

Nonlinear force-free configurations in cylindrical geometry

Maxim Lyutikov¹†

¹Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN, 47907-2036, USA

(Received xx; revised xx; accepted xx)

We find a new family of solutions for force-free magnetic structures in cylindrical geometry. These solutions have radial power-law dependance and are periodic but non-harmonic in azimuthal direction; they generalize the vacuum z -independent potential fields to current-carrying configurations.

1. Introduction

Force-free magnetic configurations, satisfying condition $\mathbf{B} = \kappa \mathbf{J}$, where \mathbf{B} is magnetic field and \mathbf{J} is current density, are examples of magnetic structures that may represent the final stages of magnetic relaxation, or can be used as building block of plasma models (Lundquist 1951; Woltier 1958; Taylor 1974; Priest & Forbes 2000).

Particular *linear* examples of force-free equilibria, with spatially constant κ , were considered by Chandrasekhar & Kendall (1957). The most often-used configurations are Lundquist fields in cylindrical geometry (Lundquist 1951) and spheromaks in spherical geometry (Bellan 2000).

Using the self-similar assumption Lynden-Bell & Boily (1994) found non-linear self-similar solutions in spherical geometry. Their model of axially symmetric twisted configurations has been widely used in astrophysical and space applications (e.g. Thompson *et al.* 2002; Shibata & Magara 2011). In the spirit of Lynden-Bell & Boily (1994), in this paper we construct similar non-linear magnetic configurations in cylindrical geometry.

2. Self-similar configuration in cylindrical geometry

Shafranov (1966) and Grad (1967) formulated what is known as the Grad-Shafranov equation, separating complicated magnetic configuration in the set of nested/foliated flux surfaces, given by the condition that flux function P is constant on the surface, and the encompassed current flow. Let us look for force-free equilibria that are independent of coordinate z . The two Euler potentials α and β (or, equivalently, the related Clebsh variables) are

$$\begin{aligned} \alpha &= z \\ \beta &= P(r, \phi) \end{aligned} \tag{2.1}$$

while the magnetic field can be written as

$$\mathbf{B} = \nabla P \times \nabla z + g(P) \nabla z \tag{2.2}$$

where g is some function.

† Email address for correspondence: lyutikov@purdue.edu

Next we introduce a self-similar anzats

$$\begin{aligned} P(r, \phi) &= r^{-l} f(\phi) \\ g(P) &= \mathcal{C} |P|^p \\ \mathbf{B} &= \nabla P \times \nabla z + \mathcal{C} |P|^p \nabla z = \{f', l f, \mathcal{C} |f|^p\} r^{-(l+1)} \end{aligned} \quad (2.3)$$

Absolute value of $|P|$ in the non-linear term ensures that magnetic field is real ($f(\phi)$ can become negative). Below any appearance of f to non-integer power is to be understood to involve $\sqrt{f^2} = |f|$.

By dimensionality

$$p = 1 + 1/l \quad (2.4)$$

Equation for f becomes

$$l f'' + l^3 f + \mathcal{C}^2 (1 + l) f^{(2+l)/l} = 0 \quad (2.5)$$

(note that the component B_z enters here as B_z^2 . This justifies the use of $|P|$.)

For vacuum fields $\mathcal{C} = 0$ the above relations reproduce

$$\begin{aligned} P &\propto r^{-m} \sin(m\phi) \\ B_r &\propto r^{-(1+m)} f' \\ B_\phi &\propto m r^{-(1+m)} f \end{aligned} \quad (2.6)$$

with integer m .

The first integral is

$$f'^2 + l^2 f^2 + \mathcal{C}^2 |f|^{2(1+l)/l} = H_0, \quad (2.7)$$

By redefining $f \rightarrow \sqrt{H_0} f$ and $\mathcal{C} \rightarrow \mathcal{C} H_0^{-1/(2l)}$ the parameter H_0 can be set to unity,

$$f'^2 + l^2 f^2 + \mathcal{C}^2 |f|^{2(1+l)/l} = 1. \quad (2.8)$$

Equation (2.8) is the main equation describing non-linear force-free structures in cylindrical geometry. It depends on one parameter - the current strength \mathcal{C} . For a given \mathcal{C} the value of l is then determined as an eigenvalue problem by requiring periodicity in ϕ , as we describe next.

We can solve for f in quadratures:

$$\phi = \int \left(\sqrt{1 - l^2 f - \mathcal{C}^2 |f|^{2(1+l)/l}} \right)^{-1} df \quad (2.9)$$

(so that the integration constant in Eq. (2.8) is just a phase ϕ where $f = 0$).

Periodicity in ϕ requires

$$\int_0^{f_{max}} \left(\sqrt{1 - l^2 f - \mathcal{C}^2 |f|^{2(1+l)/l}} \right)^{-1} df = \frac{\pi}{2m} \quad (2.10)$$

where $m = 1, 2..$ is an integer azimuthal number (see a comment after Eq. (3.5) why odd solutions, $\propto 2m + 1$ in the denominator, are discarded), The value of f_{max} satisfies

$$1 - m^2 f_{max} - \mathcal{C}^2 f_{max}^{2(1+l)/l} = 0 \quad (2.11)$$

For given \mathcal{C} the relations (2.10)- (2.11) constitute an eigenvalue problem on l . (For vacuum no current case $\mathcal{C} = 0$ this reduces to $l = m$, an integer - checkmark.) In practice, we follow the following procedure: for each $m = 1, 2..$ we assume some l and find \mathcal{C} using relations (2.10)- (2.11). Thus, for each m there is a continuous relation $\mathcal{C}(l)$. (Physically, of course, it is the current \mathcal{C} the determines the radial index l .)

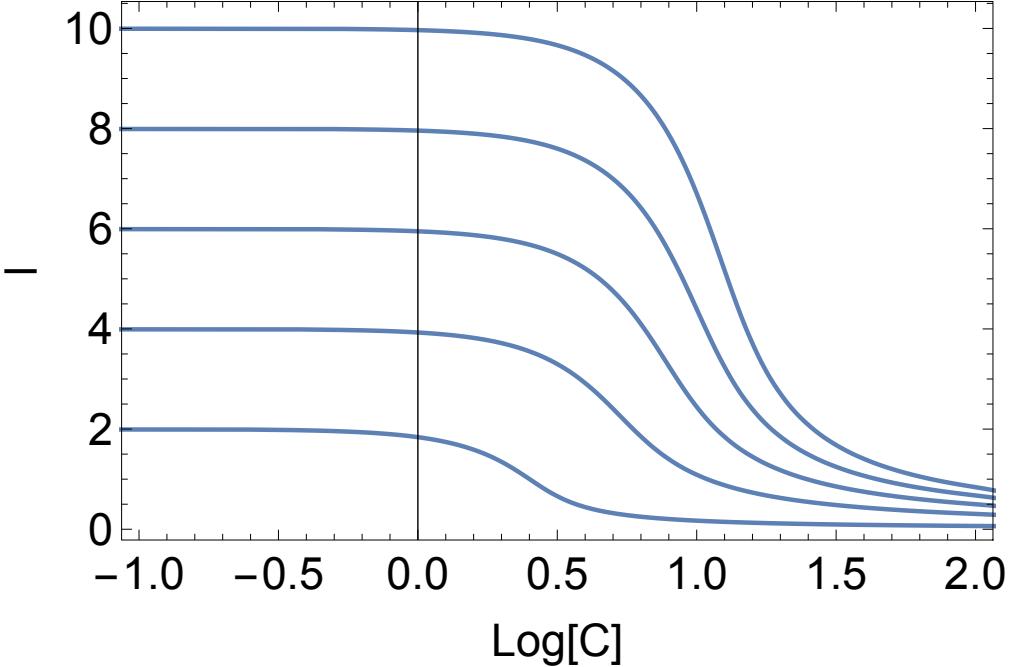


Figure 1: Dependence of the radial index l on the current parameter \mathcal{C} for various harmonics $m = 2, 4, 6, 8, 10$.

Results are plotted in Figs 2-3. In Fig. 2 we plot a particular solution for $l = 1$ and $m = 2$. The flux functions forms a "petal" patter in azimuthal angle with number of "petals" equal $2m$. There is a corresponding axial, unidirectional magnetic field B_z .

In Fig. 1 we plot the curves $l(\mathcal{C})$ for various $m = 2, 4, 6, 8, 10$. Each curve starts at a point $\{\mathcal{C} = 0, l = 2m\}$. For non-zero current $\mathcal{C} > 0$ the radial dependence becomes more shallow, $l < 2m$.

In Fig. 3 we plot values of \mathcal{C} as a function of azimuthal number m for different values of $l = 0.25 \dots 2$. Dashed lines are for convenience only, they connect points corresponding to the same radial parameter l .

3. Analysis of the solutions

In a formulation of force-free fields in the form

$$\text{curl } \mathbf{B} = \kappa \mathbf{B} \quad (3.1)$$

the value of κ is

$$\kappa = \mathcal{C} \frac{1+l}{lr} f^{1/l} \quad (3.2)$$

It is constant on flux surfaces P , Eq. 2.3.

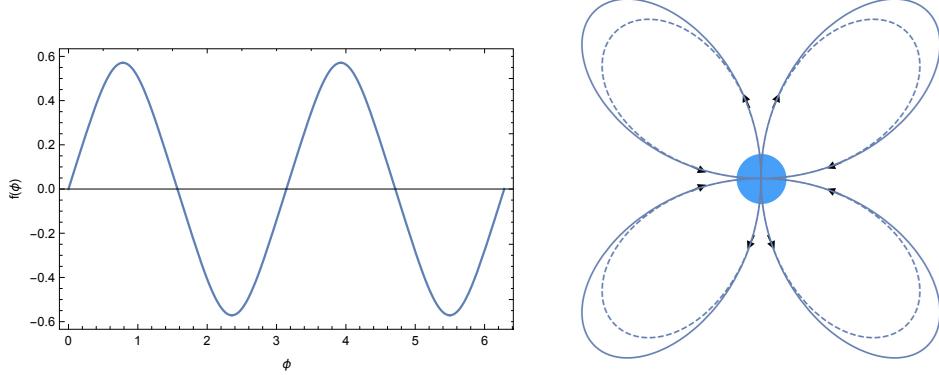


Figure 2: Left panel: example of solution $f(\phi)$ for $l = 1, m = 2$. In this case $\mathcal{C} = 2.517$. Right panel: structure of poloidal field. (Due to the assumed self-similar radial structure the solutions do not extend to $r = 0$). Dashed line is the corresponding vacuum case, Eq. 2.6.

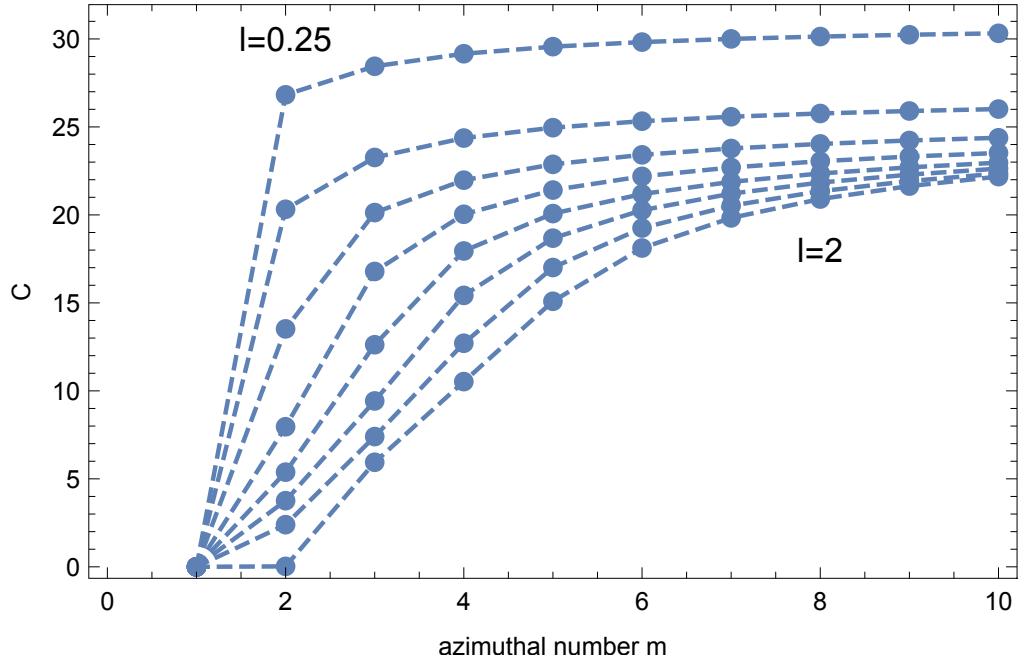


Figure 3: Values of \mathcal{C} as a function of azimuthal number m for different values of $l = 0.25 \dots 2$ (in steps of 0.25). Top curves correspond to smaller l .

The current density (we incorporate factors of $4\pi/c$ into definition of magnetic field)

$$\begin{aligned}
 j_r &= \mathcal{C} \frac{1+ll}{l} r^{-(l+2)} \partial_\phi (|f|)^{(1+l)/l} \\
 j_\phi &= \mathcal{C} (l+1) r^{-(l+2)} (|f|)^{(1+l)/l} \\
 j_\phi &= r^{-(l+2)} (f'' + l^2) = -\mathcal{C}^2 \frac{1+ll}{l} r^{-(l+2)} (|f|)^{(2+l)/l}
 \end{aligned} \tag{3.3}$$

The total axial current is

$$I_z = \int_{r_0}^{\infty} r dr \int_0^{2\pi} d\phi j_z = -\frac{r_0^{-l}}{l} \int_0^{2\pi} d\phi (f'' + l^2 f). \quad (3.4)$$

where r_0 is the inner boundary. The total axial current vanishes if two conditions are satisfied

$$\begin{aligned} \int_0^{2\pi} f d\phi &= 0 \\ f'(2\pi) &= f'(0) \end{aligned} \quad (3.5)$$

All the solutions considered here satisfy these conditions: the second one requires even azimuthal numbers, $2m$. Generally, there is a larger family of self-similar force-free equilibria with non-zero total axial current.

There is non-zero toroidal current

$$\begin{aligned} j_\phi &= \mathcal{C}(l+1)r^{-2-l}|f|^{(1+l)/l} \\ \int_0^{2\pi} d\phi j_\phi &\neq 0 \end{aligned} \quad (3.6)$$

The radial current density integrated over ϕ satisfies

$$j_r \propto \int_0^{2\pi} d\phi \partial_\phi (|f|)^{(1+l)/l} = (|f|)^{(1+l)/l} \Big|_0^{2\pi} = 0 \quad (3.7)$$

4. Discussion

In this paper we *make analytical progress with the highly nonlinear problem[s] of magnetohydrodynamics* (Lynden-Bell & Boily 1994). We find a class of non-linear self-similar force-free equilibria in cylindrical geometry. The solutions we find all connect to the vacuum case, in which case the flux function is $P_{vac} \propto r^{-m} \sin(m\phi)$. Structures with vanishing total axial current require even values of m (hence $m \rightarrow 2m$). For non-zero distributed current with the current parameter \mathcal{C} the radial dependence changes to r^{-l} , with $l < 2m$, while remaining periodic in ϕ at $2m$. Solutions for a given m resemble vacuum solutions $\propto \sin(2m\phi)$, but they are not exactly harmonic in the nonlinear case.

For very large currents the solutions asymptote to $l \approx 0$, but never reach this limit. The case $l = 0$ corresponds to $B_r \propto 1/r$. Mathematically, this is the analogue of split monopole case in the spherical geometry - split monopole case can be achieved in spherical geometry (with corresponding anti-monopole in the opposite hemisphere), but is not possible in the cylindrical geometry.

Acknowledgments

This work had been supported by NASA grant 80NSSC17K0757 and NSF grants 10001562 and 10001521.

REFERENCES

BELLAN, P. M. 2000 *Spheromaks: a practical application of magnetohydrodynamic dynamos and plasma self-organization*. Spheromaks: a practical application of magnetohydrodynamic dynamos and plasma self-organization/ Paul M. Bellan. London: Imperial College Press; River Edge, NJ: Distributed by World Scientific Pub. Co., c2000.

CHANDRASEKHAR, S. & KENDALL, P. C. 1957 On Force-Free Magnetic Fields. *ApJ* **126**, 457–+.

GRAD, H. 1967 Toroidal Containment of a Plasma. *Physics of Fluids* **10** (1), 137–154.

LUNDQUIST, S. 1951 On the Stability of Magneto-Hydrostatic Fields. *Phys. Rev.* **83**, 307–311.

LYNDEN-BELL, D. & BOILY, C. 1994 Self-Similar Solutions up to Flashpoint in Highly Wound Magnetostatics. *MNRAS* **267**, 146.

PRIEST, E. & FORBES, T. 2000 *Magnetic Reconnection*.

SHAFRANOV, V. D. 1966 Plasma Equilibrium in a Magnetic Field. *Reviews of Plasma Physics* **2**, 103–+.

SHIBATA, K. & MAGARA, T. 2011 Solar Flares: Magnetohydrodynamic Processes. *Living Reviews in Solar Physics* **8** (1), 6.

TAYLOR, J. B. 1974 Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. *Phys. Rev. Lett.* **33**, 1139–1141.

THOMPSON, C., LYUTIKOV, M. & KULKARNI, S. R. 2002 Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars. *ApJ* **574** (1), 332–355, arXiv: astro-ph/0110677.

WOLTIER, L. 1958 *Proc. Nat. Acad. Sci.* **44**, 489.