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ABSTRACT 
Acoustic non-reciprocity, referring to the phenomenon of 

path-dependent propagation, has diverse applications in 

mechanical devices. This paper presents a numerical study on a 

periodic triangle-shape structure that breaks reciprocity in a 

passive manner over a broad range of frequency and energy. The 

proposed structure contains strong nonlinearity and geometric 

asymmetry, which contributes to a direction-dependent 

dispersion relationship. When the signal frequency falls in the 

band pass in one direction, and band gap in the other, a 

unidirectional wave propagation results. The system achieves 

giant non-reciprocity with minimal distortion in the frequency 

content of the signal.  

 

Keywords: 1-D periodic structure, strongly nonlinear, 

asymmetric, non-reciprocity, dispersion relationship analysis.   
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INTRODUCTION 
In linear time-invariant system, wave transmission between 

two points in space is independent of the propagation direction 

[1, 2]. Such symmetry, called acoustic reciprocity, is widely 

observed, and related to the Onsager-Casimir principle [3, 4]. 

Non-reciprocity violates this property and shows the possibility 

of controlling wave propagation and engineering desired 

propagation patterns (e.g., allowing the propagation in one 

direction but not the other way around [5]). 

To break reciprocity, multiple approaches have been studied. 

The common method is to apply an external asymmetry bias to 

the system, such as adding an odd-symmetry magnetic field or 

fluid circulation into the system [6]. Another approach achieves 

non-reciprocity through utilizing time-variant parameters, for 

instance, periodically modulating the density and modulus in 

space and time [7, 8]. However, the aforementioned attempts are 

restricted by the necessity of either external bias or additional 

control.  
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Breaking reciprocity via passive manners, on the other hand, 

does not rely on the external asymmetry bias. One possible 

technique is to combine structural asymmetry and nonlinearity 

together to achieve non-reciprocity. Such systems utilize the 

band diagram of the structure to filter the wave based on the 

frequency. Liang et al [9, 10], numerically and experimentally, 

developed an acoustic rectifier by attaching the nonlinear 

materials to a super-lattice, where the signal frequency falls in 

the band gap while the second harmonic generated by nonlinear 

material falls in the band pass. Later, the authors in [11, 12] 

theoretically and experimentally demonstrated the feasibility of 

an acoustic diode based on nonlinear coupling and asymmetrical 

hierarchy internal structure. Recently, Li proposed a theoretical 

wave diode utilizing asymmetric shapes of nonlinear materials, 

and analyzed its non-reciprocal behavior by solving the discrete 

nonlinear Schrödinger equation [13]. To achieve non-reciprocity, 

most of the passive systems reviewed above either changes the 

frequency content of the sending signal, or has a strict restriction 

on the range of sending frequency.  

Inspired by the structure in [13], in this paper, we propose 

and numerically study a nonlinear, asymmetric and periodic 

system, which passively breaks reciprocity for a range of input 

frequency and amplitude, with minimal distortion of the sending 

frequency. The physical mechanism behind the non-reciprocity 

is a direction-dependent dispersion relationship of the periodic 

structure due to its triangle-shaped asymmetry and strongly 

nonlinear couplings. Thus, the range of input frequency causing 

non-reciprocity is related to the band structure of the system and 

can be tuned by varying the input amplitude. Additionally, when 

the sending frequency falls in the passband of the system, the 

frequency content is in general well-preserved. 

SYSTEM DESCRIPTION 
The proposed system consists of a chain of unit cells, each 

composed of a finite number of masses coupled by linear and 

nonlinear springs and dampers. Figure 1(a) depicts an isolated 

unit cell from the chain. Each of the unit cells contains 16 

identical masses. As shown in the Figure 1(b), the green coupling 

represents a linear spring paralleled with a linear viscous 

damper; the red coupling contains a linear spring, a linear 

viscous damper and a cubic stiffness spring. Note that the two 

linear springs (𝑘1 and 𝑘2) have different stiffness. 

 

 

(a)                   (b) 

 

 

 

 

 

 

 

 

 

Figure 1. A schematic of (a) an isolated unit cell and (b) 

the spring-damper model for the coupling 

The system represents a shear lattice in which every mass 

moves only in a direction perpendicular to the lattice plane. 

Equation of motion concerning a mass in the periodic structure 

is provided below  

 

𝑚𝑥 ∗̈ + 𝑐𝛴(𝑥̇∗ − 𝑥̇𝑝) + 𝑘1𝛴 (𝑥∗ − 𝑥𝑖) + 𝑘2𝛴(𝑥∗ − 𝑥𝑗)

+  𝑘𝑁𝐿𝛴(𝑥∗ − 𝑥𝑗)
3

= 0. 

 

 

Here, 𝒙∗  denotes the displacement of the studied mass; the 

subscription 𝒑 denotes the adjacent mass connected with the 

studied mass, and subscriptions 𝒊 and 𝒋 refer to the adjacent 

mass connected with the studied mass by green and red coupling 

respectively. The system parameters are provided below.  

 

Table 1. System parameter values for the triangle-shape 

unit cell 

Parameter  Value Unit 

𝑚 0.05 kg 

c 0 kg/s 

𝑘1 200 N/m 

𝑘2 20 N/m 

𝑘𝑁𝐿 2x109 𝑁/𝑚3 

 

To study the dispersion relationship of the periodic structure, 

we build a finite system in numerical simulation. The finite 

system contains three parts: i) a linear waveguide, ii) 40 

proposed unit cells, and iii) non-reflective boundary at the end. 

The waveguide is a two-layer monatomic chain connected via 

green coupling as shown in Figure 2. Note that the waveguide is 

undamped and sufficiently long so that after the signal hits the 

triangle-shaped unit cells, the reflected waves do not interfere 

with the source, which guarantees the equality of input energy 

for both directions. The non-reflective boundary domain 

contains 10 triangle-shaped unit cells with the damping 

increasing exponentially along the chain. At the end of the chain, 

the amplitude of signal is ensured to be sufficiently small. Such 

design avoids the reflection at the tail of the chain and therefore 

makes it possible to use a finite system to study a periodic 

structure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic of the infinite chain model. 

(1) 
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The input signal is generated by a continuous harmonic 

oscillation in force control and applied to the system at the 

beginning of the waveguide. Note that the boundary mass where 

force is applied is grounded by a linear spring with the stiffness 

of 𝑘1.  Hann window function is utilized here to control the 

amplitude of the signal for a smoother wave introduction, shown 

as below  

 

𝐴∗ = ℎ𝐴 

 

ℎ = 0.5 − 0.5𝑐𝑜𝑠 (
𝑡𝜋

𝑛𝑇
)     𝑡 ∈ [0, 𝑛𝑇], 

 

where A* is the input amplitude tuned by the Hann window 

factor h. In Equation (3), the Hann window factor h is a function 

of time t, cycles of sending signal n, and input period T. As 

shown in Figure 3, after n cycles, the signal develops to its full 

amplitude.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The growth of Hann window factor as a function 

of time. 

 

The equation of motion concerning the starting mass with 

excitation is provided below.  

 

 

𝑚𝑥̈ + 𝑘1𝛴 (𝑥 − 𝑥𝑖) + 𝑘1(−𝑥) + 𝑐𝛴(𝑥̇ − 𝑥̇𝑝) = ℎ𝐴𝑐𝑜𝑠 (𝜔𝑡) 

 

ANALYSIS APPROACH 
This section discusses i) an analytical approach to find the 

dispersion relationship of two linear cases of the system, and 

more importantly, ii) the numerical approach to find the 

amplitude-dependent dispersion relationship. It should be 

mentioned that the main focus of the dispersion analysis in this 

study is on the acoustic branch. The optical branches are ensured 

to be sufficiently far from frequency range of interest.  

Analytically, the dispersion relationship of a periodic linear 

structure can be obtained by solving the eigenvalue problem 

from the Bloch theorem shown below, where 𝝁  denotes 

wavenumber, 𝝎 denotes frequency, and M and K denote mass 

matrix and stiffness matrix respectively [15].  

 

[𝜿(𝜇) − 𝜔2𝑴]ũ(𝜇)𝑒𝑖𝑛𝜇 = 0 

 

 

𝜿(𝜇) = 𝛴𝑚=−1,0,+1 (𝑒𝑖𝑚𝜇𝐾𝑚) 

 

For systems containing nonlinear components, such as the 

cubic springs in the proposed structure, Bloch theorem can 

predict the dispersion relationship only for certain conditions. 

Since the stiffness of the cubic spring depends upon the input 

energy, when the input energy is very low, the response from the 

nonlinear spring is negligible compared to the linear coupling. 

On the opposite, when the input energy is very high, the 

nonlinear spring has a much higher stiffness than the linear 

coupling, and can be treated as rigid connection. In both 

conditions, the system shows a strong linear pattern, where 

Block theorem can be applied.  

To better understand the amplitude-dependent dispersion 

relationship, we numerically model the system in MATLAB, and 

use ode45 as our main solver for differential equations.  

Responses of broadband (frequency and amplitude) excitation 

are studied. For each signal, we measure the wavenumber of the 

response in the nonlinear unit cells using a relative wavenumber 

method. Specifically, the first masses of two adjacent nonlinear 

unit cells near the signal source are selected. The Fast Fourier 

Transformation (FFT) is then applied in the steady state of the 

time response measured at the selected masses. The FFT result 

gives the dominant frequency for each mass and its 

corresponding amplitude and phase. Then the difference of the 

phase reveals the real part of the local wavenumber. Equations 

governing the wavenumber calculation are shown here [16],  

 

𝑎(𝜔) = 𝑅𝑒(𝐺(𝜔)) 

 

𝑏(𝜔) = 𝐼𝑚(𝐺(𝜔)) 

 

𝜃(𝜔) = tan−1(
𝑏(𝜔)

𝑎(𝜔)
) 

 

𝑅𝑒(𝜇) = 𝜃𝑛(𝜔∗) − 𝜃𝑛+1(𝜔∗), 
 

where 𝑮(𝝎) is the magnitude of frequency 𝝎, and 𝝎∗ denotes 

the dominant frequency. Finally, the resultant wavenumber is 

then re-scaled to be between – 𝜋 and 𝜋. Note that the spatial 

FFT method is not preferred here because there are only 40 unit 

cells (sample points) in the structure, which restricts the 

resolution of spatial FFT. 

RESULTS 
This section presents the analytical solution of the 

dispersion relationship of two linear cases and the numerical 

results concerning i) asymmetric dispersion surface/curve, ii) 

non-reciprocal propagation represented in time responses, and 

iii) the non-reciprocal energy transmission in an optimized 

model.  

By solving the eigenvalue problem from Equation (5), the 

dispersion relationship of two linear cases are obtained and 

displayed in Figure. 4. It shows the dispersion relationship of the 

system in two linear cases: i) high energy input and ii) low 

(2) 

(3) 

(5) 

(6) 

(7a) 

(8) 

(9) 

(4) 

(7a) 
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energy input. These two curves define the boundaries of our 

system, from purely linear (low energy) to rigid-linear (high 

energy).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Analytical result of dispersion relationships 

(only acoustic branch) in high (red curves) /low (blue 

curves) energy regimes. Positive wavenumber stands for 

left-to-right propagation and negative wavenumber being 

right-to-left propagation. 

 

Numerically, the steady-state wavenumber of a mass depends 

upon the sending signal frequency and amplitude. One signal 

frequency and one amplitude only yield one steady-state 

wavenumber for a given mass. Therefore, when varying the 

sending frequency signal and amplitude, we can obtain a cloud 

of scatter points in 3D, with 3 axes being wavenumber, 

frequency, and amplitude. Most obtained scatter points fit a 

sinusoidal trend. However, considerable numerical errors happen 

for the points near the edge of the First Brillion Zone (FBZ), 

where their wavenumbers approach ±𝜋. These data points are 

revised by curve fits in both the frequency-wavenumber plane 

and frequency-displacement plane. Eventually, the dispersion 

surface shown in Figure 5(a) is obtained from a fine surface 

meshing.  

In Figure 5(b), we select the dispersion curves highlighted 

in Figure 5(a), and depict both left-to-right (L-R) propagation 

and right-to-left (R-L) propagation in the positive wavenumber 

domain. L-R propagation is represented in solid line and R-L is 

represented by dashed lines. Here, we can see clearly that as the 

input amplitude increases, both dispersion curves rises, yet to 

different height, and the gap between the L-R and R-L dispersion 

curve can be tuned by varying sending amplitude. In Figure 5(c), 

we select the purple color dispersion curve in Figure (b) and 

present it in the wavenumber-frequency plane. Note that the red 

and blue dispersion curves depict the low energy and high energy 

extreme respectively. Non-reciprocity is observed – the L-R 

propagation has a higher dispersion curve than the R-L 

propagation, and a strong non-reciprocity region is generated-- 

in between the two dashed lines. Any frequency that falls in this 

region is in the band pass for L-R, but band gap for R-L, thus can 

only propagate to the right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (a) The dispersion surface numerically 

obtained. Selected dispersion curves are highlighted. (b) 

Selected slices from the dispersion surface, with solid 

lines represent L-R propagation, and dashed lines 

represent R-L propagation. (c) A detailed view of the 

purple dispersion curve, with the red and blue curves 

represent the low-energy extreme and high-energy 

extreme respectively. Note that the range of frequency 

causing non-reciprocity is enclosed by two dashed line. 

An example frequency (black solid line) is picked, and 

response of which is shown in later work.  

(a) 

(b) 

(c) 



 5 Copyright © 2019 by ASME 

To verify such non-reciprocity in time response, we send a signal 

with the sending frequency and amplitude in the non-reciprocity 

zone, shown as the solid line in Figure 5(c). The displacement 

and frequency responses of the same mass are plotted in Figure 

6(a) and 6(b).  

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The time and frequency response of the input 

signal shown in Fig. 5(c).   

 

Clearly, the wave propagates in the L-R direction, while 

only minor noise comes through the other way. The propagating 

L-R wave now has a richer frequency content because of the 

nonlinear components; however, the induced frequencies do not 

change the dominance of the sending frequency.   

As the non-reciprocity in time response is observed, the 

energy transmission of the proposed structure is of interest to 

study. To investigate the energy transmission, we replace the 

non-reflective boundary domain by another linear waveguide 

and grounding its end. Now, the triangle-shape unit cells are 

sandwiched by two identical waveguides where signals can be 

sent and received. The schematic is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic of the model used to study energy 

transmission. 

 

Three other changes are added to the model: i) the number 

of the triangle-shaped unit cells is reduced to three, ii) the 

damping is removed from this system, and iii) the masses and 

springs in the unit cells are preliminarily optimized. The first 

change is to avoid the situation that the signal disperses too much 

energy in the long nonlinear unit cells. In this scenario, very little 

energy reaches the receiving waveguide, which makes the 

transmission ratio always low. The second change simplifies the 

problem by maintaining the total energy in the system the same. 

Finally, the third change aims to increase the asymmetry of a unit 

cell by changing the mass and spring stiffness at certain 

locations. See Figure 8 and Table 2 for more details.  

 

 

 

 
 

Figure 8. Schematic graph of the unit cell after 

preliminarily optimization.  

 

Table 2. Optimized mass and spring stiffness values  

Parameter  Value Unit 

𝑚1 0.05 kg 

𝑚2 0.0616 kg 

𝑚3 0.0733 kg 

𝑚4 0.07 kg 

𝑚5 0.05 kg 

𝑚6 0.05 kg 

𝑚7 0.3911 kg 

𝑚8 0.05 kg 

𝑘1−4 400  

 

Here, 𝑚1 − 𝑚8 represents the masses shown in Figure 8, 

and 𝑘1−4  stands for the linear spring stiffness between 𝑚1 

and  𝑚4 . The stiffness of other springs in green connections 

remains unchanged, with the normalized value of 1. Note that, a 

N/m 
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chain composed by such unit cells has an “up-down” symmetry, 

and the wave propagation is only one dimensional.  

A different excitation method is employed in this model to 

i) send finite cycles of plane wave instead of continuous signal, 

ii) reduce the time complexity of the simulation [14]. The 

excitation is realized by modifying the initial conditions 

(displacement and velocity) of masses at the boundary of the 

waveguide and the nonlinear unit cells domain to prepare a 

steady-state plane wave that propagates towards the nonlinear 

unit cells. The equations that represent such initial conditions are 

provided below: 

𝜇(𝜔) = acos (1 −
𝑚𝜔2

2𝑘1

) 

 

 𝑦|𝐿−𝑅(𝑡, 𝑥𝑖)|𝑡=0 = Acos(−𝜇(𝑥𝐿
∗ − 𝑥𝑖)) 

 

𝑦̇|𝐿−𝑅(𝑡, 𝑥𝑖)|𝑡=0 = Aωsin(−𝜇(𝑥𝐿
∗ − 𝑥𝑖)) 

 

𝑦|𝑅−𝐿(𝑡, 𝑥𝑗)|𝑡=0 = Acos (−𝜇(𝑥𝑗 − 𝑥𝑅
∗ )) 

 

𝑦̇|𝑅−𝐿(𝑡, 𝑥𝑗)|𝑡=0 = −Aωsin (−𝜇(𝑥𝑗 − 𝑥𝑅
∗ )) 

 

As shown in equation (10), the wavenumber of the sending 

signal can be obtained from the dispersion relationship in linear 

waveguide. Equation (11) and (12) depict the initial conditions 

for L-R and R-L propagation respectively, where 𝒙𝑳
∗  and 𝒙𝑹

∗  

denote the location of the left and right boundary of the triangle-

shaped unit cells domain respectively; 𝒙𝒊 and 𝒙𝒋 refer to the 

location of the mass where we change its initial conditions. Note 

that the signal is excited at the left waveguide with a right-

towards wavenumber for L-R propagation, and excited at the 

right waveguide with a left-towards wavenumber for R-L 

propagation. For both L-R and R-L cases, the signal has the same 

length, and thus the same energy.  

To study the energy transmission pattern in the second 

model, the system is first divided into three domains: left 

waveguide, nonlinear unit cells, and right waveguide. The 

energy in each area is then calculated by summing up the kinetic 

energy of each mass and the potential energy of each linear and 

cubic spring. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐿 + 𝐸𝑁𝐿 + 𝐸𝑅 
 

𝜂𝐿−𝑅 =
𝐸𝑅

𝐸𝑡𝑜𝑡𝑎𝑙

 

 

𝜂𝑅−𝐿 =
𝐸𝐿

𝐸𝑡𝑜𝑡𝑎𝑙

 

 

Since there is no damping, the total energy remains unchanged. 

Therefore, the transmission ratio is the transmitted energy, for 

example the energy in the right waveguide if L-R propagation, 

divided by the total energy, as shown in equation (14).  

In the simulation, we record the energy level in each of the 

three domains through time. Figure 9(a) and (b) depict one 

example of the energy transmission pattern for L-R and R-L 

propagation of a signal with the frequency of 17 rad/s and the 

amplitude of 0.0002m, which falls in the non-reciprocity range 

of the associated dispersion curve shown in Figure 5(c). EL, 

ENL, ER refer to the ratio of the energy in left, nonlinear, and 

right domain to the total energy respectively.  

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. (a) The energy transmission pattern for L-R. 

Around 60% of the energy passes through the nonlinear 

unit cells. (b) The energy transmission pattern for R-L. Less 

than 2% of the energy passes through the nonlinear unit 

cells. 
 

In Figure 9(a), L-R propagation, the signal is excited in the 

left waveguide. The wave travels through the nonlinear unit cell 

domain, and approximately 60% of the energy reaches the right 

waveguide at the end of the simulation. Less than 5% of energy 

remains in the nonlinear unit cells. In Figure 9(b), R-L 

propagation, the signal is excited in the right waveguide. 

However, less than 2% of energy penetrates the nonlinear unit 

cells and reaches the other waveguide. Most of the energy is 

reflected back to the right waveguide.  

 

 

 

(10) 

(11a) 

(11b) 

(12a) 

(12b) 

(13) 

(14) 

(15) 
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(a) 
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Figure 10. (a) The time response receiving signal. (b) 

The frequency response of the receiving signal. Obtained by 

conducting FFT over the highlighted region in Fig. 10(a). 

 

Similarly, we study the time response of the transmitted 

signal. Figure 10(a) and (b) presents the response of the first 

mass in the receiver waveguide in displacement and frequency 

domain. In Figure 10(a), the yellow highlighted area records the 

transmitted signal. It is clear that there is big difference in the 

response amplitude between L-R and R-L. Note that, the 

response after the yellow area is only noises due to the residual 

energy of the adjacent nonlinear unit cell. In Figure 10(b), the 

frequency response is obtained by conducting FFT analysis over 

the highlighted area. The L-R transmitted signal still maintains 

the sending frequency dominating, while the R-L transmitted 

signal can be treated as noise.  

CONCLUSIONS 
The proposed system broke reciprocity with a passive 

manner. It contains nonlinearity and geometric asymmetry that 

rose the dispersion relationship curve to different levels for 

different directions. Therefore, when the frequency fell in the 

range between the passband edges of the asymmetrical 

dispersion curves, the wave is allowed to propagate in one way 

but not the other, where giant non-reciprocity is observed. The 

frequency response showed that the signal maintained its source 

frequency in the chain.  

The next steps on this study will be to further optimize the 

system parameters to break the reciprocity over a larger range of 

frequency and conduct associated experiment. 
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