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ABSTRACT

Acoustic non-reciprocity, referring to the phenomenon of
path-dependent propagation, has diverse applications in
mechanical devices. This paper presents a numerical study on a
periodic triangle-shape structure that breaks reciprocity in a
passive manner over a broad range of frequency and energy. The
proposed structure contains strong nonlinearity and geometric
asymmetry, which contributes to a direction-dependent
dispersion relationship. When the signal frequency falls in the
band pass in one direction, and band gap in the other, a
unidirectional wave propagation results. The system achieves
giant non-reciprocity with minimal distortion in the frequency
content of the signal.
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INTRODUCTION

In linear time-invariant system, wave transmission between
two points in space is independent of the propagation direction
[1, 2]. Such symmetry, called acoustic reciprocity, is widely
observed, and related to the Onsager-Casimir principle [3, 4].
Non-reciprocity violates this property and shows the possibility
of controlling wave propagation and engineering desired
propagation patterns (e.g., allowing the propagation in one
direction but not the other way around [5]).

To break reciprocity, multiple approaches have been studied.
The common method is to apply an external asymmetry bias to
the system, such as adding an odd-symmetry magnetic field or
fluid circulation into the system [6]. Another approach achieves
non-reciprocity through utilizing time-variant parameters, for
instance, periodically modulating the density and modulus in
space and time [7, 8]. However, the aforementioned attempts are
restricted by the necessity of either external bias or additional
control.
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Breaking reciprocity via passive manners, on the other hand,
does not rely on the external asymmetry bias. One possible
technique is to combine structural asymmetry and nonlinearity
together to achieve non-reciprocity. Such systems utilize the
band diagram of the structure to filter the wave based on the
frequency. Liang et al [9, 10], numerically and experimentally,
developed an acoustic rectifier by attaching the nonlinear
materials to a super-lattice, where the signal frequency falls in
the band gap while the second harmonic generated by nonlinear
material falls in the band pass. Later, the authors in [11, 12]
theoretically and experimentally demonstrated the feasibility of
an acoustic diode based on nonlinear coupling and asymmetrical
hierarchy internal structure. Recently, Li proposed a theoretical
wave diode utilizing asymmetric shapes of nonlinear materials,
and analyzed its non-reciprocal behavior by solving the discrete
nonlinear Schrédinger equation [13]. To achieve non-reciprocity,
most of the passive systems reviewed above either changes the
frequency content of the sending signal, or has a strict restriction
on the range of sending frequency.

Inspired by the structure in [13], in this paper, we propose
and numerically study a nonlinear, asymmetric and periodic
system, which passively breaks reciprocity for a range of input
frequency and amplitude, with minimal distortion of the sending
frequency. The physical mechanism behind the non-reciprocity
is a direction-dependent dispersion relationship of the periodic
structure due to its triangle-shaped asymmetry and strongly
nonlinear couplings. Thus, the range of input frequency causing
non-reciprocity is related to the band structure of the system and
can be tuned by varying the input amplitude. Additionally, when
the sending frequency falls in the passband of the system, the
frequency content is in general well-preserved.

SYSTEM DESCRIPTION

The proposed system consists of a chain of unit cells, each
composed of a finite number of masses coupled by linear and
nonlinear springs and dampers. Figure 1(a) depicts an isolated
unit cell from the chain. Each of the unit cells contains 16
identical masses. As shown in the Figure 1(b), the green coupling
represents a linear spring paralleled with a linear viscous
damper; the red coupling contains a linear spring, a linear
viscous damper and a cubic stiffness spring. Note that the two
linear springs (k; and k,) have different stiffness.
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Figure 1. A schematic of (a) an isolated unit cell and (b)
the spring-damper model for the coupling

The system represents a shear lattice in which every mass
moves only in a direction perpendicular to the lattice plane.
Equation of motion concerning a mass in the periodic structure
is provided below

mx* + cX(X* = %,) + k2 (" — x) + k, Z(x" — x;)
+ kNLZ(X* - x]-)3 =0. (1)

Here, x* denotes the displacement of the studied mass; the
subscription p denotes the adjacent mass connected with the
studied mass, and subscriptions i and j refer to the adjacent
mass connected with the studied mass by green and red coupling
respectively. The system parameters are provided below.

Table 1. System parameter values for the triangle-shape

unit cell
Parameter Value Unit
m 0.05 kg
c 0 kg/s
ky 200 N/m
k, 20 N/m
kny 2x10° N/m3

To study the dispersion relationship of the periodic structure,
we build a finite system in numerical simulation. The finite
system contains three parts: i) a linear waveguide, ii) 40
proposed unit cells, and iii) non-reflective boundary at the end.
The waveguide is a two-layer monatomic chain connected via
green coupling as shown in Figure 2. Note that the waveguide is
undamped and sufficiently long so that after the signal hits the
triangle-shaped unit cells, the reflected waves do not interfere
with the source, which guarantees the equality of input energy
for both directions. The non-reflective boundary domain
contains 10 triangle-shaped unit cells with the damping
increasing exponentially along the chain. At the end of the chain,
the amplitude of signal is ensured to be sufficiently small. Such
design avoids the reflection at the tail of the chain and therefore
makes it possible to use a finite system to study a periodic
structure.

# Unit cell

Non-reflective boundary

Figure 2. Schematic of the infinite chain model.
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The input signal is generated by a continuous harmonic
oscillation in force control and applied to the system at the
beginning of the waveguide. Note that the boundary mass where
force is applied is grounded by a linear spring with the stiffness
of k;. Hann window function is utilized here to control the
amplitude of the signal for a smoother wave introduction, shown
as below

A" =hA )
tm
h =0.5—0.5cos (ﬁ) t € [0,nT], (3)

where A* is the input amplitude tuned by the Hann window
factor h. In Equation (3), the Hann window factor h is a function
of time t, cycles of sending signal n, and input period T. As
shown in Figure 3, after n cycles, the signal develops to its full
amplitude.

h
1
ﬁT Time
Figure 3. The growth of Hann window factor as a function
of time.

The equation of motion concerning the starting mass with
excitation is provided below.

m¥ + k2 (x — x;) + ki (—x) + cZ (% — %,) = hAcos(wt)
“)

ANALYSIS APPROACH

This section discusses i) an analytical approach to find the
dispersion relationship of two linear cases of the system, and
more importantly, ii) the numerical approach to find the
amplitude-dependent dispersion relationship. It should be
mentioned that the main focus of the dispersion analysis in this
study is on the acoustic branch. The optical branches are ensured
to be sufficiently far from frequency range of interest.

Analytically, the dispersion relationship of a periodic linear
structure can be obtained by solving the eigenvalue problem
from the Bloch theorem shown below, where p denotes
wavenumber, w denotes frequency, and M and K denote mass
matrix and stiffness matrix respectively [15].

(kW) — w?M]a@e™ =0 ©)

k() = Zpe_10.41 (€™ Ky) (6)

For systems containing nonlinear components, such as the
cubic springs in the proposed structure, Bloch theorem can
predict the dispersion relationship only for certain conditions.
Since the stiffness of the cubic spring depends upon the input
energy, when the input energy is very low, the response from the
nonlinear spring is negligible compared to the linear coupling.
On the opposite, when the input energy is very high, the
nonlinear spring has a much higher stiffness than the linear
coupling, and can be treated as rigid connection. In both
conditions, the system shows a strong linear pattern, where
Block theorem can be applied.

To better understand the amplitude-dependent dispersion
relationship, we numerically model the system in MATLAB, and
use ode45 as our main solver for differential equations.
Responses of broadband (frequency and amplitude) excitation
are studied. For each signal, we measure the wavenumber of the
response in the nonlinear unit cells using a relative wavenumber
method. Specifically, the first masses of two adjacent nonlinear
unit cells near the signal source are selected. The Fast Fourier
Transformation (FFT) is then applied in the steady state of the
time response measured at the selected masses. The FFT result
gives the dominant frequency for each mass and its
corresponding amplitude and phase. Then the difference of the
phase reveals the real part of the local wavenumber. Equations
governing the wavenumber calculation are shown here [16],

a(w) = Re(G(w)) (7a)
b(w) = Im(G(w)) (7a)
0(w) = tan'l(% (8)
Re(u) = 6, (0") — 01 (07), ©

where G(w) isthe magnitude of frequency w, and w* denotes
the dominant frequency. Finally, the resultant wavenumber is
then re-scaled to be between -7 and . Note that the spatial
FFT method is not preferred here because there are only 40 unit
cells (sample points) in the structure, which restricts the
resolution of spatial FFT.

RESULTS

This section presents the analytical solution of the
dispersion relationship of two linear cases and the numerical
results concerning i) asymmetric dispersion surface/curve, ii)
non-reciprocal propagation represented in time responses, and
iii) the non-reciprocal energy transmission in an optimized
model.

By solving the eigenvalue problem from Equation (5), the
dispersion relationship of two linear cases are obtained and
displayed in Figure. 4. It shows the dispersion relationship of the
system in two linear cases: i) high energy input and ii) low
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energy input. These two curves define the boundaries of our
system, from purely linear (low energy) to rigid-linear (high
energy).
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Figure 4. Analytical result of dispersion relationships
(only acoustic branch) in high (red curves) /low (blue
curves) energy regimes. Positive wavenumber stands for
left-to-right propagation and negative wavenumber being

right-to-left propagation.

Numerically, the steady-state wavenumber of a mass depends
upon the sending signal frequency and amplitude. One signal
frequency and one amplitude only yield one steady-state
wavenumber for a given mass. Therefore, when varying the
sending frequency signal and amplitude, we can obtain a cloud
of scatter points in 3D, with 3 axes being wavenumber,
frequency, and amplitude. Most obtained scatter points fit a
sinusoidal trend. However, considerable numerical errors happen
for the points near the edge of the First Brillion Zone (FBZ),
where their wavenumbers approach +m. These data points are
revised by curve fits in both the frequency-wavenumber plane
and frequency-displacement plane. Eventually, the dispersion
surface shown in Figure 5(a) is obtained from a fine surface
meshing.

In Figure 5(b), we select the dispersion curves highlighted
in Figure 5(a), and depict both left-to-right (L-R) propagation
and right-to-left (R-L) propagation in the positive wavenumber
domain. L-R propagation is represented in solid line and R-L is
represented by dashed lines. Here, we can see clearly that as the
input amplitude increases, both dispersion curves rises, yet to
different height, and the gap between the L-R and R-L dispersion
curve can be tuned by varying sending amplitude. In Figure 5(c),
we select the purple color dispersion curve in Figure (b) and
present it in the wavenumber-frequency plane. Note that the red
and blue dispersion curves depict the low energy and high energy
extreme respectively. Non-reciprocity is observed — the L-R
propagation has a higher dispersion curve than the R-L
propagation, and a strong non-reciprocity region is generated--
in between the two dashed lines. Any frequency that falls in this
region is in the band pass for L-R, but band gap for R-L, thus can
only propagate to the right.
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Figure 5. (a) The dispersion surface numerically
obtained. Selected dispersion curves are highlighted. (b)
Selected slices from the dispersion surface, with solid
lines represent L-R propagation, and dashed lines
represent R-L propagation. (c) A detailed view of the
purple dispersion curve, with the red and blue curves
represent the low-energy extreme and high-energy
extreme respectively. Note that the range of frequency
causing non-reciprocity is enclosed by two dashed line.
An example frequency (black solid line) is picked, and

response of which is shown in later work.
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To verify such non-reciprocity in time response, we send a signal
with the sending frequency and amplitude in the non-reciprocity
zone, shown as the solid line in Figure 5(c). The displacement

and frequency responses of the same mass are plotted in Figure
6(a) and 6(b).
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Figure 6. The time and frequency response of the input
signal shown in Fig. 5(c).

Clearly, the wave propagates in the L-R direction, while
only minor noise comes through the other way. The propagating
L-R wave now has a richer frequency content because of the
nonlinear components; however, the induced frequencies do not
change the dominance of the sending frequency.

As the non-reciprocity in time response is observed, the
energy transmission of the proposed structure is of interest to
study. To investigate the energy transmission, we replace the
non-reflective boundary domain by another linear waveguide
and grounding its end. Now, the triangle-shape unit cells are
sandwiched by two identical waveguides where signals can be
sent and received. The schematic is shown in Figure 7.

Left Waveguide Ji [ I 1 T [ — sesnes

Right Waveguide

Figure 7. Schematic of the model used to study energy
transmission.

Three other changes are added to the model: i) the number
of the triangle-shaped unit cells is reduced to three, ii) the
damping is removed from this system, and iii) the masses and
springs in the unit cells are preliminarily optimized. The first
change is to avoid the situation that the signal disperses too much
energy in the long nonlinear unit cells. In this scenario, very little
energy reaches the receiving waveguide, which makes the
transmission ratio always low. The second change simplifies the
problem by maintaining the total energy in the system the same.
Finally, the third change aims to increase the asymmetry of a unit
cell by changing the mass and spring stiffness at certain
locations. See Figure 8 and Table 2 for more details.
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Figure 8. Schematic graph of the unit cell after
preliminarily optimization.

Table 2. Optimized mass and spring stiffness values

Parameter Value Unit
m 0.05 kg
m, 0.0616 kg
ms 0.0733 kg
my 0.07 kg
ms 0.05 kg
me 0.05 kg
my 0.3911 kg
mg 0.05 kg
ki 400 N/m

Here, m; — mg represents the masses shown in Figure 8,
and k;_, stands for the linear spring stiffness between m,
and m,. The stiffness of other springs in green connections
remains unchanged, with the normalized value of 1. Note that, a

5 Copyright © 2019 by ASME



chain composed by such unit cells has an “up-down” symmetry,
and the wave propagation is only one dimensional.

A different excitation method is employed in this model to
i) send finite cycles of plane wave instead of continuous signal,
ii) reduce the time complexity of the simulation [14]. The
excitation is realized by modifying the initial conditions
(displacement and velocity) of masses at the boundary of the
waveguide and the nonlinear unit cells domain to prepare a
steady-state plane wave that propagates towards the nonlinear
unit cells. The equations that represent such initial conditions are

provided below:
mw?
u(w) = acos(1 — ) (10)

Y1i-r (&, X)e=0 = Acos(—u(x; — x,)) (11a)
V-r(t, x)|¢=0 = Awsin(—u(x,f - xi)) (11b)
Ylr-1(t:%))e0 = Acos (—u(x; — xz))  (12a)

V-1 (t:2))le=o = —Awsin (—p(x; — ) (12b)

As shown in equation (10), the wavenumber of the sending
signal can be obtained from the dispersion relationship in linear
waveguide. Equation (11) and (12) depict the initial conditions
for L-R and R-L propagation respectively, where x; and xjp
denote the location of the left and right boundary of the triangle-
shaped unit cells domain respectively; x; and x; refer to the
location of the mass where we change its initial conditions. Note
that the signal is excited at the left waveguide with a right-
towards wavenumber for L-R propagation, and excited at the
right waveguide with a left-towards wavenumber for R-L
propagation. For both L-R and R-L cases, the signal has the same
length, and thus the same energy.

To study the energy transmission pattern in the second
model, the system is first divided into three domains: left
waveguide, nonlinear unit cells, and right waveguide. The
energy in each area is then calculated by summing up the kinetic
energy of each mass and the potential energy of each linear and
cubic spring.

Etota1 = EL + Ey, + Eg (13)
— ER

" Broa (14)
Ep

" Bt >

Since there is no damping, the total energy remains unchanged.
Therefore, the transmission ratio is the transmitted energy, for
example the energy in the right waveguide if L-R propagation,
divided by the total energy, as shown in equation (14).

In the simulation, we record the energy level in each of the
three domains through time. Figure 9(a) and (b) depict one
example of the energy transmission pattern for L-R and R-L
propagation of a signal with the frequency of 17 rad/s and the
amplitude of 0.0002m, which falls in the non-reciprocity range
of the associated dispersion curve shown in Figure 5(c). EL,
ENL, ER refer to the ratio of the energy in left, nonlinear, and
right domain to the total energy respectively.
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Figure 9. (a) The energy transmission pattern for L-R.
Around 60% of the energy passes through the nonlinear
unit cells. (b) The energy transmission pattern for R-L. Less
than 2% of the energy passes through the nonlinear unit
cells.

In Figure 9(a), L-R propagation, the signal is excited in the
left waveguide. The wave travels through the nonlinear unit cell
domain, and approximately 60% of the energy reaches the right
waveguide at the end of the simulation. Less than 5% of energy
remains in the nonlinear unit cells. In Figure 9(b), R-L
propagation, the signal is excited in the right waveguide.
However, less than 2% of energy penetrates the nonlinear unit
cells and reaches the other waveguide. Most of the energy is
reflected back to the right waveguide.
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Figure 10. (a) The time response receiving signal. (b)
The frequency response of the receiving signal. Obtained by
conducting FFT over the highlighted region in Fig. 10(a).

Similarly, we study the time response of the transmitted
signal. Figure 10(a) and (b) presents the response of the first
mass in the receiver waveguide in displacement and frequency
domain. In Figure 10(a), the yellow highlighted area records the
transmitted signal. It is clear that there is big difference in the
response amplitude between L-R and R-L. Note that, the
response after the yellow area is only noises due to the residual
energy of the adjacent nonlinear unit cell. In Figure 10(b), the
frequency response is obtained by conducting FFT analysis over
the highlighted area. The L-R transmitted signal still maintains
the sending frequency dominating, while the R-L transmitted
signal can be treated as noise.

CONCLUSIONS

The proposed system broke reciprocity with a passive
manner. It contains nonlinearity and geometric asymmetry that
rose the dispersion relationship curve to different levels for
different directions. Therefore, when the frequency fell in the
range between the passband edges of the asymmetrical
dispersion curves, the wave is allowed to propagate in one way
but not the other, where giant non-reciprocity is observed. The
frequency response showed that the signal maintained its source
frequency in the chain.

The next steps on this study will be to further optimize the
system parameters to break the reciprocity over a larger range of
frequency and conduct associated experiment.
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