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The hydrodynamic quantification of superhydrophobic slipperiness has traditionally
employed two canonical problems – namely, shear flow about a single surface and
pressure-driven channel flow. We here advocate the use of a new class of canonical
problems, defined by the motion of a superhydrophobic particle through an otherwise
quiescent liquid. In these problems the superhydrophobic effect is naturally measured
by the enhancement of the Stokes mobility relative to the corresponding mobility of a
homogeneous particle. We focus upon what may be the simplest problem in that class
– the rotation of an infinite circular cylinder whose boundary is periodically decorated
by a finite number of infinite grooves – with the goal of calculating the rotational
mobility (velocity-to-torque ratio). The associated two-dimensional flow problem is
defined by two geometric parameters – namely, the number N of grooves and the
solid fraction φ. Using matched asymptotic expansions we analyse the large-N limit,
seeking the mobility enhancement from the respective homogeneous-cylinder mobility
value. We thus find the two-term approximation,

1 +
2

N
ln csc

πφ

2
,

for the ratio of the enhanced mobility to the homogeneous-cylinder mobility. Making
use of conformal-mapping techniques and inductive arguments we prove that the
preceding approximation is actually exact for N = 1, 2, 4, 8, . . .. We conjecture that it
is exact for all N.

Key words: drops and bubbles, low-Reynolds-number flows

1. Introduction

When a ‘rough’ hydrophobic solid is immersed in water, bubbles can get trapped
within the vacancies of the roughness in a stable Cassie state. The resulting surface
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is known as superhydrophobic (Quéré 2008). As these surfaces tend to exhibit
reduced resistance to liquid motion about them, they have been of interest to the
fluid mechanics community (Bocquet & Lauga 2011). The analysis of flows about
superhydrophobic surfaces is typically concerned with two classes of canonical
problems: the first, rather idealized problem, concerns an externally imposed shear
flow over a single superhydrophobic surface; the second, more representative of
realistic configurations (Rothstein 2010), has to do with pressure-driven flow within
‘superhydrophobic channels’. In both classes, interest lies not in the details of the
flow, but rather in an appropriate lumped quantity that represents, in some averaged
sense, the reduced friction due to superhydrophobicity. In the first class this quantity
is provided by the intrinsic slip length (Davis & Lauga 2009; Crowdy 2010) – a
pure geometric function of the surface morphology; in the second class it is provided
by the effective slip length (Lauga & Stone 2003), which represents the excess
volumetric flux in the channel.

Following recent experiments (Muralidhar et al. 2011; Castagna, Mazellier &
Kourta 2018; Jetly, Vakarelski & Thoroddsen 2018) one can envision a third class
of canonical problems, associated with rigid-body motion of a superhydrophobic
‘particle’. To highlight that third class it is convenient to consider a small particle,
where inertial effects are negligible. Given the linearity of the governing problem, the
general properties of classical zero-Reynolds-number resistance problems (Happel &
Brenner 1965; Hinch 1972) are expected to remain valid. These naturally suggest the
particle mobility as the quantity of interest, which constitutes the pertinent counterpart
of the slip-length concept in the first two problems.

We here consider a prototypic resistance problem, involving the rotation of a
circular cylinder about its axis within a viscous liquid, where superhydrophobicity is
brought about by the presence of a periodic array of infinite grooves, parallel to the
cylinder axis, on its boundary. The same type of boundary was employed by Lauga
& Stone (2003), who considered pressure-driven flow. With the resulting flow being
two-dimensional, this may be the simplest resistance problem. Indeed, in the case
of a homogeneous solid boundary, the flow is given by a two-dimensional rotlet.
Following Lauga & Stone (2003), we assume that the curvature of the bubbles that
are trapped in the grooves is the same as that of the circular groove boundaries. The
compound boundary is accordingly circular.

Lauga & Stone (2003) solved an internal flow problem, driven by an imposed
pressure gradient. We here solve an external flow problem, driven by the angular
rotation of the cylinder relative to the otherwise quiescent liquid. Our goal is the
angular mobility of the cylinder.

2. Problem formulation

An infinite solid cylinder of radius a is decorated with a finite number N(� 1)

of equally spaced grooves, infinitely extending parallel to the cylinder axis. Upon
immersing the cylinder in a liquid (viscosity µ), an infinite bubble is trapped in
each groove. The boundary of the cylinder accordingly consists of N liquid–gas
interfaces, corresponding to the bubbles, and N solid–air interfaces, corresponding
to the ridges which separate the bubbles. It is assumed that the curvature of the
liquid–gas interfaces coincides with that of the solid ridges. The boundary of the
cylinder cross-section is accordingly a circle. The geometry is portrayed in figure 1.

Our interest lies in the two-dimensional flow which is driven by the imposed
rigid-body rotation of the cylinder about its axis, say with an angular velocity Ω .
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FIGURE 1. Schematic of the dimensional problem.

In particular, we seek to calculate the hydrodynamic torque (per unit length) about
that axis. It is convenient to employ the ratio T of that torque to the corresponding
torque about a groove-free cylinder, which is given by 4πµa2Ω . Alternatively, we
may employ its inverse M = 1/T , which represents the ratio of the angular mobility
of the cylinder to the corresponding mobility of a groove-free cylinder.

We employ a dimensionless notation throughout, using a, aΩ and µΩ as the
respective units of length, velocity and stress. We employ a non-rotating reference
frame using the (x1, x2, x3) Cartesian coordinates, with the x3-axis coinciding with the
cylinder axis. Writing x = x1 and y = x2, we also employ the (r, θ) polar coordinates
in the xy-plane. With no loss of generality, the polar angle θ is defined such that,
at the instantaneous moment considered, the angle of the centre of the nth ridge
(n = 0, 1, . . . , N − 1) is θn = 2πn/N. In particular, θ0 = 0: the x-axis bisects the zeroth
ridge.

Denoting the angle spanned by each bubble as 2πφ/N, the parameter φ (which
satisfies 0 < φ < 1) represents the solid fraction of the compound boundary. Because
of periodicity, it is sufficient to consider a ‘unit sector’ of angle 2π/N centred about
θ = 0, where the solid and free boundaries occupy the intervals |θ | < φπ/N and
φπ/N < |θ | < π/N, respectively.

The velocity field u = êru + êθv satisfies the continuity and Stokes equations,

∂(ru)

∂r
+

∂v

∂θ
= 0,

∂p

∂r
= ∇2u −

u

r2
−

2

r2

∂v

∂θ
,

1

r

∂p

∂θ
= ∇2v +

2

r2

∂u

∂θ
−

v

r2
, (2.1a−c)

wherein p is the dynamic pressure associated with the flow. In addition, it satisfies (i)
kinematic impermeability,

u = 0 at r = 1; (2.2)

(ii) the periodicity conditions,

u = 0 at θ = ±
π

N
; (2.3)
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FIGURE 2. The hydrodynamic problem in the semi-sector 0 < θ < π/N (with N = 4).

(iii) the decay requirement,

u, v → 0 as r → ∞; (2.4)

and (iv) the no-slip and shear-free conditions at r = 1,

v = 1 for |θ | <
φπ

N
,

∂v

∂r
− v = 0 for

φπ

N
< |θ | <

π

N
. (2.5a,b)

Two points are worth noticing. First, it is evident from the above formulation that
p and v are even functions of θ , while u is an odd function of θ . It follows that
one may actually solve the preceding problem in the ‘semi-sector’ 0 < θ < π/N, with
condition (2.3) becoming

u = 0 at θ = 0,
π

N
; (2.6)

the associated problem is depicted in figure 2. Second, we note that in the absence of
grooves the flow field is simply that of a two-dimensional rotlet (Pozrikidis 2011),

v =
1

r
, u ≡ 0, p ≡ 0. (2.7a−c)

Our interest is in the hydrodynamic torque (per unit length in the x3-direction) in
the negative x3-direction. Normalized by 4πµa2Ω , it is given by

T = −
1

4π

�

π

−π

�

∂v

∂r
− v

�

r=1

dθ , (2.8)

or, upon use of periodicity,

T = −
N

4π

�

πφ/N

−πφ/N

�

∂v

∂r
− v

�

r=1

dθ . (2.9)
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Note that in the Stokes regime, where the stress is divergence-free, the torque may
be evaluated over any closed curve which encloses the circle r = 1. In particular,
choosing a circle of large radius we obtain the following alternative to (2.8):

T = −
1

4π

�

π

−π

lim
r→∞

�

r2

�

∂v

∂r
−

v

r

��

dθ . (2.10)

The large-r velocity behaviour implied by (2.10) is

u ∼ êθ

T

r
+ O(r−2) for r → ∞. (2.11)

In particular, the torque corresponding to (2.7) is T = 1.
A more convenient formulation is obtained by subtracting off the far-field rotlet

(2.11)

u
� = u − êθ

T

r
. (2.12)

The excess velocity u
� = êru

� + êθv
�, which vanishes in the case of a homogeneous

surface (see (2.7)), satisfies (together with the original pressure field p) equations
(2.1)–(2.3). In addition, it satisfies the dynamic conditions at r = 1 (cf. (2.5))

v� = 1 − T for |θ | <
φπ

N
,

∂v�

∂r
− v� = 2T for

φπ

N
< |θ | <

π

N
. (2.13a,b)

The conceptual difference between the two formulations has to do with the
calculation of the torque. In the original formulation, it is obtained by directly
evaluating (2.9); in the excess-velocity formulation, it is obtained by imposing the
refined condition on the far-field decay rate (cf. (2.4)),

u
� = O(r−2) for r � 1. (2.14)

Note that this condition allows for the possibility of a faster decay rate than r−2.
We have therefore obtained a well-posed linear problem which depends upon two

parameters – namely, N and the solid fraction φ. It is not difficult to solve the
preceding problem, for any numerical values of N and φ, using a Fourier-series
expansion in the spirit of Lauga & Stone (2003). It turns out, however, that such
a Fourier-series solution is inessential. To understand why, we consider now the
asymptotic limit of large N.

3. Large-N limit

The large-N limit is addressed using matched asymptotic expansions. The inner
region, of O(1/N) extent, is described by the stretched coordinates

X =
N(r − 1)

π

, Y =
Nθ

π

. (3.1a,b)

In terms of these coordinates, the unit sector is bounded by Y = ±1. While X merely
satisfies X > 0, we define the inner region by the requirement that X is O(1) there.
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The outer region corresponds to the limit N → ∞ with r fixed. In that region,
the fine details of the compound surface are not discerned. Since the excess velocity
vanishes in the case of a homogeneous surface, we postulate that u

� is exponentially
small there (i.e. it vanishes at all asymptotic orders when expanded in inverse powers
of N). This null solution trivially satisfies equations (2.1), conditions (2.3) and the
strong version (2.14) of the decay condition.

Since the curvature is negligible in the inner region, it is evident that the Stokes
equations (2.13) adopt there the approximate form (which resembles that in Cartesian
coordinates),

∂u�

∂X
+

∂v�

∂Y
≈ 0,

π

N

∂p

∂X
≈ �u�,

π

N

∂p

∂Y
≈ �v�, (3.2a−c)

wherein ∆ = ∂2/∂X2 + ∂2/∂Y2 denotes the inner-region Laplacian. At the same level
of approximation, conditions (2.13) become

v� ≈ 1 − T for |Y| < φ,
∂v�

∂X
≈ 0 for φ < |Y| < 1, (3.3a,b)

at X = 0. In addition, matching with the quiescent outer region requires large-X decay.
By setting T ≈ 1, we find that the solution is trivial. The nil inner solution at O(1),
which trivially satisfies (2.2)–(2.3), is consistent with our anticipation that the leading-
order problem is identical to that about a homogeneous cylinder.

The problem structure suggests that the leading-order superhydrophobic effect is
O(1/N). We accordingly write

u� =
πU

N
+ · · · , v� =

πV

N
+ · · · , p = P + · · · , (3.4a−c)

where the fields U, V and P are presumably O(1) functions of X and Y . Consistently,
we write

T(N, φ) = 1 +
πτ (φ)

N
+ · · · , (3.5)

and seek to evaluate the leading-order correction τ (φ).
The leading-order flow variables U, V and P are governed by (i) the continuity and

Stokes equations (cf. (2.1)),

∂U

∂X
+

∂V

∂Y
= 0,

∂P

∂X
= �U,

∂P

∂Y
= �V; (3.6a−c)

(ii) the kinematic condition at X = 0,

U = 0; (3.7)

and (iii) the periodicity conditions (cf. (2.3)),

U =
∂V

∂Y
= 0 at Y = ±1. (3.8)

In addition, they also satisfy the dynamic conditions at X = 0 (cf. (2.5)),

V = −τ for |Y| < φ,
∂V

∂X
= 2 for φ < |Y| < 1, (3.9a,b)
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and the decay condition

lim
X→∞

V = 0. (3.10)

Note that the latter does not follow from the original decay condition (2.4), which
does not apply in the inner region. Rather, it follows from the need to match the
quiescent outer solution.

Defining Ṽ = V + τ − 2X we find that the fictitious flow field êrU + êθ Ṽ , with the
same pressure P, satisfies (3.6)–(3.8). In terms of that field, conditions (3.9) at X = 0
transform to the homogeneous conditions,

Ṽ = 0 for |Y| < φ,
∂Ṽ

∂X
= 0 for φ < |Y| < 1, (3.11a,b)

while the far-field decay (3.10) is replaced by

Ṽ ∼ −2X + τ + o(1) for X � 1. (3.12)

The problem governing (U, Ṽ) is analogous to the problem of transverse shear over
a periodic array of flat bubbles, which was solved by Philip (1972). Making use of
the asymptotic behaviour of his solution at large distances (Lauga & Stone 2003), we
find that

Ṽ ∼ −2X +
2

π

ln sin
πφ

2
+ o(1) for X � 1. (3.13)

Comparing with (3.12) thus gives

τ =
2

π

ln sin
πφ

2
. (3.14)

We conclude that the torque is

T = 1 +
2

N
ln sin

πφ

2
+ · · · for N � 1. (3.15)

Inversion thus provides the requisite approximation for the enhanced mobility

M ∼ 1 +
2

N
ln csc

πφ

2
+ · · · for N � 1. (3.16)

4. Functional dependence upon N

We now consider the general case, where N is not necessarily large. Without trying
to actually solve that formidable problem, we try to extract the structure by which the
torque depends upon the number of grooves N. To that end we hereafter employ the
subscript ‘N’ to denote quantities associated with N grooves. Thus, the excess liquid
velocity is denoted by u

�
N , while the associated torque is denoted by TN .

We define the streamfunction ψN associated with the excess velocity u
�
N via the

relation

u
�
N = ∇ψN × êz, (4.1)
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or, equivalently,

u�
N =

1

r

∂ψN

∂θ
, v�

N = −
∂ψN

∂r
. (4.2a,b)

The streamfunction ψN satisfies the biharmonic equation in the semi-sector 0 < θ <
π/N. Since it is defined up to within an additive constant, the kinematic condition
(2.2) may be simply written

ψN = 0 for r = 1. (4.3)

In addition to (4.3), ψN satisfies the periodicity conditions (cf. (2.6))

∂ψN

∂θ
= 0 at θ = 0,

π

N
; (4.4)

the decay requirement (cf. (2.14))

ψN = O(1/r) for r → ∞; (4.5)

and the dynamic conditions at r = 1 (cf. (2.13))

∂ψN

∂r
= TN − 1 for 0 < θ <

φπ

N
, (4.6)

∂2ψN

∂r2
−

∂ψN

∂r
= −2TN for

φπ

N
< θ <

π

N
. (4.7)

We now employ the Goursat representation for biharmonic functions (Langlois &
Deville 1964), writing z = x + iy and

ψN = Re{z̄f (z) + g(z)}, (4.8)

where f (z) and g(z) are analytic functions in the semi-sector 0 < arg z < π/N (with
|z|> 1) and z̄ = x − iy. Given (4.5), both f and dg/dz are O(z−2) at large |z|. Condition
(4.3) suggests the following representation

ψN = Re

��

z̄ −
1

z

�

G(z)

�

, (4.9)

where G(z) is analytic in the semi-sector. It corresponds to f = G and g = −G/z in
(4.8). The function G is O(z−2) at large |z|.

Since G(z)/z is analytic in the semi-sector, its real part

χ(r, θ) = Re

�

G(z)

z

�

(4.10)

is harmonic there. In terms of χ , representation (4.9) reads

ψN = (r2 − 1)χ(r, θ). (4.11)

With that form, the impermeability condition (4.3) is indeed trivially satisfied. Upon
differentiation with respect to r we find that conditions (4.6)–(4.7) become

2χ(1, θ) = TN − 1 for 0 < θ <
φπ

N
, (4.12)
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2
∂χ

∂r
(1, θ) = TN for

φπ

N
< θ <

π

N
. (4.13)

Also, upon differentiation with respect to θ we find that condition (4.4) becomes

∂χ

∂θ
= 0 at θ = 0,

π

N
for r > 1. (4.14)

Last, the decay condition (4.5) now reads

χ = O(1/r3) for r → ∞. (4.15)

We have therefore transformed the flow problem into a boundary-value problem
governing a harmonic function. Rather than trying to solve the above problem, we
choose a different approach: we employ the structure (4.12)–(4.15) to relate the
streamfunction appropriate for 2N grooves, ψ2N , to that appropriate for N grooves,
ψN . In doing so, it is convenient to denote the polar coordinates associated with the
problem governing ψ2N by, say, ρ and α, so as to distinguish them from the (r, θ)

polar coordinates associated with the problem governing ψN . Adopting (4.3)–(4.7) to
the excess-velocity problem for 2N grooves, as detailed in figure 3, the biharmonic
function ψ2N(ρ, α) must satisfy: (i) kinematic impermeability,

ψ2N = 0 for ρ = 1; (4.16)

(ii) the periodicity conditions,

∂ψ2N

∂α
= 0 at α = 0,

π

2N
; (4.17)

(iii) the decay requirement,

ψ2N = O(1/ρ) for ρ → ∞; (4.18)

and (iv) the dynamic conditions at ρ = 1,

∂ψ2N

∂r
= T2N − 1 for 0 < α <

φπ

2N
, (4.19)

∂2ψ2N

∂ρ2
−

∂ψ2N

∂ρ
= −2T2N for

φπ

2N
< α <

π

2N
. (4.20)

Consider a conformal mapping z=h(ζ ) from the complex ζ -plane, with ζ = ξ + iη=
ρeiα, to the z-plane. By choosing

h(ζ ) = ζ 2, (4.21)

the pre-image of the semi-sector in the z-plane is the semi-sector for the 2N-grooves
problem, where 0 <α <π/2N: see figure 3. We claim that the relevant streamfunction
is

ψ2N = CNRe

��

ζ̄ −
1

ζ

�

G(h(ζ ))

ζ

�

, (4.22)
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2N = 0

u
�
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u
�
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Ω = ≈ + i˙

u�
N = 0

œ = π/N

œ = 0

y ˙

å = 0

å = π/2N ® → ∞:

r → ∞ :

πƒ/N
πƒ/2N

(™√�
N/™r) - √�

N = 2TN

u�
2N = 0

(™√�
2N/™®) - √�

2N = 2T2N

u�
N = 0

√�
N = 1 - TN

u�
2N = 0

√ �
2N = 1 - T2N

FIGURE 3. The excess-velocity boundary conditions for N and 2N grooves in the
appropriate semi-sectors 0 < θ < π/N and 0 < α < π/2N.

wherein CN is a constant. Since representation (4.22) is of the Goursat form (4.8), it
clearly satisfies the biharmonic equation. To prove our assertion, we accordingly need
to show that conditions (i)–(iv) above are also satisfied.

To that end we make use of (4.10) and (4.21), which transform (4.22) to

ψ2N = CN(ρ2 − 1)χ(ρ2, 2α). (4.23)

We now note that (i) representation (4.23) trivially satisfies the impermeability
condition (4.16); (ii) differentiating it with respect to α and making use of (4.4)
shows that the periodicity conditions (4.17) are satisfied; and (iii) substitution of
(4.15) into (4.23) gives ψ2N = O(ρ−4) at large ρ, which accordingly satisfies the
far-field requirement (4.18).

It remains to show that the dynamic conditions (4.19)–(4.20) are also satisfied.
Differentiating (4.23) with respect to ρ shows that these conditions are equivalent to

2CNχ(1, 2α) = T2N − 1 for 0 < α <
φπ

2N
, (4.24)

4CN

∂χ

∂r
(1, 2α) = T2N for

φπ

2N
< α <

π

2N
. (4.25)

Comparing with (4.12)–(4.13) reveals that conditions (4.24)–(4.25) are satisfied if and
only if

CN(TN − 1) = T2N − 1, 2CNTN = T2N . (4.26a,b)

Elimination of CN provides the recursive equation

T2N =
2TN

1 + TN

, (4.27)

whose general solution is

TN =
N

N + C
. (4.28)
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The ‘integration constant’ C is independent of N and can only depend upon φ. We
conclude that the mobility MN = 1/TN is

MN =
N + C(φ)

N
. (4.29)

We have therefore obtained the general structure for the dependence of the cylinder
mobility upon N. Since we did not solve the flow problem, we cannot obtain the
explicit form of C(φ) using that method. Nonetheless, that form may be obtained
indirectly: making use of the large-N asymptotic sequence 1, 1/N, 1/N2, . . . we find
that the exact expression (4.29) constitutes a large-N asymptotic expansion in this
sequence which consists of only two terms, 1 + C/N. Comparing with (3.16) and
making use of the uniqueness of the coefficients of any asymptotic expansion (Bender
& Orszag 1978) we conclude that

C(φ) = 2 ln csc
πφ

2
, (4.30)

and that the asymptotic expansion (3.16) actually terminates after the O(1/N) term.
We have therefore obtained an exact expression for the mobility for the case where
N is an integer power of two.

Incidentally, it is evident from our construction that for each such N the excess
velocity u

�
2N decays faster than u

�
N . To elucidate this mechanism, we write N = 2k

with k = 0, 1, 2, . . . and postulate that ψN = O(r−λk) for r → ∞, with λk � 1. (This
asymptotic relation is clearly more restrictive than (4.5).) From (4.11) and (4.23) it
readily follows that λk+1 = 2λk + 2. The solution of this recursive equation subject to
λ0 = 1 (which follows from (4.5)) is λk = 3 × 2k − 2. We conclude that the excess
velocity u

�
N is O(r1−3N) at large r. This rapid increase in the decay rate is consistent

with our postulate of exponentially small outer velocity in the large-N limit.

5. Concluding remarks

Motivated by the desire to understand rigid-body motion of a superhydrophobic
particle in a viscous liquid, we have considered what may be the simplest problem
in that class – namely, the rotation of an infinite cylinder which is decorated by
longitudinal grooves. The dimensionless Stokes-flow problem involves two geometric
parameters: the solid fraction φ and the number N of grooves. We have obtained
a two-term asymptotic approximation in the limit where N is large. Making use of
conformal-mapping techniques, we proved that this approximation is actually exact
whenever N is an integer power of two. Comparison of the mobility expression (4.29)–
(4.30) with that obtained from the Fourier-series solution of the Stokes-flow problem
shows perfect agreement. We accordingly conjecture that (4.29)–(4.30) holds for all
N.

The complex-variable approach has been used in this paper so as to extract
the functional dependence of the rotational mobility upon the number of grooves.
This approach can actually be used in order to transform the flow problem into
a Hilbert problem, which results a semi-analytic expression for all the pertinent
fluid dynamic quantities. While the semi-analytic Hilbert-transform solutions cannot
provide the explicit mobility expression (4.29)–(4.30), they may be utilized for
the construction of convenient numerical solutions in the more general case of
a non-uniform (i.e. aperiodic) distribution of grooves. (Techniques introduced by
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Crowdy 2013b, which avoid the difficulties associated with end point singularities at
the points where the boundary conditions change type, may also be useful here.) The
Hilbert-transform approach can be used, moreover, to recover analytical solutions in
other two-dimensional Stokes-flow problems, such as the slip–stick Janus swimmers
considered by Crowdy (2013a). Details will be given in a future paper.

Given the Stokes paradox, the rotational mobility obtained in the present contribution
is the only existing component in the mobility tensor – no other mobility problem
can be sensibly formulated in the present context of two-dimensional unbounded flow.
On the other hand, there is no obstruction to finding the full resistance tensor for a
two-dimensional particle near a plane wall (Crowdy 2013c) – a situation of interest
in applications. The mobility of a cylinder near a superhydrophobic wall has been
addressed recently by Schnitzer & Yariv (2019); a natural follow-up of both that
work and the present analysis would involve the calculation of the mobility tensor of
a superhydrophobic cylinder near a no-slip wall (Kaynan & Yariv 2017).
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