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We find a new family of solutions for force-free magnetic structures in cylindrical
geometry. These solutions have radial power-law dependance and are periodic but non-
harmonic in azimuthal direction; they generalize the vacuum z-independent potential
fields to current-carrying configurations.

1. Introduction

Force-free magnetic configurations, satisfying condition B = κJ, where B is magnetic
field and J is current density, are examples of magnetic structures that may represent the
final stages of magnetic relaxation, or can be used as building block of plasma models
(Lundquist 1951; Woltier 1958; Taylor 1974; Priest & Forbes 2000).

Particular linear examples of force-free equilibria, with spatially constant κ, were
considered by Chandrasekhar & Kendall (1957). The most often-used configurations are
Lundquist fields in cylindrical geometry (Lundquist 1951) and spheromaks in spherical
geometry (Bellan 2000).

Using the self-similar assumption Lynden-Bell & Boily (1994) found non-linear self-
similar solutions in spherical geometry. Their model of axially symmetric twisted config-
urations has been widely used in astrophysical and space applications (e.g. Thompson
et al. 2002; Shibata & Magara 2011). In the spirit of Lynden-Bell & Boily (1994), in this
paper we construct similar non-linear magnetic configurations in cylindrical geometry.

2. Self-similar configuration in cylindrical geometry

Shafranov (1966) and Grad (1967) formulated what is known as the Grad-Shafranov
equation, separating complicated magnetic configuration in the set of nested/foliated
flux surfaces, given by the condition that flux function P is constant on the surface, and
the encompassed current flow. Let us look for force-free equilibria that are independent
of coordinate z. The two Euler potentials α and β (or, equivalently, the related Clebsh
variables) are

α = z

β = P (r, φ) (2.1)

while the magnetic field can be written as

B = ∇P ×∇z + g(P )∇z (2.2)

where g is some function.
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Next we introduce a self-similar anzats

P (r, φ) = r−lf(φ)

g(P ) = C|P |p

B = ∇P ×∇z + C|P |p∇z = {f ′, lf, C|f |p}r−(l+1) (2.3)

Absolute value of |P | in the non-linear term ensures that magnetic field is real (f(φ) can
become negative). Below any appearance of f to non-integer power is to be understood

to involve
√
f2 = |f |.

By dimensionality

p = 1 + 1/l (2.4)

Equation for f becomes

lf ′′ + l3f + C2(1 + l)f (2+l)/l = 0 (2.5)

(note that the component Bz enters here as B2
z . This justifies the use of |P |.)

For vacuum fields C = 0 the above relations reproduce

P ∝ r−m sin(mφ)

Br ∝ r−(1+m)f ′

Bφ ∝ mr−(1+m)f (2.6)

with integer m.
The first integral is

f ′,2 + l2f2 + C2|f |2(1+l)/l = H0, (2.7)

By redefining f →
√
H0f and C → CH−1/(2l)0 the parameter H0 can be set to unity,

f ′,2 + l2f2 + C2|f |2(1+l)/l = 1. (2.8)

Equation (2.8) is the main equation describing non-linear force-free structures in cylin-
drical geometry. It depends on one parameter - the current strength C. For a given C the
value of l is then determined as an eigenvalue problem by requiring periodicity in φ, as
we describe next.

We can solve for f in quadratures:

φ =

∫ (√
1− l2f − C2|f |2(1+l)/l

)−1
df (2.9)

(so that the integration constant in Eq. (2.8) is just a phase φ where f = 0).
Periodicity in φ requires∫ fmax

0

(√
1− l2f − C2|f |2(1+l)/l

)−1
df =

π

2m
(2.10)

where m = 1, 2.. is an integer azimuthal number (see a comment after Eq. (3.5) why odd
solutions, ∝ 2m+ 1 in the denominator, are discarded), The value of fmax satisfies

1−m2fmax − C2f2(1+l)/lmax = 0 (2.11)

For given C the relations (2.10)- (2.11) constitute an eigenvalue problem on l. (For
vacuum no current case C = 0 this reduces to l = m, an integer - checkmark.) In
practice, we follow the following procedure: for each m = 1, 2.. we assume some l and
find C using relations (2.10)- (2.11). Thus, for each m there is a continuous relation C(l).
(Physically, of course, it is the current C the determines the radial index l.)
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Figure 1: Dependence of the radial index l on the current parameter C for various
harmonics m = 2, 4, 6, 8, 10.

Results are plotted in Figs 2-3. In Fig. 2 we plot a particular solution for l = 1 and
m = 2. The flux functions forms a ”petal” patter in azimuthal angle with number of
”petals” equal 2m. There is a corresponding axial, unidirectional magnetic field Bz.

In Fig. 1 we plot the curves l(C) for various m = 2, 4, 6, 8, 10. Each curve starts at a
point {C = 0, l = 2m}. For non-zero current C > 0 the radial dependence becomes more
shallow, l < 2m.

In Fig. 3 we plot values of C as a function of azimuthal number m for different values
of l = 0.25...2. Dashed lines are for convenience only, they connect points corresponding
to the same radial parameter l.

3. Analysis of the solutions

In a formulation of force-free fields in the form

curl B = κB (3.1)

the value of κ is

κ = C 1 + l

lr
f1/l (3.2)

It is constant on flux surfaces P , Eq. 2.3.
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Figure 2: Left panel: example of solution f(φ) for l = 1, m = 2. In this case C = 2.517.
Right panel: structure of poloidal field. (Due to the assumed self-similar radial structure
the solutions do not extend to r = 0). Dashed line is the corresponding vacuum case, Eq.
2.6.
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Figure 3: Values of C as a function of azimuthal number m for different values of l =
0.25...2 (in steps of 0.25). Top curves correspond to smaller l.

The current density (we incorporate factors of 4π/c into definition of magnetic field)

jr = C 1 + ll

l
r−(l+2)∂φ (|f |)(1+l)/l

jφ = C(l + 1)r−(l+2) (|f |)(1+l)/l

jφ = r−(l+2)
(
f ′′ + l2

)
= −C2 1 + ll

l
r−(l+2) (|f |)(2+l)/l (3.3)
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The total axial current is

Iz =

∫ ∞
r0

rdr

∫ 2π

0

dφjz = −r
−l
0

l

∫ 2π

0

dφ
(
f ′′ + l2f

)
. (3.4)

where r0 is the inner boundary. The total axial current vanishes if two conditions are
satisfied ∫ 2π

0

fdφ = 0

f ′(2π) = f ′(0) (3.5)

All the solutions considered here satisfy these conditions: the second one requires even
azimuthal numbers, 2m. Generally, there is a larger family of self-similar force-free
equilibria with non-zero total axial current.

There is non-zero toroidal current

jφ = C(l + 1)r−2−l|f |(1+l)/l∫ 2π

0

dφjφ 6= 0 (3.6)

The radial current density integrated over φ satisfies

jr ∝
∫ 2π

0

dφ∂φ (|f |)(1+l)/l = (|f |)(1+l)/l
∣∣∣2π
0

= 0 (3.7)

4. Discussion

In this paper we make analytical progress with the highly nonlinear problem[s] of
magnetohydrodynamics (Lynden-Bell & Boily 1994). We find a class of non-linear self-
similar force-free equilibria in cylindrical geometry. The solutions we find all connect to
the vacuum case, in which case the flux function is Pvac ∝ r−m sin(mφ). Structures with
vanishing total axial current require even values of m (hence m → 2m). For non-zero
distributed current with the current parameter C the radial dependence changes to r−l,
with l < 2m, while remaining periodic in φ at 2m. Solutions for a given m resemble
vacuum solutions ∝ sin(2mφ), but they are not exactly harmonic in the nonlinear case.

For very large currents the solutions asymptote to l ≈ 0, but never reach this limit. The
case l = 0 corresponds to Br ∝ 1/r. Mathematically, this is the analogue of split monopole
case in the spherical geometry - split monopole case can be achieved in spherical geometry
(with corresponding anti-monopole in the opposite hemisphere), but is not possible in
the cylindrical geometry.
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