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Abstract—A new method to control an Ocean Current Turbine (OCT) is examined. The key innovation, inspired by helicopter control,
is to use cyclic blade pitch angle variations. Output Variance Constrained (OVC) controllers are designed for OCT flight control and

their performance is analyzed.

Index Terms— Hydrokinetic Power, Marine Renewable Energy, Ocean Current Turbines, Numerical Simulation, Output Variance

Constrained Control, Flight Control, Ocean Energy Utilization.

I. INTRODUCTION

20 ESTIMATED U.S. annual electricity production potential from open ocean currents using ocean current

turbines (OCTs) is 169 TWh [1]. Time averaged power densities of this resource reach 3.3 kW/m?, with the
main U.S. resource located between South Florida and North Carolina [2]. A cross-section of the ocean
current average power density between the U.S. and Bahamas at 27° N (Fig. 1) highlights the importance of
OCT location [2]. Ocean current resources targeted off North Carolina, Japan, and South Africa also decay

rapidly with depth below the sea surface [3-5]. Therefore, OCTs will ideally operate within the top 50-100 m


mailto:ngodinhtri@hcmut.edu.vn
mailto:tdn12aoe@vt.edu
mailto:jvanzwi@fau.edu
mailto:nxiros@uno.edu

26

27

28

29

30

31

32

33
34
35

36

37

38

39

40

41

42

43

44

2

of the water column, where the current is strongest. Because of this desired operating location, OCTs will
likely be moored to the sea floor. Mooring systems introduce major challenges such as minimizing OCT
motions, locating OCTs at the desired depth, controlling their motion to avoid negative interaction with other
systems, etc. An approach for experimentally investigating mooring system dynamics associated with OCTs
was presented by [3], and several recent studies have been conducted with a focus on increasing the power
produced by marine renewable energy devices [6-9] in an attempt to make this form of energy generation

more cost competitive.

-100
200}
300}
400}

depth (m)

-200+
-600+

_700 I 1 1 1 1 1
-7199 -/98 -/97 -796 -795 -794 -793 -792

0

KW/m?

lon

Fig. 1 Average kinetic power density calculated from 35 transects made at 27°N latitude. Contour lines are provided at 1.5, 2.0,

2.5 kW/m?,

Flight control systems that use wing-like lifting surfaces to control OCT height, pitch and roll with mixed
PID/Bang-Bang, LQR/PID/Bang-Bang, and LQG/PID/Bang-Bang approaches were developed and
compared via simulations [10]. An open-loop investigation into the development of flight control systems
that utilize the rotor blades of co-axial counter-rotating rotors has also been conducted using both numerical
and experimental means, demonstrating the capability of moving OCTs approximately perpendicular to the
flow [11]. It has also been demonstrated that yaw and roll moments caused by inhomogeneous flow
conditions can be balanced by altering the pitch angles of OCT rotor blades [12].

In this article we use a numerical simulation model of a moored OCT, which utilizes a modeling approach

based on [13]. This model includes a Blade Element Momentum (BEM) rotor model, as well as the effects
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of waves, current shear, and turbulence in hydrodynamic calculations. Details on the updates made to model
the 700 kW OCT with a 20 m diameter variable pitch rotor used here are presented in [14]. In [14] an open-
loop system analysis is also presented, whereas this article is devoted to feedback control studies.

OVC control has been used in vehicles and structures [15-19], and recently introduced in OCTs [20]. The
preliminary analysis in [20] is significantly expanded here by a thorough analysis of OVC control
performance, including the effects of constraint limits, process noise, control penalty matrix, and
measurements. The key proposed control system technology innovation is to use cyclic blade pitch angle
variations in OCT output variance constrained flight control. Note that this is a conceptual study, aimed at
illustrating the advantages of OVC control in OCT management. All sensors and actuators are considered
ideal, their placement on the OCT is considered to have a negligible influence.

Section II gives a description of the OCT. In Section III the linearization of the nonlinear OCT simulation
model around a nominal operating condition is presented, as well as a stability analysis. In Section IV OVC
control is revisited. Section V presents the application of OVC control to OCT and comprehensive

evaluations. Conclusions are given in Section V1.

II. OCT SYSTEM DESCRIPTION

A. Nonlinear Ocean Current Turbine Model

The 24.8 m long horizontal axis nearly neutrally buoyant OCT, with a 20 m diameter rotor and two 15.6 m
long buoyancy compensation modules, designed by the Southeast National Marine Renewable Energy
Center [14,21] to produce up to 700 kW is used here (Fig. 2). Rotor airfoils range from nearly cylindrical at
the hub to a FX-83W airfoil with a thickness ratio of 21% at 20% of the rotor radius and FX-83W with a
thickness ratio of 10.8% at the blade tip. The airfoils at these locations have maximum two-dimensional (2D)
lift coefficients of 1.4 and 1.62 at angles of attack of 16° and 17° respectively (calculated using X-Foil).
These coefficients are modified to account for 3D effects using the Du-Selig and Eggers corrections,

resulting in maximum lift coefficients of 2.02 and 1.54 at angles of attack of 32° and 16.5° (calculated using
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AirfoilPrep). This OCT is attached, via a cable, to a flounder plate connected to a mooring line that runs

from a surface buoy to the sea floor [14,21].

Buoyancy Compensation Modules

' 1 [ Buoyancy
| Compensation
' N} Module Bracket

Mooring Cable
Fig. 2 Artist rendering of the OCT with major components listed [13].

The rigid body dynamics of this turbine, including the effects of the cable, are considered in the nonlinear
simulation. Modeling techniques used to represent rotor and cable forces are individually validated for other
applications. The rotor modeling process [13] is theoretically similar to those utilized to create time domain
simulations of wind turbines, such as the extensively validated and certified National Renewable Energy
Laboratory’s AeroDyn aerodynamics module that is used for turbine design and analysis [22]. The rotor and
blades are modeled as being rigid, and hydrodynamic forces are calculated using the Blade Element
Momentum (BEM) approach [23]. This calculates the forces on individual blade sections using a blade
element (BE) approach that accounts for the relative water velocity at each blade section. Calculated forces
are then used to update the inflow velocity using a momentum (M) approach. A grid fixed to the swept area
of the rotor is used to calculate these impeded flow values using a dynamic wake approach. Impeded flow
values at each blade element are calculated for each time step from values on this grid at the adjacent radial
grid points. The motion of rotor elements, freestream flow velocities, and calculated impeded flow values
are then used to calculate the relative flow velocity and angle of attack of each blade element. Forces on

blade elements are integrated along the blade length to obtain rotor hydrodynamic forces and moments. The
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hydrodynamic models used to compute forces on non-rotor turbine components, as well as the cable model,
are described in [13]. Hydrodynamic forces that act on the main body, two buoyancy compensation modules,
and cable elements are calculated each time step. These forces, along with gravity, buoyancy, and elastic
cable forces are used to compute OCT motion. The OCT’s degrees of freedom (DOF) values are calculated
as described in [14].

A finite-element lumped mass cable modeling technique is used for the 607 m cable that attaches the ocean
current turbine to the flounder plate, adding 3 DOFs per each cable node that is not attached to the turbine
or flounder plate. This model was developed and validated for tethered Remotely Operated Vehicles [24]
and has also been applied to towed sensor systems [25]. In the model each numerically modeled cable
element is assumed to be linear and elastic, with the mass of the cable lumped at the nodes which connect
these linear elements. Velocity and position for the end nodes are defined by the position, velocity,
orientation, and angular velocity of the OCT at one end and the position of the flounder plate at the other.
All intermediate nodes are initially allowed to settle to their equilibrium locations, based on the initial states
of the OCT and flounder plate, before each numerical simulation is run. Linear accelerations for each

intermediate node are found using the sum of forces calculated on neighboring cable elements () and the

mass of each element (m) according to a,,, = F/m. These accelerations are numerically integrated to

node
calculate the velocities of the nodes and again to calculate node positions. Forces from gravity, buoyancy,
hydrodynamic drag, and internal strain (in tension, not compression) are included in this model. The cable
characteristics are set to match that of a 0.085 m diameter wire rope, with a total mass of 19,250 kg and a
total buoyancy force of 32 kN. Sensitivity analyses showed that increasing the number of cable elements
beyond 5-8 only minimally impacts the OCT performance [26]. Thus, 5 cable elements are used for nonlinear

simulations.

B. Individual Blade Pitch Control (IBC)

For OCT control IBC is used. Standard IBC is realized using collective control, which simultaneously

modifies all blade pitch angles by the same value, and cyclic controls which ensure that each blade pitch
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angle varies harmonically with the azimuth (the angle made by the blade with a fixed direction in the rotor
plane). In analogy with helicopter control [27], cyclic blade pitch angles are controlled using a swashplate
(Fig. 3). IBC oscillates each blade’s root pitch angle about the collective pitch angle, ye4, corresponding to
maximum power production. For three synchronously rotating blades the blade pitch root angles are:

7 1 sina cos o
[;/2] = lllyeq + [sin((x + 27:/3) cos(a + 27:/3)][}}:“} > (1)

73 1 sin(a +47/3) cos(a+47/3)

where y, and y, are cyclic control inputs and « is the azimuth angle of the first blade. The electromechanical

rotor torque is the third control input of the OCT.

|4——— actuator inputs (3)
T: =| collective

drive shaft @ "I“‘LT cyclic

Fig. 3 Rotor blade control through a swashplate [28].

III. LINEARIZED MODEL ANALYSIS

A. Linearized Model

The states used in the linearized OCT model are deviations from the nominal values of translational and
angular velocities of the OCT body in the OCT body fixed reference frame, u, v, w, p, g, r, rotor angular
speed with respect to the OCT body, w, Cartesian coordinates of the location where the rotor axis coincides
with the central plane of the rotor hub in the inertial frame, x, y, z, and Euler angles describing the orientation

of the OCT body fixed reference frame with respect to the inertial reference frame, ¢,6,y . The inertial
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reference frame is a right-handed system defined such that its z-axis (vertical) points downwards, its x-axis
is aligned with the mean flow direction and its y-axis (lateral) results from the right handed condition. The
origin of the inertial frame is set to the location of the flounder plate. During nominal operation the x-axis
points towards the right in Fig. 2. The body fixed frame is a right handed system attached to the OCT, defined
such that its z,-axis points from the top to bottom of the OCT and its xj,-axis is aligned with the rotor axis
of rotation. The y,-axis results from the right handed condition. Fig. 4 shows the inertial and turbine
reference axes along with key dimensions. The OCT state and control vectors used in the linearized model

are, therefore,

S,=[u & w p o & & & & & & B oyl addu,=[y, &, o],
and the corresponding linearized model can be formally written as &, = 4,8, + B, i, where ¢ denotes

the difference between the state or control vectors and the equilibrium values about which the system is
linearized. For notational simplicity, ¢ has been omitted from the linearized model in subsequent sections.

To determine matrices 4, and Bp the nonlinear OCT model is linearized around a nominal condition for
maximum power produced in steady axial flow. This condition is characterized by averaged flow velocity
of 1.6 m/s. The resulting equilibrium control values are ugy, =[0° 0° —246.5 kNm]T and the

corresponding equilibrium states are Xgg =

[0 0 0 0 1417RPM 0 0 —623.1m 03m 105m 0.8° —2.7° 0.0°]". It is noted that
in this model both the hydrodynamic and electromechanical torques are defined as positive when they
produce a positive (with respect to the xj,-axis) moment on rotating components. Therefore,
electromechanical torque values are negative when shaft power is converted into electricity. Note that the
values of the states and controls corresponding to the nominal condition are referred to as nominal or
equilibrium values.

For linearization, all intermediate cable nodes are assumed in equilibrium. Quasi-static cable force

dependencies on OCT position and attitude are determined by re-calculating equilibrium cable node states
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and the resulting forces on the OCT during linearization each time the OCT position or attitude states are

varied [28]. Dependencies of cable forces on the OCT velocity states are accounted for during linearization

by allowing velocity perturbations to alter cable node position and velocity equilibrium states. This allows

the effects of changes in all OCT states to be incorporated into the linear model, without directly accounting

for the individual cable node states. Utilizing this approach, the matrices of the linearized model

corresponding to the xgy and ugq values presented in the previous paragraph are found. These matrices are

presented in the following tables:

-3.13E-01
3.11E-03
-6.73E-02
9.50E-05
5.46E-01
-1.17E-02
-4.19E-04
9.99E-01
4.30E-04
4.62E-02
0.00E+00
0.00E+00
0.00E+00

-7.90E-02
-1.56E-01
-4.60E-01
-4.73E-02
-1.25E-06
-4.35E-02

1.22E-02

-1.05E-03

1.00E+00
1.34E-02
0.00E+00
0.00E+00
0.00E+00

-6.00E-03
6.02E-01

-1.94E-01
-8.41E-03
-8.09E-05
-4.61E-03
-6.35E-02
-4.62E-02
-1.35E-02
9.99E-01

0.00E+00
0.00E+00
0.00E+00

-2.18E-01
1.75E-01
-5.65E-02
-6.59E-01
-2.57E-01
-8.80E-03
2.13E-02
0.00E+00
0.00E+00
0.00E+00
1.00E+00
0.00E+00
0.00E+00

-221E-01
-6.70E-04
-5.758-02
-6.97B-05
-2.56E-01
-8.96E-03

1.58E-04
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

Matrix Ap

-3.66E-01
1.58E+00
-8.34E-01
-3.02E-02
-2.66E-02
-242E-01
-1.58E-01
0.00E+00
0.00E+00
0.00E+00
-6.22E-04
1.00E+00
1.34E-02

1.83E-01

1.90E+00
1.I7E+00
-3.79E-01
-3.85E-03
1.04E-01

-3.07E-01
0.00E+00
0.00E+00
0.00E+00
-4.63E-02
-1.34E-02
1.00E+00

-5.80E-02
-3.90E-05
-1.78E-02
0.00E+00
1.79E-11
-2.58E-03
1.33E-05
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

Matrix Bp

-2.94E-01

-3.57E-02

-2.38E-15

-1.38E-01

1.49E+00

7.77E-08

-1.05E+00

-1.10E-01

-9.71E-15

1.41E-03

6.47E-02

-7.83E-08

-2.29E-02

-2.61E-03

1.85E-06

-1.63E-01

-1.12E-02

-9.62E-16

1.51E-02

-2.51E-01

1.01E-08

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

8.51E-05
1.06E-03
1.50E-05
2.30E-04
0.00E+00
-1.10E-06
-3.63E-04
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

-3.00E-03
1.17E-05
-4.60B-04
2.54E-06
0.00E+00
6.89E-05
-4.00E-06
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

-1.03E-02
LISE+00
-2.30E-03
-1.46E+00
-4.71E-01
-5.88E-05
2.38E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

-1.17E+00
-71.13E-02
-3.77E+00
-5.17E-03

2.80E-02

-6.32E-01

1.21E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

-2.95E-03

9.40E-01

-4.99E-02

2.22E-01

-2.62E-04
-71.56E-03
-2.52E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
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Xp
166
167 Fig. 4 OCT key dimensions and reference frames
168 For similarity and non-dimensionalization purposes, OCT models are normalized by dividing angular

169  velocities by the nominal rotor angular rate (14.17 RPM), lengths by the rotor blade length (10 m),
170  translational velocities by the tip blade velocity (14.84 m/s), and linear accelerations by the tip blade
171 acceleration (22.01 m/s?). The turbine mass is 4.98x10° kg, rotor mass is 6.16x10% kg, and its longitudinal

172 moment of inertia is 5.39x10° kg-m?.

173 B. Stability Analysis

174 The eigenvalues of the linearized model’s state matrix are:
—0.2737 +£1.1842i, —0.1242 £0.1751i,
—0.2372 +£0.9944i, —0.0012 +£0.00164,
175 ’. ’ 2)
—0.2344 +£0.3942i, —0.0656.
—0.1599 +0.4446i,
176 Eigenvector analysis showed that the dominant motions corresponding to the lightly damped eigenvalues,

177  -0.0656, -0.0012 + 0.0016i, affect the OCT coordinates (see Table 1 which provides eigenvectors

178  corresponding to -0.0656 and -0.0012 + 0.0016 i, with the phase given in degrees). Thus, perturbations in
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the OCT position will be eliminated in a very long time, i.e. the OCT will return to the unperturbed nominal
operating condition very slowly. However, OCTs must restore their position to the unperturbed nominal
operating condition in relatively short time scales to avoid interference with shipping traffic or neighboring
OCTs when deployed in arrays. Also, for optimal energy harvesting OCTs must operate close to the water
surface (Fig. 1). Therefore, OCT feedback control is needed in order to contain the state vector within a
sufficiently small neighborhood of the nominal condition as well as guarantee speedy disturbance rejection

and error mitigation.

TABLE I: Eigenvector Analysis of the Linear OCT Model

Eigenmodes -0.0656 -0.0012 + 0.0016i
States Magnitude Phase Magnitude Phase
1 u 2.14E-02 180 1.31E-05 -41
2 v 2.63E-03 180 1.64E-03 55
3 w 8.99E-04 180 1.12E-03 133
4 p 9.47E-06 180 3.32E-07 -159
5 ® 6.18E-02 180 1.59E-04 141
6 q 8.63E-06 180 6.10E-07 126
7 r 1.34E-05 180 2.99E-06 -134
8 X 3.26E-01 0 3.28E-02 78
9 y 4.00E-02 0 8.21E-01 -180
10 z 2.94E-02 0 5.65E-01 -102
11 1/ 1.35E-04 0 1.08E-04 -49
12 0 1.29E-04 0 3.10E-04 -112
13 v 2.06E-04 0 1.50E-03 -8

To verify the linearization process, we performed extensive comparisons between OCT nonlinear and
linear model responses. For example, Figs. 5-7 show responses to torque and cyclic blade pitch angle control

input steps. Note that in these Figures deviations from nominal values are depicted (e.g., z,, 1s the deviation

of the electromechanical torque from its nominal value of —246.5 kNm, etc.). The position states predicted
by the linear and nonlinear models are in good agreement, with the greatest error occurring in the cross-
stream direction, §Y, where the linear model calculated a displacement of 26.6 m compared to 22.7 m for
the nonlinear model 30 minutes after a step increase of 2° was made to y;,. Small disagreement is observed

in the rotor speed response to the cyclic blade pitch angle control input, with the linear model predicting a



11

196  rotor rotational velocity that was greater than the nonlinear model by 0.23 RPM for y, = 2° and 0.59 RPM
197  fory, = 2°. This discrepancy is due to the fact that the linear model does not capture the relationship between
198  flow misalignment and hydrodynamic rotor torque. This relationship is not captured because the linearization
199  was carried out about equilibrium pitch/yaw angles where the rotor is nearly aligned with the flow, which is

200  at the peak of a symmetric relationship between pitch/yaw and hydrodynamic rotor torque.

16 — . . ; : .
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3 Nonlinear
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] ; . . . . 7
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-10 I 1 1 1 1 1 1 ]
0 5 10 15 20 25 30
10 | 1
E o =
N
-10 L 1 1 1 1 1 1 i
0 5 10 15 20 25 30

201 Time (min)

202 Fig. 5 OCT response to 20kN step torque input increase in the direction of rotor rotation
S 14 5
o
o Linear
3 13} Nonlinear|

0 5 10 15 20 25 30
ol . . ; . . ]
E ob—o 1
>
10 . . . . . 1
0 5 10 15 20 25 30
10 I I I | I I 1
E o :
N
-10 i 1 1 1 1 1 1 i
0 5 10 15 20 25 30
Time (min
203 L

204 Fig. 6 OCT response to 2° step increase in the cyclic blade pitch angle control input y,,
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206 (min)
207 Fig. 7 OCT response to 2° step increase in the cyclic blade pitch angle control input y,,
208 IV. OUTPUT VARIANCE CONSTRAINED CONTROL
209 One of the typical objectives in control design is minimization of control energy. In addition, realistic

210  control design must take into account constraints (e.g., on the controls, outputs, or other variables). In this
211  article, we employ a modern control technique which minimizes control energy and guarantees that output
212 variations remain confined to a neighborhood of zero by requiring that the output variances are upper
213 bounded. These objectives are consistent with the overall goal of maximizing the energy generated by the
214 OCT because the energy required to operate the control system (i.e. the control energy) will be on the expense
215  of the energy harvested. Also, in simple terms, the variance measures how far some random numbers are
216  spread out from their average value. Therefore, a small variance indicates less variability around the mean
217  value of the variable, which is a desired feature. By requiring that the control system ensures satisfaction of
218  stringent upper bound constraints on output variances, these will have small values, which is consistent both

219  with the linearization assumption and with the overall goal of the control system to regulate around a nominal
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operation condition and keep variations small. This technique, called output variance constrained (OVC)
control, is described next.

Consider the generic (linear time invariant) LTI system

X,=Ax,+Bu,+Dw,,y,=C,x,,z,=Mx, +v, 3)

and a strictly proper output feedback controller

X, =A.x +Fz,, u,=0Cx, 4)

where xp, xc, Vp, zp,, up are plant state, controller state, output, measurement, control vectors, while wp, v are
zero-mean uncorrelated Gaussian white noises with intensities W), and V), respectively. The closed-loop

system, obtained by combining the open loop system (3) with the controller in (4), is
xcl = Aclxcl + Dcl Wcl 7ycl = Cclxcl (5)

Here x, =[x, x!1", y,=[y, u,1", w,=[w, v,1",and the closed loop matrices are
A B G D 0 C
A,=| " " |, D,=|"7 , C,=| "|,c =|c, o], C,=[0 G 6
! |:FMP Ac} ! {O F} ! |:Cu . l 3 J ’ [ ] ©
Physically, the closed loop system is obtained by feeding the sensor measurements (i.e. the elements of z)
into the control computation block which generates the control input vector, up, applied to the system.
The first goal of any feedback controller is to ensure that 4 is exponentially stable (i.e. it has eigenvalues

with strictly negative real parts). Then the closed-loop covariance, X, satisfies the following Lyapunov

equation, A,X, +X_ A, +D,WD, =0, where Wzdiag[Wp VPJ. The control energy is defined as

J =Ewu§Ru , Where E =limE with £ the expectation operator and can be easily computed as

t—

J = tr(RCuX JCr ) where “tr” is the trace operator. Also the output variances, defined as Y, = E_ y;i, i=1

,..., hy, are the diagonal elements of the matrix ¥ =C yX .C yT .

The OVC control design problem consists in finding a feedback dynamic controller defined by Eq. (4) (i.e.
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finding matrices A4c, F, G) which minimizes the control energy subject to output variance constraints [29-

30]. Mathematically the problem is formulated as

(7

. T : 2 vV o
g;%EwupRup subjectto E,y,~ <Y,,i=1,..n,

where R>0 is the control penalty matrix and Z are user prescribed upper bounds on the output variances.

The control penalty matrix enables different weightings on individual controls. For example, if R is
diagonal, like in the examples included in this article, the maximum diagonal element of R will enforce a
smaller variation of the corresponding control input. The utility of R will be clear in the examples section
where it will enable studies on blade stall likelihood.

OVC control problem solution reduces to linear quadratic Gaussian (LQG) control design by choosing the
output penalty O >0 in LQG control, function of the output variances upper bounds in (7), }71 . An algorithm
for Q selection is presented in Refs. [29,30] and used here. Then the OVC control matrices are
A,=A,+B,G-FM,, G=-R"'BJK, F = XM V" where K and X are obtained from two Riccati equations (see
[29] for detailed proofs):

A'K +KA, —~KB R'B'K+CIQOC, =0,4,X + XA — XMV 'M X +D W, D! =0.(8)

A major advantage for practical implementation and real-time operation of this dynamic feedback
controller is that all controller parameters (i.e. matrices 4c, Bc, G) are computed off-line. Therefore, real-
time control using the controller presented in this work is feasible. Note also that a Kalman filter, which
enables optimal estimation of the states, is an intrinsic part of the controller used here. Specifically, xc
is the vector of state estimates obtained using the sensor measurements (i.e. the elements of z,). The
second Riccati equation in Eq. (8) provides X which is used to compute the Kalman filter gain F as
discussed before, for use in Eq. (4).

The OVC control problem does not have solutions if the limits in (7), ¥, , are too small [19]. The minimum

limits that are theoretically achievable are computed using [30]:
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Y, =[C,XC!],, i=l..n, 9)

Therefore, before implementation of the OVC algorithm these bounds should be computed and the upper

bounds on the output variances Y, must be selected such that ¥, > Zm_m =10,

Note that the OCT return speed to the nominal position cannot be directly specified in OVC control

however if the upper bounds Y, in (7) are small, the OCT return speed will be small.

1

V. APPLICATION OF OVC CONTROL TO OCT

In OCT control design, measurements are deviations from nominal values of translational and angular
velocities, Euler angles, OCT Cartesian coordinates, and rotor angular speed. Controls, or inputs, are
deviations from the nominal values of the electromechanical torque and cyclic blade pitch angle inputs.
Outputs are deviations from the nominal values of the rotor angular speed and of the lateral and vertical
inertial OCT coordinates. These coordinates were selected as outputs because they are critical for safe and
optimal OCT operation (Fig. 1) and are affected by lightly damped eigenvalues (Table I). Zero-mean
uncorrelated Gaussian white noises, wp and v, are used in (3), with D, = I, where [ is the identity matrix,
and matrices 4p, Bp derived as described in section III.A, with standard linear controllability tests showed

that the system is controllable. Note also that the normalized OCT linear system is used for control design.
A. Influence of the OVC Limits on Control Energy

Using )_’, =ax 17 _in (7) with a >1 enables a parametric study on the influence of the OVC limits on control

performance. OVC control design was performed for various values of the scaling factor a. For W =2x10/
the results are shown in Fig. 8. When a approaches 1 the control energy increases rapidly because the
theoretical limits (9) are approached. Thus, a trade-off must be made between the OVC limits to be satisfied
and the control energy necessary to do so. For further studies, a = 5 was selected. Note that the data reported

next refers to the linear system.
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Fig. 8. Control energy variation with the scaling factor a

B. Influence of the Process Noise Intensity on Blade Pitch

Satisfaction of constraints in (7) under high process noise intensity values may require large blade pitch
angles, leading to blade stall. Here we assume that if blade pitch angles vary between +10°, stall is avoided.
This assumption was selected based on the hydrofoils having a stall point near 17° and nominal angles of

attack near 3° for most radial locations, thus a 14° separation.

Fig. 9 presents results of a study on process noise intensity effects on blade pitch angles. OVC controllers

were designed for @ = 5, R = I, and parameterized normalized process noise intensity = aw [, with awa
scalar. Fig. 9 shows that the minimum, y,,, , and maximum, y,,, , blade pitch angles are between +10° if

<1.44x10°%I and that y,, and 7, decrease, respectively increase, rapidly with aw. Since process noise

intensity is a measure of modeling errors, these results reveal the need for an accurate OCT model. Also,
maximum deviations of the closed loop OCT coordinates of interest and rotor angular speed are significantly
reduced with respect to the open loop ones. Note that the normalized noise intensity is small. However,
normalization involves division of physical quantities by large numbers (see the discussion on normalization

in III. 4.). Thus, noise intensities in the physical space are larger and have realistic ranges.



303
304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

17

> .
< ggj Ymax = Ymin Blade Pitch Boundary | |
o 20 T
2 1o} —
<
% _10 -
& 20 —
§ -30
2 40
o K r
10" 10°
----- Ziox w/o OVC
40
g ol T Ymge WOOVC |
. z, .. WOVC i
a L Bad
= 20| Vg WOVC | et =
g 10 B e
[ e ==m==T
10" 10°
3 ‘ —r
© oy WO OVC ]
= ol
= ® _w OVC
o max
Q:s' 1 /”///
___/,_——4/ uE
10”7 10°

Fig. 9 Minimum and maximum blade pitch angles, maximum position and rotor angular speed deviation variations with process

noise intensity (w/o OVC means without OVC control and w/ OVC means with OVC control).
C. Influence of the Control Penalty Matrix on Blade Pitch

For a given control penalty matrix, R, OVC control design, if successful, delivers an output penalty matrix
0. However, R must be defined before OVC control design is performed. To evaluate the influence of R on

OVC control we performed a parametric study as follows. Define R as R=Diag[2 1 1]. Because the first

two components of the control vector are the cyclic blade pitch angle control inputs, this structure of R
ensures that 4 is directly related to these controls. Thus, 4 has direct influence on blade pitch angles, so by
choosing this parameter blade stall can be avoided.

OVC controllers were designed for a =35, W = 1.4x10°/, and various A values. The minimum and maximum
blade pitch angle variations with 4 (Fig. 10) show that for 4 > 0.25 the £10° limits on the blade pitch angles
are satisfied. This behavior is expected because larger 4 results in smaller blade pitch angle control inputs.
Note that the minimum and maximum blade pitch angle variations with A are less pronounced compared to
the variations with respect to aw (see Figs. 8 and 9). This suggests that modeling errors, quantified by process

noise intensity, are more influential on blade stall than the control penalty matrix in OVC control design.
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Fig. 10 Variation of the minimum and maximum blade pitch angles with 1
D. System Response to External Disturbances

To further evaluate closed-loop system performance, various external disturbances were applied. Fig. 11
shows open and closed loop system responses to lateral (y) and vertical (z) disturbances of 5 m. The OVC
controller, designed for a =5, 2 =0.25, w = 1.4x10°I, restores the OCT to its original position in about 10
minutes, while in open loop configuration it takes 1.67 hours for the disturbed position to converge within
about Im of the original, unperturbed position. The closed-loop rotor angular speed variation is very small,
with a maximum of about 0.55 RPM. The closed-loop control variations are also small: the maximum for
7. 1s less than 4°, for y, about 1°, while the maximum torque deviation is 11%. Fig. 12 depicts open- and
closed-loop system responses to white noise disturbances of the same intensities as the ones used in OVC
control design. Improvement when feedback control is used is evident.

Fig. 13, the counterpart of Fig. 12 obtained for an OVC controller designed for a = 3, shows that blade
pitch angle control input variations are larger than for @ = 5. This reveals that more stringent OVC constraints

increase stall danger.
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Fig. 11 System responses to initial condition perturbation (solid lines: closed loop, dash lines: open loop, red dots: nominal) for
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Fig. 13 System responses to white noise disturbances (solid lines: closed loop, dash lines: open loop, red dots: nominal
condition) fora =3
Figs. 14-15 show a comparison between linear and nonlinear closed-loop system responses when the same
OVC controller is used. The OCT is disturbed by 5 m laterally and 2 m vertically from the nominal operating
condition. Nonlinear simulations show that the controller restores the OCT to its initial position within about
600 seconds, while linear simulations show that the controller restores the OCT to its initial position in about
500 seconds. This discrepancy can be explained by the fact that the mooring cable dynamics was neglected
in the linear model. The cable is very flexible and has a destabilizing effect which is accounted for in the

nonlinear OCT model. Fig. 15 shows that nonlinear and linear closed loop system responses are close.
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E. Robustness Analysis
For an evaluation of OVC control robustness, the controller designed for the nominal condition and for a

=5, =025 w = 1.4x10°], was implemented on perturbed plants. These were generated using

APl =M A, B = M B, where Mu and Mp are matrices of pseudo-random values drawn from the
standard uniform distribution in the interval (-1.05; 1.05). In addition, elements in 4, and B, that are known

from the mathematical construction of the linear model to be unaffected by uncertainties were not modified
(e.g., certain 0 and 1 values). Fig. 16 shows the standard deviations of the perturbations (abbreviated as
STDV) from equilibrium values of the rotor angular speed, lateral and vertical OCT coordinates in response
to white noise disturbances of the same intensities as the ones used in OVC control system design for 200
test cases. It can be ascertained that the nominal design is sufficiently robust (similar results were obtained
for pseudo-random values in M4 and Mp drawn from intervals as large as (-1.1; 1.1)). Moreover, since the
perturbations considered are not tied to specific OCT parameters (e.g. mass, rotor diameter) or nominal
operating condition (e.g. axial flow velocity, nominal angular speed), the results suggest that the controller

is robust even with respect to more specific perturbations.

{ ® Nominal Design ®  Perturbed Designs{
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Fig. 16 Robustness results for the closed loop system.
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F. OVC Control without Position Sensors

In the previous analyses the ideal situation was considered, when all OCT states used in the linear model
are measured. In reality, OCT Cartesian coordinates are difficult to measure due to the lack of GPS signal in
deep water. An inertial navigation system (INS) can be a substitute for the GPS, using inertial sensors and a
Kalman observer to estimate the OCT position. However, the INS may result in large errors because of large
uncertainties associated with OCT drift, ocean currents, etc. Transponders on the seabed, in combination
with the INS, may increase the accuracy of the positioning system. However, large errors may persist.

Thus, in the following the OVC control system is designed assuming that position sensor measurements
are missing. Ten measurements are assumed available, i.e. deviations from nominal values of translational
and angular velocities, Euler angles, and rotor angular speed. The OVC control system is designed using
these measurements and a = 5, W = 1.4x10°1, A = 0.25. For evaluation two scenarios are considered: 1) The
OCT is initially disturbed by 5 m laterally and 5 m vertically with respect to the nominal operating condition.
2) The OCT is persistently disturbed by white noise disturbances of the same intensities as the ones used in
OVC control design.

Fig. 17 shows a comparison between responses of the linear closed loop systems without position sensors
(solid lines) and with all sensors working (dotted lines) when these systems are subjected to an initial
perturbation in position (scenario 1). Figs. 18-19 show a comparison between the responses of the same
systems when they are subjected to white noise disturbances (scenario 2). It can be seen that elimination of
position sensor measurements has negligible effect on closed loop system performance. For example, in Fig.
18 the rotor blades experience very similar, small variations of the blade pitch angle control inputs, for both
closed loop systems. The maximum variation of the electromechanical torque is only about 18% of the trim
value. The rotor angular speed variation is also very small, with a maximum deviation of about 0.5 RPM.
Also note that negligible degradation of the closed loop system’s response for the OCT Cartesian coordinates
is observed when position sensor measurements are missing. Similar remarks apply when responses to white

noise disturbances are compared. Fig. 19 shows that the OCT Euler angle variations around their nominal
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395  values are small. The closed-loop system without position sensors achieves good performance because it

396  uses information from rate gyros and translational velocity sensors to estimate OCT’s position.
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G. OVC Control without Position and Velocity Sensors

The OVC control system is also redesigned when position and translational velocity sensor measurements
are missing. For control design seven measurements (deviations from nominal values of angular velocities,
Euler angles, and rotor angular speed) and a =5, W = 1.4x10°1, 1 = 0.25, are used.

To illustrate the effect on the OVC control performance, Figs. 20-21 show responses of the linear closed
loop systems without position and translational velocity sensors (solid lines) and with all sensors working
(dotted lines) to white noise disturbances with the same intensities as those used in the OVC control design.
Fig. 20 shows that the maximum deviations of the OCT coordinates are significantly larger than those in the
nominal case: both y and z reach values of almost 9.5 m, whereas for the case with all sensors working their
maximum values are about 6.7 m. Also, the OVC controller employs 18% more torque and larger blade pitch
angle control inputs (almost up to 10°) when the system does not use position and translational velocity
measurements. Time histories of the Euler angle deviations from their nominal values suggest that these
states are not affected significantly by elimination of position and velocity measurements. This is expected

because Euler angles are available as measurements.
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Fig. 20 System responses to white noise disturbances (solid lines: without position and velocity sensors, dotted lines: with all
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V1. CONCLUSIONS

A linearized model for a moored OCT was developed from a detailed nonlinear simulation model. Linear
stability analysis revealed the existence of three very lightly damped modes. The corresponding slowly
decaying open-loop behavior was found to primarily impact OCT position. This is detrimental to the safe
and optimal operation of the OCT, which must operate in confined regions to avoid shipping traffic, yet close
to the ocean surface to generate maximum power. Feedback control is therefore necessary to ensure
sufficiently fast return to the nominal operating condition.

To improve OCT control system capabilities, a key control system technology innovation, inspired by
helicopter technology, was introduced in the form of cyclic blade pitch angle control. This results in two
control inputs, in addition to the standard electromagnetic torque applied to the rotor, which increase the
authority of the OCT control system. OVC control designed with these three control inputs was found
adequate to minimize control energy subject to variance constraints on deviations from the nominal values
of lateral and vertical OCT inertial coordinates and rotor angular speed. Importantly, rapid return of the OCT
to the unperturbed nominal operating condition was achieved using OVC control.

A parametric study with respect to the variance constraint limits revealed that control energy decreases
rapidly when these limits depart from the minimum theoretically achievable bounds. This is important
because practical OVC limits can be satisfied with relatively small control energy consumption. Also, small
control energy corresponds to small control variations, which result in small blade pitch angles. This implies
that effective control of OCT using OVC control systems with electromagnetic rotor torque and cyclic blade

pitch angle control inputs can be achieved, avoiding the danger of blade stall.
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Investigation into the effects of modeling errors, quantified by the process noise intensity, on the OVC
control performance revealed that the likelihood of blade stall increases rapidly when process noise intensity
increases. This observation emphasizes the need for accurate OCT control models. Another parametric study,
for the influence of the control penalty matrix used in OVC control design, indicated that the blade pitch
angle variations are relatively mild. By choosing a large control penalty matrix the danger of stall is
alleviated.

Comparisons between linear and nonlinear simulations indicated that the current OCT linear model is
sufficiently reliable for control design. Eventual discrepancies between nonlinear and linear closed loop
responses were traced back to the cable dynamics which is taken into account in the nonlinear model but
ignored in the linear model.

Our analysis indicated that when position sensor measurements are not available, the degradation in OVC
control performance is negligible. It should be noted that this might be true in the short term, since we can
estimate position from other measurements. However, maintaining position without direct position
measurements for extended periods of time on an actual system is unlikely. Lastly, when both position and

linear velocity sensor measurements are missing, this degradation may no longer be ignored.
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VIII. APPENDIX

The nonlinear numerical simulation utilized in the paper was originally published in [13], with the
associated algorithms summarized in this Appendix. Note that notations used next are inherent to this
Appendix and should not be confused with notations used in the main body of the article. Likewise, equation

numbering is intrinsic to this Appendix.
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A. Kinematics
The five types of coordinate systems used in this analysis are the earth fixed coordinate system, 3, the
~ik

body fixed coordinate system, 3z, momentum mesh coordinate systems, I, where (e)! indicates the
referenced blade element radial location on mesh azimuth angle grid point (¢)¥, the shaft coordinate system,
Js, and rotor blade coordinate systems, ng, where (¢)! indicates the referenced blade element on rotor blade
(¢)’. The origin of I is located at mean sea level directly above the mooring connection assembly; with the
X-axis pointing North, the Z-axis pointing downward, and the Y-axis pointing East to complete the right-
hand rule. The origin of Jp is fixed to the main body of the turbine and located at the center of the rotor shaft
just behind the main pressure vessel; with the x-axis co-axial with the rotor shaft pointing from tail to nose,
the z-axis points towards the bottom of the turbine, and the y-axis is aligned to complete the right-hand rule.
The origin of each S;V, is attached at the corresponding discrete mesh node that is fixed with respect to Jp
and utilize a polar co-ordinate system centered about the rotor shaft and covering the swept area of the rotor
blade. For this coordinate system the axial direction, (), is parallel to the x-axis, the tangential direction,
(¢)i, points in the rotor rotation direction, and the radial direction, (¢)¥, points radially outward from the
center of the rotor. The origin of the I coordinate system is fixed to the shaft at the center of the hub and
rotates with the rotor. This coordinate system has its xg-axis co-axial with the x-axis, the zg-axis
perpendicular to the rotor shaft and parallel to rotor blade 1, and the yg-axis is aligned to complete the right-
hand rule. The origin of each Sg is fixed to the quarter cord line of each of the discrete rotor blade sections;

with the axial direction, (-)Zj, parallel to the x-axis, the tangential direction, (0)¥, in the rotor rotation

direction, and the radial direction, (-)g, pointing radially outward from the from the center of the rotor.
The relationship between I and Jg is defined using the Euler angles, which define the attitude of Jp
using three successive rotations about the yaw angle 1, the pitch angle 8, and then the roll angle ¢. The

transformation matrix from 3 to Jp is defined as Lgp.
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Calculations in each 3 consider the axial, radial, and tangential directions at a momentum mesh grid
location that is fixed with respect to Jz. The constant transformation matrices from I to J4 are defined

The transformation matrix from Jp to Js is defined using the rotation angle § of the rotor blade with

respect to the turbine and denoted as Lgg.
The transformation matrices from Jg to S,i;,. are defined using the angle ¢/ between the reference rotor
blade (rotor blade 1) and the rotor blade of interest. Calculations in Sg consider the axial, radial, and

tangential directions and this transformation matrix is denoted as LéR. The utilized transformation
matrices are all orthonormal and therefore the inverse of these transformation matrices is equal to their

transpose.

B. Equations of motion
The equations of motion used in this simulation are derived from the 6-DOF rigid body equations of motion

suggested by [31]. These six equations are first applied separately to both the rotor section and main body,
with the forces and moments from the shaft applied to each system with the same magnitude but in opposite
directions. These forces and moments are applied at the origin of Jg. As the motions of these systems are
the same at the origin of Jp, except for the rotation about the x-axis, these 12 equations are reduced to 7
equations with 7 unknowns. These equations are then reduced to 7-DOF equations of motion by combining
like terms and assuming symmetry for the main body about the xz-plane and symmetry of the inertial
properties of the rotor about both the xz-plane and xy-plane. These equations of motion can be used to find

the angular acceleration of the rotor directly using the system’s states and inertial properties,
br = [Mxr - st —q r(I;’r - I;/Jr)]/lﬁlgr' (Al)

The other six equations are coupled and therefore acceleration can be solved for by
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The symbol (¢) denotes the time derivative; (¢)? denotes that the virtual mass, virtual mass moment of
inertia, virtual product of inertia, or virtual center of gravity; (e), denotes the rotor portion of the system
(everything attached to the rotor and aft of the shaft); (e);, denotes the main body portion of the system
(everything that is not attached to the rotor and aft of the shaft); (o) denotes the center of gravity; M,
denotes the shaft moment about the x-axis that the shaft induces on the main body; m is the mass of the
entire OCT or the component denoted by a subscript; p, denotes the rotational velocities about the x-axis
with the subscript denoting a reference to either the main body or the rotor; g and r are the rotational
velocities common to both the rotor and main body about y and z respectively; u, v, and w are the linear
velocities in the x, y, and z directions; f, denotes the total external force in the direction of its subscript; M,
denotes the total external moment about the axis denoted by its subscript; I, denotes the mass moment or
product of inertia denoted by its subscript, and [¢]~! denotes the inverse operator. The virtual masses,

moments of inertia, and products of inertia are estimated as being twice the actual masses, moments of
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inertia, and products of inertia of the OCT and the virtual center of mass is assumed to be at the same location

as the actual center of mass.

C. Hydrostatics
This mathematical model assumes that the turbine is completely submerged, with constant gravitational

and buoyancy force magnitudes. Using the individual masses and buoyancies of each component, scaled
from a paper design of an experimental ocean current turbine [21]; the total mass, m, total buoyancy, B,
center of mass (gravity), CG, and center of buoyancy, CB, are calculated. These values are used to calculate
the combined gravitational and buoyancy forces of the entire system in Iz, and the hydrostatic moments

about the origin of Jp:
= 1G9 — B) and A3
fep = EB(mg ) an (A3)
Mgg = —B(CB — CG) x L), (A4)

respectively, where (X) denotes the cross product, (¢)? denotes a reference to a vector consisting of all

elements in the third column of the referenced matrix, and g is the gravitational constant.

D. Rotor Force Modeling
The mathematical rotor model uses an unsteady form of the Blade Element Momentum (BEM) approach

to calculate the forces on the rotor blades.

1) Lift and Drag Coefficients
The 2D lift and drag coefficients for hydrofoils described in [14] are found using Xfoil [32]. The program

AirfoilPrep [33] is then used to convert these coefficients to their 3D rotor blade equivalent by first
considering the 3D stall characteristics and then extrapolating the lift and drag coefficient over all possible
angles of attack. This calculation of 3D rotor blade coefficients uses Selig Du correction [34] and Eggars
coefficient of drag adjustment [35], which considers the radial location of the airfoil sections and the aspect
ratio. To extrapolate these 3D coefficients beyond stall, the Viterna method [36] is used as presented by [37],

which calculates the coefficients of lift and drag for deep stall. Using the 3D lift and drag coefficients, the



552

553

554
555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

57

(8]

31

lift, C Lij (aV), and drag, C Ii)j (a¥), coefficients for each hydro foil section is calculated as a function of angle

of attack, a”/, by interpolating the data from the airfoil shapes based on the radial location of each section.

2) Unsteady Blade Element Momentum Rotor Model
The hydrodynamic forces on the rotor are calculated using an unsteady BEM rotor model similar to the

one presented in [23]. This approach uses the 3D lift and drag coefficients, which are a function of angle of
attack. The effect of the rotor on the incoming flow is calculated with respect to J5. This mesh has nodes at
distances from the hub that are equivalent to the radial locations of the center of blade elements and therefore
are denoted by (*)*. This mesh is also divided into M angular sections spaced evenly with respect to the
azimuth angle, with the angle component of the matrix denoted by (¢)*. The impeded flow at each rotor
blade element is calculated using the momentum model with values interpolated from the adjacent radial
grid points. Conversely, the wake induced water velocity at the mesh grid points, used by the momentum
model, are calculated as if a blade element were at each grid point. Since individual blade pitch is allowed,
the blade pitch angle of the most recent blade to pass each location, at its time of passage, is used. Therefore,
both the actual rotor forces and the rotor forces used for the momentum model are calculated each time step.

Angle of attack is calculated for each discrete section (¢)* of both rotor blade ()’ and mesh grid azimuth

angle (*)¥ as a function of the axial, I_{4ij 'ik, and tangential, VTU ’ik, components of relative water velocity by:
vk =yt y e+ wiik(n — 1), (AS5)

where I/;ij ¥ is the undisturbed free stream water velocity, I/l,il];;ic;(e is the effect of the motions of the blade

elements or related mesh points on the relative water velocity, and WY (n — 1) is the wake induced water
velocity from the previous time step at the location of the mesh grid and respective blade elements. Note:

ik
Vi is calculated from

.. i u Pr X J
Voige = —LtpLps H+[qlx y¥ || and (A6)
w r ZU
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ik

) u Dr X
Vbl{{ade = _Lllg’M lvl + [q X ylk D (A7)
w r Zik
Voij K is calculated from
v
w
Vy) = LipLgsLgs | VY | and (A8)
wY
Uik
w
Voik = LIE’MLEB Vvék > (A9)
W,k

where the undisturbed water velocities in I are functions of the wave field, current profile, blade element
or mesh grid location, and time.

The angle of attack of each element section is calculated by
aij,ik — d)ij,ik _ Bij,ik’ (AIO)

where the relative flow angle is calculated by

-1j,ik
HUE = tan-1 ( Vi ) (Al1)

Tk

and Y- is the blade section pitch angle.
The lift coefficient matrix, C*(a'), calculated over the mesh field for the angles of attack calculated

using (A10) is used to calculate the lift per unit length, L*, that is used in (A17) and (A18) for calculating
the quasi-static wake field. Additionally, both the lift and drag coefficient matrices, C Lij (aV) and C li)j (a),
found using the angles of attack calculated in (A10) are used to calculate the axial (normal), C o , and

tangential, C;j , force coefficients respectively [23].

These coefficients are then used to estimate the axial and tangential loads on each of the blade sections by

=% portct ¢ (32 + ()?) and (A12)
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fy =5 port ¢ (@D + ), (A13)

where p is the density of seawater, 67 is the radial length of element (¢)’, and c' is the cord length at the
center of section (*)*. These forces are converted to g by using the appropriate transformation matrices.
Using the forces on the discrete sections of the rotor, the total force on the rotor is found. Similarly, the
hydrodynamic moment from the rotor about the origin of Jp (the rotor axis) is calculated using the forces
calculated on the individual blade components and their relative locations.

The second part of applying the unsteady BEM rotor model is calculating the effect of the rotor on the
flow field. As mentioned previously, the effect of the rotor on the incoming flow is calculated over a mesh
of points spread over the swept area of the rotor blade using a polar coordinate system that is fixed with
respect to Jp. To account for the end effects of the rotor blade on the flow field, Prandtl’s tip loss correlation

factor is first calculated as suggested by [23]:
o, __B®=rh _
F = =cos™! <e 27t 5""4’1"), (A14)

where B is the number of blades and R is the rotor radius.
The axial induction factor calculated using the wake field from the previous time step is defined by [23]

as

ik _ Wim-1
Ve, °

a (A15)

where ||¢]|, denotes the [, or Euclidean norm. Using this axial induction factor, the Glauert correction is
calculated by

{ 1 for a® <a

a a i
Q2 ——%) for a* > a,

fik = (A16)

where a, = 0.2 as suggested by [23]. The quasi-static wake field is now calculated in terms of its axial and

tangential components for time step n [23]:
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-B Lik cos(d)”"')

WAikS (Tl) — - ' _ = - and
a amprt FikJ(V}lk+fék Wj’;(n—l))z‘F(V}%k)z"'(V%k)Z
” B -B L* sin(¢ptk)

Wik (n) =

amprt F‘k\/(ij+fék Wik (n-1))2+@E)2+v#*)?

(A17)

(A18)
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where (¢), denotes that the utilized wake field is not corrected for the wake skew angle (A21) and L is the

lift per unit length. To account for the time delay before the axial and tangential wake fields reach their

equilibrium values, a dynamic wake model is used [23]. Following the method suggested by S. Oye, a filter

is used that consists of two first order differential equations [23]. These differential equations can be solved

analytically using the intermediate wake variable vectors, H** and W,k

wikm)-wik(n-1)

H* = Wi n) + k1, — ,

Wik (n) = H* + (Wik(n — 1) — H*)e™2t/71, and

I/Voik (n) = M/l";”{{t(n) + (M/oik n-1) - Wi%t (n))e_At/Tz-

For these equations the time constants t; and 7, are calculate as suggested by [23]:

L o—_ 11 R
17 a-13al0 v,

and

r\?
7, = (039 - 0.26 (%) )1, where

ik — a*  for a** < 0.5
! 0.5 for a®* > 0.5

as follows [23]:

(A19)

(A20)

(A21)

(A22)

(A23)

The wake model used in this numerical simulation has been calculated for discrete locations over the swept

area of the rotor blade with the mesh fixed with respect to Jz. To estimate the wake at the blade elements,

Woij (n), the wake is linearly interpolated between the closest two azimuth angles in mesh grid Woij (n) for

the same radial location:

Wy (n) = f(Wi*(n), 65).

(A24)
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A yaw model is included in this simulation so that the unsteady BEM method will predict the restoring
yaw moment [23]. The method proposed by Glauert is used to calculate the wake field corrected for yaw

[23] by
Wijvik(n) = VVOij'ik (n)(l + %ltan()z_{) COS( Bwing - 00))’ (A25)

where the wake skew angle, y, is defined as the angle between the current velocity in the wake and the

rotational axis of the rotor and 6, is the angle where the blade is deepest into the wake. The skew angle can

be found by

- Mg 05 ~ Mg 5 ~
x = tan 27 (|[Z38, (W + 7)), S, (W + 7

|, = Sl (T + U)), (A26)

where tan 271 (e,¢) denotes the four-quadrant inverse tangent function and (%) denotes that the skew angle

is assumed to be constant with radius and is calculated at r!/R = 0.7 as suggested by [23].

E. Streamline body force modeling
The main turbine body that houses the generator and the two buoyancy compensation modules are

somewhat streamlined bodies. To calculate the drag forces on these components constant drag coefficients
are used. For the axial drag on the buoyancy compensation modules, Cd3L = 0.2, and for the main turbine
body, Cd3l = 0.4. A constant coefficient is also used for the tangential drag on across all three of these
bodies, Cd3t = 1.0. The drag forces and resulting moments on these bodies are calculated using the mean
axial relative velocity to calculate the axial forces and by numerically integrated the relative velocity to

calculate off axis forces.

F. Cable Force Model
A finite element lumped mass cable model is used for the cable that attaches the turbine to the flounder

plate. Each element is modeled as being linear, with the position and velocity of the end nodes defined by
the orientation and velocity of the turbine and the position of the flounder plate. The force on each cable
node can be found using a method presented by [38 and 39]. This cable model includes forces from gravity,

buoyancy, hydrodynamic drag, and internal strain.
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G. Environmental Models
The environmental disturbances included in this simulation are calculated using both current and wave

models. These current and wave models are used to calculate the undisturbed free stream water velocity
utilized by the rotor model in (A10), and when calculating the relative free stream water velocities utilized
to calculate the forces on the streamline bodies. The undisturbed free stream water velocity is calculated

from:
= il g (A27)

ijik . o ijik . : _
where V""" is the free stream water velocity in S, VW]C is the current induced free stream water velocity

in 35, and VVLV];k is the wave induced free stream water velocity in I (A28).

1) Current model
The ocean current induced free stream water velocity is modeled as varying linearly with depth. The water

velocity vector at the surface and the vertical gradient of the current are used to calculate the free stream

water velocity each time step for based on the instantaneous depth of each turbine component.

2) Wave model
A wave model is included in the simulation to estimate the impact of a wave field on the performance of

an OCT. This model is presented in detail by [26] and is summarized here for the reader’s convenience. The
orbital water velocity induced by the wave field is calculated each time step for each location on the OCT
where the hydrodynamic force is calculated.

This simulation assumes a fully developed sea using a wave spectrum which is the product of a frequency
spectrum and a directional spreading function. A Pierson-Moskowitz spectrum is used to model the
frequency spectrum portion, S(w;), of this wave model [40]. The propagation direction of the individual
wave components is calculated using a cosine “2s” directional spreading function, D(6;), based on the work
of Pierson in 1955 [41]. A spreading value of 10 is recommended for wind waves, 25 for swell with short

decay and 75 for swell with long decay distance [42]. The orbital velocities from the individual wave
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components calculated from this spectrum are assumed to decay with depth according to linear wave theory

[43]. The orbital water velocities are calculated for each of the Ny, wave components, (¢)¢, according to:

ijik _
Wy = D

_Z'

Nw
i=1

Nw
i=1

2 w;

H; g k; cosh(ki(h-z1K))

cosh(k; h)

lHi g ki cosh(ki(h—Zij'ik))

|

2 wi

Nw

cosh(k; h)

_H; g k; sinh(kei(h-zUK))

cos(k

cos(k

L

l

|

2 wi

cosh(k; h)

piij'ik —w; t+ <pl-) cos(0; + @O)l

ij,ik

p; —w;t+ (pi) sin(0; + @O)I , with (A28)

. ik
sm(ki pi” '

— W t+$i)l

H; = /2 S(w;) D(6;) dw 40 and
p™ = XU cos(0; + 0,) + YUK sin(6; + 6y),

where H; is the wave component amplitude, w; is the wave component frequency, k; is the wave component
number, 0; is the wave component direction with respect to the mean wave propagation direction 8, @; is
the random phase angle which is uniformly distributed from 0 to 27 and constant with time, h is the water
depth, t is the time in seconds, Aw is the frequency step sized used discretizing the frequency spectra, and
A0 is the angular step size used when discretizing the spreading function.

Linear wave theory for deep water waves predicts the orbital velocity at the surface for each wave
component, and that this orbital water velocity will decay with depth according to exp( — 4 w2 Z/(g T?)).
Applying these relationships to a single wave component with H. = 1.859 m and T, = 6.8 s, both the
horizontal and vertical water velocity magnitudes will be 0.86 m/s at the surface and these velocities will
decay according to exp( — 0.087 - Z). This shows that at a depth of 8.0 m the wave induced water velocities
will be 50% of those at the surface and that at depth of 30 m the water velocities decreased to only 7% of

the surface velocity.
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