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a  b  s  t  r  a  c  t

This  paper  reports  a new  two-axis  water-immersible  micro  scanning  mirror  using  hybrid  polymer  and
elastomer  hinges.  The  fast-  and  slow-axis  hinges  were  made  of  stiff  BoPET  (biaxially-oriented  polyethy-
lene  terephthalate)  and  soft  elastomer  nanocomposite  (EN)  loaded  with  alumina  nanoparticles.  Different
concentrations  of  alumina  nanoparticles  in  the  base  elastomer  resin  were  tested  to tune  the  elastic  mod-
es
anocomposite
ersible scanning mirror

ulus  of  the elastomer  nanocomposite.  The  testing  results  have  shown  a resonance  frequency  of  226  Hz
for  the fast  axis  and  no  mechanical  resonance  for the slow  axis  when  the  scanning  mirror  was  immersed
in  water.  2D  B-scan  and  3D  volumetric  ultrasound  microscopy  were  demonstrated  by using  the  hybrid-
hinge  scanning  mirror.  The  ability  of  scanning  the  slow  axis  at  DC  or very  low  frequencies  allows  a dense
raster  scanning  pattern  to be  formed  for  improving  both  the  imaging  resolution  and  field  of view.
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tly, water-immersible micro scanning mirrors have been
d to provide fast scanning of optical and ultrasound beams
or not only optical but also photoacoustic and ultrasound
py [1–3]. In photoacoustic and ultrasound microscopy, a
aser or ultrasound pulse is incident onto the target, and
generated or back-scattered ultrasound signal is received
nsducer, which provides one scan point or one pixel for
onstruction. Depending on the power handling capability
sed laser or ultrasound pulser-receiver, the repetition rate
r or ultrasound excitation pulses is usually limited to 10 s

 less [4]. In order to provide high pixel density for image
ction, the ideal scanning frequencies of the fast and slow
e scanning mirror need to be 100∼500 Hz and DC∼10 Hz,
ely. To achieve the most energy-efficient driving condi-

 driving frequencies of the two scanning axes should be
heir resonance. Therefore, it is desired that the fast and

 possess significantly distinct resonance frequencies.
nt from conventional silicon-based scanning mirrors
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ith a Young’s modulus of several GPa, a short torsion
needed to provide desirable stiffness to maintain a sta-
ing motion. Such kind of hinge design typically results

nance frequency of 100 ∼ 500 Hz, which is ideal for the
However, to achieve a resonance frequency of several Hz
r the slow axis, long and slender torsion hinges have to
owever, their bending stiffness will be too low for main-

stable scanning motion. Previously, torsion hinges made of
lydimethylsiloxane) were used in a two-axis water-proof

 mirror to provide a resonance frequency of 50 and 30 Hz
st and slow axes, respectively [3]. However, due to the soft

 PDMS, it is difficult to further increase the fast-axis reso-
quency and decrease that of the slow axis. Therefore, with
inge material, it is quite challenging to obtain two  dras-
ferent resonance frequencies by changing the geometries
sions of the hinges.

 paper, we  report a new hybrid hinge structure for two-
r-immersible micro scanning mirrors, which consists of a

nge for the fast axis and a new elastomer nanocomposite
e for the slow axis. Compared with BoPET, the elastomer
posite has a much lower Young’s modulus (e.g., several
ich can be tuned by changing the mixing ratio of nanopar-
he elastomer resin. With the proper hinge designs, both
orsional and bending stiffness and ultra-low resonance
ies can be obtained. In addition, the high elastic strain
stomer nanocomposite makes it possible to enlarge the
gles without degrading or damaging the torsion hinges.
nstration, a prototype two-axis water-immersible micro
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Table 1
Testing results of different EN samples.

Volume percent of alumina in base resin 0% 10 % 20 % 30 %

Young’s modulus (MPa) 3.18 4.85 5.26 7.69
Tensile strength (MPa) 1.49  1.81 1.84 2.11
Elongation (%) 56.39 48.03 45.55 32.70
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 mirror using hybrid BoPET/EN hinges has been designed,
 and tested. Using the new scanning mirror, scanning
d microscopy has also been conducted with improved
solution and field of view.

ration and characterization of elastomer
posite

lastomer nanocomposite was made of a photosensitive
in loaded with hard nanoparticles as the reinforce-
terial. The base resin (Flexible Resin, XYZprinting Inc.)
posed of acrylate monomer, polyurethane acrylate, and
(2,4,6-trimethybenzoyl) phosphine oxide. The viscosity
sin was 560 cP before the reinforcement material was
herical alumina (Al2O3) nanoparticles with an average

 of 800 nm (US Research Nanomaterials) were used as the
ment material. The composite was prepared by magnet-
ing the alumina nanoparticles in the based resin at 200
0 min  in a dark environment to avoid unwanted photo-

zation. Different concentrations of alumina nanoparticles
rom 10 % to 30 % were tested. As more alumina nanopar-
re added into the base resin, the aggregation of alumina
icles became more severe and the viscosity of the sus-
ncreased dramatically, making the mixing more difficult
istribution of the alumina nanoparticles in the base resin
rm. Therefore, in this work, the highest concentration of
anoparticles was limited to 30%.

he suspension was fully mixed, it was placed in the resin
n optical 3D printer (Nobel Superfine, Xyzprinting Inc.)
-polymerization. The addition of a high concentration of
articles can cause unwanted optical absorption and scat-

 ensure uniform light dosage through the entire thickness
 sample, the optical exposure was performed on a thin
�m thick) at a time and repeated until the desirable thick-
m)  was reached. A polydimethylsiloxane (PDMS) layer
d to the bottom of the resin tank to assist in the removal of
ed EN sample from the resin tank. The exposed EN sam-

insed in ethyl alcohol, dried in air for 5 min, and thermally
0 ◦C for 2 h.
racterize the mechanical properties of the EN sample, a
sting was performed on a Tinius Olsen H10KT Universal
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ematic design of the two-axis water-immersible scanning mirror with
ET and EN hinges.

ations of alumina nanoparticles. For each concentration,
ples were tested, from which the average and standard

 of the stress for certain strain were calculated. The stress
 almost linearly with the strain before the fracture occurs,
dicates the deformation is mostly elastic. The Young’s

 (calculated from the slope of the stress-strain curve), ten-
gth, and maximal elongation of the tested samples are
able 1. As expected, both the Young’s modulus and tensile
increases when a higher concentration of alumina parti-
aded into the base resin. The maximal elongation drops
r portion of the material becomes rigid. Nevertheless, the

 elongation of the composite is still much larger than that
ommonly used hinge materials, such as silicon and BoPET.

r design and fabrication

or design

illustrates the schematic design of the two-axis water-
le scanning mirror with hybrid BoPET and EN hinges. It
f one reflective mirror plate, two  hinge layers (BoPET and

support frame and holder, one inductor coil, and two pairs
nent magnets. The mirror plate is fixed onto the BOPET
er (for the fast axis), which is bonded with the EN hinge

 the slow axis). The mirror plate and the two hinge layers
ted onto the inductor coil via the support frame. One pair
nent magnets with opposite magnetization are attached

 bottom surface the mirror plate and the top surface of
inge layer, respectively. To drive the two  scanning axes,
urrents (If sin2�f f t and Issin2�f st) are passed through the
h generate two  alternating magnetic field to interact with
airs of permanent magnets to tilt the mirror plate around
T and EN hinges, respectively. To achieve most energy-
driving conditions, the frequencies of the two AC currents

atch the resonance frequencies (f f −s and fr−s) of the two
ich can be treated as two  (mechanical) bandpass filters.
the resonance frequencies of the fast and slow axes are
y different (e.g., 100 s of Hz vs. several Hz), the tilting
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Table  2
Main  design parameters of the scanning mirror.

Fast axis Slow axis

Rotational mirror plate dimension 5 mm × 3 mm 17 mm × 10 mm
Hinge  length (L) 0.5mm 2mm
Hinge width (w) 1.5mm 0.5mm
Permanent magnet distance 3mm  10mm
Young’s modulus (E) 2.95 GPa [15] 7.69Mpa
Shear modulus (G) 1.53Gpa 2.91Mpa
Poisson ratio [15] 0.38 0.38
Fixed Inductor
Inductance 10 mH
Diameter 11.5mm
Length 15mm
Permanent magnet
Diameter  3.1mm
Height 1.6mm
Density 7.5 g/cm3
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structural filtering effect, and therefore can be indepen-
ntrolled with the amplitude of the two AC driving currents
, respectively [12].

 on the main design parameters of the scanning mirror
 the torsional resonance frequencies of the two axes in air

 estimated by√
GK

JL
(1)

is the shear modulus, K is the torsional force constant of
, J is the torsional moment of inertia, and L is the length

 To determine the torsional moment of inertia, the sili-
r plate and the outer frames are treated as distributive

ile the permanent magnets are considered as point mass.
 torsional moment of inertia of the fast and slow axis are
d as

 nMmagnetr
2 (2)

s the number of permanent magnets along the fast or slow
gnet is the mass of a single magnet and r is the distance
center of magnet to the rotating axis. The resonance fre-
r water) when the scanning mirror is immersed in water
ated by

frair
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�t(k) (3)

is the density of water, �m and b are the effective density
h of the scanning mass, �t (k) is hydrodynamic functions,
ormalized mode number [13]. Based on Eqs. (1) and (2),
ated resonance frequencies of fast axis and slow axis are

 and 4.49 Hz in air, and 231.02 Hz and 3.21 Hz in water,
ely.
ter estimate the scanning performance of the hybrid hinge

 mirror, finite-element simulation was conducted in COM-
iphysics®. The AC/DC module was used to calculate the

 fields from the inductor coil and permanent magnets and
ing magnetic forces. The coil was set to be homogenized
lar with an estimated number of turns of 5000. The mag-

 from the coil was calculated from the driving current.
nt magnets were simulated by the Ampere’s Law. After
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 the domain, the magnetic field was defined by remnant
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ermined. Next, with the Structural Mechanics module, the
 forces were applied to calculate the tilting angles of the
ate (Fig. 4). The resonance frequencies of the fast and slow
e estimated by calculating the eigen-frequencies of the
ate structure around the two axes (Table 3), which are
wer that those calculated by Eqs. (1) and (3). The scanning

 the fast and slow axes driven at their resonance frequen-
 also simulated. The simulation results are plot together
measured ones in Fig. 7.

or fabrication and assembly

hows the fabrication and assembly process of the hybrid-

nning mirror. Firstly, a 200-�m-thick aluminum-coated
afer was diced into 5 mm  × 3 mm rectangular pieces to
he mirror plate. The two hinge layers for the fast and slow
e cut out with a CO2 laser cutter from a 130-�m thick
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ous wave (CW) laser beam was  shot onto the center of
r plate. The tilting angle of the mirror plate was calculated
deviation of the laser trace reflected on the reading screen.
nance frequencies of the fast axis in both air and water
t characterized with an AC driving current of 40 mA  in air
A in water, respectively. The frequency of the AC driving
as  varied from DC up to 400 Hz. The resonance frequency

 as the driving frequency when the tilting angle reaches
um. As shown in Fig. 6(a), the resonance frequency of the
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Fig. 9. Schematic of the pulse-echo ultrasound microscopic imaging setup.
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er the application of SAFT and that followed by sector
ation are shown in Fig. 13(c) and (d), respectively. The B-

ages were further stacked to form a 3D volumetric image
using Volview®. The cuboid transducer field of view is

 width, 16 mm in length and 20 mm in depth. The lateral
n is about 1 mm,  limited by the transducer focal spot size.

us that the two tungsten wires have distinct curvature,
 with the real target configuration. The lateral and axial
between neighboring targets are estimated to be 4 mm
,  respectively, which are close to the actual distance. In

sound image, the mean diameter of the tungsten wires
 axial direction was estimated to be 450 �m,  which is
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Fig. 14. Reconstructed 3D image of the tungsten wire target.

und signal scattering in a relatively large field of view.
irror tilting angle increases, a larger portion of the inci-
sound signals will be scattered away from the transducer,

educing the strength of signals that can be collected by the
er.

usion

mary, a new elastomer nanocomposite has been investi-
the hinge material for water-immersible micro scanning
y using BoPET and the elastomer nanocomposite as the

 slow-axis hinge materials, a new prototype two-axis
mersible scanning mirror has been designed, fabricated
d. The low elastic modulus and high elastic strain of the
r nanocomposite make it possible to reduce the reso-
quency of the slow axis down to several Hz or less and

its maximal tilting angle. Such feature is especially useful
ating a dense raster scanning pattern for scanning optical
stic microscopy. For demonstration, scanning ultrasound
py has also been conducted with the hybrid-hinge scan-
or with improvements in both spatial resolution and field

Compared with existing MEMS  (microelectromechanical
 scanning mirrors, the overall size of the mirror package is
le large, which is mainly due to the low patterning resolu-
e fabrication process. In the future, a new high-resolution
rication process based on photo lithography and etching
eveloped to enable further miniaturization of the mirror
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