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ABSTRACT

Cosmological simulations are reaching the resolution necessary to study ultra-faint dwarf

galaxies. Observations indicate that in small populations, the stellar initial mass function (IMF)

is not fully populated; rather, stars are sampled in a way that can be approximated as coming

from an underlying probability density function. To ensure the accuracy of cosmological

simulations in the ultra-faint regime, we present an improved treatment of the IMF. We

implement a self-consistent, stochastically populated IMF in cosmological hydrodynamic

simulations. We test our method using high-resolution simulations of a Milky Way halo, run

to z = 6, yielding a sample of nearly 100 galaxies. We also use an isolated dwarf galaxy to

investigate the resulting systematic differences in galaxy properties. We find that a stochastic

IMF in simulations makes feedback burstier, strengthening feedback, and quenching star

formation earlier in small dwarf galaxies. For galaxies in haloes with mass � 108.5 M�, a

stochastic IMF typically leads to lower stellar mass compared to a continuous IMF, sometimes

by more than an order of magnitude. We show that existing methods of ensuring discrete

supernovae incorrectly determine the mass of the star particle and its associated feedback.

This leads to overcooling of surrounding gas, with at least ∼10 per cent higher star formation

and ∼30 per cent higher cold gas content. Going forwards, to accurately model dwarf galaxies

and compare to observations, it will be necessary to incorporate a stochastically populated

IMF that samples the full spectrum of stellar masses.

Key words: methods: numerical – supernovae: general – galaxies: dwarf – galaxies: forma-

tion – galaxies: star formation.

1 IN T RO D U C T I O N

Prior to the last decade, dwarf galaxies posed a long-standing

challenge to galaxy formation models within the context of the

cold dark matter (CDM) paradigm. In recent years, however,

enormous progress has been made in simulating these low-mass

systems, owing to increasing resolution and careful modelling of

the baryonic processes involved. For example, repeated fluctuations

of the gravitational potential well of a halo due to supernova-

induced gas outflows have been shown to flatten the central dark

matter profile (e.g. Read & Gilmore 2005; Mashchenko, Wadsley &

Couchman 2008; Governato et al. 2010; Pontzen & Governato 2012;

Di Cintio et al. 2014; Read, Agertz & Collins 2016; Fitts et al.

2017), alleviating tension with observations (e.g. Simon et al. 2005;

� E-mail: applebaum@physics.rutgers.edu

de Blok et al. 2008; Kuzio de Naray, McGaugh & de Blok 2008).

Supernova-driven outflows also remove low-angular momentum

gas, leading to the creation of bulgeless dwarf galaxies (Governato

et al. 2010; Brook et al. 2011; Teyssier et al. 2013). Similar

effects together with enhanced tidal stripping within the parent halo

successfully reduce the central densities of the most massive Milky

Way satellites (e.g. Zolotov et al. 2012; Brooks & Zolotov 2014;

Sawala et al. 2016; Tomozeiu, Mayer & Quinn 2016; Wetzel et al.

2016; Garrison-Kimmel et al. 2019), solving the well-known ‘too

big to fail’ problem (Boylan-Kolchin, Bullock & Kaplinghat 2011,

2012). Destruction of satellite haloes from interactions with the

central disc potential reduces the theoretically expected number

of MW satellites (e.g. Brooks et al. 2013; Sawala et al. 2016;

Wetzel et al. 2016; Garrison-Kimmel et al. 2019), solving the

‘missing satellites’ problem (Klypin et al. 1999; Moore et al. 1999).

Proper consideration of the biases introduced when comparing
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Sampling the IMF in cosmological simulations 9

observations to theoretical results also brings theory into agreement

with observations (Brooks et al. 2017).

With the recent successes in modelling dwarf galaxies, various

groups are pushing the limits of resolution even further into the

ultra-faint dwarf (UFD) galaxy range (Mstar � 105 M�; e.g. Munshi

et al. 2013; Wheeler et al. 2015; Munshi et al. 2017, 2019).

Despite significant differences in feedback models and simulation

details, many groups have succeeded in reproducing realistic dwarf

galaxies. This is largely a result of galaxy self-regulation; i.e. global

galaxy properties are robust to the details of star formation and

feedback, since increased feedback suppresses future star formation

(Saitoh et al. 2008; Shetty & Ostriker 2008; Hopkins, Quataert &

Murray 2011; Christensen et al. 2014; Agertz & Kravtsov 2015;

Benincasa et al. 2016; Hopkins et al. 2018). As simulations approach

the UFD regime, however, the self-regulation of galaxies breaks

down. Munshi et al. (2019) demonstrated this conclusively, finding

that different star formation prescriptions predict different numbers

of UFD galaxies. Further, the interplay of supernova feedback

and reionization with the gas in these low-mass haloes leads to

diverging star formation behaviour at early times. Thus, without a

concerted effort to study subgrid models in the low-mass galaxy

regime, the predictive power of cosmological simulations will

diminish.

In this work, we investigate another physical prescription that

can alter UFD simulation results: the realistic sampling of stars

and its impact on subsequent feedback. Since the high-mass stars

providing the bulk of stellar feedback are relatively uncommon,

nuances in choice of sampling may not ‘average out’ in UFDs. It is

therefore important to correctly determine the stellar masses within

a population; this is done through the use of the stellar initial mass

function (IMF), which describes the number distribution of stars as

a function of their birth mass.

Estimates of the IMF in large stellar populations have shown

remarkable consistency. Parametrizations generally find a steep

power-law slope for more massive stars consistent with the original

Salpeter (1955) estimate, with a ‘knee’ at mstar ∼ M�, below which

the distribution involves a shallower decline (e.g. Kroupa, Tout &

Gilmore 1993; Kroupa 2001; Chabrier 2003). While theoretical ex-

pectations predict systematic variation in the IMF with environment

(Kroupa et al. 2013) in large resolved stellar populations there is

limited evidence of deviations from the universal IMF (Bastian,

Covey & Meyer 2010). While several recent observations suggest

systematic variations (e.g. van Dokkum & Conroy 2010; Cappellari

et al. 2012; Conroy & van Dokkum 2012; Geha et al. 2013; Kalirai

et al. 2013; Gennaro et al. 2018), there is neither consensus on their

significance nor a clear physical driver for their variation, with

dominant candidates including metallicity (e.g. Martı́n-Navarro

et al. 2015; Gennaro et al. 2018) and velocity dispersion (e.g.

La Barbera et al. 2013; Spiniello et al. 2014; Rosani et al.

2018).

Despite the general success of the IMF formalism in describing

galaxies and large stellar populations, in small populations it is

clear that the current IMF formalism is insufficient. The inherently

discrete nature of stars makes a continuous description unrealistic.

To find a better description, a variety of observations can be used.

For example, there exists an average relationship between the mass

of an embedded star cluster and the mass of the most massive star

residing in the cluster, such that more massive stars tend to reside in

more massive clusters (Weidner, Kroupa & Bonnell 2010; Weidner,

Kroupa & Pflamm-Altenburg 2013a; see also Cerviño et al. 2013

for a detailed discussion). Other observations have shown lower

values of Hα- or Hβ-to-FUV luminosity ratios in galaxies with

low star formation rates (SFRs), indicating a relative dearth of very

high-mass stars (Lee et al. 2009, 2016; Meurer et al. 2009).

It follows from the above observations that there is a tendency

for fewer high-mass stars to form in small, low-SFR populations.

Observations of SFR indicators can be explained via bursty star

formation histories (Weisz et al. 2012; Guo et al. 2016; Emami

et al. 2019), but IMF sampling effects may also contribute (e.g.

Pflamm-Altenburg, Weidner & Kroupa 2009; Fumagalli, da Silva &

Krumholz 2011; Eldridge 2012).

There are two broad theories of how the IMF should be sampled

to explain these observations. The first is the integrated galactic

IMF (IGIMF), presented in Kroupa & Weidner (2003), Weidner &

Kroupa (2006), Weidner et al. (2010), Weidner et al. (2013b) and

Yan, Jerabkova & Kroupa (2017), which assumes a deterministic

relationship between the mass of a star cluster and the stellar

mass distribution within it. The other predominant explanation

for the observations is that the IMF is sampled randomly (e.g.

Elmegreen 2006; Corbelli et al. 2009; Calzetti et al. 2010; Fumagalli

et al. 2011; Andrews et al. 2013, 2014). In every star formation

event, stars form in a way approximated as being drawn from

an underlying probability density function – the universal IMF.

Since the probability of forming high-mass stars is rare, in small

populations there is an average tendency for massive stars to form

in massive clusters, mimicking the proposed IGIMF.

The only restriction in stochastically sampling the IMF is that a

star cannot form with a greater mass than the cluster in which it

resides (i.e. stars cannot form with more mass than their available

gas reservoirs). Until recently, star particles in cosmological simula-

tions were large enough to ignore all the nuances of IMF sampling,

and stellar feedback was calculated by treating star particles as a

simple stellar population with a uniform, continuous IMF. With

sufficiently massive star particles, this was a reasonably accurate

approximation. At lower particle masses, however, the above model

has proven increasingly unrealistic. Further, star particles are small

enough such that not only is a uniform IMF no longer consistent

with observations, but a naive calculation of supernova counts per

time-step yields fractions of supernovae exploding (Revaz et al.

2016).

In small galaxies, the credibility of simulated results depends

upon proper treatment of the IMF. Carigi & Hernandez (2008)

demonstrated that a stochastically sampled IMF does not converge

to the underlying continuous IMF until Mstar ∼ 105 M�. Cosmolog-

ical galaxy simulations are now pushing to high enough resolution

to study stellar populations in the ultra-faint regime; at these scales,

not only individual star particles but also entire galaxies will have

incompletely sampled IMFs.

Limited work has been done in investigating the impacts of

IMF sampling within cosmological simulations. In post-processing,

Sparre et al. (2017) used the SLUG code (da Silva, Fumagalli &

Krumholz 2012, 2014; Krumholz et al. 2015) to show how a

stochastic IMF increases the scatter of dwarf galaxies’ Hα-to-

FUV ratios, but the simulation itself assumed a fully populated

IMF. Revaz et al. (2016) studied the effects on IMF sampling

on stellar chemical abundances in isolated dwarf galaxies and

found that a continuous IMF becomes unrealistic at star particle

masses below ∼105 M�. They further found that regardless of

sampling method, the combined IMF of multiple-star particles

together will be undersampled below particle masses of ∼103 M�.

Bracketing the case of a stochastic IMF, Hensler, Steyrleithner &

Recchi (2017) compared a truncated and a filled IMF in simulations

of dwarf galaxies, and found that truncation suppresses the self-

regulation of star formation. Several cosmological simulations have
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10 E. Applebaum et al.

Table 1. Properties of the cosmological simulations used in this work, including particle masses, the expectation value

of core collapse supernovae per star particle, and the softening length.

Simulation Mdark Mgas Mstar 〈MSNII〉 Softening

(M�) (M�) (M�) Length (pc)

Elena (Milky Way) 1.8 × 104 3.3 × 103 990 9.9 87

Isolated 109 M� 1.0 × 104 1.4 × 103 420 4.2 21

discussed or incorporated methods of discretizing stellar feedback

from Type-II supernovae (e.g. Stinson et al. 2010; Agertz et al.

2013; Hopkins et al. 2014, 2018; Rosdahl et al. 2018). The most

common method has been to decide whether or not a star explodes

by drawing from a binomial or Poisson distribution derived from an

average measure of supernova rates. The drawbacks of this method

are discussed in Section 2.3. Su et al. (2018) took first steps in

investigating IMF sampling and stochastic effects more closely; they

found a dramatic decrease in star formation when discretizing their

supernovae compared to continuous energy injection. However,

their model does not sample the full range of masses in the IMF and

still calculates feedback by drawing from a Poisson distribution.

More work has been done in high-resolution simulations that

do not model cosmological contexts. Grudić & Hopkins (2019)

used the same methodology as Su et al. (2018) on molecular cloud

scales and found similar results. Sormani et al. (2017) introduced

a method based on discretizing stars into mass bins that are then

Poisson sampled. Other groups (e.g. Gatto et al. 2017; Geen et al.

2018) separate their IMF into high- and low-mass regimes, and

stochastically sample only within the high-mass regime. We note

that some recent simulations of very small, isolated dwarf galaxies

now track the evolution of individually sampled stars (Hu et al. 2017;

Emerick, Bryan & Mac Low 2019) and recent work with isolated

Milky Way–mass galaxies includes a stochastically populated IMF

within star particles (Fujimoto, Krumholz & Tachibana 2018),

but this has never previously been attempted in cosmological

simulations.

In this paper, we present a new prescription for star formation

that stochastically samples the full spectrum of masses in the IMF

and individually tracks the evolution of high-mass stars within

them. This methodology ensures conservation of mass and self-

consistency of radiative and supernova feedback. We discuss the

simulations and the sampling method in Section 2, and compare

to existing discretization methods. In Section 3, we demonstrate

the effects of improved IMF sampling. In Section 4, we discuss

implications of this sampling method for future observational

predictions. We conclude in Section 5.

2 M E T H O D S

We implement a new stochastic IMF treatment for star particles

in our simulations. The updated sampling changes the stellar mass

distribution from a smooth IMF to a set of discrete stars; these stars

are then used to calculate supernova explosions, metal production,

and high-energy radiation output. We emphasize that the actual

feedback mechanisms remain unaltered; what changes in the new

recipe is the timing and quantity of feedback each star particle

produces.

2.1 Simulations

To test the new IMF prescription, we ran cosmological zoom-in

simulations of a Milky Way–mass galaxy with and without the

stochastic IMF. These were run until immediately after reionization,

by which time UFD galaxies – those with Mstar � 105 M�, and

therefore unconverged IMFs – have formed most or all of their stars

(Brown et al. 2014; Weisz et al. 2014). Since the same dark matter

particles form the same haloes in simulations with and without

a stochastic IMF, we were able to match galaxies that formed

in corresponding haloes between runs. To ensure our results are

independent of any intrinsic scatter in the cosmological runs (and

allow a finer time resolution of outputs), we also used an isolated

dwarf galaxy. For both treatments of the IMF, we ran the same

109 M� halo 50 times, and compared the ensemble behaviour.

The relevant properties of each simulation can be found in

Table 1. The cosmological simulations used in this work were

selected from a uniform resolution, dark matter-only simulation of

50 Mpc per side, run with Planck cosmological parameters (Planck

Collaboration XIII 2016). A region around the selected halo in

these simulations was rerun at higher resolution using the ‘zoom-

in’ technique (Katz & White 1993). The halo used in this work

was selected to resemble the Milky Way at z = 0, and is one of the

haloes of the DC Justice League suite of simulations (Bellovary et al.

2019), nicknamed ‘Elena.’ We use a gravitational force softening

length of 87 pc and equivalent resolution to a 61443 grid. The dark

matter particle masses are 1.8 × 104 M�, the gas particles begin

with 3.3 × 103 M�, and the star particles form with a mass of

994 M�. Versions of the DC Justice League suite at this resolution

are being run to the present day, and will constitute the highest

resolution Milky Way simulations to date.

The initial conditions for the 109 M� isolated dwarf galaxy have

been described previously (Kaufmann et al. 2007; Stinson et al.

2007; Christensen et al. 2010). In short, the initial conditions consist

of an equilibrium halo with a Navarro–Frenk–White concentration

of c = 8. Dark matter velocities were determined via the Eddington

inversion method of Kazantzidis, Magorrian & Moore (2004).

Gas particles were assigned temperatures to ensure hydrostatic

equilibrium before cooling, and were given a uniform rotational

velocity corresponding to a spin parameter ∼0.04. Dark matter

particles within the virial radius have a mass of 1.0 × 104 M�, gas

particles have a mass of 1.4 × 103 M�, and star particles from with

425 M�. The force softening length is 0.1 per cent the virial radius,

or 21 pc.

The stochastically populated IMF is incorporated into the N-

body + smoothed particle hydrodynamics (SPH) code CHANGA

(Menon et al. 2015), a fully cosmological simulation code that

includes physics from the GASOLINE2 code (Wadsley, Keller &

Quinn 2017), but utilizes the CHARM++ runtime system for

dynamic load balancing to efficiently scale up to thousands of cores.

All simulations discussed in this work smooth over 32 nearest-

neighbour gas particles.

As discussed above, feedback from high-mass stars is crucial for

modelling realistic galaxies. In this work, we use the ‘blastwave’

supernova feedback mechanism described in detail in Stinson et al.

(2006), whereby mass, energy, and chemically enriched material

are deposited into neighbouring gas when a massive star dies as a

MNRAS 492, 8–21 (2020)
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Sampling the IMF in cosmological simulations 11

Type-II supernova. With the existing continuous IMF, the minimum

and maximum stars that explode in a given time-step are calculated

based on the stellar lifetime parametrizations of Raiteri, Villata &

Navarro (1996). The number and mass in supernovae are then

determined by integrating along the IMF between these stellar

masses. We note that the default time-step for calculating feedback

and star formation in CHANGA is 1 Myr. We deposit 1.5 × 1051

erg per supernova1 among gas particles within the blast radius

calculated using McKee & Ostriker (1977), then gas cooling is shut

off until the end of the blastwave’s snowplow phase. We assume

stars between 8 and 40 M� explode as supernovae, while more

massive stars collapse into black holes. Future work will incorporate

a stochastic IMF using the ‘superbubble’ feedback mechanism

(Keller et al. 2014). Results from CHANGA and GASOLINE with

blastwave feedback have been used to reproduce a variety of

observations, including the stellar mass–halo mass relation (Munshi

et al. 2013, 2017), the mass–metallicity relation (Brooks et al. 2007),

the baryonic Tully–Fisher relation (Christensen et al. 2016; Brooks

et al. 2017), the abundance of Damped Lyman α systems (Pontzen

et al. 2008), and the properties of dwarf Spheroidal Milky Way

satellites (Brooks & Zolotov 2014). These models also produced

the first simulated cored dark matter density profiles and bulgeless

disc galaxies (Governato et al. 2010; Brook et al. 2011; Governato

et al. 2012).

In addition to feedback from core collapse supernovae, CHANGA

incorporates metal cooling and diffusion in the ISM (Shen, Wads-

ley & Stinson 2010), a time-dependent UV background (Haardt &

Madau 2012), Type-Ia supernovae, mass-loss in stellar winds, and

metal enrichment (Stinson et al. 2006), and supermassive black hole

formation, growth, and feedback (Tremmel et al. 2015, 2017).

CHANGA includes a star formation recipe based on the local

abundance of molecular hydrogen (H2; Christensen et al. 2012).

This scheme includes calculations for the formation of H2, shielding

from dissociative Lyman Werner (LW) radiation, and production of

LW photons from high-mass stars. LW photon production from star

particles is calculated using STARBURST99 (Leitherer et al. 1999);

for star particles represented by a uniform IMF, as done until now,

the calculation is based on a single-age, simple stellar population.

Haloes in the cosmological simulations are identified using

AMIGA’S HALO FINDER (Gill, Knebe & Gibson 2004; Knollmann &

Knebe 2009). Haloes are defined as the radius within which the

density reaches a redshift-dependent overdensity criterion using the

approximation of Bryan & Norman (1998).2 Virial radius and halo

mass are defined according to this overdensity.

2.2 Stochastically populated IMF

Ideally, no approximations would be necessary in cosmological

simulations and every individual star would be tracked within a

given stellar population. However, tracking hundreds of individual

stars within each of millions of star particles would be computa-

tionally prohibitive. Any approximation, then, should be guided by

two considerations: (1) we wish to preserve the highest accuracy

for the individual stars whose feedback has the greatest impact

on galaxy evolution, and (2) we wish to preserve the highest

accuracy for individual stars that are rarest, and therefore are most

1Rates of supernova energy deposition were determined using the parameter

optimization technique described in Tremmel et al. (2017) and Anderson

et al. (2017).
2At z = 0, the overdensity compared to the critical density is ρ/ρc ≈ 100.

altered by the approximations of a continuous, universal IMF.

Therefore, we strive to maintain highest accuracy in the high-

mass component; specifically, stars that eventually release energy

as Type-II supernovae.

Due to the nature of random sampling, the mass of a simulated

stellar population cannot be predetermined if using a stochastically

populated IMF; rather, only an estimate can be known a priori

(see e.g. Cerviño et al. 2013). Since in our simulations we form star

particles of a given mass, we must use an algorithm to stochastically

populate stars in a way that reaches the desired mass of our

population.

When stochastically sampling from the IMF, the IMF is treated

as a probability density function, so that its area is normalized to

one but its form is otherwise unchanged. The algorithm we adopt is

the stop-nearest method (e.g. da Silva et al. 2012; Eldridge 2012).

With this method, stars are drawn from the IMF until the desired

mass is first exceeded. Then, the last star drawn is either kept or

discarded, depending on whether the total mass is closer with or

without its inclusion.

The methodology, then, for our stochastically populated IMF is

as follows:

(i) If we determine a star particle forms, the formation mass is

the target mass.

(ii) Following the stop-nearest method, we draw stars from the

IMF until we pass our target mass threshold, then either keep or

discard the last star based on which brings us closer to the target

mass.

(iii) We discard all stars below a cut-off mass3 and reapproximate

the low-mass stars as a continuous IMF, normalized such that the

total mass of the star particle is the target mass.

(iv) For feedback dependent on stellar masses above the cut-off,

we use the individual high-mass stars to calculate the timing and

quantity. For a cut-off of 8 M�, all energy and metals from Type-II

supernovae and LW photon production are calculated discretely;

Type-Ia supernovae and stellar winds are calculated as in the case

of a continuous IMF, since they come from the stellar mass range

approximated as a continuous distribution.

This methodology shares similarities with that of, e.g. Gatto et al.

(2017); however, we sample stars over the entire mass range of the

IMF rather than just among the high-mass end to avoid imposing a

restriction on either the mass in high-mass stars or the number. We

thus allow for substantially more variation in the mass and number

of high-mass stars per star particle. The numerical implications of

this method are discussed briefly in Appendix B.

An example of the methodology can be seen in Fig. 1, where we

show three different realizations of a stochastically populated star

particle with a total mass of 500 M�. In a population of this mass,

we expect approximately 5.5 stars with 8 M� < mstar <100 M�,

and 105 M� in mass for the same range. For each realization, we

show the change in number and mass of high-mass stars from these

expected values, as well as the per cent changes these correspond

to. Since only about 20 per cent of the mass in these star particles is

in the high-mass range, even relatively large deviations in the mass

content of the discrete portion result in apparently small changes in

the normalization of the low-mass portion. To see how the sampling

affects the resulting stellar feedback, Fig. 2 shows the supernova

rate in 1 Myr time-steps for the same three star particles.

3Our fiducial cut-off mass is 8 M�. Appendix A discusses what would

happen if we raised the value of the cut-off.

MNRAS 492, 8–21 (2020)
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12 E. Applebaum et al.

Figure 1. Three realizations of a stochastically populated 500 M� star particle, following the methodology of Section 2.2. The grey dashed line shows the

universal underlying IMF of Kroupa (2001), scaled to the population mass. The orange circles represent the IMF recovered from stochastically drawing from

the entire IMF to which we then apply a continuous/discrete cut-off. The solid blue line shows the portion of the IMF that is approximated as continuous after

sampling. The blue arrows represent individual, discrete high-mass stars tracked within the star particle. The difference in number of high-mass stars from

the 5.5 stars expected above 8 M� using a continuous IMF, as well as the difference in mass of high-mass stars from the expected 105 M�, is given for each

realization. A stochastically populated IMF leads to large variation in mass and number of high-mass stars in each star particle.

Figure 2. The supernova rate in 1 Myr intervals for the same three star particles as Fig. 1, with a stochastic IMF and a continuous IMF. The stochastically

populated IMF leads to long periods of no feedback, with several intervals of stronger feedback. There are also different total numbers of supernovae and

greatly varied timings. Though the middle star particle has three discretely tracked high-mass stars, only one star is below 40 M� and therefore in the mass

range of Type-II supernovae.

These three realizations demonstrate several important features

introduced by a stochastically populated IMF. The first, and most

fundamental, is that high-mass stars are discretized, and therefore

Type-II supernovae are discretized as well. We discuss in Section 2.3

how proper discretization of stars can only be done with a com-

prehensive consideration of IMF sampling methodology. Another

unsurprising change is that the actual number of high-mass stars

within a star particle can vary greatly. For example, there are eight

stars with mstar > 8 M� in the left-most star particle of Fig. 1,

and only two in the right-most star particle. Less obvious, the

number and mass in high-mass stars is only loosely correlated. The

middle star particle, for example, has fewer high-mass stars than

the average, but has more mass in this range because the few high-

mass stars that did form tended to be more massive. As seen in the

middle panel of Fig. 2, we also note that since Type-II supernovae

are restricted to stars with 8 M� < mstar <40 M�, only one of the

high-mass stars in this star particle would actually explode as a

supernova.

2.3 Existing discretization methods

Currently, there is one dominant method of discretizing supernova

feedback in cosmological simulations (e.g. Stinson et al. 2010;

Hopkins et al. 2014; Rosdahl et al. 2018; Smith, Sijacki & Shen

2018; Su et al. 2018), which we will henceforth refer to as ‘quantized

feedback.’ While this is not the only method used in the simulation

community, it seems to be the prevailing method among high-

resolution cosmological simulations, and so we focus on it here.

We emphasize that the issues raised in the following discussion are

true for any method that does not sample the distribution of stars at

birth, but rather calculates supernova explosions ‘on the fly’, while

leaving the remainder of the IMF unchanged.

In quantized feedback, the number of supernovae in a given

time-step is drawn from either a binomial distribution or Poisson

distribution.4 The supernova mean rate may be taken from rate

tables (as in Hopkins et al. 2014) or from the expectation number of

supernovae in that time-step (e.g. Stinson et al. 2010 or the RIMFS

method of Revaz et al. 2016). While this method guarantees that

only integer numbers of stars explode in a given time-step, we

note that at high resolution there are several internal inconsistencies

upon closer inspection. The importance of these inconsistencies

4A binomial distribution with many trials and a small probability of

success converges to a Poisson distribution, so these two formulations are

approximately equivalent.
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Sampling the IMF in cosmological simulations 13

on simulation results depends on the size of the ensemble of star

particles considered. Here, we start with the case of a single-star

particle.

First, this method cannot guarantee that the mass used in

calculating feedback is the same as the dynamical mass of the

particle. The mass of stars below the quantized regime is fixed,

while the mass of stars within the quantized regime can vary by

more than a factor of 2. In terms of the number of stars within the

star particle, a fixed number of stars (those below the quantization

limit) are added to a Poisson distribution of stars (those that are

quantized). This combination will rarely yield the assumed initial

particle mass. For smaller star particles, this effect will be more

severe. The star particle mass and the mass removed from any

individual parent gas particle will therefore be inconsistent. If, on the

other hand, mass conservation is enforced (for example, by adding

back missing mass or subtracting excess mass in the low-mass end

after supernovae explode), then this method will require the mass

in low-mass stars to be amended in real time in an unphysical way,

leading to more internal inconsistencies. Additionally, imposing a

limit (minimum) on the number of supernovae that can explode will

artificially concentrate supernovae to go off in early (late) times.

To see this in more detail, we consider many trials of a 250 M�

star particle with a Kroupa (2001) IMF and demonstrate that without

an a priori knowledge of the stellar mass distribution, the stated star

particle mass is inconsistent with the initial mass implied by the

number of supernovae explosions. We consider a slightly simplified

version of what occurs in simulations, assuming for each trial that

we begin with the same metallicity. The mass below 8 M� in a star

particle of this mass and IMF is 198 M�, with the remainder falling

in the high-mass portion of the IMF. For each particle, we iterate

forwards in time-steps of 105 yr, and at each time-step determine

whether a supernova explodes by the method of Stinson et al. (2010)

(i.e. drawing from a binomial distribution). To make this comparison

more applicable to other simulators without upper limits on core

collapse supernovae, we do not place a Type II upper limit of 40 M�.

If a supernova explodes, we add the initial mass of the star that

exploded to the initial low-mass total of the star particle. Since the

range outside of Type-II supernovae is not quantized, its mass is

unaffected by this procedure. The results of this process are shown

in Fig. 3. While we use the specific methodology of Stinson et al.

(2010), the results of Fig. 3 are broadly true for any scheme that uses

a binomial or Poisson distribution to determine whether a supernova

explodes in real time at each time-step.

A second drawback of this method, similar to the first, is that other

forms of feedback are incorrectly calculated for every individual star

particle. Much as mass is not conserved because the number and

mass of high-mass stars is not known a priori, neither is any form

of feedback that relies on high-mass stars. Photoionizing radiation

and photoelectric feedback in simulations are calculated from the

distribution of stars within a population, often relying on stellar

population synthesis codes (e.g. Christensen et al. 2012; Hopkins,

Quataert & Murray 2012; Agertz et al. 2013; Rosdahl et al. 2013;

Stinson et al. 2013; Ceverino et al. 2014). If the actual distribution

is not known ahead of time (and, as shown previously, is almost

certainly different from the assumed distribution), then the photon

estimates will be inconsistent. Since various feedback effects add

non-linearly (Hopkins et al. 2014), any simulation that includes

different feedback mechanisms must ensure that all are consistent.

The only way to ensure consistency is to sample the IMF at the

formation time of the particle.

To see how the results diverge between quantized feedback and

a stochastic IMF, we run an ensemble of dwarf galaxies using the

Figure 3. A Monte Carlo simulation of quantized feedback in which

supernovae explode each time-step according to a binomial distribution

given by their expected number. Thus, the mass in stars less massive than

Type-II progenitors is fixed while the mass in high-mass stars can vary

widely. The probability distribution of the resultant total initial mass of the

star particle is shown. The vertical dashed line shows the assumed initial

mass. Quantized feedback can result in almost 40 per cent difference between

the assumed initial mass of the star particle and the mass implied by the

number and mass of supernova explosions. To enforce mass conservation,

the number and mass in low-mass stars would have to be constantly updated

in real time as supernovae explode, leading to further inconsistencies.

quantized feedback of Stinson et al. (2010). We compare the results

in Section 3.4.

We note one more advantage of the stochastic IMF over quantized

feedback: any other sampling method can be easily incorporated. As

discussed above, there is still ongoing debate over the fundamental

way in which high-mass stars form, and therefore the proper way to

sample from the IMF. If we wanted to use, for example, the sorted

sampling of Weidner & Kroupa (2006), we could do so provided we

implement a treatment for clusters. Choosing sampling methods is

impossible in methods such as quantized feedback where the mass

distribution is not known from birth.

3 R ESULTS

3.1 Cosmological star formation

For this paper, we restrict our attention to galaxies residing in well-

resolved haloes with Mvir > 107 M�. We focus exclusively on

galaxies that exist in both runs to ensure our results are converged. To

avoid Poisson noise in star formation between matching haloes, we

only consider galaxies where at least one of the two runs formed at

least four star particles. At z = 6, Elena forms 86 galaxies satisfying

the above criteria that are either in the field or satellites of the main

halo.

The most direct way to measure the impact of any prescription

is through its effect on the stellar mass of galaxies. There is active

research in the literature regarding the abundance of dwarf galaxies,

which will soon be discovered in unprecedented numbers with the

Large Synoptic Survey Telescope. There is also growing consensus

that there is large scatter in the stellar mass–halo mass relationship

at the low-mass end (Lin & Ishak 2016; Garrison-Kimmel et al.

2017; Munshi et al. 2017; Kulier et al. 2019). While we do not

expect a stochastic IMF to significantly alter these relationships in

massive galaxies, we do expect a resulting change in feedback to

MNRAS 492, 8–21 (2020)
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14 E. Applebaum et al.

Figure 4. Left: The cumulative stellar mass function of galaxies in our sample for runs with a stochastic and continuous IMF. While converged above ∼105 M�,

the run with a stochastic IMF is shifted towards smaller stellar masses below this mass. Right: Stellar masses for galaxies residing in matching haloes between

the two simulations. Points are coloured according to the mass of the dark matter halo hosting the galaxy. The dashed grey line shows equal masses between

runs. The smallest galaxies see a systematic reduction in stellar mass with a stochastic IMF compared to the run without a stochastic IMF.

affect dwarf galaxies, particularly those small enough such that their

IMF is not converged.

The left-hand panel of Fig. 4 shows the cumulative stellar mass

functions at z = 6 of the cosmological runs. The runs are identical

other than the treatment of the IMF. Galaxies with Mstar � 105 M�

are fully converged, with identical stellar mass functions above

this point. Below this mass, however, there is a clear shift towards

smaller stellar masses in the run with a stochastic IMF.

To further quantify the differences in stellar mass, the right-

hand panel of Fig. 4 shows the stellar masses of all galax-

ies in the left-hand panel, with corresponding galaxies matched

between the two runs. The galaxies are coloured according to

the mass of the dark matter halo in which they reside.5 The

figure shows that in the smallest galaxies, the stellar mass is

generally lower with the stochastic prescription than with the

continuous prescription. In the low-mass range, galaxies with a

stochastic IMF see a reduction in stellar mass of up to an order

of magnitude compared to the equivalent galaxy with a continuous

IMF.

The trend of star formation suppression with a stochastic IMF

becomes clearer if we instead arrange the stellar masses according

to their dark matter masses. Fig. 5 shows the change in stellar mass

as a function of halo mass for both sets of galaxies. Below a halo

mass of ∼108.5 M�, galaxies formed with a stochastic IMF tend

to have their star formation suppressed compared to a continuous

IMF. Above this mass there is little change. This trend appears in

addition to the generally greater scatter at lower halo mass which

results from the breakdown of halo self-regulation. This dependence

clarifies one of the outlier results of Fig. 4, where a somewhat more

massive galaxy (∼106 M� in the run with a continuous IMF) still

sees a reduction of an order of magnitude in stellar mass in the run

with a stochastic IMF. The cause for this is that while its stellar

mass is greater, its dark matter halo is more typical of the type that

hosts ultra-faint galaxies.

5More precisely, they are coloured by the mean of matching halo masses

in the two runs; however, the dark matter halo masses of the stochastic and

non-stochastic runs are typically not more than 5 per cent different.

Figure 5. Difference in stellar mass as a function of dark matter halo mass

for matched galaxies across runs with and without a stochastic IMF. The

dashed grey line indicates equal masses between runs. Lower halo masses

have increased scatter, and starting at Mdark ∼ 108.5 M�, galaxies in the run

with a stochastic IMF are generally lower than with a continuous IMF.

3.2 Bursty feedback

3.2.1 Supernova timing

To explain the reduced star formation with a stochastically sampled

IMF as compared to the continuous IMF, a simple guess would be

that since we now allow the total number of supernovae per star

particle to vary, we now have varying total levels of feedback. At

low SFR, however, a stochastically sampled IMF is expected to

under-fill the high-mass end of the IMF, which would lead to fewer

supernovae and less energy in feedback. If total supernova energy

were the dominant factor, then, we would expect to see higher stellar

masses in the run with a stochastic IMF, which is the opposite of the

results shown in Fig. 4. In fact, among galaxies with suppressed star

formation, roughly equal numbers have above and below average

supernova total feedback.

MNRAS 492, 8–21 (2020)
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Sampling the IMF in cosmological simulations 15

Figure 6. Burstiness of the supernova rate as a function of dark matter halo

mass for runs with and without a stochastic IMF. Burstiness is calculated

according to equation (1) using 1 Myr intervals during the first 30 Myr of

star formation. Independent of galaxy properties, the run with a stochastic

IMF leads to burstier supernova feedback, which leads to the suppression of

star formation in dwarf galaxies that are too low-mass to self-regulate.

More important than the absolute number of supernovae, then,

is the timing of the explosions. As is clear in Fig. 2, the supernova

feedback with a stochastic IMF becomes much more temporally

clustered. To see this in more detail, we can define a burstiness

parameter (Goh & Barabási 2008 and similar to equation 1 of

Mistani et al. 2016) as

B =
σ/μ − 1

σ/μ + 1
, (1)

where σ is the standard deviation of the supernova rate, and μ

is the mean supernova rate. Using this definition, the burstiness

ranges from −1 to 1; a uniform distribution has a burstiness B =

−1, an exponential distribution has a burstiness B = 0, and the

burstiness approaches 1 as σ /μ → ∞. We calculate the rate in

1 Myr intervals6 for the first 30 Myr of every galaxy’s star formation

(coinciding roughly with the longest-lived supernova from the first

star particle to form in the galaxy). The results are plotted in

Fig. 6.

As seen in the figure, the supernova rate is significantly burstier

in runs with a stochastic IMF than runs with a continuous IMF.

Crucially, the increase in burstiness applies to all galaxies, not only

galaxies with low SFR. Since feedback with a stochastic IMF is

universally more effective, it may seem surprising that we only see

an impact in small galaxies. As was shown in Fig. 5, this stems

from the stronger dependence on halo mass than stellar mass. The

bursty supernova feedback leads to more effective heating of gas, as

will be shown explicitly in the next section. However, only in small

haloes less able to self-regulate does this more effective feedback

completely shut off future star formation. The deeper potential

wells of the higher mass haloes minimize the effects of burstier

feedback.

6The burstiness parameter will be somewhat dependent on the binning

chosen for the supernova rate, but we confirmed that the increased burstiness

of the stochastic IMF over the continuous IMF is independent of bin size.

We choose binning in 1 Myr intervals to be consistent with the timing of

feedback in our simulations.

Figure 7. Star formation in the isolated dwarf galaxy runs, with and without

a stochastic IMF. Each IMF treatment was run 50 times. Central lines show

the medians, and bands represent the interquartile range. The grey line

represents the median time of the first star formation. Top: The available

cold gas as a function of time. With a stochastic IMF, about half as

much gas is available compared to runs with a continuous IMF. Bottom:

Cumulative star formation as a function of time. With a stochastic IMF, star

formation is suppressed compared to runs with a continuous IMF, resulting

from supernova feedback more effectively heating surrounding gas (see top

panel).

3.2.2 Isolated runs

The same simulation run multiple times can have differing galaxy

properties, owing to stochastic variations in numerical codes (Keller

et al. 2019). To further investigate the results of the previous section

and to ensure our results are independent from the intrinsic scatter in

galaxy stellar mass, we consider an isolated simulation of a 109 M�

halo, with initial star particle masses of 420 M�.

To quantify the significance of differences between IMF treat-

ments, we simulate the isolated halo 50 times with a stochastic IMF

and 50 times without. The results are shown in Fig. 7, where we

focus on the first Gyr. The bottom panel of the figure shows the

cumulative number of star particles that have formed as a function

of time, displaying both the median of all runs and the interquartile

range. Clearly, the majority of the time, the run with a stochastic

IMF forms fewer stars throughout the entire duration of the

simulation.

To see why star formation is suppressed, the top panel of Fig. 7

shows the number of gas particles with a temperature below 1000 K.

While the conditions for star formation are based on H2 abundance

(Christensen et al. 2012), this serves as a proxy for the number of

gas particles that could potentially form stars. We see that with a

stochastic IMF, the gas is more effectively heated – at any given

time, up to half as many gas particles have cooled to below 1000 K,

in line with the reduction in star formation. We have verified that

in our cosmological simulation, the galaxies tend to have similar

gas masses, with no systematic change as with stellar mass. This

MNRAS 492, 8–21 (2020)
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16 E. Applebaum et al.

Figure 8. Mean stellar metallicity as a function of luminosity for galaxies in

our sample, with and without a stochastic IMF. Filled circles show galaxies

residing in dark matter haloes below 108.5 M�, approximately corresponding

to galaxies we expect to be quenched by reionization (Tollerud & Peek 2018).

Since the sample is at z = 6, only low-mass galaxies that have stopped

forming stars match the z = 0 data. More massive galaxies are expected to

increase in metallicity with time. There are no clear differences between the

IMF treatments, though there may be slightly greater scatter in metallicity

with a stochastic IMF.

indicates that more effective gas heating dominates over more

efficient gas expulsion.

In a cosmological setting, these effects can be significantly

exaggerated. In the cosmological runs compared to the isolated

runs, the differences between the stellar masses of galaxies can

increase from a factor of ∼1.5 to ∼10, as in Fig. 4.

3.3 Metallicity

Beyond energy deposition, high-mass stars return processed ma-

terial to the ISM. As previously emphasized, a stochastic IMF

significantly alters the distribution of high-mass stars, including

their masses and numbers. Since the metal production depends

non-linearly on the mass of the exploding star (Raiteri et al. 1996),

one might expect greater variation in the chemical enrichment of

galaxies with a stochastic IMF.

Fig. 8 shows the luminosity–metallicity relationship of all galax-

ies in the sample, along with data from Kirby et al. (2013). To

calculate the galaxy metallicities, we apply a floor for individual star

particles of Z > 10−5. Luminosities are calculated using PARSEC
7

isochrones (Bressan et al. 2012). We note that our sample is at z = 6;

for faint galaxies that have likely stopped forming stars indefinitely,

we match the data well, thopaugh our scatter below LV ∼ 105 LV, �

is higher than the observations. Some of the excess scatter is

likely reduced due to mergers at later times, when some of the

faint galaxies with extremely low metallicities are incorporated into

larger, higher metallicity galaxies. For larger galaxies that lie below

the z = 0 observations, ongoing star formation will increase the

metallicities with time. A forthcoming paper (Munshi et al. in prep)

7http://stev.oapd.inaf.it/cgi-bin/cmd

Figure 9. Chemical abundances of all-star particles in galaxies with z =

6 luminosities LV ≤ 105.5 LV, � and Mdark ≤ 108.5 M�, corresponding

roughly to z = 0 UFDs. The abundance ratios between the two models

are largely consistent, likely as a result of metal diffusion in the ISM,

which reduces scatter introduced by IMF sampling effects (Revaz et al.

2016). The high number of stars at [O/Fe] ∼ 0.75 using a continuous

IMF result from the stars formed from the metal content of the very first

time-step in which supernovae explode. There may be a slight shift to

higher [Fe/H] with a stochastic IMF, but it is well below observational

precision.

will discuss these relationships and demonstrate consistency with

the data in the present day.

Surprisingly, runs with the stochastic and continuous IMF are

consistent at all luminosities, though the scatter may increase

for faint galaxies with a stochastic IMF. It is likely that metal

diffusion in the ISM (Shen et al. 2010) quickly obscures any

systematic differences in future generations of stars that form,

consistent with the findings of Revaz et al. (2016), who found

that introducing metal diffusion in dwarf galaxies reduced scatter

introduced by IMF sampling effects. The overall impression is that

the stochastic IMF has little impact on the chemical evolution of

galaxies.

We also investigate whether the stellar chemical abundances

change with a stochastically populated IMF. Fig. 9 shows the

abundance ratios for galaxies with (z = 6) luminosities LV ≤

105.5 LV, � and dark matter masses below 108.5 M�, which after

passive stellar evolution would correspond roughly to today’s UFDs.

As above, there is almost no difference between the models; the

[O/Fe] versus [Fe/H] distributions overlap completely. With the

continuous IMF there is a small overabundance of stars at [O/Fe] ∼

0.75, which corresponds to the maximum abundance ratio possible

that results from the very first time-step in which supernovae

explode when integrating along the continuous IMF. Additionally,

there is a mild indication that stars with a stochastic IMF are shifted

to slightly higher [Fe/H]. This shift makes sense given that requiring

whole supernovae to explode means that more processed material

is ejected at once into the ISM. On the whole, however, it seems

that even when looking at the chemical composition of stars there

is little to distinguish the models, especially given observational

uncertainties.

MNRAS 492, 8–21 (2020)
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Sampling the IMF in cosmological simulations 17

Figure 10. Star formation in the isolated dwarf galaxy runs, comparing

runs with a stochastic IMF versus runs with quantized feedback. Each IMF

treatment was run 50 times. Central lines show the medians, and bands

represent the interquartile range. The grey line represents the median time

of the first star formation. Top: The available cold gas as a function of

time. Quantized feedback leaves ∼30 per cent more cold gas available to

form stars compared to runs with a stochastic IMF. Bottom: Cumulative star

formation as a function of time. Quantized feedback results in ∼10 per cent

more star formation than a stochastic IMF.

3.4 Stochastic versus quantized feedback

As discussed in Section 2.3, quantized feedback is an existing

method that discretizes supernovae. To test how it compares to

a stochastic IMF, we ran the isolated dwarf galaxy 50 times with

quantized Type II supernovae (but otherwise the same feedback

implementation). Fig. 10 shows the quantity of cold gas and

cumulative star formation as a function of time for the two IMF

treatments. Interestingly, there is consistently ∼30 per cent more

available cold gas and ∼10 per cent more star formation with the

quantized feedback as compared to the stochastic IMF.

Stellar feedback, therefore, is less effective with quantized

feedback than with a fully self-consistent stochastic IMF. There are

multiple differences that could contribute to this behaviour. First, as

discussed in Section 2.3, the LW photon production with quantized

feedback cannot accurately reflect the internal distribution of high-

mass stars. Different feedback mechanisms interact non-linearly

(Hopkins et al. 2014), such that one can reinforce the effect of

the others. The stochastic IMF ensures that LW radiation and

supernovae come from the same stars, which may result in stronger

disruption of gas. Additionally, since UV luminosities depend

highly non-linearly on stellar mass, estimating the ionizing photon

counts from fractions of massive stars may result in less initial LW

radiation than for individual (whole) massive stars, though averaged

over many particles the LW outputs converge. Another difference

may come from the timing and distribution of supernovae; if the

stochastic IMF leads to more temporally clustered explosions,

then the cumulative heating of gas may be more effective. Monte

Carlo simulations of a stochastically populated IMF show that

approximately 25 per cent of 420 M� star particles with feedback

calculated every 1 Myr will have a single time-step with multiple

supernovae, as opposed to none using quantized feedback. Thus,

some of the difference could result from our use of a binomial rather

than Poisson distribution in calculating the quantized feedback, and

we caution that a different implementation may yield closer results.

We note that the average total number of supernovae per star particle

is the same between the prescriptions.

We caution that these results come from an isolated dwarf galaxy.

In a cosmological context, the presence of tidal interactions, ionizing

radiation, and gas outflows may increase the differences in these

results. In particular, the presence of a larger cold gas reservoir

when using quantized feedback could lead to more extended star

formation histories in UFD galaxies during and after the epoch of

reionization.

In our case, because the primary source of energetic feedback

comes from Type-II supernovae, the differences between a stochas-

tic IMF and quantized feedback are conspicuous but limited. This

demonstrates the general robustness of the supernova feedback

physics implemented in our simulations. Some simulations in-

corporate significant quantities of radiative feedback from high-

mass stars, beyond merely a Lyman–Werner prescription for H2

destruction. While capturing more subgrid processes, they may

also suffer from an even greater internal inconsistency in the use

of quantized feedback, due to the non-linear nature of different

feedback mechanisms, which may result in even greater differences

between quantized feedback and a stochastically sampled IMF.

4 IM P L I C AT I O N S F O R FU T U R E

PREDI CTI ONS

4.1 Star formation quenching

The most significant difference between the stochastic IMF and the

continuous IMF is the lower stellar mass of a large fraction of dwarf

galaxies. This is not unexpected, and is similar to what was found

by Su et al. (2018). The effect we find, however, is less extreme,

owing mostly to the differences in our feedback implementations.

Our feedback is calculated in 1 Myr intervals, compared to the

smaller time-scales in the FIRE simulations, which can be shorter

than 104 yr. Thus, continuous injection of supernova energy re-

sults in relatively large per-step feedback in our simulations as

compared to continuous injection in FIRE. Additionally, in CHANGA

instantaneous energy deposition is incorporated as a 1 Myr heating

rate to avoid numerical instabilities (see footnote 63 in Kim et al.

2016), meaning that even with a stochastic IMF supernova energy

is effectively continuously injected when considering sufficiently

small time intervals.

The cause of this suppression in star formation is clear from its

effects on the gas in the isolated dwarf runs: supernova feedback

with a stochastic IMF is more effectively preventing gas from

cooling. In the first Gyr of star formation, there can be more than a

factor of 2 difference in the amount of gas available to form stars,

with a corresponding difference in the amount of star formation.

The reason for the suppression of star formation is that supernova

energy is deposited in a shorter time frame; this is not only because

stars are discrete, but because stochasticity in the stellar masses

allows supernovae to cluster temporally, as was shown in Fig. 2.

We also find a strong halo mass dependence in our results, as was

shown in Fig. 5. Owing to our large sample, we are able to explore

these trends. The continuous IMF treatment yields largely the same

results for galaxies residing in haloes more massive than ∼108.5 M�
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at z = 6. These more massive haloes are able to self-regulate even

with the stronger supernova feedback. Smaller haloes, however,

have too small a potential well to prevent supernovae from driving

out gas from star-forming regions. This is also approximately the

(high-redshift) mass scale where reionization is thought to suppress

star formation (Quinn, Katz & Efstathiou 1996; Thoul & Weinberg

1996; Barkana & Loeb 1999; Bullock, Kravtsov & Weinberg 2000;

Gnedin 2000; Okamoto, Gao & Theuns 2008; Tollerud & Peek

2018); most galaxies in haloes of these masses will quench, if

not from supernova feedback, then from the combined effects of

feedback and reionization (Benson et al. 2002; Somerville 2002;

Hoeft et al. 2006; Nickerson et al. 2011). For a given reionization

model, our results show that a stochastic IMF suppresses star

formation even further in low-mass haloes.

4.2 Reionization

Though in some cases galaxies quenched at high redshift can

restart star formation in later times (Wright et al. 2019), even a

temporary suppression of star formation would have significant

implications for the epoch of reionization. Early galaxies are thought

to be the primary source of ionizing radiation (Stark 2016), with

significant contributions from dwarf galaxies. In fact, though not

directly observable, inferences from the Local Group imply that

very small dwarf galaxies (as faint as MV ∼ −3) may have

contributed to reionization (Weisz & Boylan-Kolchin 2017). What

is still unknown, however, is the fraction of ionizing radiation they

provided, and similarly, their luminosity function at high redshifts.

There have been many simulation predictions of the reionization

era, reaching down to dwarf galaxy scales (e.g. O’Shea et al. 2015;

Finlator et al. 2016; Gnedin 2016; Ocvirk et al. 2016; Xu et al. 2016;

Anderson et al. 2017; Ma et al. 2018), and simulations continue to

push to higher resolution.

When properly accounting for IMF sampling effects, we have

seen that star formation is often suppressed earlier, indicating that

by z ∼ 6, the faintest galaxies will constitute a reduced fraction

of the ionizing photon budget. This may be countered by higher

escape fractions resulting from hotter bubbles of gas around these

small galaxies. Detailed explorations of the implications of IMF

sampling on reionization will be pursued in future work, but what is

already clear is that accurate predictions will require a stochastically

populated IMF.

4.3 Tracking high-mass stars

One of the key new features of this prescription is the tracking of

individual high-mass star data. For every star particle, we now have

a list of the masses of every star above 8 M� residing within it. This

opens up new science avenues that were not available before.

For example, cosmological simulations may be used to estimate

the size and evolution of H II regions, as in Anderson et al. (2017),

based on the ionizing photon output from star particles. Rather

than assume ionizing photon production from an SSP, this new

prescription allows us to use the specific stars to determine the

photon rate, which will add variability to our predictions.

Predictions for stellar remnants, such as pulsar counts, can now

be directly inferred from star particles in our simulations. Further,

now that we have entered the era of gravitational wave astronomy

(Abbott et al. 2016), simulations can be used to predict the merger

rates of binary compact objects. This has so far been accomplished

by pairing simulation outputs with population synthesis models

(e.g. Chakrabarti et al. 2017; Mapelli et al. 2017; O’Shaughnessy

et al. 2017; Schneider et al. 2017). Having precise high-mass star

information can allow us to refine such predictions by using the

actual high-mass star counts from the simulations. Additionally,

since the Milky Way has accreted many small galaxies over its

lifetime, we can still see the imprint of these single rare events. For

example, in the Milky Way stellar halo, accreted UFD-like galaxies

may have contributed over half of r-process enhanced metal-poor

stars (Brauer et al. 2019). Such predictions, however, are highly

sensitive to the actual numbers of massive binary stars in small

populations.

5 SU M M A RY

Motivated by the inability of low-mass haloes to self-regulate, and

the resulting divergence of different prescriptions in UFDs, we

investigated the treatment of stellar feedback in simulations. In this

work, we presented a new treatment of the IMF in cosmological

simulations. Informed by observations, we stochastically sample

stars from the IMF within each star particle. As a compromise with

computational reality, once we have stochastically populated a star

particle, we only track individual stars above 8 M�, so that feedback

dependent on high-mass stars is calculated for discrete stars, and

feedback dependent on low-mass stars is calculated as before for

continuous populations.

To investigate the effects of our new stochastic IMF, we used

cosmological zoom-in simulations run to z = 6 to compare the

stellar masses of the resulting ∼100 galaxies. We found that while

galaxies residing in dark matter haloes greater than ∼108.5 M�

remain unchanged by the new sampling method, galaxies in smaller

haloes typically have lower stellar masses, by up to an order of

magnitude. When comparing the supernova rate via a burstiness

parameter, we found that a stochastic IMF leads to significantly

burstier feedback because of the greater temporal clustering of

supernovae.

To see how the burstier supernova feedback impacts the gas in

a galaxy, we used a simulated isolated dwarf galaxy. We ran many

versions of both the continuous and stochastically sampled IMF

treatment to study systematic differences in star formation, while

bracketing scatter between runs. We found that during the first

billion years, the galaxy with the stochastic IMF formed as few

as half as many stars. The suppression in star formation results

from a reduction in the number of gas particles available to form

stars. Feedback with a stochastic IMF is more effective at heating

surrounding gas and preventing gas from cooling and condensing

into stars.

While another method (‘quantized feedback’) is typically used

to ensure supernovae are discrete, we found that this method has

several inconsistencies, since the actual distribution of high-mass

stars is unknown until all supernovae have exploded. We found that

the star formation results of quantized feedback were intermediate

between a continuous and a stochastic IMF. Quantized feedback

leads to ∼10 and ∼30 per cent more star formation and available

cold gas, respectively. If high-energy radiation contributed energy

or momentum in our simulations, it is possible the results would be

even more dissimilar.

To test the new IMF prescription, this work focused on galaxies

at high redshift. Since the galaxies in the mass range where this

prescription is most impactful stop forming stars shortly after

reionization, this was sufficient to draw conclusions for faint

galaxies. Future work will investigate the effects of a stochastic

IMF in simulations run to the present day.
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This IMF prescription is ideal for high-resolution simulations;

as star particle masses decrease, we can lower the cut-off mass

to discretely track lower mass stars, and incorporate discrete

treatments for Type-Ia explosions and mass-loss due to stellar

winds. Further, our unique ability to track the evolution of individual

stars in cosmological simulations will allow us to make more

specific predictions for any observations dependent on the number

and distribution of high-mass stars. Future work, for example, can

constrain the rates of compact object binary mergers detectable by

gravitational wave experiments.

As we explore smaller stellar populations in simulations, we are

now afforded the opportunity to investigate astrophysics on smaller

scales. With the future predictive power of our simulations in mind,

we have implemented a novel stochastic IMF in our cosmological

simulations. In future studies of faint galaxies, including their stellar

populations and radiative contributions to the epoch of reionization,

it will be necessary to use such a stochastically populated IMF

to accurately model these phenomena. Otherwise, observational

predictions will systematically overestimate the star formation in

UFD galaxies.
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Figure A1. The same as Figs 7 and 10, but instead comparing three versions

of the stochastic IMF with different cut-off masses. The higher the cut-off,

and therefore the more supernovae are approximated as continuous, the more

cold gas is available to form stars and the more stars form. It is therefore

important to capture all core collapse supernovae discretely in any IMF

sampling method.

APP ENDIX A : CUT-OFF MASS

It is important to capture all Type-II supernovae when employing

a discretization scheme. That is, shifting the cut-off mass above

the minimum core-collapse supernova mass lessens the impact of

the discretization. Fig. A1 shows this, where we have plotted the

first ∼100 Myr of star formation of 50 runs each of the isolated

dwarf galaxy. As we shift the cut-off higher, thereby approximating

more of the Type II supernovae as continuous rather than discrete,

we approach the fully continuous case of greater star formation and

more cold gas. Thus, in order to capture the full impact of the energy

deposition, all supernovae must be described within the framework

of a stochastic IMF.

A P P E N D I X B: N U M E R I C A L C O N S I D E R AT I O N S

Here, we briefly discuss the computational considerations of apply-

ing the IMF sampling method presented in this work. Compared

to quantized sampling, this method clearly requires more memory

allocated per star particle (specifically, an array containing the list

of masses of discrete massive stars tracked). For this reason, this

method is best applied only in very high-resolution cosmological

simulations. For most codes that already associate many pieces

of information with their star particles (e.g. temperature, chemical

composition, formation time, mass, etc.), a reasonable constraint is

to no more than double the memory required per star particle, or

equivalently (for typical cosmological codes) to limit the maximum

number of individual stars expected during sampling to be of order

10. For this reason, this method is intended for use in simulations

with star particle masses �1000 M�.

In terms of computation time, sampling in this way is more

intensive than quantized feedback or a method akin to Gatto et al.

(2017) in which the IMF is sampled only in the high-mass regime.

However, as discussed in Section 2.2, sampling instead over the

entire regime imposes no restriction on the mass or number of

stars in the high-mass regime, and so allows for greater variation in

both. Fortunately, though the sampling takes time, it is negligible

compared to the computation time involved in other aspects of the

simulation. Timing comparisons of simulations suggest differences

between the two methods are at no more than the per cent level.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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