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ABSTRACT

Cosmological simulations are reaching the resolution necessary to study ultra-faint dwarf
galaxies. Observations indicate that in small populations, the stellar initial mass function (IMF)
is not fully populated; rather, stars are sampled in a way that can be approximated as coming
from an underlying probability density function. To ensure the accuracy of cosmological
simulations in the ultra-faint regime, we present an improved treatment of the IMF. We
implement a self-consistent, stochastically populated IMF in cosmological hydrodynamic
simulations. We test our method using high-resolution simulations of a Milky Way halo, run
to z = 6, yielding a sample of nearly 100 galaxies. We also use an isolated dwarf galaxy to
investigate the resulting systematic differences in galaxy properties. We find that a stochastic
IMF in simulations makes feedback burstier, strengthening feedback, and quenching star
formation earlier in small dwarf galaxies. For galaxies in haloes with mass < 1083 Mg, a
stochastic IMF typically leads to lower stellar mass compared to a continuous IMF, sometimes
by more than an order of magnitude. We show that existing methods of ensuring discrete
supernovae incorrectly determine the mass of the star particle and its associated feedback.
This leads to overcooling of surrounding gas, with at least ~10 per cent higher star formation
and ~30 per cent higher cold gas content. Going forwards, to accurately model dwarf galaxies
and compare to observations, it will be necessary to incorporate a stochastically populated
IMF that samples the full spectrum of stellar masses.

Key words: methods: numerical —supernovae: general —galaxies: dwarf— galaxies: forma-
tion — galaxies: star formation.

1 INTRODUCTION

Prior to the last decade, dwarf galaxies posed a long-standing
challenge to galaxy formation models within the context of the
cold dark matter (CDM) paradigm. In recent years, however,
enormous progress has been made in simulating these low-mass
systems, owing to increasing resolution and careful modelling of
the baryonic processes involved. For example, repeated fluctuations
of the gravitational potential well of a halo due to supernova-
induced gas outflows have been shown to flatten the central dark
matter profile (e.g. Read & Gilmore 2005; Mashchenko, Wadsley &
Couchman 2008; Governato et al. 2010; Pontzen & Governato 2012;
Di Cintio et al. 2014; Read, Agertz & Collins 2016; Fitts et al.
2017), alleviating tension with observations (e.g. Simon et al. 2005;
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de Blok et al. 2008; Kuzio de Naray, McGaugh & de Blok 2008).
Supernova-driven outflows also remove low-angular momentum
gas, leading to the creation of bulgeless dwarf galaxies (Governato
et al. 2010; Brook et al. 2011; Teyssier et al. 2013). Similar
effects together with enhanced tidal stripping within the parent halo
successfully reduce the central densities of the most massive Milky
Way satellites (e.g. Zolotov et al. 2012; Brooks & Zolotov 2014;
Sawala et al. 2016; Tomozeiu, Mayer & Quinn 2016; Wetzel et al.
2016; Garrison-Kimmel et al. 2019), solving the well-known ‘too
big to fail’ problem (Boylan-Kolchin, Bullock & Kaplinghat 2011,
2012). Destruction of satellite haloes from interactions with the
central disc potential reduces the theoretically expected number
of MW satellites (e.g. Brooks et al. 2013; Sawala et al. 2016;
Wetzel et al. 2016; Garrison-Kimmel et al. 2019), solving the
‘missing satellites’ problem (Klypin et al. 1999; Moore et al. 1999).
Proper consideration of the biases introduced when comparing
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observations to theoretical results also brings theory into agreement
with observations (Brooks et al. 2017).

With the recent successes in modelling dwarf galaxies, various
groups are pushing the limits of resolution even further into the
ultra-faint dwarf (UFD) galaxy range (Mg S 10° Mg; e.g. Munshi
et al. 2013; Wheeler et al. 2015; Munshi et al. 2017, 2019).

Despite significant differences in feedback models and simulation
details, many groups have succeeded in reproducing realistic dwarf
galaxies. This is largely a result of galaxy self-regulation; i.e. global
galaxy properties are robust to the details of star formation and
feedback, since increased feedback suppresses future star formation
(Saitoh et al. 2008; Shetty & Ostriker 2008; Hopkins, Quataert &
Murray 2011; Christensen et al. 2014; Agertz & Kravtsov 2015;
Benincasaetal. 2016; Hopkins et al. 2018). As simulations approach
the UFD regime, however, the self-regulation of galaxies breaks
down. Munshi et al. (2019) demonstrated this conclusively, finding
that different star formation prescriptions predict different numbers
of UFD galaxies. Further, the interplay of supernova feedback
and reionization with the gas in these low-mass haloes leads to
diverging star formation behaviour at early times. Thus, without a
concerted effort to study subgrid models in the low-mass galaxy
regime, the predictive power of cosmological simulations will
diminish.

In this work, we investigate another physical prescription that
can alter UFD simulation results: the realistic sampling of stars
and its impact on subsequent feedback. Since the high-mass stars
providing the bulk of stellar feedback are relatively uncommon,
nuances in choice of sampling may not ‘average out’ in UFDs. It is
therefore important to correctly determine the stellar masses within
a population; this is done through the use of the stellar initial mass
function (IMF), which describes the number distribution of stars as
a function of their birth mass.

Estimates of the IMF in large stellar populations have shown
remarkable consistency. Parametrizations generally find a steep
power-law slope for more massive stars consistent with the original
Salpeter (1955) estimate, with a ‘knee’ at mg,, ~ Mg, below which
the distribution involves a shallower decline (e.g. Kroupa, Tout &
Gilmore 1993; Kroupa 2001; Chabrier 2003). While theoretical ex-
pectations predict systematic variation in the IMF with environment
(Kroupa et al. 2013) in large resolved stellar populations there is
limited evidence of deviations from the universal IMF (Bastian,
Covey & Meyer 2010). While several recent observations suggest
systematic variations (e.g. van Dokkum & Conroy 2010; Cappellari
et al. 2012; Conroy & van Dokkum 2012; Geha et al. 2013; Kalirai
et al. 2013; Gennaro et al. 2018), there is neither consensus on their
significance nor a clear physical driver for their variation, with
dominant candidates including metallicity (e.g. Martin-Navarro
et al. 2015; Gennaro et al. 2018) and velocity dispersion (e.g.
La Barbera et al. 2013; Spiniello et al. 2014; Rosani et al.
2018).

Despite the general success of the IMF formalism in describing
galaxies and large stellar populations, in small populations it is
clear that the current IMF formalism is insufficient. The inherently
discrete nature of stars makes a continuous description unrealistic.
To find a better description, a variety of observations can be used.
For example, there exists an average relationship between the mass
of an embedded star cluster and the mass of the most massive star
residing in the cluster, such that more massive stars tend to reside in
more massive clusters (Weidner, Kroupa & Bonnell 2010; Weidner,
Kroupa & Pflamm-Altenburg 2013a; see also Cervifio et al. 2013
for a detailed discussion). Other observations have shown lower
values of Ho- or HB-to-FUV luminosity ratios in galaxies with
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low star formation rates (SFRs), indicating a relative dearth of very
high-mass stars (Lee et al. 2009, 2016; Meurer et al. 2009).

It follows from the above observations that there is a tendency
for fewer high-mass stars to form in small, low-SFR populations.
Observations of SFR indicators can be explained via bursty star
formation histories (Weisz et al. 2012; Guo et al. 2016; Emami
et al. 2019), but IMF sampling effects may also contribute (e.g.
Pflamm-Altenburg, Weidner & Kroupa 2009; Fumagalli, da Silva &
Krumholz 2011; Eldridge 2012).

There are two broad theories of how the IMF should be sampled
to explain these observations. The first is the integrated galactic
IMF (IGIMF), presented in Kroupa & Weidner (2003), Weidner &
Kroupa (2006), Weidner et al. (2010), Weidner et al. (2013b) and
Yan, Jerabkova & Kroupa (2017), which assumes a deterministic
relationship between the mass of a star cluster and the stellar
mass distribution within it. The other predominant explanation
for the observations is that the IMF is sampled randomly (e.g.
Elmegreen 2006; Corbelli et al. 2009; Calzetti et al. 2010; Fumagalli
et al. 2011; Andrews et al. 2013, 2014). In every star formation
event, stars form in a way approximated as being drawn from
an underlying probability density function — the universal IMF.
Since the probability of forming high-mass stars is rare, in small
populations there is an average tendency for massive stars to form
in massive clusters, mimicking the proposed IGIMF.

The only restriction in stochastically sampling the IMF is that a
star cannot form with a greater mass than the cluster in which it
resides (i.e. stars cannot form with more mass than their available
gas reservoirs). Until recently, star particles in cosmological simula-
tions were large enough to ignore all the nuances of IMF sampling,
and stellar feedback was calculated by treating star particles as a
simple stellar population with a uniform, continuous IMF. With
sufficiently massive star particles, this was a reasonably accurate
approximation. At lower particle masses, however, the above model
has proven increasingly unrealistic. Further, star particles are small
enough such that not only is a uniform IMF no longer consistent
with observations, but a naive calculation of supernova counts per
time-step yields fractions of supernovae exploding (Revaz et al.
2016).

In small galaxies, the credibility of simulated results depends
upon proper treatment of the IMF. Carigi & Hernandez (2008)
demonstrated that a stochastically sampled IMF does not converge
to the underlying continuous IMF until My, ~ 10° M. Cosmolog-
ical galaxy simulations are now pushing to high enough resolution
to study stellar populations in the ultra-faint regime; at these scales,
not only individual star particles but also entire galaxies will have
incompletely sampled IMFs.

Limited work has been done in investigating the impacts of
IMF sampling within cosmological simulations. In post-processing,
Sparre et al. (2017) used the SLUG code (da Silva, Fumagalli &
Krumholz 2012, 2014; Krumholz et al. 2015) to show how a
stochastic IMF increases the scatter of dwarf galaxies’ Ha-to-
FUV ratios, but the simulation itself assumed a fully populated
IMF. Revaz et al. (2016) studied the effects on IMF sampling
on stellar chemical abundances in isolated dwarf galaxies and
found that a continuous IMF becomes unrealistic at star particle
masses below ~10° My. They further found that regardless of
sampling method, the combined IMF of multiple-star particles
together will be undersampled below particle masses of ~10° M.
Bracketing the case of a stochastic IMF, Hensler, Steyrleithner &
Recchi (2017) compared a truncated and a filled IMF in simulations
of dwarf galaxies, and found that truncation suppresses the self-
regulation of star formation. Several cosmological simulations have
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Table 1. Properties of the cosmological simulations used in this work, including particle masses, the expectation value
of core collapse supernovae per star particle, and the softening length.

Simulation M gark Mgas Miar (MsN) Softening
Mo) Mo) Mo) Length (pc)

Elena (Milky Way) 1.8 x 10* 3.3 x 10° 990 9.9 87

Isolated 10° Mg 1.0 x 104 1.4 x 103 420 42 21

discussed or incorporated methods of discretizing stellar feedback
from Type-II supernovae (e.g. Stinson et al. 2010; Agertz et al.
2013; Hopkins et al. 2014, 2018; Rosdahl et al. 2018). The most
common method has been to decide whether or not a star explodes
by drawing from a binomial or Poisson distribution derived from an
average measure of supernova rates. The drawbacks of this method
are discussed in Section 2.3. Su et al. (2018) took first steps in
investigating IMF sampling and stochastic effects more closely; they
found a dramatic decrease in star formation when discretizing their
supernovae compared to continuous energy injection. However,
their model does not sample the full range of masses in the IMF and
still calculates feedback by drawing from a Poisson distribution.

More work has been done in high-resolution simulations that
do not model cosmological contexts. Grudi¢ & Hopkins (2019)
used the same methodology as Su et al. (2018) on molecular cloud
scales and found similar results. Sormani et al. (2017) introduced
a method based on discretizing stars into mass bins that are then
Poisson sampled. Other groups (e.g. Gatto et al. 2017; Geen et al.
2018) separate their IMF into high- and low-mass regimes, and
stochastically sample only within the high-mass regime. We note
that some recent simulations of very small, isolated dwarf galaxies
now track the evolution of individually sampled stars (Hu et al. 2017;
Emerick, Bryan & Mac Low 2019) and recent work with isolated
Milky Way—mass galaxies includes a stochastically populated IMF
within star particles (Fujimoto, Krumholz & Tachibana 2018),
but this has never previously been attempted in cosmological
simulations.

In this paper, we present a new prescription for star formation
that stochastically samples the full spectrum of masses in the IMF
and individually tracks the evolution of high-mass stars within
them. This methodology ensures conservation of mass and self-
consistency of radiative and supernova feedback. We discuss the
simulations and the sampling method in Section 2, and compare
to existing discretization methods. In Section 3, we demonstrate
the effects of improved IMF sampling. In Section 4, we discuss
implications of this sampling method for future observational
predictions. We conclude in Section 5.

2 METHODS

We implement a new stochastic IMF treatment for star particles
in our simulations. The updated sampling changes the stellar mass
distribution from a smooth IMF to a set of discrete stars; these stars
are then used to calculate supernova explosions, metal production,
and high-energy radiation output. We emphasize that the actual
feedback mechanisms remain unaltered; what changes in the new
recipe is the timing and quantity of feedback each star particle
produces.

2.1 Simulations

To test the new IMF prescription, we ran cosmological zoom-in
simulations of a Milky Way-mass galaxy with and without the
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stochastic IMF. These were run until immediately after reionization,
by which time UFD galaxies — those with My, < 10° Mg, and
therefore unconverged IMFs — have formed most or all of their stars
(Brown et al. 2014; Weisz et al. 2014). Since the same dark matter
particles form the same haloes in simulations with and without
a stochastic IMF, we were able to match galaxies that formed
in corresponding haloes between runs. To ensure our results are
independent of any intrinsic scatter in the cosmological runs (and
allow a finer time resolution of outputs), we also used an isolated
dwarf galaxy. For both treatments of the IMF, we ran the same
10° Mg, halo 50 times, and compared the ensemble behaviour.

The relevant properties of each simulation can be found in
Table 1. The cosmological simulations used in this work were
selected from a uniform resolution, dark matter-only simulation of
50 Mpc per side, run with Planck cosmological parameters (Planck
Collaboration XIII 2016). A region around the selected halo in
these simulations was rerun at higher resolution using the ‘zoom-
in’ technique (Katz & White 1993). The halo used in this work
was selected to resemble the Milky Way at z = 0, and is one of the
haloes of the DC Justice League suite of simulations (Bellovary et al.
2019), nicknamed ‘Elena.” We use a gravitational force softening
length of 87 pc and equivalent resolution to a 6144 grid. The dark
matter particle masses are 1.8 x 10* Mg, the gas particles begin
with 3.3 x 10®> Mg, and the star particles form with a mass of
994 My,. Versions of the DC Justice League suite at this resolution
are being run to the present day, and will constitute the highest
resolution Milky Way simulations to date.

The initial conditions for the 10° M, isolated dwarf galaxy have
been described previously (Kaufmann et al. 2007; Stinson et al.
2007; Christensen et al. 2010). In short, the initial conditions consist
of an equilibrium halo with a Navarro—Frenk—White concentration
of ¢ = 8. Dark matter velocities were determined via the Eddington
inversion method of Kazantzidis, Magorrian & Moore (2004).
Gas particles were assigned temperatures to ensure hydrostatic
equilibrium before cooling, and were given a uniform rotational
velocity corresponding to a spin parameter ~0.04. Dark matter
particles within the virial radius have a mass of 1.0 x 10* M, gas
particles have a mass of 1.4 x 10° Mg, and star particles from with
425 Mg. The force softening length is 0.1 per cent the virial radius,
or 21 pec.

The stochastically populated IMF is incorporated into the N-
body + smoothed particle hydrodynamics (SPH) code CHANGA
(Menon et al. 2015), a fully cosmological simulation code that
includes physics from the GASOLINE2 code (Wadsley, Keller &
Quinn 2017), but utilizes the CHARM++ runtime system for
dynamic load balancing to efficiently scale up to thousands of cores.
All simulations discussed in this work smooth over 32 nearest-
neighbour gas particles.

As discussed above, feedback from high-mass stars is crucial for
modelling realistic galaxies. In this work, we use the ‘blastwave’
supernova feedback mechanism described in detail in Stinson et al.
(2006), whereby mass, energy, and chemically enriched material
are deposited into neighbouring gas when a massive star dies as a

020z AINF 0Z Uo Jasn sadIAIaS [eo1uyoa | /salielqi] Alsianiun s1ebiny Aq G9ZSH9G/8/1L/Z261/10BNSqE-8]dI1E/SBIUW/WO02 dNo olwapeae//:sdlly Woll papEojuMO(]



Type-1I supernova. With the existing continuous IMF, the minimum
and maximum stars that explode in a given time-step are calculated
based on the stellar lifetime parametrizations of Raiteri, Villata &
Navarro (1996). The number and mass in supernovae are then
determined by integrating along the IMF between these stellar
masses. We note that the default time-step for calculating feedback
and star formation in CHANGA is 1 Myr. We deposit 1.5 x 10!
erg per supernova' among gas particles within the blast radius
calculated using McKee & Ostriker (1977), then gas cooling is shut
off until the end of the blastwave’s snowplow phase. We assume
stars between 8 and 40 Mg explode as supernovae, while more
massive stars collapse into black holes. Future work will incorporate
a stochastic IMF using the ‘superbubble’ feedback mechanism
(Keller et al. 2014). Results from CHANGA and GASOLINE with
blastwave feedback have been used to reproduce a variety of
observations, including the stellar mass—halo mass relation (Munshi
etal.2013,2017), the mass—metallicity relation (Brooks et al. 2007),
the baryonic Tully—Fisher relation (Christensen et al. 2016; Brooks
et al. 2017), the abundance of Damped Lyman « systems (Pontzen
et al. 2008), and the properties of dwarf Spheroidal Milky Way
satellites (Brooks & Zolotov 2014). These models also produced
the first simulated cored dark matter density profiles and bulgeless
disc galaxies (Governato et al. 2010; Brook et al. 2011; Governato
et al. 2012).

In addition to feedback from core collapse supernovae, CHANGA
incorporates metal cooling and diffusion in the ISM (Shen, Wads-
ley & Stinson 2010), a time-dependent UV background (Haardt &
Madau 2012), Type-la supernovae, mass-loss in stellar winds, and
metal enrichment (Stinson et al. 2006), and supermassive black hole
formation, growth, and feedback (Tremmel et al. 2015, 2017).

CHANGA includes a star formation recipe based on the local
abundance of molecular hydrogen (H,; Christensen et al. 2012).
This scheme includes calculations for the formation of H,, shielding
from dissociative Lyman Werner (LW) radiation, and production of
LW photons from high-mass stars. LW photon production from star
particles is calculated using STARBURST99 (Leitherer et al. 1999);
for star particles represented by a uniform IMF, as done until now,
the calculation is based on a single-age, simple stellar population.

Haloes in the cosmological simulations are identified using
AMIGA’S HALO FINDER (Gill, Knebe & Gibson 2004; Knollmann &
Knebe 2009). Haloes are defined as the radius within which the
density reaches a redshift-dependent overdensity criterion using the
approximation of Bryan & Norman (1998).2 Virial radius and halo
mass are defined according to this overdensity.

2.2 Stochastically populated IMF

Ideally, no approximations would be necessary in cosmological
simulations and every individual star would be tracked within a
given stellar population. However, tracking hundreds of individual
stars within each of millions of star particles would be computa-
tionally prohibitive. Any approximation, then, should be guided by
two considerations: (1) we wish to preserve the highest accuracy
for the individual stars whose feedback has the greatest impact
on galaxy evolution, and (2) we wish to preserve the highest
accuracy for individual stars that are rarest, and therefore are most

IRates of supernova energy deposition were determined using the parameter
optimization technique described in Tremmel et al. (2017) and Anderson
et al. (2017).

2At z = 0, the overdensity compared to the critical density is p/p. 2 100.
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altered by the approximations of a continuous, universal IMF.
Therefore, we strive to maintain highest accuracy in the high-
mass component; specifically, stars that eventually release energy
as Type-II supernovae.

Due to the nature of random sampling, the mass of a simulated
stellar population cannot be predetermined if using a stochastically
populated IMF; rather, only an estimate can be known a priori
(see e.g. Cerviflo et al. 2013). Since in our simulations we form star
particles of a given mass, we must use an algorithm to stochastically
populate stars in a way that reaches the desired mass of our
population.

When stochastically sampling from the IMF, the IMF is treated
as a probability density function, so that its area is normalized to
one but its form is otherwise unchanged. The algorithm we adopt is
the stop-nearest method (e.g. da Silva et al. 2012; Eldridge 2012).
‘With this method, stars are drawn from the IMF until the desired
mass is first exceeded. Then, the last star drawn is either kept or
discarded, depending on whether the total mass is closer with or
without its inclusion.

The methodology, then, for our stochastically populated IMF is
as follows:

(i) If we determine a star particle forms, the formation mass is
the target mass.

(i1) Following the stop-nearest method, we draw stars from the
IMF until we pass our target mass threshold, then either keep or
discard the last star based on which brings us closer to the target
mass.

(iii) We discard all stars below a cut-off mass® and reapproximate
the low-mass stars as a continuous IMF, normalized such that the
total mass of the star particle is the target mass.

(iv) For feedback dependent on stellar masses above the cut-off,
we use the individual high-mass stars to calculate the timing and
quantity. For a cut-off of 8 Mg, all energy and metals from Type-II
supernovae and LW photon production are calculated discretely;
Type-la supernovae and stellar winds are calculated as in the case
of a continuous IMF, since they come from the stellar mass range
approximated as a continuous distribution.

This methodology shares similarities with that of, e.g. Gatto et al.
(2017); however, we sample stars over the entire mass range of the
IMF rather than just among the high-mass end to avoid imposing a
restriction on either the mass in high-mass stars or the number. We
thus allow for substantially more variation in the mass and number
of high-mass stars per star particle. The numerical implications of
this method are discussed briefly in Appendix B.

An example of the methodology can be seen in Fig. 1, where we
show three different realizations of a stochastically populated star
particle with a total mass of 500 Mg, In a population of this mass,
we expect approximately 5.5 stars with 8 Mg < mg, <100 Mg,
and 105 Mg in mass for the same range. For each realization, we
show the change in number and mass of high-mass stars from these
expected values, as well as the per cent changes these correspond
to. Since only about 20 per cent of the mass in these star particles is
in the high-mass range, even relatively large deviations in the mass
content of the discrete portion result in apparently small changes in
the normalization of the low-mass portion. To see how the sampling
affects the resulting stellar feedback, Fig. 2 shows the supernova
rate in 1 Myr time-steps for the same three star particles.

30ur fiducial cut-off mass is 8 M. Appendix A discusses what would
happen if we raised the value of the cut-off.
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Figure 1. Three realizations of a stochastically populated 500 Mg, star particle, following the methodology of Section 2.2. The grey dashed line shows the
universal underlying IMF of Kroupa (2001), scaled to the population mass. The orange circles represent the IMF recovered from stochastically drawing from
the entire IMF to which we then apply a continuous/discrete cut-off. The solid blue line shows the portion of the IMF that is approximated as continuous after
sampling. The blue arrows represent individual, discrete high-mass stars tracked within the star particle. The difference in number of high-mass stars from
the 5.5 stars expected above 8 M, using a continuous IMF, as well as the difference in mass of high-mass stars from the expected 105 Mg, is given for each
realization. A stochastically populated IMF leads to large variation in mass and number of high-mass stars in each star particle.
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Figure 2. The supernova rate in 1 Myr intervals for the same three star particles as Fig. 1, with a stochastic IMF and a continuous IMF. The stochastically
populated IMF leads to long periods of no feedback, with several intervals of stronger feedback. There are also different total numbers of supernovae and
greatly varied timings. Though the middle star particle has three discretely tracked high-mass stars, only one star is below 40 M, and therefore in the mass

range of Type-II supernovae.

These three realizations demonstrate several important features
introduced by a stochastically populated IMF. The first, and most
fundamental, is that high-mass stars are discretized, and therefore
Type-1I supernovae are discretized as well. We discuss in Section 2.3
how proper discretization of stars can only be done with a com-
prehensive consideration of IMF sampling methodology. Another
unsurprising change is that the actual number of high-mass stars
within a star particle can vary greatly. For example, there are eight
stars with mg,, > 8 Mg in the left-most star particle of Fig. 1,
and only two in the right-most star particle. Less obvious, the
number and mass in high-mass stars is only loosely correlated. The
middle star particle, for example, has fewer high-mass stars than
the average, but has more mass in this range because the few high-
mass stars that did form tended to be more massive. As seen in the
middle panel of Fig. 2, we also note that since Type-II supernovae
are restricted to stars with 8 Mg < mgy,, <40 Mg, only one of the
high-mass stars in this star particle would actually explode as a
supernova.

2.3 Existing discretization methods
Currently, there is one dominant method of discretizing supernova

feedback in cosmological simulations (e.g. Stinson et al. 2010;
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Hopkins et al. 2014; Rosdahl et al. 2018; Smith, Sijacki & Shen
2018; Suetal. 2018), which we will henceforth refer to as ‘quantized
feedback.” While this is not the only method used in the simulation
community, it seems to be the prevailing method among high-
resolution cosmological simulations, and so we focus on it here.
We emphasize that the issues raised in the following discussion are
true for any method that does not sample the distribution of stars at
birth, but rather calculates supernova explosions ‘on the fly’, while
leaving the remainder of the IMF unchanged.

In quantized feedback, the number of supernovae in a given
time-step is drawn from either a binomial distribution or Poisson
distribution.* The supernova mean rate may be taken from rate
tables (as in Hopkins et al. 2014) or from the expectation number of
supernovae in that time-step (e.g. Stinson et al. 2010 or the RIMFS
method of Revaz et al. 2016). While this method guarantees that
only integer numbers of stars explode in a given time-step, we
note that at high resolution there are several internal inconsistencies
upon closer inspection. The importance of these inconsistencies

4A binomial distribution with many trials and a small probability of
success converges to a Poisson distribution, so these two formulations are
approximately equivalent.
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on simulation results depends on the size of the ensemble of star
particles considered. Here, we start with the case of a single-star
particle.

First, this method cannot guarantee that the mass used in
calculating feedback is the same as the dynamical mass of the
particle. The mass of stars below the quantized regime is fixed,
while the mass of stars within the quantized regime can vary by
more than a factor of 2. In terms of the number of stars within the
star particle, a fixed number of stars (those below the quantization
limit) are added to a Poisson distribution of stars (those that are
quantized). This combination will rarely yield the assumed initial
particle mass. For smaller star particles, this effect will be more
severe. The star particle mass and the mass removed from any
individual parent gas particle will therefore be inconsistent. If, on the
other hand, mass conservation is enforced (for example, by adding
back missing mass or subtracting excess mass in the low-mass end
after supernovae explode), then this method will require the mass
in low-mass stars to be amended in real time in an unphysical way,
leading to more internal inconsistencies. Additionally, imposing a
limit (minimum) on the number of supernovae that can explode will
artificially concentrate supernovae to go off in early (late) times.

To see this in more detail, we consider many trials of a 250 Mg
star particle with a Kroupa (2001) IMF and demonstrate that without
an a priori knowledge of the stellar mass distribution, the stated star
particle mass is inconsistent with the initial mass implied by the
number of supernovae explosions. We consider a slightly simplified
version of what occurs in simulations, assuming for each trial that
we begin with the same metallicity. The mass below 8 Mg, in a star
particle of this mass and IMF is 198 Mg, with the remainder falling
in the high-mass portion of the IMF. For each particle, we iterate
forwards in time-steps of 10° yr, and at each time-step determine
whether a supernova explodes by the method of Stinson et al. (2010)
(i.e. drawing from a binomial distribution). To make this comparison
more applicable to other simulators without upper limits on core
collapse supernovae, we do not place a Type Il upper limit of 40 M.
If a supernova explodes, we add the initial mass of the star that
exploded to the initial low-mass total of the star particle. Since the
range outside of Type-II supernovae is not quantized, its mass is
unaffected by this procedure. The results of this process are shown
in Fig. 3. While we use the specific methodology of Stinson et al.
(2010), the results of Fig. 3 are broadly true for any scheme that uses
abinomial or Poisson distribution to determine whether a supernova
explodes in real time at each time-step.

A second drawback of this method, similar to the first, is that other
forms of feedback are incorrectly calculated for every individual star
particle. Much as mass is not conserved because the number and
mass of high-mass stars is not known a priori, neither is any form
of feedback that relies on high-mass stars. Photoionizing radiation
and photoelectric feedback in simulations are calculated from the
distribution of stars within a population, often relying on stellar
population synthesis codes (e.g. Christensen et al. 2012; Hopkins,
Quataert & Murray 2012; Agertz et al. 2013; Rosdahl et al. 2013;
Stinson et al. 2013; Ceverino et al. 2014). If the actual distribution
is not known ahead of time (and, as shown previously, is almost
certainly different from the assumed distribution), then the photon
estimates will be inconsistent. Since various feedback effects add
non-linearly (Hopkins et al. 2014), any simulation that includes
different feedback mechanisms must ensure that all are consistent.
The only way to ensure consistency is to sample the IMF at the
formation time of the particle.

To see how the results diverge between quantized feedback and
a stochastic IMF, we run an ensemble of dwarf galaxies using the
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Figure 3. A Monte Carlo simulation of quantized feedback in which
supernovae explode each time-step according to a binomial distribution
given by their expected number. Thus, the mass in stars less massive than
Type-1I progenitors is fixed while the mass in high-mass stars can vary
widely. The probability distribution of the resultant total initial mass of the
star particle is shown. The vertical dashed line shows the assumed initial
mass. Quantized feedback can result in almost 40 per cent difference between
the assumed initial mass of the star particle and the mass implied by the
number and mass of supernova explosions. To enforce mass conservation,
the number and mass in low-mass stars would have to be constantly updated
in real time as supernovae explode, leading to further inconsistencies.

quantized feedback of Stinson et al. (2010). We compare the results
in Section 3.4.

‘We note one more advantage of the stochastic IMF over quantized
feedback: any other sampling method can be easily incorporated. As
discussed above, there is still ongoing debate over the fundamental
way in which high-mass stars form, and therefore the proper way to
sample from the IMF. If we wanted to use, for example, the sorted
sampling of Weidner & Kroupa (2006), we could do so provided we
implement a treatment for clusters. Choosing sampling methods is
impossible in methods such as quantized feedback where the mass
distribution is not known from birth.

3 RESULTS

3.1 Cosmological star formation

For this paper, we restrict our attention to galaxies residing in well-
resolved haloes with M, > 107 Mg. We focus exclusively on
galaxies that exist in both runs to ensure our results are converged. To
avoid Poisson noise in star formation between matching haloes, we
only consider galaxies where at least one of the two runs formed at
least four star particles. At z = 6, Elena forms 86 galaxies satisfying
the above criteria that are either in the field or satellites of the main
halo.

The most direct way to measure the impact of any prescription
is through its effect on the stellar mass of galaxies. There is active
research in the literature regarding the abundance of dwarf galaxies,
which will soon be discovered in unprecedented numbers with the
Large Synoptic Survey Telescope. There is also growing consensus
that there is large scatter in the stellar mass—halo mass relationship
at the low-mass end (Lin & Ishak 2016; Garrison-Kimmel et al.
2017; Munshi et al. 2017; Kulier et al. 2019). While we do not
expect a stochastic IMF to significantly alter these relationships in
massive galaxies, we do expect a resulting change in feedback to
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Figure 4. Left: The cumulative stellar mass function of galaxies in our sample for runs with a stochastic and continuous IME. While converged above ~10° Mg,
the run with a stochastic IMF is shifted towards smaller stellar masses below this mass. Right: Stellar masses for galaxies residing in matching haloes between
the two simulations. Points are coloured according to the mass of the dark matter halo hosting the galaxy. The dashed grey line shows equal masses between
runs. The smallest galaxies see a systematic reduction in stellar mass with a stochastic IMF compared to the run without a stochastic IMF.

affect dwarf galaxies, particularly those small enough such that their
IMF is not converged.

The left-hand panel of Fig. 4 shows the cumulative stellar mass
functions at z = 6 of the cosmological runs. The runs are identical
other than the treatment of the IMF. Galaxies with M, > 10° Mg
are fully converged, with identical stellar mass functions above
this point. Below this mass, however, there is a clear shift towards
smaller stellar masses in the run with a stochastic IMF.

To further quantify the differences in stellar mass, the right-
hand panel of Fig. 4 shows the stellar masses of all galax-
ies in the left-hand panel, with corresponding galaxies matched
between the two runs. The galaxies are coloured according to
the mass of the dark matter halo in which they reside.’> The
figure shows that in the smallest galaxies, the stellar mass is
generally lower with the stochastic prescription than with the
continuous prescription. In the low-mass range, galaxies with a
stochastic IMF see a reduction in stellar mass of up to an order
of magnitude compared to the equivalent galaxy with a continuous
IMF.

The trend of star formation suppression with a stochastic IMF
becomes clearer if we instead arrange the stellar masses according
to their dark matter masses. Fig. 5 shows the change in stellar mass
as a function of halo mass for both sets of galaxies. Below a halo
mass of ~10%° My, galaxies formed with a stochastic IMF tend
to have their star formation suppressed compared to a continuous
IMF. Above this mass there is little change. This trend appears in
addition to the generally greater scatter at lower halo mass which
results from the breakdown of halo self-regulation. This dependence
clarifies one of the outlier results of Fig. 4, where a somewhat more
massive galaxy (~10° Mg in the run with a continuous IMF) still
sees a reduction of an order of magnitude in stellar mass in the run
with a stochastic IMF. The cause for this is that while its stellar
mass is greater, its dark matter halo is more typical of the type that
hosts ultra-faint galaxies.

SMore precisely, they are coloured by the mean of matching halo masses
in the two runs; however, the dark matter halo masses of the stochastic and
non-stochastic runs are typically not more than 5 per cent different.
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Figure 5. Difference in stellar mass as a function of dark matter halo mass
for matched galaxies across runs with and without a stochastic IMF. The
dashed grey line indicates equal masses between runs. Lower halo masses
have increased scatter, and starting at M,k ~ 1085 Mg, galaxies in the run
with a stochastic IMF are generally lower than with a continuous IMF.

3.2 Bursty feedback

3.2.1 Supernova timing

To explain the reduced star formation with a stochastically sampled
IMF as compared to the continuous IMF, a simple guess would be
that since we now allow the total number of supernovae per star
particle to vary, we now have varying total levels of feedback. At
low SFR, however, a stochastically sampled IMF is expected to
under-fill the high-mass end of the IMF, which would lead to fewer
supernovae and less energy in feedback. If total supernova energy
were the dominant factor, then, we would expect to see higher stellar
masses in the run with a stochastic IMF, which is the opposite of the
results shown in Fig. 4. In fact, among galaxies with suppressed star
formation, roughly equal numbers have above and below average
supernova total feedback.
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Figure 6. Burstiness of the supernova rate as a function of dark matter halo
mass for runs with and without a stochastic IMF. Burstiness is calculated
according to equation (1) using 1 Myr intervals during the first 30 Myr of
star formation. Independent of galaxy properties, the run with a stochastic
IMF leads to burstier supernova feedback, which leads to the suppression of
star formation in dwarf galaxies that are too low-mass to self-regulate.

More important than the absolute number of supernovae, then,
is the timing of the explosions. As is clear in Fig. 2, the supernova
feedback with a stochastic IMF becomes much more temporally
clustered. To see this in more detail, we can define a burstiness
parameter (Goh & Barabdsi 2008 and similar to equation 1 of
Mistani et al. 2016) as
p= =1 (1)

o/u+1

where o is the standard deviation of the supernova rate, and p
is the mean supernova rate. Using this definition, the burstiness
ranges from —1 to 1; a uniform distribution has a burstiness B =
—1, an exponential distribution has a burstiness B = 0, and the
burstiness approaches 1 as o/u — oco. We calculate the rate in
1 Myr intervals® for the first 30 Myr of every galaxy’s star formation
(coinciding roughly with the longest-lived supernova from the first
star particle to form in the galaxy). The results are plotted in
Fig. 6.

As seen in the figure, the supernova rate is significantly burstier
in runs with a stochastic IMF than runs with a continuous IME.
Crucially, the increase in burstiness applies to all galaxies, not only
galaxies with low SFR. Since feedback with a stochastic IMF is
universally more effective, it may seem surprising that we only see
an impact in small galaxies. As was shown in Fig. 5, this stems
from the stronger dependence on halo mass than stellar mass. The
bursty supernova feedback leads to more effective heating of gas, as
will be shown explicitly in the next section. However, only in small
haloes less able to self-regulate does this more effective feedback
completely shut off future star formation. The deeper potential
wells of the higher mass haloes minimize the effects of burstier
feedback.

%The burstiness parameter will be somewhat dependent on the binning
chosen for the supernova rate, but we confirmed that the increased burstiness
of the stochastic IMF over the continuous IMF is independent of bin size.
We choose binning in 1 Myr intervals to be consistent with the timing of
feedback in our simulations.
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Figure 7. Star formation in the isolated dwarf galaxy runs, with and without
a stochastic IMF. Each IMF treatment was run 50 times. Central lines show
the medians, and bands represent the interquartile range. The grey line
represents the median time of the first star formation. Top: The available
cold gas as a function of time. With a stochastic IMF, about half as
much gas is available compared to runs with a continuous IMF. Bottom:
Cumulative star formation as a function of time. With a stochastic IMF, star
formation is suppressed compared to runs with a continuous IMF, resulting
from supernova feedback more effectively heating surrounding gas (see top
panel).

3.2.2 Isolated runs

The same simulation run multiple times can have differing galaxy
properties, owing to stochastic variations in numerical codes (Keller
etal. 2019). To further investigate the results of the previous section
and to ensure our results are independent from the intrinsic scatter in
galaxy stellar mass, we consider an isolated simulation of a 10° M,
halo, with initial star particle masses of 420 M.

To quantify the significance of differences between IMF treat-
ments, we simulate the isolated halo 50 times with a stochastic IMF
and 50 times without. The results are shown in Fig. 7, where we
focus on the first Gyr. The bottom panel of the figure shows the
cumulative number of star particles that have formed as a function
of time, displaying both the median of all runs and the interquartile
range. Clearly, the majority of the time, the run with a stochastic
IMF forms fewer stars throughout the entire duration of the
simulation.

To see why star formation is suppressed, the top panel of Fig. 7
shows the number of gas particles with a temperature below 1000 K.
‘While the conditions for star formation are based on H, abundance
(Christensen et al. 2012), this serves as a proxy for the number of
gas particles that could potentially form stars. We see that with a
stochastic IMF, the gas is more effectively heated — at any given
time, up to half as many gas particles have cooled to below 1000 K,
in line with the reduction in star formation. We have verified that
in our cosmological simulation, the galaxies tend to have similar
gas masses, with no systematic change as with stellar mass. This
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Figure 8. Mean stellar metallicity as a function of luminosity for galaxies in
our sample, with and without a stochastic IMF. Filled circles show galaxies
residing in dark matter haloes below 108 Mg, approximately corresponding
to galaxies we expect to be quenched by reionization (Tollerud & Peek 2018).
Since the sample is at z = 6, only low-mass galaxies that have stopped
forming stars match the z = 0 data. More massive galaxies are expected to
increase in metallicity with time. There are no clear differences between the
IMF treatments, though there may be slightly greater scatter in metallicity
with a stochastic IMF.

indicates that more effective gas heating dominates over more
efficient gas expulsion.

In a cosmological setting, these effects can be significantly
exaggerated. In the cosmological runs compared to the isolated
runs, the differences between the stellar masses of galaxies can
increase from a factor of ~1.5 to ~10, as in Fig. 4.

3.3 Metallicity

Beyond energy deposition, high-mass stars return processed ma-
terial to the ISM. As previously emphasized, a stochastic IMF
significantly alters the distribution of high-mass stars, including
their masses and numbers. Since the metal production depends
non-linearly on the mass of the exploding star (Raiteri et al. 1996),
one might expect greater variation in the chemical enrichment of
galaxies with a stochastic IMF.

Fig. 8 shows the luminosity—metallicity relationship of all galax-
ies in the sample, along with data from Kirby et al. (2013). To
calculate the galaxy metallicities, we apply a floor for individual star
particles of Z > 107>. Luminosities are calculated using PARSEC’
isochrones (Bressan et al. 2012). We note that our sample is at z = 6;
for faint galaxies that have likely stopped forming stars indefinitely,
we match the data well, thopaugh our scatter below Ly ~ 10° Ly, ¢
is higher than the observations. Some of the excess scatter is
likely reduced due to mergers at later times, when some of the
faint galaxies with extremely low metallicities are incorporated into
larger, higher metallicity galaxies. For larger galaxies that lie below
the z = 0 observations, ongoing star formation will increase the
metallicities with time. A forthcoming paper (Munshi et al. in prep)

7http://stev.oapd.inaf.it/cgi-bin/cmd
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Figure 9. Chemical abundances of all-star particles in galaxies with z =
6 luminosities Ly < 10°- Ly o and Mg < 1085 Mg, corresponding
roughly to z = 0 UFDs. The abundance ratios between the two models
are largely consistent, likely as a result of metal diffusion in the ISM,
which reduces scatter introduced by IMF sampling effects (Revaz et al.
2016). The high number of stars at [O/Fe] ~ 0.75 using a continuous
IMF result from the stars formed from the metal content of the very first
time-step in which supernovae explode. There may be a slight shift to
higher [Fe/H] with a stochastic IMF, but it is well below observational
precision.

will discuss these relationships and demonstrate consistency with
the data in the present day.

Surprisingly, runs with the stochastic and continuous IMF are
consistent at all luminosities, though the scatter may increase
for faint galaxies with a stochastic IMF. It is likely that metal
diffusion in the ISM (Shen et al. 2010) quickly obscures any
systematic differences in future generations of stars that form,
consistent with the findings of Revaz et al. (2016), who found
that introducing metal diffusion in dwarf galaxies reduced scatter
introduced by IMF sampling effects. The overall impression is that
the stochastic IMF has little impact on the chemical evolution of
galaxies.

We also investigate whether the stellar chemical abundances
change with a stochastically populated IMF. Fig. 9 shows the
abundance ratios for galaxies with (z = 6) luminosities Ly <
10> Ly, o and dark matter masses below 10%° Mg, which after
passive stellar evolution would correspond roughly to today’s UFDs.
As above, there is almost no difference between the models; the
[O/Fe] versus [Fe/H] distributions overlap completely. With the
continuous IMF there is a small overabundance of stars at [O/Fe] ~
0.75, which corresponds to the maximum abundance ratio possible
that results from the very first time-step in which supernovae
explode when integrating along the continuous IMF. Additionally,
there is a mild indication that stars with a stochastic IMF are shifted
to slightly higher [Fe/H]. This shift makes sense given that requiring
whole supernovae to explode means that more processed material
is ejected at once into the ISM. On the whole, however, it seems
that even when looking at the chemical composition of stars there
is little to distinguish the models, especially given observational
uncertainties.
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Figure 10. Star formation in the isolated dwarf galaxy runs, comparing
runs with a stochastic IMF versus runs with quantized feedback. Each IMF
treatment was run 50 times. Central lines show the medians, and bands
represent the interquartile range. The grey line represents the median time
of the first star formation. Top: The available cold gas as a function of
time. Quantized feedback leaves ~30 percent more cold gas available to
form stars compared to runs with a stochastic IMF. Bottom: Cumulative star
formation as a function of time. Quantized feedback results in ~10 per cent
more star formation than a stochastic IMF.

3.4 Stochastic versus quantized feedback

As discussed in Section 2.3, quantized feedback is an existing
method that discretizes supernovae. To test how it compares to
a stochastic IMF, we ran the isolated dwarf galaxy 50 times with
quantized Type II supernovae (but otherwise the same feedback
implementation). Fig. 10 shows the quantity of cold gas and
cumulative star formation as a function of time for the two IMF
treatments. Interestingly, there is consistently ~30 per cent more
available cold gas and ~10 per cent more star formation with the
quantized feedback as compared to the stochastic IMF.

Stellar feedback, therefore, is less effective with quantized
feedback than with a fully self-consistent stochastic IMF. There are
multiple differences that could contribute to this behaviour. First, as
discussed in Section 2.3, the LW photon production with quantized
feedback cannot accurately reflect the internal distribution of high-
mass stars. Different feedback mechanisms interact non-linearly
(Hopkins et al. 2014), such that one can reinforce the effect of
the others. The stochastic IMF ensures that LW radiation and
supernovae come from the same stars, which may result in stronger
disruption of gas. Additionally, since UV luminosities depend
highly non-linearly on stellar mass, estimating the ionizing photon
counts from fractions of massive stars may result in less initial LW
radiation than for individual (whole) massive stars, though averaged
over many particles the LW outputs converge. Another difference
may come from the timing and distribution of supernovae; if the
stochastic IMF leads to more temporally clustered explosions,
then the cumulative heating of gas may be more effective. Monte
Carlo simulations of a stochastically populated IMF show that
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approximately 25 per cent of 420 Mg, star particles with feedback
calculated every 1 Myr will have a single time-step with multiple
supernovae, as opposed to none using quantized feedback. Thus,
some of the difference could result from our use of a binomial rather
than Poisson distribution in calculating the quantized feedback, and
we caution that a different implementation may yield closer results.
We note that the average total number of supernovae per star particle
is the same between the prescriptions.

We caution that these results come from an isolated dwarf galaxy.
Inacosmological context, the presence of tidal interactions, ionizing
radiation, and gas outflows may increase the differences in these
results. In particular, the presence of a larger cold gas reservoir
when using quantized feedback could lead to more extended star
formation histories in UFD galaxies during and after the epoch of
reionization.

In our case, because the primary source of energetic feedback
comes from Type-1I supernovae, the differences between a stochas-
tic IMF and quantized feedback are conspicuous but limited. This
demonstrates the general robustness of the supernova feedback
physics implemented in our simulations. Some simulations in-
corporate significant quantities of radiative feedback from high-
mass stars, beyond merely a Lyman—Werner prescription for H,
destruction. While capturing more subgrid processes, they may
also suffer from an even greater internal inconsistency in the use
of quantized feedback, due to the non-linear nature of different
feedback mechanisms, which may result in even greater differences
between quantized feedback and a stochastically sampled IMF.

4 IMPLICATIONS FOR FUTURE
PREDICTIONS

4.1 Star formation quenching

The most significant difference between the stochastic IMF and the
continuous IMF is the lower stellar mass of a large fraction of dwarf
galaxies. This is not unexpected, and is similar to what was found
by Su et al. (2018). The effect we find, however, is less extreme,
owing mostly to the differences in our feedback implementations.
Our feedback is calculated in 1 Myr intervals, compared to the
smaller time-scales in the FIRE simulations, which can be shorter
than 10* yr. Thus, continuous injection of supernova energy re-
sults in relatively large per-step feedback in our simulations as
compared to continuous injection in FIRE. Additionally, in CHANGA
instantaneous energy deposition is incorporated as a 1 Myr heating
rate to avoid numerical instabilities (see footnote 63 in Kim et al.
2016), meaning that even with a stochastic IMF supernova energy
is effectively continuously injected when considering sufficiently
small time intervals.

The cause of this suppression in star formation is clear from its
effects on the gas in the isolated dwarf runs: supernova feedback
with a stochastic IMF is more effectively preventing gas from
cooling. In the first Gyr of star formation, there can be more than a
factor of 2 difference in the amount of gas available to form stars,
with a corresponding difference in the amount of star formation.
The reason for the suppression of star formation is that supernova
energy is deposited in a shorter time frame; this is not only because
stars are discrete, but because stochasticity in the stellar masses
allows supernovae to cluster temporally, as was shown in Fig. 2.

We also find a strong halo mass dependence in our results, as was
shown in Fig. 5. Owing to our large sample, we are able to explore
these trends. The continuous IMF treatment yields largely the same
results for galaxies residing in haloes more massive than ~1083 Mg
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at z = 6. These more massive haloes are able to self-regulate even
with the stronger supernova feedback. Smaller haloes, however,
have too small a potential well to prevent supernovae from driving
out gas from star-forming regions. This is also approximately the
(high-redshift) mass scale where reionization is thought to suppress
star formation (Quinn, Katz & Efstathiou 1996; Thoul & Weinberg
1996; Barkana & Loeb 1999; Bullock, Kravtsov & Weinberg 2000;
Gnedin 2000; Okamoto, Gao & Theuns 2008; Tollerud & Peek
2018); most galaxies in haloes of these masses will quench, if
not from supernova feedback, then from the combined effects of
feedback and reionization (Benson et al. 2002; Somerville 2002;
Hoeft et al. 2006; Nickerson et al. 2011). For a given reionization
model, our results show that a stochastic IMF suppresses star
formation even further in low-mass haloes.

4.2 Reionization

Though in some cases galaxies quenched at high redshift can
restart star formation in later times (Wright et al. 2019), even a
temporary suppression of star formation would have significant
implications for the epoch of reionization. Early galaxies are thought
to be the primary source of ionizing radiation (Stark 2016), with
significant contributions from dwarf galaxies. In fact, though not
directly observable, inferences from the Local Group imply that
very small dwarf galaxies (as faint as My ~ —3) may have
contributed to reionization (Weisz & Boylan-Kolchin 2017). What
is still unknown, however, is the fraction of ionizing radiation they
provided, and similarly, their luminosity function at high redshifts.
There have been many simulation predictions of the reionization
era, reaching down to dwarf galaxy scales (e.g. O’Shea et al. 2015;
Finlator et al. 2016; Gnedin 2016; Ocvirk et al. 2016; Xu et al. 2016;
Anderson et al. 2017; Ma et al. 2018), and simulations continue to
push to higher resolution.

When properly accounting for IMF sampling effects, we have
seen that star formation is often suppressed earlier, indicating that
by z ~ 6, the faintest galaxies will constitute a reduced fraction
of the ionizing photon budget. This may be countered by higher
escape fractions resulting from hotter bubbles of gas around these
small galaxies. Detailed explorations of the implications of IMF
sampling on reionization will be pursued in future work, but what is
already clear is that accurate predictions will require a stochastically
populated IMF.

4.3 Tracking high-mass stars

One of the key new features of this prescription is the tracking of
individual high-mass star data. For every star particle, we now have
a list of the masses of every star above 8 M, residing within it. This
opens up new science avenues that were not available before.

For example, cosmological simulations may be used to estimate
the size and evolution of H 11 regions, as in Anderson et al. (2017),
based on the ionizing photon output from star particles. Rather
than assume ionizing photon production from an SSP, this new
prescription allows us to use the specific stars to determine the
photon rate, which will add variability to our predictions.

Predictions for stellar remnants, such as pulsar counts, can now
be directly inferred from star particles in our simulations. Further,
now that we have entered the era of gravitational wave astronomy
(Abbott et al. 2016), simulations can be used to predict the merger
rates of binary compact objects. This has so far been accomplished
by pairing simulation outputs with population synthesis models
(e.g. Chakrabarti et al. 2017; Mapelli et al. 2017; O’ Shaughnessy
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et al. 2017; Schneider et al. 2017). Having precise high-mass star
information can allow us to refine such predictions by using the
actual high-mass star counts from the simulations. Additionally,
since the Milky Way has accreted many small galaxies over its
lifetime, we can still see the imprint of these single rare events. For
example, in the Milky Way stellar halo, accreted UFD-like galaxies
may have contributed over half of r-process enhanced metal-poor
stars (Brauer et al. 2019). Such predictions, however, are highly
sensitive to the actual numbers of massive binary stars in small
populations.

5 SUMMARY

Motivated by the inability of low-mass haloes to self-regulate, and
the resulting divergence of different prescriptions in UFDs, we
investigated the treatment of stellar feedback in simulations. In this
work, we presented a new treatment of the IMF in cosmological
simulations. Informed by observations, we stochastically sample
stars from the IMF within each star particle. As a compromise with
computational reality, once we have stochastically populated a star
particle, we only track individual stars above 8 M, so that feedback
dependent on high-mass stars is calculated for discrete stars, and
feedback dependent on low-mass stars is calculated as before for
continuous populations.

To investigate the effects of our new stochastic IMF, we used
cosmological zoom-in simulations run to z = 6 to compare the
stellar masses of the resulting ~100 galaxies. We found that while
galaxies residing in dark matter haloes greater than ~10%° Mg
remain unchanged by the new sampling method, galaxies in smaller
haloes typically have lower stellar masses, by up to an order of
magnitude. When comparing the supernova rate via a burstiness
parameter, we found that a stochastic IMF leads to significantly
burstier feedback because of the greater temporal clustering of
supernovae.

To see how the burstier supernova feedback impacts the gas in
a galaxy, we used a simulated isolated dwarf galaxy. We ran many
versions of both the continuous and stochastically sampled IMF
treatment to study systematic differences in star formation, while
bracketing scatter between runs. We found that during the first
billion years, the galaxy with the stochastic IMF formed as few
as half as many stars. The suppression in star formation results
from a reduction in the number of gas particles available to form
stars. Feedback with a stochastic IMF is more effective at heating
surrounding gas and preventing gas from cooling and condensing
into stars.

While another method (‘quantized feedback’) is typically used
to ensure supernovae are discrete, we found that this method has
several inconsistencies, since the actual distribution of high-mass
stars is unknown until all supernovae have exploded. We found that
the star formation results of quantized feedback were intermediate
between a continuous and a stochastic IMF. Quantized feedback
leads to ~10 and ~30 per cent more star formation and available
cold gas, respectively. If high-energy radiation contributed energy
or momentum in our simulations, it is possible the results would be
even more dissimilar.

To test the new IMF prescription, this work focused on galaxies
at high redshift. Since the galaxies in the mass range where this
prescription is most impactful stop forming stars shortly after
reionization, this was sufficient to draw conclusions for faint
galaxies. Future work will investigate the effects of a stochastic
IMF in simulations run to the present day.
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This IMF prescription is ideal for high-resolution simulations;
as star particle masses decrease, we can lower the cut-off mass
to discretely track lower mass stars, and incorporate discrete
treatments for Type-la explosions and mass-loss due to stellar
winds. Further, our unique ability to track the evolution of individual
stars in cosmological simulations will allow us to make more
specific predictions for any observations dependent on the number
and distribution of high-mass stars. Future work, for example, can
constrain the rates of compact object binary mergers detectable by
gravitational wave experiments.

As we explore smaller stellar populations in simulations, we are
now afforded the opportunity to investigate astrophysics on smaller
scales. With the future predictive power of our simulations in mind,
we have implemented a novel stochastic IMF in our cosmological
simulations. In future studies of faint galaxies, including their stellar
populations and radiative contributions to the epoch of reionization,
it will be necessary to use such a stochastically populated IMF
to accurately model these phenomena. Otherwise, observational
predictions will systematically overestimate the star formation in
UFD galaxies.
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Figure A1. The same as Figs 7 and 10, but instead comparing three versions
of the stochastic IMF with different cut-off masses. The higher the cut-off,
and therefore the more supernovae are approximated as continuous, the more
cold gas is available to form stars and the more stars form. It is therefore
important to capture all core collapse supernovae discretely in any IMF
sampling method.

APPENDIX A: CUT-OFF MASS

It is important to capture all Type-II supernovae when employing
a discretization scheme. That is, shifting the cut-off mass above
the minimum core-collapse supernova mass lessens the impact of
the discretization. Fig. A1 shows this, where we have plotted the
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first ~100 Myr of star formation of 50 runs each of the isolated
dwarf galaxy. As we shift the cut-off higher, thereby approximating
more of the Type II supernovae as continuous rather than discrete,
we approach the fully continuous case of greater star formation and
more cold gas. Thus, in order to capture the full impact of the energy
deposition, all supernovae must be described within the framework
of a stochastic IMF.

APPENDIX B: NUMERICAL CONSIDERATIONS

Here, we briefly discuss the computational considerations of apply-
ing the IMF sampling method presented in this work. Compared
to quantized sampling, this method clearly requires more memory
allocated per star particle (specifically, an array containing the list
of masses of discrete massive stars tracked). For this reason, this
method is best applied only in very high-resolution cosmological
simulations. For most codes that already associate many pieces
of information with their star particles (e.g. temperature, chemical
composition, formation time, mass, etc.), a reasonable constraint is
to no more than double the memory required per star particle, or
equivalently (for typical cosmological codes) to limit the maximum
number of individual stars expected during sampling to be of order
10. For this reason, this method is intended for use in simulations
with star particle masses <1000 M.

In terms of computation time, sampling in this way is more
intensive than quantized feedback or a method akin to Gatto et al.
(2017) in which the IMF is sampled only in the high-mass regime.
However, as discussed in Section 2.2, sampling instead over the
entire regime imposes no restriction on the mass or number of
stars in the high-mass regime, and so allows for greater variation in
both. Fortunately, though the sampling takes time, it is negligible
compared to the computation time involved in other aspects of the
simulation. Timing comparisons of simulations suggest differences
between the two methods are at no more than the per cent level.
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