the application logic by proposing a two-stage secure
boot mechanism that as its first stage uses device bound unique
response as a key to decrypt application logic. The security
functionality is extended at runtime by adding logic locking
mechanisms in the application logic. To establish trust between
the ToT device and the backend, the scheme implements a
mutual authentication scheme.

B. Logic Locking

Logic Locking is a design for trust technique to lock the
netlist by inserting key gates in the original design, such that
the circuit functions correctly with the correct keys and when a
different key is given to the circuit it results in a corrupted
output[12]. The functionality of the circuit is hidden, and the
key can be stored in the tamper proof memory to prevent access
by attackers. Thus, an encrypted bitstream can be generated
from the locked netlist. The application bitstream will be locked
and only with run-time authentication, the bitstream can be
unlocked by using the correct key. The application produces
corrupted outputs if the adversary tries to access or modify the
encrypted bitstream.

Stage two of multilayer secure boot consists of runtime
authentication of the device, where the application logic is
locked and verified by the device holding the key. Locking the
functionality and generating the locked bitstream makes it
difficult and resilient to physical attacks by an adversary.
Different algorithms have been developed to decide which best
location is suited to insert the XOR gates [13]. Logic locking
techniques such as Random Logic Locking(RLL), Fault
analysis-based Logic Locking(FLL), Strong Logic Locking
(SLL), etc are vulnerable to SAT attack[14]. SAT attack is a
key pruning attack that breaks combinational logic locking
technique. It uses SAT solvers to search and compute DIPs on

57

the locked netlist and eliminates the incorrect key. Anti-SAT
countermeasure exponentially increases the total execution
time of SAT iterations making it infeasible for SAT attack but
is vulnerable to signal probability skew attack[15].

SARLock (SAT Attack Resistant Logic Locking) corrupts
the output for an incorrect key and is resilient to SAT attack
[16] where it maximizes the required number of distinguishing
input patterns to recover the secret key. This technique uses a
comparator and a mask block to protect the original circuit. The
comparator generates a flip signal that is asserted for specific
input and key combinations, and the flip signal is XORed with
one of the primary outputs. Mask logic is used to prevent the
flip signal from being asserted for the correct key. Hence, for a
correct key, no error is injected in the circuit and for an incorrect
key, an error is injected into the circuit leading to an incorrect
output. Security analysis of SARLock implementation shows
the one-point function (one-bit flip) can be provably
obfuscated, thus providing the adversary no advantage beyond
having a black-box access to the implemented netlist[17].
Therefore, the proposed scheme locks the encrypted application

bitstream using SARLock technique.
>
Key + B

Input // %
Fig. 2. Logic Locking using SARLock

Mask

Flip

In the proposed scheme, the original application netlist is
locked by the SARLock technique to hide the functionality of
the circuit which is shown in Figure 2. SARLock thwarts the
SAT attack where a single bit flip can drastically corrupt the
output bits resulting in a small Hamming distance(HD) for the
incorrect keys. The critical logic cones are protected, and the
netlist is resilient to reverse engineering.

III. PROPOSED SECURE BOOT SCHEME

The secure boot scheme consists of trusted first stage boot
loader, and remote server for sharing the correct configuration
of application bitstream referred as content provider. The
backend content provider server is secure and is in trusted
environment. The server authenticates and shares the correct
logic implementation to legitimate client FPGA devices through
mutual authentication. For every update occurring on the
system, it provides a client device with an update bitstream.
Each client has two kinds of non-volatile memories, a Read Only
Memory (ROM) holds trusted pieces of code and design, and a
separate application NVM (ANVM) to store all application logic
and data. ANVM can be any form of mass storage, e.g. flash
memory, SD card, QSPI memory, etc.

In the proposed scheme, there are two bitstreams, namely
Attestation Bitstream (AUB) and the Application Bitstream
(APB). Attestation bitstream AUB consists of the embedded
PUF logic that is used for unique bitstream generation to attest
a device on the field. APB consists of encrypted logic locked

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore. Restrictions apply.

and LUT camouflaged version of the application bitstream.
There are multiple stages in this framework, device enrollment,
attestation, logic unlocking and LUT configuration for selected
frames. The secure boot process during enrollment and infield is
shown in Figures 3a and 3b respectively, and is discussed in the
later sections.

Device enrollment is done in a trusted environment to ensure

rsal Attestation
Bitstream

=

Attestation Bitstream

Enrollment
Process CRPS
Remote Server

l Device Specific LUT
Configuration

Logic Locked Application Bitstream

LUT Camouflaged Application
Bitstream

e— 1
Logic Locking Key

Encrypt Locked Application Bitstream
Encryption Key

Fig. 3a. FPGA Secure Boot Enrollment Process.
Encrypted and

camouflaged
bitstream

Attestation
R e Privacy
preserving
J, Mutual

Authentication
Attestation Bitstream
Decryption Key +
Decrypt the Logic locked bitstream

LUT Configuration of Application
Bitstream

Remote Server

Device Specific LUT
Configuration

Logic Locking Key

Unlocked Application Bitstream

Fig. 3b. FPGA Secure Boot in field Process.

only legitimate enrolled devices can receive updates that are
crafted for them individually. In the first stage, Authentication
Bitstream (AUB) has a PUF to generate unique per device keys
to decrypt the second stage application bitstream and a unique
bitstream (APB) is generated per device which consists of sliced
and corrupted frames at the LUT granularity. Finally, the correct
LUT configuration for the device is sent by the server after
successful light-weight device authentication.

A. Device Enrollment

Before an FPGA device can be deployed in the field, it is
first enrolled with the server in a trusted environment. AUB
design consists of an FPGA based PUF. For this demonstration,
HELPUF implementation is used for attestation bitstream that is
used for generating unique per device decryption key [18].

1) PUF Enrollment Process:

HELP PUF, shown in figure 4, use the manufacturing variations
in the path delays of a functional unit. The functional unit in the
paper is AES engine, where the paths have complex
compositions consisting of fanouts and convergent paths with
complex interconnection structure. The clock phase differences
are used as soft path delays, that are used for bit generation
using margining and dual helper data. The details of the bit
generation and mutual authentication are discussed in [21].

HELPUF is based on path delay variations. Unlike other
implementations of PUF, such as Arbiter and Ring Oscillator

58

Clk Launch Row FPJEEIT
eee
Pl[m-1] PI[1] o PI[0] 4
7] T o B 1L T[]
s v i
T T— X L1 |
[\!I V__H “é!_ -f__
R 3 ‘ -y
“unctional Unit L_ ! —
[[
[|
strobing 4§ =
PO[n-1 PO[1 PO[O
ik, [0-1] . [1] [0]
. Capture Row FFs

(11} ;j

Fig 4: HELP PUF [21]

PUF designs, HELP PUF integrates itself into the existing
hardware functions. In this design, HELP is integrated with
AES functional unit. Input vectors are provided to the HELP
controller. These vectors sensitize different paths on the chosen
AES circuit and digitize the entropy of the path delays. The
delays of the paths noted from the initial launch flip flop to the
terminating capture flip-flop (called the Latch-Capture Interval
(LCI)), provides the source of entropy to this PUF[19]. The
PUF is strong and provides exponential challenge-response
pairs (CRPs). This feature is used for mutual authentication,
discussed in [20][21].

B. Multilayer Camouflaged Secure boot:

During enrollment, the server sends the AUB to a client and
is stored on the ROM of the client node. The AUB is loaded onto
the FPGA fabric during the boot process. The server stores
responses from the client node for a large set of common input
challenges. The server stores the set of challenge-response pairs
(CRPs) in a database and are used in the attestation process.
Once the AUB has been loaded on the target FPGA, the server
sequentially sends the input challenges to the AUB design.
Responses are gathered from the PUF and stored on the server.
Server selects a unique challenge input string (c¢) and stores it on
the device’s ANVM. Challenge c is then used as input to the
Physical unclonable function and generate response Rs. The
response R; is treated as a private decryption key by the device.
The private key R; is not stored on a non-volatile memory on the

Application NVM (ANVM)

Encrypted Application Bitstream

F.ead Only Mem ory (R.OM) (APB)

Aftestation Bitstream (ASB) PUF Challenge (c)

First Stage Boot Loader(FSEL)

Data + Applications
Server Public Key (P2

Fig 5: Client FPGA memory view after enrollment

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore. Restrictions apply.

Server

Client FPGA

Open Comection

&
+

Applv AUB o PL

Use challenge ¢ to generate R

DEC APB=AES(AFB, R

Copy decrypted APE in main memory

Deaypt ENC(SF,R;)
M= 5F XOR monce)

Use ENC_M to find Cliert ID
M= Mising Frame Data + Logic inlocking key
END_FD = ENC(MR;)

ENC_M=ENC(MRy)
Set F5BL to receive frames from server

Verify Sign
FSBL gpplies frames
Bring up PL and apply unlocking key

Fig. 6.

device throughout the lifecycle of its operation, to mitigate
chances for private key exposure. The server uses R; to encrypt
APB. This encrypted APB is then stored onto the ANVM on the
client FPGA device. The APB, that is logic locked and LUT
camouflaged, has the associated keys stored on server in a secure
database.

The First Stage Boot Loader (FSBL), along with AUB is
stored on the ROM. It is used to load the bitstream onto the
Programmable Logic (PL) fabric. The bitstream is loaded and
the control is given to the next stage software, which can be a
second stage boot loader (e.g. Uboot) or it can also be a
baremetal application.

To implement mutual authentication, a device should also be
able to authenticate the server. Asymmetric Public key of the
server is stored on the ROM of a client device. We are using
RSA based digital signatures in this system, however, any other
signing scheme can also be used[22]. The applications and
associated data are also stored in the ANVM, and that can be
also encrypted, it is not presented in this paper. The final view
of the on-board memory of a client device is given in Figure 5.
After enrollment, the device can be placed in the untrusted field.

C. Device Attestation and LUT Camouflage and Logic
Unlocking

Once the device is placed in the field, it is securely connected
with the backend server. The device boots up, and the zeroth
stage boot loader BootROM executes. BootROM code brings
the device up and locates the FSBL code from the ROM. The
FSBL code initializes the memory, peripherals connected to the
device, and any onboard security features. Once the
initialization is complete it copies the APB from the ROM over
the main memory and then onto the Programmable Logic (PL)
fabric.

The AUB consists of a PUF implementation, the PUF
responses R are captured and copied onto the main memory.
The FPGA device communicates with the server initiating
attestation request. All messages originating at the server are
asymmetrically signed using the private key pair. The server

59

Attestation and Application Bitstream programming

selects a random subset of challenges from the challenge subset
and sends them to the client FPGA. Using public key Ps, the
client device performs digital signature verification of all
incoming traffic from the server. The client sends back the PUF
responses to the server. Dual Helper Data (DHD) scheme
discussed in [21], that is used to reduce bit-flip errors and for
the mutual authentication using fuzzy matching

We propose a novel authentication protocol using the LUT
camouflaged configuration that is unique per device. The client
node and server share the list of devices specific LUTs that are
modified/corrupted unique for the given device, this list is
referred as sliced frame list (SF). The list is encrypted with the
device PUF response R and is stored in a secure database on the
server and stored on the client in ANVM. The client uses the
stored challenge c to regenerate R and decrypts the list of sliced
frames (SF) list. The timestamped SF list is encrypted again by
R, and is sent to the server for authentication. The client uses the
PUF response R, to decrypt APB using the onboard AES block,
that is copied onto the main memory.

The server compares decrypted SF lists from the enrolled
devices using the PUF responses for each client node stored in
the enrolled database. The SF list and PUF response for a given
challenge c is unique per device, the search process maps the
encrypted SF list to a device. This process achieves mutual
authentication. The server decrypts the SF, verifies the
timestamp and compares the SF list with the SF list stored in the
secure database is the same. After the client identification, the
server sends the associated key bits and LUT configuration
encrypted with Rs. The client decrypts the encrypted message
from the server and programs the APB bitstream with the correct
LUT configuration. The decrypted and correctly LUT
configured APB is programmed onto the PL fabric. As a part of
the cleanup process, the value of R, the keys and decrypted APB
values are removed from the main memory. The scheme is
illustrated in Fig. 6.

1) LUT Configuration
The decrypted bitstream is secured by camouflaged LUT
level corrupted interconnections and frame configuration. These

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore. Restrictions apply.

LUT configurations are modifications that are unique per
device. The Device Configuration Port (devcfg) is used to
configure the corrupted/modified frames. A complete frame
address list for the programmable logic PL is generated for the
given bitstream, to target exact frame addresses. In each frame
write request, an extra dummy frame is appended at the end of
the request. Once all the frames have been committed to PL
memory, the device is brought up again. Figure 7 shows the
steps of LUT frames configuration updates on the
programmable logic using devfg.

//Writing frame to PL
CmdIndex = @;

CmdBuf[CmdIndex++] = @xFFFFFFFF; // Dummy Word
CmdBuf[CmdIndex++] = @xAA995566; // Sync Word
CmdBuf[CmdIndex++] = ©x20000000; //Type 1 NOOP Word @
CmdBuf[CmdIndex++] = ©x30018001; //Write IDCODE
CmdBuf[CmdIndex++] = @x@3727@93; //Zedboard ID
CmdBuf[CmdIndex++] = ©x30002001; // Type 1 Write 1 Word to FAR
CmdBuf[CmdIndex++] = @x0000239b; // FAR Address
CmdBuf[CmdIndex++] = 0x30008001; // Type 1 Write 1 to CMD
CmdBuf[CmdIndex++] = Ox00000001; // WCFG Command
CmdBuf[CmdIndex++] = 0x30004000; // Write FDRI
CmdBuf[CmdIndex++] = 8x50000008 | 202; //Write 202 words

for (int count =@;count <282;count++){
CmdBuf[CmdIndex++] = frame_update[count];

CmdBuf[CmdIndex++] = 0x30008001; //Type 1 Write 1 Word to CMD
CmdBuf[CmdIndex++] = Ox0000000D; //DESYNC Command
CmdBuf[CmdIndex++] = 0x20000000; //Type 1 NOOP Word @
CmdBuf[CmdIndex++] = 0x20000000; //Type 1 NOOP Word @
CmdBuf[CmdIndex++] = 0x20000000; //Type 1 NOOP Word @
CmdBuf[CmdIndex++] = ©x20000000; //Type 1 NOOP Word @
CmdBuf[CmdIndex++] = @x20000000; //Type 1 NOOP Word @

XDcfg_InitiateDma(DcfglnstancePtr, (u32)(&CmdBuf[@]),
XDCFG_DMA_INVALID ADDRESS, CmdIndex, 0);

/* Poll IXR DMA DONE */
IntrStsReg = XDcfg IntrGetStatus(DcfgInstancePtr);
while ((IntrStsReg & XDCFG_IXR DMA DONE MASK) |=
XDCFG_IXR DMA DONE_MASK) {
IntrStsReg = XDcfg IntrGetStatus(DcfgInstancePtr);

}

/* Poll IXR D P_DONE */

while ((IntrStsReg & XDCFG_IXR D P DONE_MASK) |=
XDCFG_IXR D P _DONE MASK) {

IntrStsReg = XDcfg IntrGetStatus(DcfglnstancePtr);

Fig 7: Writing a frame addresses 0x0000239b

2) Runtime Locking

The next step after LUT configuration is the APB locking
mechanism which reveals the correct functionality of the
application. The application bitstream APB is programmed onto
the PL is logic locked using SARLock to protect the original
circuit from the adversary.

A logic locked bitstream is implemented on RTL
synthesized to the netlist using Nangate open cell library. The
python scripts read the netlist and integrated key gates and mask
to lock the netlist, and the corresponding keys combination is

synthesized

original
application netlist

ocked application

medfist Locked Bitstream

Python parsing

Fig. 8 Bitstream Locking

60

shared with the server. The locked Verilog file is given to
Vivado from Xilinx to obtain the locked application bitstream.
Figure 7 shows the flow of the bitstream locking.

The keys generated from the locked circuit, are stored on the
server. The key input is given to the logic locked application
bitstream. After the device authentication is completed, the
server sends the correct key to the client to successfully unlock
the bitstream. If the system is physically accessed by the
adversary to modify or to copy the bitstream, it produces a
corrupted or wrong output which makes it unfeasible to clone
the IP. Logic locked circuit provides secured bitstream
protection. Multi-Level combinational circuit called Dedicated
ALU from MCNC benchmark suite has been used for the
demonstration of LUT configurations. It has 75 inputs and 16
outputs. The key insertion scheme SAT attack-resilient logic
locking (SARLock) is used to lock the circuit. The obfuscation
is done using insertion of XOR/XNOR gates. 190 Key bits are
used.

The locked application bitstream is SAT resilient model and
applicable for FPGA designs that extends the security of the
device. During run time execution, until the correct key is
provided as input from the server, the application’s original
functionality is unknown and difficult to break. This acts as an
additional security layer between the client and the server. The
programmed PL fabric is unlocked after the device attestation
stage with the correct key from the server. The key combination
is sent from the server to the device to unlock the APB.

IV. EXPERIMENTAL RESULTS

This work has been implemented and tested on a Xilinx
Zynq 7020 Zedboard. Key components for implementing
security in this framework is the PUF component, the key
locking mechanism implemented on the fabric, and LUT level
design modification using corrupted LUT configuration. This
scheme is tested using HELPUF. The HELP PUF
implementation is based on the SBOX in an AES engine. The
SBOXs are non-linear and complex and path delays provide
large entropy.

The locked netlist and original netlist of the application
circuit is tested for functionality on Vivado platform and the
generated locked bitstream is flash programmed onto Zynq 7020
Zedboard. The VIO block is used to give inputs to the locked
netlist. Switches act as the key inputs and the LEDs act as the
outputs to test the functionality of the locked application
bitstream. Experiment shows the experimental results of logic
locking scheme implemented in the Zedboard with a correct 8-
bit key (01101000)

Fig. 9. Logic Locking implementation with correct key:

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore. Restrictions apply.

radback XDevcfg Status Regi

st
frame contents at adc

T

iress: 0x0000239b

frame at addre

foooo0000
iPT. Brought UP
GTLO ¢ e Y 2 0Ox0000

Fig. 10: LUT configuration of modified or corrupted and after verification.

The LUT configurations that are corrupted per device are
unique addresses, and thus require the device identification
before the correct configuration can be sent to the FPGA client
node. The step of LUT configuration using devfg is shown in the
figure 10, where the original frame content and the modified
content for the PL is shown. This device level uniqe PL frame
modification is a countermeasure for the IP cloning, as the same
design will not work on any other device.

V. CONCLUSION

The paper proposes a multilayer secure boot process, that
utilizes device level unique physical unclonable function for
unlocking the design and updating the LUT frame unique per
device to mitigate the security vulnerabilities of maliciously
modifying the boot image of bitstream to program the
programmable logic. This multilayer secure boot allows the
remote attestation server to mutually authenticate, and verify the
design running on the fabric with logic locking and LUT frame
modification.

VI. REFERENCES

[1] R.Maes, D. Schellekens, and I. Verbauwhede, “A pay-per-use licensing
scheme for hardware IP cores in recent SRAM-based FPGAs,” IEEE
Trans. Inf. Forensics Secur.,vol. 7, no. 1 PART 1, pp. 98-108, Feb. 2012.

[2] V.lJyothiand J.J. V. Rajendran, “Hardware Trojan Attacks in FPGA and
protection approaches,” in The Hardware Trojan War: Attacks, Myths,
and Defenses, Cham: Springer International Publishing, 2017, pp. 345—
368.

[3] Xilinx Inc., “Zyng-7000 All Programmable SoC Secure Boot,” 2014.
[Online].Available:https://www xilinx.com/support/documentation/user
_guides/ug1025-zyng-secure-boot-gsg.pdf. [Accessed: 11-Apr-2018].

[4] Intel, “Intel Arria 10 SoC Secure Boot User Guide.” [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/documentatio
n/crul452898171006.html. [Accessed: 07-Oct-2019].

[51 N. Jacob, J. Heyszl, A. Zankl, C. Rolfes, and G. Sigl, “How to Break
Secure Boot on FPGA SoCs Through Malicious Hardware,” Springer,
Cham, 2017, pp. 425-442.

[6] F. Courbon, “Challenges and examples of in-situ memory content
extraction techniques,” in 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), 2018, pp. 493-496.

[71 H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J.-P. Seifert, “Key
Extraction Using Thermal Laser Stimulation,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., pp. 573-595, Aug. 2018.

[8] Xilinx Inc.,
UltraScale+

“Developing Tamper-Resistant Designs
Devices,” 2018.

with Zynq
[Online].

]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Available:https://www .xilinx.com/support/documentation/application_
notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf. [Accessed: 11-
Apr-2018].

G. Pocklassery, W. Che, F. Saqib, M. Areno, and J. Plusquellic, “Self-
authenticating secure boot for FPGAs,” in 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2018, pp.
221-226.

D. Owen Jr. et al., “An Autonomous, Self-Authenticating, and Self-
Contained Secure Boot Process for Field-Programmable Gate Arrays,”
Cryptography, vol. 2, no. 3, p. 15, Jul. 2018.

J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “SACHa: Self-
Attestation of Configurable Hardware,” in Proceedings of the 2019
Design, Automation and Test in Europe Conference and Exhibition,
DATE 2019, 2019, pp. 746-751.

J. A. Roy, F. Koushanfar and 1. L. Markov, "EPIC: Ending Piracy of
Integrated Circuits," 2008 Design, Automation and Test in Europe,
Munich, 2008, pp. 1069-1074.

M. Yasin and O. Sinanoglu, "Evolution of logic locking," 2017
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), Abu Dhabi, 2017, pp. 1-6.

Yasin M., Mazumdar B., Rajendran J., Sinanoglu O "Hardware
Security and Trust: Logic Locking as a Design-for-Trust Solution"
In: Elfadel 1., Ismail M. (eds) The IoT Physical Layer. Springer,
Cham, 2019.

M. Yasin, B. Mazumdar, O. Sinanoglu and J. Rajendran, "Security
analysis of Anti-SAT," 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, 2017, pp. 342-347.

M. Yasin, B. Mazumdar, J. J. V. Rajendran and O. Sinanoglu, "SARLock:
SAT attack resistant logic locking," 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), McLean, VA, 2016,
pp. 236-241.

R. Canetti, “Towards Realizing Random Oracles: Hash Functions That

Hide All Partial Information,” in Proc. Annual International Cryptology
Conference, 1997, pp. 455-469.

J. Aarestad, P. Ortiz, D. Acharyya, and J. Plusquellic, “HELP: A
Hardware-Embedded Delay PUF,” IEEE Des. Test, vol. 30, no. 2, pp. 17—
25, Apr. 2013.

W. Che et al., “Analysis of Entropy in a Hardware-Embedded Delay
PUF,” Cryptography, vol. 1, no. 1, p. 8, Jun. 2017.

W. Che, F. Saqib, and J. Plusquellic, “PUF-based authentication,” in 2015
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2015, pp. 337-344.

W. Che, M. Martin, G. Pocklassery, V. Kajuluri, F. Saqib, and J.
Plusquellic, “A Privacy-Preserving, Mutual PUF-Based Authentication
Protocol,” Cryptography, vol. 1, no. 1, p. 3, Nov. 2016.

D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve Digital
Signature Algorithm (ECDSA),” Int. J. Inf. Secur., vol. 1, no. 1, pp. 36—
63, Aug. 2001.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 20,2020 at 13:40:03 UTC from IEEE Xplore. Restrictions apply.

