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Abstract—Robotic prostheses deliver greater function than pas-
sive prostheses, but we face the challenge of tuning a large
number of control parameters in order to personalize the device
for individual amputee users. This problem is not easily solved
by traditional control designs or the latest robotic technology.
Reinforcement learning (RL) is naturally appealing. The recent,
unprecedented success of AlphaZero demonstrated RL as a fea-
sible, large-scale problem solver. However, the prosthesis-tuning
problem is associated with several unaddressed issues such as
that it does not have a known and stable model, the continu-
ous states and controls of the problem may result in a curse
of dimensionality, and the human-prosthesis system is constantly
subject to measurement noise, environmental change and human-
body-caused variations. In this paper, we demonstrated the
feasibility of direct heuristic dynamic programming, an approx-
imate dynamic programming (ADP) approach, to automatically
tune the 12 robotic knee prosthesis parameters to meet individual
human users’ needs. We tested the ADP-tuner on two subjects
(one able-bodied subject and one amputee subject) walking at a
fixed speed on a treadmill. The ADP-tuner learned to reach target
gait kinematics in an average of 300 gait cycles or 10 min of walk-
ing. We observed improved ADP tuning performance when we
transferred a previously learned ADP controller to a new learn-
ing session with the same subject. To the best of our knowledge,
our approach to personalize robotic prostheses is the first imple-
mentation of online ADP learning control to a clinical problem
involving human subjects.

Index Terms—Approximate dynamic programming (ADP),
direct heuristic dynamic programming (dHDP), reinforcement
learning (RL), robotic knee prosthesis.

I. INTRODUCTION

ADVANCES in robotic prostheses, compared to con-
ventional passive devices, have shown great promise

to further improve the mobility of individuals with lower
limb amputation [1]–[5]. Robotic prosthesis control typically
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consists of a finite-state machine and a low-level controller
to regulate the prosthetic joint impedance. Existing robotic
prosthesis controllers rely on a large number of configurable
parameters (i.e., 12–15 for knee prostheses [3], [5], [6] and
9–15 for ankle–foot prostheses [3], [4]) for a single loco-
motion mode such as level ground walking. The number of
parameters grows when the number of included locomotion
modes increases. These control parameters need to be person-
alized to individual user differences, such as height, weight,
and physical ability. Currently, in clinics, prosthesis control
parameters are personalized manually [7], [8], which can be
time, labor, and cost intensive.

Researchers have attempted to improve the efficiency of
prosthesis tuning through three major approaches. The first
approach is to estimate the control impedance parameters with
either a musculoskeletal model [9] or measurements of bio-
logical joint impedance [10], [11]. However, these methods
have not been validated for real prosthesis control. The sec-
ond solution does not directly address parameter tuning but
aims at reducing the number of control parameters [7], [12].
The third method provides automatic parameter tuning by cod-
ing prosthetists’ decisions [13], which can be time consuming
to perform and potentially biased by individual prosthetist’s
experience. We, therefore, need new approaches to solve this
prosthesis parameter tuning problem.

Personalizing wearable robots, that is, robotic prostheses
and exoskeletons, requires optimal adaptive control solutions.
Koller et al. [14] used gradient descent method to optimize
an onset time of an ankle exoskeleton to enhance able-bodied
(AB) persons’ gait efficiency. Zhang et al. [15] used evolu-
tion strategy to optimize four control parameters for an ankle
exoskeleton. Ding et al. [16] applied Bayesian optimization
to identify two control parameters of hip extension assistance.
These methods are promising, but they have not been used for
personalizing robotic prostheses potentially because it is diffi-
cult to scale up to a high-dimensional (≥ 5) parameter space,
adapt to changing conditions (e.g., weight change), or monitor
the chosen performance measure in daily life (e.g., metabolic
cost).

Reinforcement learning (RL) lends itself as an alternative
approach to personalizing lower limb prostheses. Although
it has defeated two thousand years of human GO knowl-
edge by learning to play the game in hours. RL has not yet
been applied in clinical situations with greater complexity
and human interactions. For example, the control of wear-
able robotics introduces the additional challenge of the curse
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Fig. 1. Block diagram of ADP-tuner, an automatic robotic knee control parameter tuning scheme by dHDP with amputee in the loop. The learning control
system operates at three different time scales: 1) real-time impedance controller provides outputs at 100 Hz to regulate the joint torque; 2) the finite-state
machine runs at the gait frequency (denoted by time index g) with four phases per gait cycle; and 3) the dHDP generated control is updated Im,n every few
gaits (denoted by time index n) to update the impedance parameters. The respective variables in the figure are defined and discussed in Sections II and III.
The ADP-tuner consists of four dHDP blocks (m = 1, 2, 3, 4) corresponding to four gait phases in the finite-state machine impedance controller.

of high dimensionality in continuous state and control/action
spaces, and the demand of meeting optimal performance
objectives under system uncertainty, measurement noise, and
unexpected disturbance. Approximate dynamic programming
(ADP) [17]–[19] is synonymous to RL, especially, in controls
and operations research communities, and it has shown great
promise to address the aforementioned challenges.

Adaptive critic designs are a series of ADP designs that
were originally proposed by Werbos [20]–[22]. In the last
decade, the adaptive critic design has been developed and
applied extensively to robust control [23], optimal con-
trol [24]–[26], and event-driven applications [27]–[29]. The
action-dependent heuristic dynamic programming (ADHDP) is
similar to Q-learning but with promising scalability [30]. New
developments within the realm of ADHDP (e.g., neural fitted
Q (NFQ), NFQ with continuous actions (NFQCA) [31], direct
heuristic dynamic programming (direct HDP or dHDP) [32],
the forward model for learning control [33], and fuzzy adaptive
dynamic programming [25]) have emerged and demonstrated
their feasibility for complex and realistic learning control prob-
lems. Furthermore, dHDP and NFQCA (noted as a batch
variant of the dHDP [34]) algorithms are associated with per-
haps most of the demonstrated applications of RL control for
continuous state and control problems [34]–[43]. The focus of
this paper is therefore to implement the dHDP [32] in real time
for online learning control to adaptively tune the impedance
parameters of the prosthetic knee.

Prior to real experimentation involving human subjects,
we performed a simulation study [44]. We designed ADP-
tuner for a prosthetic knee joint and validated this control
on an established computational model, OpenSim [45], for
dynamic simulations of amputee gait. We compared dHDP
with NFQCA. Our simulation results showed that dHDP con-
troller enabled the simulated amputee model to learn to walk
within fewer gait cycles and with a higher success rate than
NFQCA [44]. Although exciting and promising, it is unknown

how dHDP performs with a real human in the loop. This
is because the OpenSim model ignores human responses to
actions of the prosthesis, natural gait variability, and most
importantly, safety.

This paper reported herein include the following major
contributions.

1) To our knowledge, this is the first study to realize an
ADP learning controller for a real-life situation such
as the personalization of robotic prostheses for human
subjects. This application is novel in the rehabilitation
field.

2) The model-free dHDP was tailored to be data and time
efficient for this application and was implemented to
automatically tune 12 impedance parameters through
interactions with the human-prosthesis system online.

3) The study demonstrated, for the first time, that the
proposed RL-based control is feasible and, with further
development, can potentially be made safe and practical
for clinical use.

The remaining of this paper is organized as follows.
Section II describes the human-prosthesis system and for-
mulates the human-prosthesis tuning/configuration problem.
Section III presents an ADP-tuner design for online con-
trol of prosthetic knee. Section IV elaborates the design
considerations for real human subjects. Section V explains
the experimental evaluation of the ADP-tuner. The results
are presented in Section VI. Remarks and discussions
are presented in Section VII, followed by the conclusion
in Section VIII.

II. PROSTHETIC KNEE CONTROL PROBLEM FORMULATION

Fig. 1 shows our proposed automatic tuning approach of
prosthetic knee control parameters with a human in the loop.
In this section, we introduce the human-prosthesis system,
namely an amputee wearing a robotic knee prosthesis.
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Fig. 2. Feature representation of near-normal knee kinematics during one
gait cycle was used as learning control target, where D̄m indicates the angle
feature and P̄m indicates the duration feature. The phase index is indicated
by m = 1, 2, 3, 4. The start at 0% and the finish at 100% are the heel strike
events, and 60% is approximate toe-off time.

A. Human-Prosthesis Configuration

Both the mechanical interface and control parameters of the
robotic knee prosthesis need to be personalized to each user.
Humans differ in their physical conditions, such as height,
weight, and muscle strength. First, the length of the pylon,
the alignment of the prosthesis, and the fit of the socket that
interfaces the user and the prosthesis must be customized by a
certified prosthetist. Then, the robotic knee control parameters
must be tuned to provide personalized assistance from the knee
prosthesis. Our proposed automatic tuning realized as an RL-
based supplementary control is shown in Fig. 1.

B. Prosthetic Knee Finite-State Machine Impedance
Controller

Finite-state machine impedance control (FSM-IC, Fig. 1)
is an established framework for robotic knee prosthesis con-
trol [3], [5], [6], [46]. Based on the foot–ground contact and
knee joint movement, a single gait cycle is divided into four
phases (corresponding to m = 1, . . . , 4 in Fig. 1): 1) the
stance flexion phase (STF, m = 1); 2) stance extension phase
(STE, m = 2); 3) swing flexion phase (SWF, m = 3); and
4) swing extension phase (SWE, m = 4). The phase transi-
tions can be triggered by measurements from a load cell and
an angle sensor in the prosthetic device. Then, the correspond-
ing impedance parameters Im as described in (1) are provided
to impedance controller

Im = [km, θem, bm]T . (1)

Within each phase m, the robotic knee is regulated by a
different impedance controller (2) to produce phase-specific
dynamic properties. The impedance controller monitors the
knee joint position θ and velocity ω and controls the knee joint
torque τ in real time based on three impedance parameters:
1) stiffness k; 2) damping b; and 3) equilibrium position θe

τm = km(θ − θem) + bmω. (2)

Thus, with four gait phases, there are 12 total impedance
parameters to be configured for each locomotion mode.

C. Representation of Knee Kinematics

Robotic knee kinematics are measured by an angle sen-
sor mounted on the rotational joint. The angle sensor reads
zero when the knee joint is extended to where the shank is in
line with the thigh, and a positive value in degrees when the
knee joint is flexed. Typically, the knee joint angle trajectory
in one gait cycle has a local maximum during stance flexion
and swing flexion, and a local minimum during stance exten-
sion and swing extension (Fig. 2). The peak value of each
phase is primarily determined by the impedance parameters
in that phase. Therefore, we represented the knee kinemat-
ics in one gait cycle with four pairs of peak angle values
P and their respective duration values D : [Pm,Dm], where
m = 1, 2, 3, 4. Similarly, we extracted the same features from
normative knee kinematics [47] as target features, denoted as
[P̄m, D̄m] (Fig. 2).

D. Human-Prosthesis System Tuning Process

The tuning process is built upon the commonly used FSM-
IC framework, and the goal is to find a set of impedance
parameters that allow the human-prosthesis system to gener-
ate normative target knee kinematics. As mentioned earlier,
three impedance parameters took effect in each gait phase, and
correspondingly, the knee kinematic features were extracted
during each gait phase. For the ease of discussion, we will
drop the subscript m for gait phase from hereon.

For the human-prosthesis system, the control inputs are the
impedance parameters I(n), and the outputs are the features
x(n) of prosthetic knee kinematics

I(n) = [k(n), θe(n), b(n)]T

x(n) = [P(n),D(n)]T (3)

where n denotes the update index of each parameter update,
which is every seven gait cycles.

In the tuning procedure, the impedance parameters are
updated as

I(n) = I(n − 1) + β � U(n − 1) (4)

where U denotes the actions from the ADP-tuner, β ∈ R
3×1

are the scaling factors to assign physical magnitudes to the
actions, and � is the Hadamard product of two vectors.

The states of the human-prosthesis system used in the
learning controller are defined as

X(n) = γ � [
xT(n) − x̄T , xT(n) − xT(n − 1)

]T
(5)

where γ ∈ R
4×1 is a vector of scaling factors to normalize

the states to [−1, 1] and x̄ are the features [P̄, D̄]T of the
target knee kinematics. The feature errors x(n)− x̄ capture the
distance to the target knee kinematics, and the feature change
rate x(n) − x(n − 1) obtain the dynamic change during the
tuning procedure.

In the tuning process, the actions from the ADP-tuner
are adjusted to the impedance parameters, which are con-
tinuous, and the states to the ADP-tuner are derived from
the features of knee kinematics, which are also continuous.
Therefore, the human-prosthesis tuning process has continu-
ous states and controls. Equations (3)–(5) are implemented in
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the “evaluation module” (Fig. 1) as an interface between the
human-prosthesis system and the ADP-tuner. In addition, the
evaluation module includes reinforcement signals provided to
the ADP-tuner based on the outputs of the human-prosthesis
system (described in Section IV-A).

III. ADP-TUNER

For the given human-prosthesis impedance parameter tuning
problem, we implemented the ADP-tuner with four paral-
lel dHDP blocks corresponding to four gait phases: 1) STF;
2) STE; 3) SWF; and 4) SWE (Fig. 1). Each dHDP block
took in four state variables in (5) and tuned three impedance
parameters for the respective phase. All dHDP blocks were
identical, including one action neural network (ANN) and one
critic neural network (CNN). Thus, without loss of generality,
we present the detailed dHDP implementation without phase
numbers.

A. Utility Function/Reinforcement Signal

The reinforcement signal r(n) ∈ R is defined as the instan-
taneous cost that is determined from the human-prosthesis
system

r(n) =
⎧
⎨

⎩

−1, if x(n) /∈ [Bl,Bu]
−0.8, if S− > 4
0, otherwise

(6)

where [Bl,Bu] denotes the safety bounds as defined in
Section IV-A, S− is a penalty score, and the −0.8 reinforce-
ment signal is imposed to the ADP block when the S− value
is greater than 4, indicating the dHDP block continues to
tune the impedance parameter in an unfavorable direction (i.e.,
increasing the angle error and/or duration error) [44]. When
the reinforcement signal is −1, the impedance parameters of
the human-prosthesis system are reset to default values.

The total cost-to-go at ADP tuning time step n is given by

J(n) = r(n + 1) + αr(n + 2) + · · · + αNr(n + N + 1) + · · ·
(7)

where α is a discount rate (0 < α < 1) and N is infinite. It
can be rewritten as

J(n) = r(n + 1) + αJ(n + 1). (8)

B. Critic Neural Network

The CNN consisted of three layers of neurons (7-7-1) with
two layers of weights, and it took the state X ∈ R

4×1 and the
action U ∈ R

3×1 as inputs and predicted the total cost-to-go Ĵ

Ĵ(n) = Wc2(n)ϕ
(
Wc1(n)

[
XT(n),UT(n)

]T)
(9)

where Wc1 ∈ R
7×7 was the weight matrix between the input

layer and the hidden layer, and Wc2 ∈ R
1×7 was the weight

matrix between the hidden layer and the output layer. And

ϕ(v) = 1 − exp(−v)

1 + exp(−v)
(10)

vc1(n) = Wc1(n)
[
XT(n),UT(n)

]T
(11)

hc1(n) = ϕ(vc1(n)) (12)

where ϕ(·) was the tan-sigmoid activation function and hc1
was the hidden layer output.

The prediction error ec ∈ R of the CNN can be written as

ec(n) = αĴ(n) −
[
Ĵ(n − 1) − r(n)

]
. (13)

To correct the prediction error, the weight update objective
was to minimize the squared prediction error Ec, denoted as

Ec(n) = 1

2
(ec(n))

2. (14)

The weight update rule for the CNN was a gradient-based
adaptation given by

W(n + 1) = W(n) + 	W(n). (15)

The weight updates of the hidden layer matrix Wc2 were

	Wc2(n) = lc(n)

[
− ∂Ec(n)

∂Wc2(n)

]

= lc(n)

[

−∂Ec(n)

∂ec(n)

∂ec(n)

∂ Ĵ(n)

∂ Ĵ(n)

∂Wc2(n)

]

. (16)

The weight updates of the input layer matrix Wc1 were

	Wc1(n) = lc(n)

[
− ∂Ec(n)

∂Wc1(n)

]

= lc(n)

[

−∂Ec(n)

∂ec(n)

∂ec(n)

∂ Ĵ(n)

∂ Ĵ(n)

∂hc1(n)

∂hc1(n)

∂vc1(n)

∂vc1(n)

∂Wc1(n)

]

(17)

where lc > 0 was the learning rate of the CNN.

C. Action Neural Network

The ANN consisted of three layers of neurons (4-7-3) with
two layers of weights, and it took in the state X ∈ R

4×1 from
the human-prosthesis system and output the actions U ∈ R

3×1

to adjust the impedance parameters of the human-prosthesis
system

U(n) = ϕ(Wa2(n)ϕ(Wa1(n)X(n))) (18)

where Wa1 ∈ R
7×4 and Wa2 ∈ R

3×7 were the weight matrices
and ϕ(·) was the tan-sigmoid activation function of the hidden
layer and the output layer.

Under our problem formulation, the objective of adapting
the ANN was to backpropagate the error between the desired
ultimate objective, denoted by J̄, and the approximated total
cost-to-go Ĵ. And J̄ was set to 0 indicating “success.” Thus,
policy update goal was to minimize the absolute total cost-to-
go value to 0. The weight update rule for the ANN was to
minimize the following performance error:

Ea(n) = 1

2

(
Ĵ(n) − J̄

)2
. (19)

Similarly, the weight matrix was updated based on gradient-
descent

W(n + 1) = W(n) + 	W(n). (20)

The weight updates of the hidden layer matrix Wa2 were

	Wa2(n) = la(n)

[
− ∂Ea(n)

∂Wa2(n)

]
. (21)
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Algorithm 1 Online ADP-Tuning of Impedance Parameters
for Robotic Knee Prosthesis
Initialization of human-prosthesis system: I(0), x(0), and
Random initialization of weights of ANN and CNN.
Step 1:Value update

Get state X(n) from (5) and reinforcement signal r(n) from (6)
Update weights of CNN using (13)-(17)

Step 2:Policy improvement
Update weights of ANN using (19)-(22).
Calculate U(n) from (18) and update I(n) using (4).
Reset I(n) if r(n) == −1 from (6).

Go to Step 1 until termination criteria (Section IV-E)

The weight updates of the input layer matrix Wa1 were

	Wa1(n) = la(n)

[
− ∂Ea(n)

∂Wa1(n)

]
(22)

where la > 0 is the learning rate of the ANN.
The above ANN and CNN weight updates and the ADP-

tuner implementation is summarized in Algorithm 1. The
weights of both ANN and CNN were initialized with uni-
formly distributed random numbers between −1 and 1. With
mild and intuitive conditions, the dHDP with discounted cost
has the property of uniformly ultimately boundedness [48].

IV. DESIGN CONSIDERATIONS OF ONLINE LEARNING FOR

HUMAN SUBJECTS

Human studies are different from simulation studies and,
therefore, we modified and implemented the ADP-tuning
algorithm to accommodate real-life considerations for human
subjects wearing a prosthetic leg.

A. Safety Bounds

For weight-bearing prostheses, safety is the primary con-
cern, so we included constraints to ensure the human-
prosthesis system outputs remain within a safe range [denoted
by [Bl,Bu] in (6)]. First, to avoid potential harm to an amputee
user, we set bounds on the feature errors of 1.5 times the
standard deviation of the average knee kinematic features of
people walking without a prosthesis (i.e., STF 10.5 degrees,
STE 7.5 degrees, SWF 9 degrees, and SWE 6 degrees [47]).
Second, to avoid collision of mechanical parts in a prosthesis
that may damage the robotic prosthesis, we set bounds on the
range of motion to −5 degrees and 60 degrees. These con-
straints defined the exploration range for the ADP controller
to avoid damage or harm to the human-prosthesis system.
When the features exceeded these ranges, we reset the control
parameters to the default values determined at the beginning
of each experimental session, which were known to result in
safe operation. At the same time, a −1 reinforcement signal
was sent to the ADP-tuner.

B. Robust Feature Extraction

Sensor signal noise is inevitable from real prostheses, so
we implemented a robust feature extraction method to extract
features of the knee joint angle. In reality, the knee joint
angle trajectory is not ideal mainly because of two reasons:
1) inevitable noise in the angle sensor readings and 2) nearly
flat angle trajectory at some places of a gait cycle where sensor

readings remained steady. Under those conditions, the timing
feature D varied greatly when obtaining the peak and dura-
tion values from a gait cycle. To address this, we first located
the minimum or maximum features [P̃i, D̃i] from the knee
joint angle trajectory, where i denotes the sensor sample index
(100 Hz). For each sample θj in the knee joint angle trajec-
tory, there are two features [Pj,Dj]. We selected and used the
features at index j to replace [P̃i, D̃i], where

j = arg min
(
Dj − D̄

)
(23)

and index j is within [i− 10, i+ 10], and corresponding angle
feature Pj is within [P̃i − 0.3, D̃i + 0.3]. This is to find robust
and representative duration features based on real-time sensor
measures.

C. Human Variability

To attenuate inevitable variations of human gait from step
to step, the ADP-tuner processed the human-prosthesis system
features the every gait cycle, but control updates were made
for every seven gait cycles. This is to say, the human subjects
walked with an updated set of impedance parameters for seven
gait cycles. If the angle features of a particular gait cycle was
greater than 1.5 standard deviations from the mean of the seven
gait cycles, it was considered an outlier and removed. This
eliminated accidental tripping or unbalanced gait cycles from
influencing the control updates.

D. Prevention of Faulty Reinforcement Signal

As mentioned previously, the features of one gait phase
impact the subsequent phases. To avoid propagating a faulty
reinforcement signal, we provided a −1 reinforcement sig-
nal only to the dHDP block that exhibited out of bound
angle/duration features. If multiple failure reinforcement sig-
nals were generated simultaneously, we prioritized (from high
to low) the feedback reinforcement signal in the following
order: STF, SWF, SWE, STE. In other words, if multiple
phases generated −1 reinforcement signals in the same tuning
iteration, we applied the −1 reinforcement signal to the dHDP
block that had higher priority.

E. Termination Criteria

For practical applications with a human in the real-time con-
trol loop, termination criteria are necessary to avoid human
fatigue in the tuning procedure. The tuning procedure was
limited to 70 tuning iterations (i.e., 7 × 70 = 490 gait cycles)
and terminated earlier if tuning was successful. Because the
human-prosthesis systems are highly nonlinear, vulnerable to
noise and disturbances, and subject to uncertainty, we intro-
duced a tolerance range μm (m = 1, . . . , 4 denotes the four
gait phases) for acceptable ranges of feature errors, which was
1.5 times the standard deviation of the features from more than
15 gait cycles without supplemental impedance control inputs.
Parameter tuning in a given phase is considered successful if
the features of this phase meet the tolerance criterion for at
least three of the previous five tuning iterations. When all the
four phases are successful, the tuning procedure is considered
as a success and consequently terminated.
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V. EXPERIMENTAL DESIGN

A. Participants

The Institutional Review Board at the University of North
Carolina at Chapel Hill approved this paper. One male AB
subject (age: 41 years, height: 178 cm, weight: 70 kg) and one
male, unilateral transfemoral amputee (TF) subject (age: 21
years, height: 183 cm, weight: 66 kg, time since amputation:
six years) were recruited. Both subjects provided written and
informed consent before the experiments.

B. Prosthesis Fitting and Subject Training

A certified prosthetist aligned the robotic knee prosthesis
for each subject. The TF subject used his own socket, and the
AB subject used an L-shape adaptor (with one leg bent 90
degrees) to walk with the robotic knee prosthesis [49].

Each subject visited the laboratory for at least five 2-h train-
ing sessions, including set up and rest time, to practice walking
with our robotic knee prosthesis on an instrumented tread-
mill (Bertec Corporation, Columbus, OH, USA) at 0.6 m/s.
In the first training session, the impedance parameters were
manually tuned based on the observation of the subject’s gait
and the subject’s verbal feedback, similar to the tuning pro-
cess in the clinic. In the second training session, a physical
therapist trained the TF subject to reduce unwarranted com-
pensation while walking with the robotic knee. The subjects
were allowed to hold the treadmill handrails for balance when
needed. The subject was ready for testing once he was able
to walk comfortably for three minutes without holding the
handrails.

C. Experiment Protocol

We conducted three testing sessions (over three days) for
each subject to evaluate the learning performance of a naïve
ADP, and an additional fourth testing session with the TF sub-
ject to evaluate the performance of an experienced ADP in
prosthesis tuning.
1) Initializing the ADP-Tuner and Impedance Parameters:

An ADP-tuner is naïve if the ANN and the CNN were ran-
domly initialized. An ADP-tuner is experienced if the ANN
and the CNN were transferred from a previously successful
session. We randomly selected initial impedance parameters
from a range obtained from our previous experiments con-
ducted on 15 human subjects [13], but the resulting knee
motion was not optimized to the target. We excluded the ini-
tial parameter sets that: 1) did not allow the subject to walk
without holding the handrails; 2) generated prosthesis knee
kinematics that were too close to the target knee kinemat-
ics (i.e., root-mean-squared error (RMSE) between those two
knee trajectories in one gait cycle was less than 4 degrees);
or 3) generated knee kinematic features were out of the safety
range.
2) Testing Sessions With Naïve ADP-Tuner: In each of the

three testing sessions, we first provided three minutes of accli-
mation time for the subject to walk with the newly initialized
naïve ADP-tuner and the control parameters. Then, the sub-
ject walked on the treadmill at 0.6 m/s for no more than seven
segments, each of which lasted no more than 3-min walking

periods. Each segment was followed by a 3-min rest. These
rest periods are typical in clinical settings, and they prevent
potential confounding effects of fatigue. For all walking peri-
ods, we recorded the time series data of knee kinematics from
the angle sensor and the loading force from the load cell.

The first 30 s of the first walking period served as our “pre-
tuning” condition, in which the ADP-tuner was not enabled
yet, and the impedance parameters remained constant (i.e., ini-
tial randomly selected impedance parameters). The last 30 s
of their final walking period served as our “post-tuning” con-
dition for performance evaluation, in which the ADP-tuner
was disabled and the impedance parameters were again held
constant (i.e., the impedance parameters were at the final
parameters provided by the ADP-tuner).

During all other walking periods, we asked the subjects to
walk in a consistent manner on the treadmill while the ADP
controller was enabled and iteratively updated the prosthesis
impedance parameters. Each update (defined as ADP learning
iteration) was performed for every seven gait cycles. As said
previously, this is to reduce step-to-step variability in the knee
kinematics features of the peak angle and the phase duration.
We paused the ADP-tuner during each rest period to prevent
losing learned information.

We terminated the testing session when one of the two
stop criteria were met: 1) the testing session reached 70
learning iterations to avoid subject fatigue or 2) errors of
all four angle features were within their corresponding toler-
ance range μ for three out of the previous five ADP learning
iterations.
3) Testing Session With Experienced ADP-Tuner: To eval-

uate if knowledge of the previously learned ADP-tuners
would make learning more efficient, we conducted an addi-
tional testing session with the TF subject on another day
with the same protocol. We instead started with an experi-
enced ADP, which used ANN and CNN network coefficients
derived from the previous session that generated the lowest
RMSE.

D. Data Analysis

The time-series robotic knee kinematics data were seg-
mented into gait cycles based on the events of heel-strike
(Fig. 2), and were then normalized to 100 samples per gait
cycle.

The accuracy of the naïve and experienced ADP-tuner
was evaluated by the RMSE between measured and tar-
get knee kinematics and the feature errors obtained in each
tuning iteration. To compare the pretuning and post-tuning
performance, the averaged RMSE of knee kinematics and
feature errors of 20 gait cycles in pretuning and post-tuning
conditions were calculated and compared.

Data efficiency was quantified by the number of learning
iterations in each testing session. Time efficiency was quanti-
fied by the subject’s walking duration in each testing session.

Finally, the stability of the ADP-tuner was demonstrated
by the tuned knee impedance parameters and knee kinemat-
ics (i.e., RMSE and feature errors averaged across seven gait
cycles within each iteration) across learning iterations.
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Fig. 3. Comparison of knee kinematics by RMSE between pretuning and
post-tuning across multiple testing sessions. The square markers represent the
testing sessions from the TF subject, and circle markers represent the testing
sessions from AB subject. Open marker represents the pretuning condition,
and closed marker represents the post-tuning condition.

(a) (b)

Fig. 4. Peak error comparison between pretuning and post-tuning conditions
of the TF subject (a), and the AB subject (b) at each phase. Each bar represents
the mean error of three testing sessions, and the error bars denote one standard
deviation from the mean.

VI. RESULTS

As a measure of accuracy of the ADP-tuner, the RMSE
of the robotic knee angle (compared to the target) averaged
across testing sessions and subjects decreased from 5.83 ±
0.85 degrees to 3.99±0.62 degrees (Fig. 3, individual subject
results). All the angle feature errors decreased after tuning by
the ADP-tuner (Fig. 4). The duration feature errors did not
show a consistent trend (Fig. 5) across these two subjects.
This variability of the duration feature errors was no surprise
because: 1) the duration of each phase is partially controlled by
the human prosthesis user and 2) our ADP algorithm allowed
more flexibility (or relatively larger acceptable range) of the
duration feature errors than the angle feature errors to meet
the target and complete tuning.

As measures of data and time efficiency, the ADP-tuner took
an average of 43±10 learning iterations to find the “optimal”
impedance parameters, amounting to an average of 300 gait
cycles and 10 ± 2 minutes of walking. The data and time effi-
ciency were similar between the subjects (AB: 45±9 iterations
and amputee subject: 41 ± 12 iterations).

(a) (b)

Fig. 5. Duration error comparison between pretuning and post-tuning con-
ditions of the TF subject (a) and the AB subject (b) for each phase. Each bar
represents the mean error of three testing sessions, and the error bars denote
one standard deviation from the mean.

(a) (b)

(c) (d)

Fig. 6. Peak error and duration error during the four phases for a represen-
tative tuning procedure. (a) STF, (b) STE, (c) SWF, and (d) SWE. The red
dots were times when the −1 reinforcement signals incurred, and the blue
dots were times when the −0.8 reinforcement signals incurred. The horizon-
tal blue areas, which centered at zero, indicate the tolerance ranges for each
feature. The paired horizontal red lines indicate the allowed maximum and
minimum exploration limits for each feature.

Both the feature errors and impedance parameters generally
stabilized by the post-tuning period (Figs. 6 and 7, repre-
sentative trial shown). In particular, both the feature errors
and the impedance parameters of the swing flexion and swing
extension gait phases stabilized. However, for stance flexion
and stance extension, the feature errors stabilized, while the
impedance parameters were still changing slowly. The final
impedance parameters that the ADP-tuner selected to allow the
user to walk with a near-normal knee motion, or the target knee
profile, were not the same across all testing sessions (Table I).
In general, the stiffness parameters and damping parameters at
stance phases (2.33±0.56 Nm/deg, 0.13±0.05 Nms/deg) were
greater than those of the swing phases (0.95 ± 0.83 Nm/deg,
0.03±0.02 Nms/deg). In the experienced ADP test session, for
all four gait phases, both the angle and duration feature errors
followed a decreasing trend toward zero [Fig. 8(a) and (b)].
The Ĵ value of the CNN network decreased along the tuning
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(a) (b)

(c) (d)

Fig. 7. Impedance parameters of the four phases during a representative
tuning procedure. (a) STF, (b) STE, (c) SWF, and (d) SWE. The meanings
of the red and blues dots are the same as in Fig. 6.

(a) (b)

(c) (d)

Fig. 8. Learned ADP auto-tuner online evaluation results. (a) Trends of
angle error along tuning iterations. (b) Trends of duration error along tuning
iterations. (c) Changing Ĵ values as learning proceeded. (d) RMSE along
tuning iterations.

iteration [Fig. 8(c)], and the RMSE of the robotic knee kine-
matics decreased from 5.9 degrees to 2.5 degrees from pre-
to post-tuning [Fig. 8(d)]. In this case evaluation, the expe-
rienced ADP-tuner took 28 iterations (approximately 7 min)
to find the 12 optimal impedance parameters. No additional
reinforcement signal occurred during this testing session with
the experienced/learned ADP.

VII. DISCUSSION

This paper aims at investigating the feasibility of a novel
RL-based approach for personalization of the control of a

robotic knee prosthesis. A total of 12 impedance parame-
ters were tuned simultaneously using our ADP-tuner for two
human subjects. Here, we will address the implications and
remaining challenges of our proposed RL-based approach to
achieve our design objective of automatically tuning of robotic
prostheses for amputees.

A. Feasibility and Reliability

The accuracy of ADP-tuner to meet the target knee angle
profile both for each gait phase (Figs. 4 and 5) and the entire
gait cycle (Fig. 3) indicates that the ADP-tuner was feasible to
optimize a large number of prosthesis control parameters. In
this study, the ADP-tuner adjusted impedance parameters to
allow both subjects to walk consistently toward near-normal
knee kinematics. In addition, the ADP-tuner reliably repro-
duced similar results for all testing sessions, each of which
began with different, randomly initialized ANN and CNN
weight matrices (i.e., no prior knowledge built into the learning
controller), and impedance parameters.

Variations in the final impedance parameters after ADP tun-
ing indicated that multiple combinations of impedance param-
eters yielded similar prosthesis kinematics (Table I). This is
not surprising because according to (2), the motor torque
is underdetermined by a combination of three impedance
parameters. It would be an interesting future study to investi-
gate an optimal combination of control parameters subject to
additional constraints or optimization objectives.

Even though the prosthetic knee kinematics were solely
measured from the prosthesis, it represented an inherently
combined effort from both the human and the machine or the
prosthesis controller. Based on our results, we postulate that
the robotic knee flexion/extension peaks are primarily influ-
enced by the impedance parameters and thus affected by our
ADP-tuner (Fig. 4), but the duration of each gait phase may
be dominated by the human user (Fig. 5). Subjects were able
to control the timing of their gait events likely because they
can control when to place and lift the prosthetic foot on or
off the treadmill with their ipsilateral hip and the entire body.
In the feedback control of robotic prostheses, the feedback
signals must be responsive to the control action. Therefore,
we believe that using knee kinematics as the feedback and
optimization state was reasonable as a first step, but questions
regarding the appropriate control objective remain open. We
plan to investigate this topic systematically with future studies.

B. Efficiency

Starting without any prior knowledge or a plant model,
our ADP-tuner was able to gather information and gain
understanding on how to simultaneously tune the 12 con-
trol parameters in 10 min of one test session, or 300 gait
cycles for both subjects. As a reference, an advanced expert
system tuning method required at least three days of systematic
recording of a human experts tuning decisions and transferred
those knowledge to a computer algorithm, which then took
96 gait cycles to tune the impedance parameters [13]. Note,
however, this cyber-expert system is subjective (i.e., biased by
prosthetists experience) and inflexible when the system input
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TABLE I
POST-TUNING IMPEDANCE PARAMETERS OF THREE TESTING SESSIONS FOR TWO SUBJECTS

and output changes. Our ADP-tuner is objective and flexible in
structure. Furthermore, the experienced ADP-tuner (i.e., with
some prior knowledge) took only 210 gait cycles without addi-
tional reinforcement signals to learn, demonstrating the learned
knowledge can be effectively transferred to tune the impedance
parameters. Therefore, we believe the ADP-tuner is time and
data efficient for potential clinical use.

In daily life, the ADP-tuner potentially can handle slow
changes, such as body weight change. For environmental
demand changes, like going from level ground walking to
walking up a ramp or stair, the ADP-tuner could potentially
find the optimal control parameters for each locomotion modes
(e.g., ramp walking and stair climbing), which might take
longer, but could store the impedance parameters and switch
the parameters when the user encounters the task changes in
real life. We will explore this in our future work.

C. Learning Outcome

The ADP-tuner learned through reinforcement signals
(Figs. 6 and 7, colored point characters) and was able to tune
the impedance parameters that in turn decreased the angle fea-
ture errors to meet the respective error tolerance. At the end of
the tuning procedure, the feature errors also maintained within
the tolerance range for at least three of the previous five ADP
learning iterations in order to terminate the tuning session.

The feature errors clearly converged toward zero in two
out of four phases [Fig. 6(c) and (d)], and the corresponding
impedance parameters [Fig. 7(c) and (d)] stabilized. These
results show promise that the ADP-tuner is able to gener-
ate a converged policy for these gait phases. However, in
the remaining two phases, the impedance parameters were
still adapting, but the feature errors were within the toler-
ance ranges. These results lead us to believe the feature errors
were not very responsive to certain impedance parameters or
combinations of parameters. This phenomenon may be also
caused by our stop criteria of maximum 70 tuning iterations,
enforced to keep this paper practical for clinical applications
and to prevent amputee from fatigue. In the future, to achieve a
converged policy quickly, we might address this challenge by
adding small disturbances to the impedance parameters when
the feature errors approach zero in order to test convergence
properties of the ADP-tuner and by allowing ADP-tuner to
accumulate more learning experiences.

Finally, we demonstrated that the experienced ADP-tuner,
after only interacting with the human-prosthesis system for
one testing session, effectively learned tuning knowledge to

reach the target knee kinematics. With both human and inter-
phase influence contributing to the robotic knee motion [49],
we expected both the angle and the duration feature errors
would oscillate about zero [Fig. 8(a) and (b)]. In addition,
the experienced ADP tuned the prosthesis control parameters
faster than the naïve ADP. This exciting result opens up the
opportunity to make our prosthesis controller adaptive to users
in their daily life.

D. Implications of the Results

In this paper, the ADP-tuner had no prior knowledge
of: 1) the structure of the impedance controller and 2) the
mechanical properties of the robotic knee prosthesis. The
only information observed by the ADP was the state of
the human-prosthesis system through measurements of the
prosthetic knee angle, and reinforcement signals when the
performance/features were out of allowed exploration range.
Therefore, the ADP-tuner design potentially can be applied
to knee prostheses with different mechanical structures and
control methods and even possibly extended to the control
parameter tuning problem for ankle prostheses and exoskele-
tons.

Further, our method may be applied to other control objec-
tives to reach behavioral goals. For example, if the target
knee kinematics is to generate a greater swing flexion angle
for foot clearance, the experienced ADP-tuner may potentially
tune the impedance parameters quickly to reach the new tar-
get. Therefore, our learned control policy may significantly
enhance the tuning/personalization process of robotic prosthe-
ses, as well as the adaptability of the prosthesis to changes
within a user and its environment.

E. Limitations and Future Work

In this paper, we focused on demonstrating the feasibility
of RL-based control to automatically tune robotic prostheses.
Individuals differ in their physical conditions and behav-
iors, and they interact with different terrains in their daily
life. In order to reveal the full capability of this promising
approach, we need to further evaluate the ADP-tuner with
more human subjects and more locomotion tasks (e.g., ascend-
ing or descending stairs and walking on grass) to consolidate
the reliability of this RL-based approach.

Another limitation is that in this proof-of-concept study, we
chose the normative prosthetic knee kinematics as the tuning
objective, which might not be perfectly aligned with every
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amputee’s preference and the human-prosthesis system’s over-
all performance. However, from the parameter tuning point of
view, this paper proved that the ADP-tuner can find a set of
impedance parameters to meet a given tuning objective auto-
matically. Future studies will focus on determining the desired
knee target features that enhance the human-prosthesis gait
performance, such as gait symmetry index, stability margin,
or even the user’s subjective preferences.

VIII. CONCLUSION

In this paper, we provided a significant leap forward from
the traditional time-consuming and labor-intensive manual tun-
ing of the prosthesis control parameters. We developed a
novel RL-based control approach to automatically tune 12
impedance parameters of a robotic knee prosthesis. The new
concept was validated on one AB subject and one TF through
multiple testing sessions. The promising results illustrated that
the ADP-tuner is a feasible and safe method to automatically
configure a large number of control parameters within the
scope of this paper. The algorithm learns efficiently through
interaction with the human-prosthesis system in real time,
without any prior tuning knowledge from either a trained clin-
ician or a field expert. The learning also does not require a
prior plant model of the human-prosthesis system.

The results of this paper might lead to a novel prosthe-
sis control framework to personalize the robotic prostheses,
optimize human-prosthesis system performance in gait, and
make the prosthesis adaptive to users. In the future, we will
further explore the learning control designs that automatically
meet human-prosthesis’ various performance goals, such as
gait symmetry, stability, and even user perception.
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