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Abstract—A new method to control an Ocean Current Turbine (OCT) is examined. The key innovation, inspired by helicopter control, 13 

is to use cyclic blade pitch angle variations. Output Variance Constrained (OVC) controllers are designed for OCT flight control and 14 

their performance is analyzed.  15 

 16 

Index Terms— Hydrokinetic Power, Marine Renewable Energy, Ocean Current Turbines, Numerical Simulation, Output Variance 17 

Constrained Control, Flight Control, Ocean Energy Utilization. 18 

I.  INTRODUCTION 19 

STIMATED U.S. annual electricity production potential from open ocean currents using ocean current 20 

turbines (OCTs) is 169 TWh [1]. Time averaged power densities of this resource reach 3.3 kW/m2, with the 21 

main U.S. resource located between South Florida and North Carolina [2]. A cross-section of the ocean 22 

current average power density between the U.S. and Bahamas at 27° N (Fig. 1) highlights the importance of 23 

OCT location [2]. Ocean current resources targeted off North Carolina, Japan, and South Africa also decay 24 

rapidly with depth below the sea surface [3-5]. Therefore, OCTs will ideally operate within the top 50-100 m 25 
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of the water column, where the current is strongest. Because of this desired operating location, OCTs will 26 

likely be moored to the sea floor. Mooring systems introduce major challenges such as minimizing OCT 27 

motions, locating OCTs at the desired depth, controlling their motion to avoid negative interaction with other 28 

systems, etc. An approach for experimentally investigating mooring system dynamics associated with OCTs 29 

was presented by [3], and several recent studies have been conducted with a focus on increasing the power 30 

produced by marine renewable energy devices [6-9] in an attempt to make this form of energy generation 31 

more cost competitive.   32 

 33 

Fig. 1  Average kinetic power density calculated from 35 transects made at 27°N latitude. Contour lines are provided at 1.5, 2.0, 34 

2.5 kW/m2. 35 

Flight control systems that use wing-like lifting surfaces to control OCT height, pitch and roll with mixed 36 

PID/Bang-Bang, LQR/PID/Bang-Bang, and LQG/PID/Bang-Bang approaches were developed and 37 

compared via simulations [10]. An open-loop investigation into the development of flight control systems 38 

that utilize the rotor blades of co-axial counter-rotating rotors has also been conducted using both numerical 39 

and experimental means, demonstrating the capability of moving OCTs approximately perpendicular to the 40 

flow [11]. It has also been demonstrated that yaw and roll moments caused by inhomogeneous flow 41 

conditions can be balanced by altering the pitch angles of OCT rotor blades [12]. 42 

In this article we use a numerical simulation model of a moored OCT, which utilizes a modeling approach 43 

based on [13]. This model includes a Blade Element Momentum (BEM) rotor model, as well as the effects 44 
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of waves, current shear, and turbulence in hydrodynamic calculations. Details on the updates made to model 45 

the 700 kW OCT with a 20 m diameter variable pitch rotor used here are presented in [14]. In [14] an open-46 

loop system analysis is also presented, whereas this article is devoted to feedback control studies. 47 

OVC control has been used in vehicles and structures [15-19], and recently introduced in OCTs [20]. The 48 

preliminary analysis in [20] is significantly expanded here by a thorough analysis of OVC control 49 

performance, including the effects of constraint limits, process noise, control penalty matrix, and 50 

measurements. The key proposed control system technology innovation is to use cyclic blade pitch angle 51 

variations in OCT output variance constrained flight control. Note that this is a conceptual study, aimed at 52 

illustrating the advantages of OVC control in OCT management. All sensors and actuators are considered 53 

ideal, their placement on the OCT is considered to have a negligible influence. 54 

Section II gives a description of the OCT. In Section III the linearization of the nonlinear OCT simulation 55 

model around a nominal operating condition is presented, as well as a stability analysis. In Section IV OVC 56 

control is revisited. Section V presents the application of OVC control to OCT and comprehensive 57 

evaluations. Conclusions are given in Section VI. 58 

II.  OCT SYSTEM DESCRIPTION  59 

A.  Nonlinear Ocean Current Turbine Model 60 

The 24.8 m long horizontal axis nearly neutrally buoyant OCT, with a 20 m diameter rotor and two 15.6 m 61 

long buoyancy compensation modules, designed by the Southeast National Marine Renewable Energy 62 

Center [14,21] to produce up to 700 kW is used here (Fig. 2). Rotor airfoils range from nearly cylindrical at 63 

the hub to a FX-83W airfoil with a thickness ratio of 21% at 20% of the rotor radius and FX-83W with a 64 

thickness ratio of 10.8% at the blade tip. The airfoils at these locations have maximum two-dimensional (2D) 65 

lift coefficients of 1.4 and 1.62 at angles of attack of 16° and 17° respectively (calculated using X-Foil). 66 

These coefficients are modified to account for 3D effects using the Du-Selig and Eggers corrections, 67 

resulting in maximum lift coefficients of 2.02 and 1.54 at angles of attack of 32° and 16.5° (calculated using 68 
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AirfoilPrep). This OCT is attached, via a cable, to a flounder plate connected to a mooring line that runs 69 

from a surface buoy to the sea floor [14,21]. 70 

 71 

Fig. 2  Artist rendering of the OCT with major components listed [13]. 72 

The rigid body dynamics of this turbine, including the effects of the cable, are considered in the nonlinear 73 

simulation. Modeling techniques used to represent rotor and cable forces are individually validated for other 74 

applications. The rotor modeling process [13] is theoretically similar to those utilized to create time domain 75 

simulations of wind turbines, such as the extensively validated and certified National Renewable Energy 76 

Laboratory’s AeroDyn aerodynamics module that is used for turbine design and analysis [22]. The rotor and 77 

blades are modeled as being rigid, and hydrodynamic forces are calculated using the Blade Element 78 

Momentum (BEM) approach [23]. This calculates the forces on individual blade sections using a blade 79 

element (BE) approach that accounts for the relative water velocity at each blade section. Calculated forces 80 

are then used to update the inflow velocity using a momentum (M) approach. A grid fixed to the swept area 81 

of the rotor is used to calculate these impeded flow values using a dynamic wake approach. Impeded flow 82 

values at each blade element are calculated for each time step from values on this grid at the adjacent radial 83 

grid points. The motion of rotor elements, freestream flow velocities, and calculated impeded flow values 84 

are then used to calculate the relative flow velocity and angle of attack of each blade element. Forces on 85 

blade elements are integrated along the blade length to obtain rotor hydrodynamic forces and moments. The 86 
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hydrodynamic models used to compute forces on non-rotor turbine components, as well as the cable model, 87 

are described in [13]. Hydrodynamic forces that act on the main body, two buoyancy compensation modules, 88 

and cable elements are calculated each time step. These forces, along with gravity, buoyancy, and elastic 89 

cable forces are used to compute OCT motion. The OCT’s degrees of freedom (DOF) values are calculated 90 

as described in [14]. 91 

A finite-element lumped mass cable modeling technique is used for the 607 m cable that attaches the ocean 92 

current turbine to the flounder plate, adding 3 DOFs per each cable node that is not attached to the turbine 93 

or flounder plate. This model was developed and validated for tethered Remotely Operated Vehicles [24] 94 

and has also been applied to towed sensor systems [25]. In the model each numerically modeled cable 95 

element is assumed to be linear and elastic, with the mass of the cable lumped at the nodes which connect 96 

these linear elements. Velocity and position for the end nodes are defined by the position, velocity, 97 

orientation, and angular velocity of the OCT at one end and the position of the flounder plate at the other. 98 

All intermediate nodes are initially allowed to settle to their equilibrium locations, based on the initial states 99 

of the OCT and flounder plate, before each numerical simulation is run. Linear accelerations for each 100 

intermediate node are found using the sum of forces calculated on neighboring cable elements (F) and the 101 

mass of each element (m) according to mFanode  . These accelerations are numerically integrated to 102 

calculate the velocities of the nodes and again to calculate node positions. Forces from gravity, buoyancy, 103 

hydrodynamic drag, and internal strain (in tension, not compression) are included in this model. The cable 104 

characteristics are set to match that of a 0.085 m diameter wire rope, with a total mass of 19,250 kg and a 105 

total buoyancy force of 32 kN. Sensitivity analyses showed that increasing the number of cable elements 106 

beyond 5-8 only minimally impacts the OCT performance [26]. Thus, 5 cable elements are used for nonlinear 107 

simulations. 108 

B.  Individual Blade Pitch Control (IBC) 109 

For OCT control IBC is used. Standard IBC is realized using collective control, which simultaneously 110 

modifies all blade pitch angles by the same value, and cyclic controls which ensure that each blade pitch 111 
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angle varies harmonically with the azimuth (the angle made by the blade with a fixed direction in the rotor 112 

plane). In analogy with helicopter control [27], cyclic blade pitch angles are controlled using a swashplate 113 

(Fig. 3). IBC oscillates each blade’s root pitch angle about the collective pitch angle, γeq, corresponding to 114 

maximum power production. For three synchronously rotating blades the blade pitch root angles are:  115 
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where a  and b  are cyclic control inputs and α is the azimuth angle of the first blade. The electromechanical 117 

rotor torque is the third control input of the OCT. 118 

 119 

Fig. 3  Rotor blade control through a swashplate [28]. 120 

III.  LINEARIZED MODEL ANALYSIS 121 

A.  Linearized Model 122 

The states used in the linearized OCT model are deviations from the nominal values of translational and 123 

angular velocities of the OCT body in the OCT body fixed reference frame, u, v, w, p, q, r, rotor angular 124 

speed with respect to the OCT body, 𝜔, Cartesian coordinates of the location where the rotor axis coincides 125 

with the central plane of the rotor hub in the inertial frame, 𝑥, 𝑦, 𝑧, and Euler angles describing the orientation 126 

of the OCT body fixed reference frame with respect to the inertial reference frame,  ,, . The inertial 127 
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reference frame is a right-handed system defined such that its z-axis (vertical) points downwards, its x-axis 128 

is aligned with the mean flow direction and its y-axis (lateral) results from the right handed condition. The 129 

origin of the inertial frame is set to the location of the flounder plate. During nominal operation the x-axis 130 

points towards the right in Fig. 2. The body fixed frame is a right handed system attached to the OCT, defined 131 

such that its 𝑧𝑏-axis points from the top to bottom of the OCT and its 𝑥𝑏-axis is aligned with the rotor axis 132 

of rotation. The 𝑦𝑏-axis results from the right handed condition. Fig. 4 shows the inertial and turbine 133 

reference axes along with key dimensions. The OCT state and control vectors used in the linearized model 134 

are, therefore, 135 

 Tp zyxrqpwvux    and  Tembapu   , 136 

and the corresponding linearized model can be formally written as ppppp uBxAx    where δ denotes 137 

the difference between the state or control vectors and the equilibrium values about which the system is 138 

linearized. For notational simplicity, δ has been omitted from the linearized model in subsequent sections. 139 

To determine matrices Ap and Bp the nonlinear OCT model is linearized around a nominal condition for 140 

maximum power produced in steady axial flow. This condition is characterized by averaged flow velocity 141 

of 1.6 m/s. The resulting equilibrium control values are 𝑢𝐸𝑄 = [0° 0° −246.5 𝑘𝑁𝑚]𝑇 and the 142 

corresponding equilibrium states are 𝑥𝐸𝑄 =143 

[0 0 0 0 14.17 𝑅𝑃𝑀 0 0 −623.1𝑚 0.3𝑚 10.5𝑚 0.8° −2.7° 0.0°]𝑇. It is noted that 144 

in this model both the hydrodynamic and electromechanical torques are defined as positive when they 145 

produce a positive (with respect to the 𝑥𝑏-axis) moment on rotating components. Therefore, 146 

electromechanical torque values are negative when shaft power is converted into electricity. Note that the 147 

values of the states and controls corresponding to the nominal condition are referred to as nominal or 148 

equilibrium values. 149 

For linearization, all intermediate cable nodes are assumed in equilibrium. Quasi-static cable force 150 

dependencies on OCT position and attitude are determined by re-calculating equilibrium cable node states 151 
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and the resulting forces on the OCT during linearization each time the OCT position or attitude states are 152 

varied [28]. Dependencies of cable forces on the OCT velocity states are accounted for during linearization 153 

by allowing velocity perturbations to alter cable node position and velocity equilibrium states. This allows 154 

the effects of changes in all OCT states to be incorporated into the linear model, without directly accounting 155 

for the individual cable node states. Utilizing this approach, the matrices of the linearized model 156 

corresponding to the 𝑥𝐸𝑄 and 𝑢𝐸𝑄 values presented in the previous paragraph are found. These matrices are 157 

presented in the following tables: 158 

Matrix Ap 159 

 160 

 161 

Matrix Bp 162 

 163 

 164 

  165 

-3.13E-01 -7.90E-02 -6.00E-03 -2.18E-01 -2.21E-01 -3.66E-01 1.83E-01 -5.80E-02 8.51E-05 -3.00E-03 -1.03E-02 -1.17E+00 -2.95E-03

3.11E-03 -1.56E-01 6.02E-01 1.75E-01 -6.70E-04 1.58E+00 1.90E+00 -3.90E-05 1.06E-03 1.17E-05 1.15E+00 -7.13E-02 9.40E-01

-6.73E-02 -4.60E-01 -1.94E-01 -5.65E-02 -5.75E-02 -8.34E-01 1.17E+00 -1.78E-02 1.50E-05 -4.60E-04 -2.30E-03 -3.77E+00 -4.99E-02

9.50E-05 -4.73E-02 -8.41E-03 -6.59E-01 -6.97E-05 -3.02E-02 -3.79E-01 0.00E+00 2.30E-04 2.54E-06 -1.46E+00 -5.17E-03 2.22E-01

5.46E-01 -7.25E-06 -8.09E-05 -2.57E-01 -2.56E-01 -2.66E-02 -3.85E-03 1.79E-11 0.00E+00 0.00E+00 -4.71E-01 2.80E-02 -2.62E-04

-1.17E-02 -4.35E-02 -4.61E-03 -8.80E-03 -8.96E-03 -2.42E-01 1.04E-01 -2.58E-03 -1.10E-06 6.89E-05 -5.88E-05 -6.32E-01 -7.56E-03

-4.19E-04 1.22E-02 -6.35E-02 2.13E-02 1.58E-04 -1.58E-01 -3.07E-01 1.33E-05 -3.63E-04 -4.00E-06 2.38E-01 1.21E-02 -2.52E-01

9.99E-01 -1.05E-03 -4.62E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

4.30E-04 1.00E+00 -1.35E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

4.62E-02 1.34E-02 9.99E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 -6.22E-04 -4.63E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00 -1.34E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.34E-02 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

-2.94E-01 -3.57E-02 -2.38E-15

-1.38E-01 1.49E+00 7.77E-08

-1.05E+00 -1.10E-01 -9.71E-15

1.41E-03 6.47E-02 -7.83E-08

-2.29E-02 -2.61E-03 1.85E-06

-1.63E-01 -1.12E-02 -9.62E-16

1.51E-02 -2.51E-01 1.01E-08

0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00

0.00E+00 0.00E+00 0.00E+00
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 166 
Fig. 4 OCT key dimensions and reference frames 167 

For similarity and non-dimensionalization purposes, OCT models are normalized by dividing angular 168 

velocities by the nominal rotor angular rate (14.17 RPM), lengths by the rotor blade length (10 m), 169 

translational velocities by the tip blade velocity (14.84 m/s), and linear accelerations by the tip blade 170 

acceleration (22.01 m/s2). The turbine mass is 4.98x105 kg, rotor mass is 6.16x104 kg, and its longitudinal 171 

moment of inertia is 5.39x105 kg·m2. 172 

B.  Stability Analysis 173 

The eigenvalues of the linearized model’s state matrix are: 174 

 

0.2737 1.1842 , 0.1242 0.1751 ,

0.2372 0.9944 , 0.0012 0.0016 ,

0.2344 0.3942 , 0.0656.

0.1599 0.4446 ,

i i

i i

i

i

   

   

  

 

 (2) 175 

Eigenvector analysis showed that the dominant motions corresponding to the lightly damped eigenvalues, 176 

-0.0656, -0.0012 ± 0.0016i, affect the OCT coordinates (see Table 1 which provides eigenvectors 177 

corresponding to -0.0656 and -0.0012 + 0.0016 i, with the phase given in degrees). Thus, perturbations in 178 

𝜔 

𝑥𝑏 𝑧𝑏 
𝑦𝑏 

x

N 
y 

z 

15.6 m 

24.8 m 
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the OCT position will be eliminated in a very long time, i.e. the OCT will return to the unperturbed nominal 179 

operating condition very slowly.  However, OCTs must restore their position to the unperturbed nominal 180 

operating condition in relatively short time scales to avoid interference with shipping traffic or neighboring 181 

OCTs when deployed in arrays. Also, for optimal energy harvesting OCTs must operate close to the water 182 

surface (Fig. 1). Therefore, OCT feedback control is needed in order to contain the state vector within a 183 

sufficiently small neighborhood of the nominal condition as well as guarantee speedy disturbance rejection 184 

and error mitigation. 185 

TABLE I: Eigenvector Analysis of the Linear OCT Model 186 

Eigenmodes -0.0656 -0.0012 + 0.0016i 

States Magnitude  Phase  Magnitude  Phase  

1 u 2.14E-02 180 1.31E-05 -41 

2 v 2.63E-03 180 1.64E-03 55 

3 w 8.99E-04 180 1.12E-03 133 

4 p 
 

9.47E-06 180 3.32E-07 -159 

5  6.18E-02 180 1.59E-04 141 

6 q 8.63E-06 180 6.10E-07 126 

7 r 1.34E-05 180 2.99E-06 -134 

8 x 3.26E-01 0 3.28E-02 78 

9 y 4.00E-02 0 8.21E-01 -180 

10 z 2.94E-02 0 5.65E-01 -102 

11  1.35E-04 0 1.08E-04 -49 

12  1.29E-04 0 3.10E-04 -112 

13  2.06E-04 0 1.50E-03 -8 
 187 

To verify the linearization process, we performed extensive comparisons between OCT nonlinear and 188 

linear model responses. For example, Figs. 5-7 show responses to torque and cyclic blade pitch angle control 189 

input steps. Note that in these Figures deviations from nominal values are depicted (e.g., em  is the deviation 190 

of the electromechanical torque from its nominal value of −246.5 𝑘𝑁𝑚, etc.). The position states predicted 191 

by the linear and nonlinear models are in good agreement, with the greatest error occurring in the cross-192 

stream direction, 𝛿𝑌, where the linear model calculated a displacement of 26.6 m compared to 22.7 m for 193 

the nonlinear model 30 minutes after a step increase of  2° was made to 𝛾𝑏. Small disagreement is observed 194 

in the rotor speed response to the cyclic blade pitch angle control input, with the linear model predicting a 195 

 
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rotor rotational velocity that was greater than the nonlinear model by 0.23 RPM for 𝛾𝑎 = 2° and 0.59 RPM 196 

for 𝛾𝑏 = 2°. This discrepancy is due to the fact that the linear model does not capture the relationship between 197 

flow misalignment and hydrodynamic rotor torque. This relationship is not captured because the linearization 198 

was carried out about equilibrium pitch/yaw angles where the rotor is nearly aligned with the flow, which is 199 

at the peak of a symmetric relationship between pitch/yaw and hydrodynamic rotor torque. 200 

 201 

Fig. 5  OCT response to 20kN step torque input increase in the direction of rotor rotation 202 

 203 

Fig. 6  OCT response to 2° step increase in the cyclic blade pitch angle control input 𝛾𝑎  204 
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 205 

 206 

Fig. 7  OCT response to 2° step increase in the cyclic blade pitch angle control input 𝛾𝑏   207 

IV.  OUTPUT VARIANCE CONSTRAINED CONTROL  208 

One of the typical objectives in control design is minimization of control energy. In addition, realistic 209 

control design must take into account constraints (e.g., on the controls, outputs, or other variables). In this 210 

article, we employ a modern control technique which minimizes control energy and guarantees that output 211 

variations remain confined to a neighborhood of zero by requiring that the output variances are upper 212 

bounded. These objectives are consistent with the overall goal of maximizing the energy generated by the 213 

OCT because the energy required to operate the control system (i.e. the control energy) will be on the expense 214 

of the energy harvested. Also, in simple terms, the variance measures how far some random numbers are 215 

spread out from their average value. Therefore, a small variance indicates less variability around the mean 216 

value of the variable, which is a desired feature. By requiring that the control system ensures satisfaction of 217 

stringent upper bound constraints on output variances, these will have small values, which is consistent both 218 

with the linearization assumption and with the overall goal of the control system to regulate around a nominal 219 
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operation condition and keep variations small. This technique, called output variance constrained (OVC) 220 

control, is described next.  221 

Consider the generic (linear time invariant) LTI system  222 

 ppppppp wDuBxAx  , ppp xCy  , pppp vxMz   (3) 223 

and a strictly proper output feedback controller  224 

 pccc FzxAx  , cp Gxu   (4) 225 

where xp, xc, yp, zp,, up are plant state, controller state, output, measurement, control vectors, while wp, vp are 226 

zero-mean uncorrelated Gaussian white noises with intensities Wp and Vp, respectively. The closed-loop 227 

system, obtained by combining the open loop system (3) with the controller in (4), is 228 

 clclclclclclclcl xCywDxAx  ,   (5) 229 

Here TT

c

T

pcl xxx ][ , TT

p

T

pcl uyy ][ ,  TT

p

T

pcl vww ][ , and the closed loop matrices are 230 


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pp
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GBA
A ,  
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D

p

cl
0

0
,  










u

y

cl
C

C
C ,  0py CC  ,  GCu 0 .        (6) 231 

Physically, the closed loop system is obtained by feeding the sensor measurements (i.e. the elements of zp) 232 

into the control computation block which generates the control input vector, up, applied to the system.  233 

The first goal of any feedback controller is to ensure that Acl is exponentially stable (i.e. it has eigenvalues 234 

with strictly negative real parts). Then the closed-loop covariance, Xcl, satisfies the following Lyapunov 235 

equation, 0 T

clcl

T

clclclcl WDDAXXA , where  pp VWdiagW  . The control energy is defined as 236 

p

T

p RuuEJ   where EE
t 

  lim  with E  the expectation operator and can be easily computed as 237 

 T

uclu CXRCtrJ   where “tr” is the trace operator. Also the output variances, defined as 
2

pii yEY  ,  i =1 238 

,…, ny, are the diagonal elements of the matrix 
T

ycly CXCY  .  239 

The OVC control design problem consists in finding a feedback dynamic controller defined by Eq. (4) (i.e. 240 
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finding matrices Ac, F, G) which minimizes the control energy subject to output variance constraints [29-241 

30]. Mathematically the problem is formulated as 242 

 p
T
p

,F,GA
RuuE

c

min  subject to 
yipi niYyE ,...1,

2


 (7) 243 

where R>0 is the control penalty matrix and iY are user prescribed upper bounds on the output variances.  244 

The control penalty matrix enables different weightings on individual controls. For example, if R is 245 

diagonal, like in the examples included in this article, the maximum diagonal element of R will enforce a 246 

smaller variation of the corresponding control input. The utility of R will be clear in the examples section 247 

where it will enable studies on blade stall likelihood.  248 

OVC control problem solution reduces to linear quadratic Gaussian (LQG) control design by choosing the 249 

output penalty 0Q   in LQG control, function of the output variances upper bounds in (7), iY . An algorithm 250 

for Q selection is presented in Refs. [29,30] and used here. Then the OVC control matrices are251 

pppc FMGBAA  , KBRG T
p

1 , 1~  p

T

pVMXF  where K and X
~

 are obtained from two Riccati equations (see 252 

[29] for detailed proofs): 253 

01  

p

T

p

T

ppp

T

p QCCKBRKBKAKA , 0
~~~~ 1   T

ppppp

T

p

T

pp DWDXMVMXAXXA . (8) 254 

A major advantage for practical implementation and real-time operation of this dynamic feedback 255 

controller is that all controller parameters (i.e. matrices Ac, Bc, G) are computed off-line. Therefore, real-256 

time control using the controller presented in this work is feasible. Note also that a Kalman filter, which 257 

enables optimal estimation of the states, is an intrinsic part of the controller used here. Specifically, xc 258 

is the vector of state estimates obtained using the sensor measurements (i.e. the elements of zp). The 259 

second Riccati equation in Eq. (8) provides X
~

 which is used to compute the Kalman filter gain F as 260 

discussed before, for use in Eq. (4). 261 

The OVC control problem does not have solutions if the limits in (7), iY , are too small [19]. The minimum 262 

limits that are theoretically achievable are computed using [30]: 263 
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yii

T

ppi niCXCY ,...,1,]
~

[
min

                        (9) 264 

Therefore, before implementation of the OVC algorithm these bounds should be computed and the upper 265 

bounds on the output variances iY  must be selected such that yii niYY ,...,1,
min

 .   266 

Note that the OCT return speed to the nominal position cannot be directly specified in OVC control 267 

however if the upper bounds iY  in (7) are small, the OCT return speed will be small.  268 

  269 

V.  APPLICATION OF OVC CONTROL TO OCT 270 

In OCT control design, measurements are deviations from nominal values of translational and angular 271 

velocities, Euler angles, OCT Cartesian coordinates, and rotor angular speed. Controls, or inputs, are 272 

deviations from the nominal values of the electromechanical torque and cyclic blade pitch angle inputs. 273 

Outputs are deviations from the nominal values of the rotor angular speed and of the lateral and vertical 274 

inertial OCT coordinates. These coordinates were selected as outputs because they are critical for safe and 275 

optimal OCT operation (Fig. 1) and are affected by lightly damped eigenvalues (Table I). Zero-mean 276 

uncorrelated Gaussian white noises, wp and vp, are used in (3), with Dp = I, where I is the identity matrix, 277 

and matrices Ap, Bp derived as described in section III.A, with standard linear controllability tests showed 278 

that the system is controllable. Note also that the normalized OCT linear system is used for control design. 279 

A.  Influence of the OVC Limits on Control Energy 280 

Using 
minii YaY  in (7) with a >1 enables a parametric study on the influence of the OVC limits on control 281 

performance. OVC control design was performed for various values of the scaling factor a. For W = 2x10-6I 282 

the results are shown in Fig. 8. When a approaches 1 the control energy increases rapidly because the 283 

theoretical limits (9) are approached. Thus, a trade-off must be made between the OVC limits to be satisfied 284 

and the control energy necessary to do so. For further studies, a = 5 was selected. Note that the data reported 285 

next refers to the linear system.  286 
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 287 

Fig. 8.  Control energy variation with the scaling factor a 288 

B.  Influence of the Process Noise Intensity on Blade Pitch  289 

Satisfaction of constraints in (7) under high process noise intensity values may require large blade pitch 290 

angles, leading to blade stall. Here we assume that if blade pitch angles vary between ±10°, stall is avoided. 291 

This assumption was selected based on the hydrofoils having a stall point near 17° and nominal angles of 292 

attack near 3° for most radial locations, thus a 14° separation.  293 

Fig. 9 presents results of a study on process noise intensity effects on blade pitch angles. OVC controllers 294 

were designed for a = 5, R = I, and parameterized normalized process noise intensity 
pW = aw I, with aw a 295 

scalar. Fig. 9 shows that the minimum, min , and maximum, max , blade pitch angles are between ±10° if 
pW296 

<1.44x10-6I and that min  and max decrease, respectively increase, rapidly with aw. Since process noise 297 

intensity is a measure of modeling errors, these results reveal the need for an accurate OCT model. Also, 298 

maximum deviations of the closed loop OCT coordinates of interest and rotor angular speed are significantly 299 

reduced with respect to the open loop ones. Note that the normalized noise intensity is small. However, 300 

normalization involves division of physical quantities by large numbers (see the discussion on normalization 301 

in III. A.). Thus, noise intensities in the physical space are larger and have realistic ranges. 302 
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 303 

Fig. 9  Minimum and maximum blade pitch angles, maximum position and rotor angular speed deviation variations with process 304 

noise intensity (w/o OVC means without OVC control and w/ OVC means with OVC control). 305 

C.  Influence of the Control Penalty Matrix on Blade Pitch 306 

For a given control penalty matrix, R, OVC control design, if successful, delivers an output penalty matrix 307 

Q. However, R must be defined before OVC control design is performed. To evaluate the influence of R on 308 

OVC control we performed a parametric study as follows. Define R as  1Diag R . Because the first 309 

two components of the control vector are the cyclic blade pitch angle control inputs, this structure of R 310 

ensures that λ is directly related to these controls. Thus, λ has direct influence on blade pitch angles, so by 311 

choosing this parameter blade stall can be avoided.  312 

OVC controllers were designed for a = 5, W  = 1.4x10-6I, and various λ values. The minimum and maximum 313 

blade pitch angle variations with λ (Fig. 10) show that for λ > 0.25 the ±10° limits on the blade pitch angles 314 

are satisfied. This behavior is expected because larger λ results in smaller blade pitch angle control inputs. 315 

Note that the minimum and maximum blade pitch angle variations with λ are less pronounced compared to 316 

the variations with respect to aw (see Figs. 8 and 9). This suggests that modeling errors, quantified by process 317 

noise intensity, are more influential on blade stall than the control penalty matrix in OVC control design. 318 
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 319 

Fig. 10 Variation of the minimum and maximum blade pitch angles with λ 320 

D.  System Response to External Disturbances 321 

To further evaluate closed-loop system performance, various external disturbances were applied. Fig. 11 322 

shows open and closed loop system responses to lateral (y) and vertical (z) disturbances of 5 m. The OVC 323 

controller, designed for a = 5,  λ = 0.25, W  = 1.4x10-6I, restores the OCT to its original position in about 10 324 

minutes, while in open loop configuration it takes 1.67 hours for the disturbed position to converge within 325 

about 1m of the original, unperturbed position. The closed-loop rotor angular speed variation is very small, 326 

with a maximum of about 0.55 RPM. The closed-loop control variations are also small: the maximum for 327 

a  is less than 4°, for b  about 1°, while the maximum torque deviation is 11%. Fig. 12 depicts open- and 328 

closed-loop system responses to white noise disturbances of the same intensities as the ones used in OVC 329 

control design. Improvement when feedback control is used is evident.  330 

Fig. 13, the counterpart of Fig. 12 obtained for an OVC controller designed for a = 3, shows that blade 331 

pitch angle control input variations are larger than for a = 5. This reveals that more stringent OVC constraints 332 

increase stall danger. 333 
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 334 

Fig. 11 System responses to initial condition perturbation (solid lines: closed loop, dash lines: open loop, red dots: nominal) for 335 

a = 5 336 

 337 

Fig. 12 System responses to white noise disturbances (solid lines: closed loop, dash lines: open loop, red dots: nominal) for  338 

 a = 5 339 
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Fig. 13 System responses to white noise disturbances (solid lines: closed loop, dash lines: open loop, red dots: nominal 341 

condition) for a = 3 342 

Figs. 14-15 show a comparison between linear and nonlinear closed-loop system responses when the same 343 

OVC controller is used. The OCT is disturbed by 5 m laterally and 2 m vertically from the nominal operating 344 

condition. Nonlinear simulations show that the controller restores the OCT to its initial position within about 345 

600 seconds, while linear simulations show that the controller restores the OCT to its initial position in about 346 

500 seconds. This discrepancy can be explained by the fact that the mooring cable dynamics was neglected 347 

in the linear model. The cable is very flexible and has a destabilizing effect which is accounted for in the 348 

nonlinear OCT model. Fig. 15 shows that nonlinear and linear closed loop system responses are close.  349 

 350 

Fig. 14 Nonlinear and linear closed loop system output responses 351 

 352 

Fig. 15 Nonlinear and linear closed loop system control responses  353 
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E.  Robustness Analysis  354 

For an evaluation of OVC control robustness, the controller designed for the nominal condition and for a 355 

= 5, λ = 0.25, W  = 1.4x10-6I, was implemented on perturbed plants. These were generated using 356 

pA
perturbed
p AMA  , pB

perturbed
p BMB  , where MA and MB are matrices of pseudo-random values drawn from the 357 

standard uniform distribution in the interval (-1.05; 1.05). In addition, elements in pA  and pB  that are known 358 

from the mathematical construction of the linear model to be unaffected by uncertainties were not modified 359 

(e.g., certain 0 and 1 values). Fig. 16 shows the standard deviations of the perturbations (abbreviated as 360 

STDV) from equilibrium values of the rotor angular speed, lateral and vertical OCT coordinates in response 361 

to white noise disturbances of the same intensities as the ones used in OVC control system design for 200 362 

test cases. It can be ascertained that the nominal design is sufficiently robust (similar results were obtained 363 

for pseudo-random values in MA and MB drawn from intervals as large as (-1.1; 1.1)). Moreover, since the 364 

perturbations considered are not tied to specific OCT parameters (e.g. mass, rotor diameter) or nominal 365 

operating condition (e.g. axial flow velocity, nominal angular speed), the results suggest that the controller 366 

is robust even with respect to more specific perturbations.  367 

 368 

Fig. 16 Robustness results for the closed loop system. 369 
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F.  OVC Control without Position Sensors   370 

In the previous analyses the ideal situation was considered, when all OCT states used in the linear model 371 

are measured. In reality, OCT Cartesian coordinates are difficult to measure due to the lack of GPS signal in 372 

deep water. An inertial navigation system (INS) can be a substitute for the GPS, using inertial sensors and a 373 

Kalman observer to estimate the OCT position. However, the INS may result in large errors because of large 374 

uncertainties associated with OCT drift, ocean currents, etc. Transponders on the seabed, in combination 375 

with the INS, may increase the accuracy of the positioning system. However, large errors may persist.  376 

Thus, in the following the OVC control system is designed assuming that position sensor measurements 377 

are missing. Ten measurements are assumed available, i.e. deviations from nominal values of translational 378 

and angular velocities, Euler angles, and rotor angular speed. The OVC control system is designed using 379 

these measurements and a = 5, W  = 1.4x10-6I, λ = 0.25. For evaluation two scenarios are considered: 1) The 380 

OCT is initially disturbed by 5 m laterally and 5 m vertically with respect to the nominal operating condition. 381 

2) The OCT is persistently disturbed by white noise disturbances of the same intensities as the ones used in 382 

OVC control design.  383 

Fig. 17 shows a comparison between responses of the linear closed loop systems without position sensors 384 

(solid lines) and with all sensors working (dotted lines) when these systems are subjected to an initial 385 

perturbation in position (scenario 1). Figs. 18-19 show a comparison between the responses of the same 386 

systems when they are subjected to white noise disturbances (scenario 2). It can be seen that elimination of 387 

position sensor measurements has negligible effect on closed loop system performance. For example, in Fig. 388 

18 the rotor blades experience very similar, small variations of the blade pitch angle control inputs, for both 389 

closed loop systems. The maximum variation of the electromechanical torque is only about 18% of the trim 390 

value. The rotor angular speed variation is also very small, with a maximum deviation of about 0.5 RPM. 391 

Also note that negligible degradation of the closed loop system’s response for the OCT Cartesian coordinates 392 

is observed when position sensor measurements are missing. Similar remarks apply when responses to white 393 

noise disturbances are compared. Fig. 19 shows that the OCT Euler angle variations around their nominal 394 
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values are small. The closed-loop system without position sensors achieves good performance because it 395 

uses information from rate gyros and translational velocity sensors to estimate OCT’s position.  396 

 397 

Fig. 17 System responses to initial condition perturbation (solid lines: without position sensors, dotted lines: with all sensors) 398 

 399 

Fig. 18 System responses to white noise disturbances (solid lines: without position sensors, dotted lines: with all sensors) 400 

 401 

Fig. 19 Time histories of Euler angle deviations from nominal values (solid lines: without position sensors, dotted lines: with all 402 

sensors)  403 
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G.  OVC Control without Position and Velocity Sensors 404 

The OVC control system is also redesigned when position and translational velocity sensor measurements 405 

are missing. For control design seven measurements (deviations from nominal values of angular velocities, 406 

Euler angles, and rotor angular speed) and a = 5, W  = 1.4x10-6I, λ = 0.25, are used. 407 

To illustrate the effect on the OVC control performance, Figs. 20-21 show responses of the linear closed 408 

loop systems without position and translational velocity sensors (solid lines) and with all sensors working 409 

(dotted lines) to white noise disturbances with the same intensities as those used in the OVC control design. 410 

Fig. 20 shows that the maximum deviations of the OCT coordinates are significantly larger than those in the 411 

nominal case: both y and z reach values of almost 9.5 m, whereas for the case with all sensors working their 412 

maximum values are about 6.7 m. Also, the OVC controller employs 18% more torque and larger blade pitch 413 

angle control inputs (almost up to 10°) when the system does not use position and translational velocity 414 

measurements. Time histories of the Euler angle deviations from their nominal values suggest that these 415 

states are not affected significantly by elimination of position and velocity measurements. This is expected 416 

because Euler angles are available as measurements. 417 

 418 

Fig. 20 System responses to white noise disturbances (solid lines: without position and velocity sensors, dotted lines: with all 419 

sensors) 420 
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 421 

Fig. 21 Time histories of Euler angle deviations from nominal values (solid lines: without position sensors, dotted lines: with all 422 

sensors)  423 

VI.  CONCLUSIONS 424 

A linearized model for a moored OCT was developed from a detailed nonlinear simulation model. Linear 425 

stability analysis revealed the existence of three very lightly damped modes. The corresponding slowly 426 

decaying open-loop behavior was found to primarily impact OCT position. This is detrimental to the safe 427 

and optimal operation of the OCT, which must operate in confined regions to avoid shipping traffic, yet close 428 

to the ocean surface to generate maximum power. Feedback control is therefore necessary to ensure 429 

sufficiently fast return to the nominal operating condition. 430 

To improve OCT control system capabilities, a key control system technology innovation, inspired by 431 

helicopter technology, was introduced in the form of cyclic blade pitch angle control. This results in two 432 

control inputs, in addition to the standard electromagnetic torque applied to the rotor, which increase the 433 

authority of the OCT control system. OVC control designed with these three control inputs was found 434 

adequate to minimize control energy subject to variance constraints on deviations from the nominal values 435 

of lateral and vertical OCT inertial coordinates and rotor angular speed. Importantly, rapid return of the OCT 436 

to the unperturbed nominal operating condition was achieved using OVC control.  437 

A parametric study with respect to the variance constraint limits revealed that control energy decreases 438 

rapidly when these limits depart from the minimum theoretically achievable bounds. This is important 439 

because practical OVC limits can be satisfied with relatively small control energy consumption. Also, small 440 

control energy corresponds to small control variations, which result in small blade pitch angles. This implies 441 

that effective control of OCT using OVC control systems with electromagnetic rotor torque and cyclic blade 442 

pitch angle control inputs can be achieved, avoiding the danger of blade stall. 443 
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Investigation into the effects of modeling errors, quantified by the process noise intensity, on the OVC 444 

control performance revealed that the likelihood of blade stall increases rapidly when process noise intensity 445 

increases. This observation emphasizes the need for accurate OCT control models. Another parametric study, 446 

for the influence of the control penalty matrix used in OVC control design, indicated that the blade pitch 447 

angle variations are relatively mild. By choosing a large control penalty matrix the danger of stall is 448 

alleviated.  449 

Comparisons between linear and nonlinear simulations indicated that the current OCT linear model is 450 

sufficiently reliable for control design. Eventual discrepancies between nonlinear and linear closed loop 451 

responses were traced back to the cable dynamics which is taken into account in the nonlinear model but 452 

ignored in the linear model. 453 

Our analysis indicated that when position sensor measurements are not available, the degradation in OVC 454 

control performance is negligible. It should be noted that this might be true in the short term, since we can 455 

estimate position from other measurements. However, maintaining position without direct position 456 

measurements for extended periods of time on an actual system is unlikely. Lastly, when both position and 457 

linear velocity sensor measurements are missing, this degradation may no longer be ignored.  458 
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VIII.  APPENDIX 462 

The nonlinear numerical simulation utilized in the paper was originally published in [13], with the 463 

associated algorithms summarized in this Appendix. Note that notations used next are inherent to this 464 

Appendix and should not be confused with notations used in the main body of the article. Likewise, equation 465 

numbering is intrinsic to this Appendix. 466 
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A.  Kinematics 467 

The five types of coordinate systems used in this analysis are the earth fixed coordinate system, ℑ𝐸, the 468 

body fixed coordinate system, ℑ𝐵, momentum mesh coordinate systems, ℑ𝑀
𝑖𝑘, where (•)𝑖 indicates the 469 

referenced blade element radial location on mesh azimuth angle grid point (•)𝑘, the shaft coordinate system, 470 

ℑ𝑆, and rotor blade coordinate systems, ℑ𝑅
𝑖𝑗

, where (•)𝑖 indicates the referenced blade element on rotor blade 471 

(•)𝑗. The origin of ℑ𝐸 is located at mean sea level directly above the mooring connection assembly; with the 472 

𝑋-axis pointing North, the 𝑍-axis pointing downward, and the 𝑌-axis pointing East to complete the right-473 

hand rule. The origin of ℑ𝐵 is fixed to the main body of the turbine and located at the center of the rotor shaft 474 

just behind the main pressure vessel; with the 𝑥-axis co-axial with the rotor shaft pointing from tail to nose, 475 

the 𝑧-axis points towards the bottom of the turbine, and the 𝑦-axis is aligned to complete the right-hand rule. 476 

The origin of each ℑ𝑀
𝑖𝑗

 is attached at the corresponding discrete mesh node that is fixed with respect to ℑ𝐵 477 

and utilize a polar co-ordinate system centered about the rotor shaft and covering the swept area of the rotor 478 

blade. For this coordinate system the axial direction, (•)𝐴
𝑖𝑘, is parallel to the 𝑥-axis, the tangential direction, 479 

(•)𝑇
𝑖𝑘, points in the rotor rotation direction, and the radial direction, (•)𝑅

𝑖𝑘, points radially outward from the 480 

center of the rotor. The origin of the ℑ𝑆 coordinate system is fixed to the shaft at the center of the hub and 481 

rotates with the rotor. This coordinate system has its 𝑥𝑠-axis co-axial with the 𝑥-axis, the 𝑧𝑠-axis 482 

perpendicular to the rotor shaft and parallel to rotor blade 1, and the 𝑦𝑠-axis is aligned to complete the right-483 

hand rule. The origin of each ℑ𝑅
𝑖𝑗

 is fixed to the quarter cord line of each of the discrete rotor blade sections; 484 

with the axial direction, (•)𝐴
𝑖𝑗

, parallel to the 𝑥-axis, the tangential direction, (•)𝑇
𝑖𝑗

, in the rotor rotation 485 

direction, and the radial direction, (•)𝑅
𝑖𝑗

, pointing radially outward from the from the center of the rotor.  486 

The relationship between ℑ𝐵 and ℑ𝐸 is defined using the Euler angles, which define the attitude of ℑ𝐵 487 

using three successive rotations about the yaw angle 𝜓, the pitch angle 𝜃, and then the roll angle 𝜑. The 488 

transformation matrix from ℑ𝐸 to ℑ𝐵 is defined as 𝐿𝐸𝐵. 489 
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Calculations in each ℑ𝑀
𝑖𝑘 consider the axial, radial, and tangential directions at a momentum mesh grid 490 

location that is fixed with respect to ℑ𝐵. The constant transformation matrices from ℑ𝐵 to ℑ𝑀
𝑖𝑘 are defined 491 

by 𝐿𝐵𝑀
𝑘 . 492 

The transformation matrix from ℑ𝐵 to ℑ𝑆 is defined using the rotation angle 𝛿 of the rotor blade with 493 

respect to the turbine and denoted as 𝐿𝐵𝑆. 494 

The transformation matrices from ℑ𝑆 to ℑ𝑅
𝑖𝑗

 are defined using the angle 𝜍𝑗 between the reference rotor 495 

blade (rotor blade 1) and the rotor blade of interest. Calculations in ℑ𝑅
𝑖𝑗

 consider the axial, radial, and 496 

tangential directions and this transformation matrix is denoted as 𝐿𝑆𝑅
𝑗

. The utilized transformation 497 

matrices are all orthonormal and therefore the inverse of these transformation matrices is equal to their 498 

transpose. 499 

B.  Equations of motion 500 

The equations of motion used in this simulation are derived from the 6-DOF rigid body equations of motion 501 

suggested by [31]. These six equations are first applied separately to both the rotor section and main body, 502 

with the forces and moments from the shaft applied to each system with the same magnitude but in opposite 503 

directions. These forces and moments are applied at the origin of ℑ𝐵. As the motions of these systems are 504 

the same at the origin of ℑ𝐵, except for the rotation about the 𝑥-axis, these 12 equations are reduced to 7 505 

equations with 7 unknowns. These equations are then reduced to 7-DOF equations of motion by combining 506 

like terms and assuming symmetry for the main body about the 𝑥𝑧-plane and symmetry of the inertial 507 

properties of the rotor about both the 𝑥𝑧-plane and 𝑥𝑦-plane. These equations of motion can be used to find 508 

the angular acceleration of the rotor directly using the system’s states and inertial properties, 509 

 𝑝̇𝑟 = [𝑀𝑥𝑟
− 𝑀𝑥𝑠

− 𝑞 𝑟(𝐼𝑧𝑟
𝑣 − 𝐼𝑦𝑟

𝑣 )]/𝐼𝑥𝑟
𝑣 . (A1) 510 

The other six equations are coupled and therefore acceleration can be solved for by 511 
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[
 
 
 
 
 
𝑢̇
𝑣̇
𝑤̇
𝑝̇𝑏

𝑞̇
𝑟̇ ]

 
 
 
 
 

= 𝑀−1𝐶  (A2) 512 

where 513 

𝑀 =

[
 
 
 
 
 
 

𝑚𝑣 0 0 0 𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣 0

0 𝑚𝑣 0 −𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣 0 𝑚𝑣 𝑥𝐺
𝑣

0 0 𝑚𝑣 0 −𝑚𝑣 𝑥𝐺
𝑣 0

0 −𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣 0 𝐼𝑥𝑏
𝑣 0 −𝐼𝑥𝑧𝑏

𝑣

𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣 0 −𝑚𝑣 𝑥𝐺
𝑣 0 𝐼𝑦

𝑣 0

0 𝑚𝑣 𝑥𝐺
𝑣 0 −𝐼𝑥𝑧𝑏

𝑣 0 𝐼𝑧
𝑣

]
 
 
 
 
 
 

 514 

𝐶 =

[
 
 
 
 
 
 
 

𝑓𝑥 + 𝑚𝑣(𝑣 𝑟 − 𝑤 𝑞) + 𝑚𝑣 𝑥𝐺
𝑣(𝑞2 + 𝑟2) − 𝑚𝑏

𝑣 𝑧𝐺𝑏

𝑣  𝑝𝑏 𝑟

𝑓𝑦 − 𝑚𝑣 𝑢 𝑟 + 𝑤(𝑚𝑏
𝑣 𝑝𝑏 + 𝑚𝑟

𝑣 𝑝𝑟) − 𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣  𝑞 𝑟 − 𝑚𝑏
𝑣 𝑥𝐺𝑏

𝑣  𝑞 𝑝𝑏 − 𝑚𝑟
𝑣 𝑥𝐺𝑟

𝑣  𝑞 𝑝𝑟

𝑓𝑧 + 𝑚𝑣 𝑢 𝑞 − 𝑣(𝑚𝑏
𝑣 𝑝𝑏 + 𝑚𝑟

𝑣 𝑝𝑟) + 𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣 (𝑝𝑏
2 + 𝑞2) − 𝑚𝑏

𝑣 𝑥𝐺𝑏

𝑣  𝑟 𝑝𝑏 − 𝑚𝑟
𝑣 𝑥𝐺𝑟

𝑣  𝑟 𝑝𝑟

𝑀𝑥𝑏
+ 𝑀𝑥𝑠

− 𝑞 𝑟(𝐼𝑧𝑏
𝑣 − 𝐼𝑦𝑏

𝑣 ) + 𝐼𝑥𝑧𝑏
𝑣  𝑝𝑏 𝑞 − 𝑚𝑏

𝑣 𝑧𝐺𝑏

𝑣 (𝑤𝑝𝑏 − 𝑢 𝑟)

𝑀𝑦 − 𝑟 𝑝𝑏(𝐼𝑥𝑏
𝑣 − 𝐼𝑧𝑏

𝑣 ) − 𝑟 𝑝𝑟(𝐼𝑥𝑟
𝑣 − 𝐼𝑧𝑟

𝑣 ) − 𝐼𝑥𝑧𝑏
𝑣 (𝑝𝑏

2 − 𝑟2) + 𝑚𝑏
𝑣 𝑧𝐺𝑏

𝑣 (𝑣 𝑟 − 𝑤 𝑞) − 𝑚𝑣 𝑥𝐺
𝑣 𝑢 𝑞 + 𝑚𝑏

𝑣 𝑥𝐺𝑏

𝑣  𝑣 𝑝𝑏 + 𝑚𝑟
𝑣 𝑥𝐺𝑟

𝑣  𝑣 𝑝𝑟

𝑀𝑧 − 𝑞 𝑝𝑏(𝐼𝑦𝑏
𝑣 − 𝐼𝑥𝑏

𝑣 ) − 𝑞 𝑝𝑟(𝐼𝑦𝑟
𝑣 − 𝐼𝑥𝑟

𝑣 ) − 𝐼𝑥𝑧𝑏
𝑣  𝑟 𝑞 − 𝑚𝑣 𝑥𝐺

𝑣 𝑢 𝑟 + 𝑚𝑏
𝑣 𝑥𝐺𝑏

𝑣  𝑤 𝑝𝑏 + 𝑚𝑟
𝑣 𝑥𝐺𝑟

𝑣  𝑤 𝑝𝑟 ]
 
 
 
 
 
 
 

 515 

The symbol (•̇) denotes the time derivative; (•)𝑣 denotes that the virtual mass, virtual mass moment of 516 

inertia, virtual product of inertia, or virtual center of gravity; (•)𝑟 denotes the rotor portion of the system 517 

(everything attached to the rotor and aft of the shaft);  (•)𝑏 denotes the main body portion of the system 518 

(everything that is not attached to the rotor and aft of the shaft); (•)𝐺 denotes the center of gravity; 𝑀𝑥𝑠
 519 

denotes the shaft moment about the 𝑥-axis that the shaft induces on the main body; 𝑚 is the mass of the 520 

entire OCT or the component denoted by a subscript; 𝑝• denotes the rotational velocities about the 𝑥-axis 521 

with the subscript denoting a reference to either the main body or the rotor; 𝑞 and 𝑟 are the rotational 522 

velocities common to both the rotor and main body about 𝑦 and 𝑧 respectively; 𝑢, 𝑣, and 𝑤 are the linear 523 

velocities in the 𝑥, 𝑦, and 𝑧 directions; 𝑓• denotes the total external force in the direction of its subscript; 𝑀• 524 

denotes the total external moment about the axis denoted by its subscript; 𝐼• denotes the mass moment or 525 

product of inertia denoted by its subscript, and [•]−1 denotes the inverse operator. The virtual masses, 526 

moments of inertia, and products of inertia are estimated as being twice the actual masses, moments of 527 
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inertia, and products of inertia of the OCT and the virtual center of mass is assumed to be at the same location 528 

as the actual center of mass. 529 

C.  Hydrostatics 530 

This mathematical model assumes that the turbine is completely submerged, with constant gravitational 531 

and buoyancy force magnitudes. Using the individual masses and buoyancies of each component, scaled 532 

from a paper design of an experimental ocean current turbine [21]; the total mass, 𝑚, total buoyancy, 𝐵, 533 

center of mass (gravity), 𝐶𝐺, and center of buoyancy, 𝐶𝐵, are calculated. These values are used to calculate 534 

the combined gravitational and buoyancy forces of the entire system in ℑ𝐵, and the hydrostatic moments 535 

about the origin of ℑ𝐵: 536 

 𝑓𝐺𝐵 = 𝐿𝐸𝐵
(3,:)

(𝑚 𝑔 − 𝐵) and (A3) 537 

 𝑀𝐺𝐵 = −𝐵(𝐶𝐵 − 𝐶𝐺) × 𝐿𝐸𝐵
(3,:)

, (A4) 538 

respectively, where (×) denotes the cross product, (•)(3,:) denotes a reference to a vector consisting of all 539 

elements in the third column of the referenced matrix, and 𝑔 is the gravitational constant. 540 

D.  Rotor Force Modeling 541 

The mathematical rotor model uses an unsteady form of the Blade Element Momentum (BEM) approach 542 

to calculate the forces on the rotor blades. 543 

    1)  Lift and Drag Coefficients 544 

The 2D lift and drag coefficients for hydrofoils described in [14] are found using Xfoil [32]. The program 545 

AirfoilPrep [33] is then used to convert these coefficients to their 3D rotor blade equivalent by first 546 

considering the 3D stall characteristics and then extrapolating the lift and drag coefficient over all possible 547 

angles of attack. This calculation of 3D rotor blade coefficients uses Selig Du correction [34] and Eggars 548 

coefficient of drag adjustment [35], which considers the radial location of the airfoil sections and the aspect 549 

ratio. To extrapolate these 3D coefficients beyond stall, the Viterna method [36] is used as presented by [37], 550 

which calculates the coefficients of lift and drag for deep stall. Using the 3D lift and drag coefficients, the 551 
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lift, 𝐶𝐿
𝑖𝑗
(𝛼𝑖𝑗), and drag, 𝐶𝐷

𝑖𝑗
(𝛼𝑖𝑗), coefficients for each hydro foil section is calculated as a function of angle 552 

of attack, 𝛼𝑖𝑗, by interpolating the data from the airfoil shapes based on the radial location of each section. 553 

    2)  Unsteady Blade Element Momentum Rotor Model 554 

The hydrodynamic forces on the rotor are calculated using an unsteady BEM rotor model similar to the 555 

one presented in [23]. This approach uses the 3D lift and drag coefficients, which are a function of angle of 556 

attack. The effect of the rotor on the incoming flow is calculated with respect to ℑ𝑀
𝑖𝑘. This mesh has nodes at 557 

distances from the hub that are equivalent to the radial locations of the center of blade elements and therefore 558 

are denoted by (•)𝑖. This mesh is also divided into 𝑀𝛿 angular sections spaced evenly with respect to the 559 

azimuth angle, with the angle component of the matrix denoted by (•)𝑘. The impeded flow at each rotor 560 

blade element is calculated using the momentum model with values interpolated from the adjacent radial 561 

grid points. Conversely, the wake induced water velocity at the mesh grid points, used by the momentum 562 

model, are calculated as if a blade element were at each grid point. Since individual blade pitch is allowed, 563 

the blade pitch angle of the most recent blade to pass each location, at its time of passage, is used. Therefore, 564 

both the actual rotor forces and the rotor forces used for the momentum model are calculated each time step.   565 

Angle of attack is calculated for each discrete section (•)𝑖 of both rotor blade (•)𝑗 and mesh grid azimuth 566 

angle (•)𝑘 as a function of the axial, 𝑉̄𝐴
𝑖𝑗,𝑖𝑘

, and tangential, 𝑉̄𝑇
𝑖𝑗,𝑖𝑘

, components of relative water velocity by: 567 

 𝑉̄𝑖𝑗,𝑖𝑘 = 𝑉𝑜
𝑖𝑗,𝑖𝑘

+ 𝑉𝑏𝑙𝑎𝑑𝑒
𝑖𝑗,𝑖𝑘

+ 𝑊𝑖𝑗,𝑖𝑘(𝑛 − 1), (A5) 568 

where 𝑉𝑜
𝑖𝑗,𝑖𝑘

 is the undisturbed free stream water velocity, 𝑉𝑏𝑙𝑎𝑑𝑒
𝑖𝑗,𝑖𝑘

 is the effect of the motions of the blade 569 

elements or related mesh points on the relative water velocity, and 𝑊𝑖𝑗,𝑖𝑘(𝑛 − 1) is the wake induced water 570 

velocity from the previous time step at the location of the mesh grid and respective blade elements. Note: 571 

𝑉𝑏𝑙𝑎𝑑𝑒
𝑖𝑗,𝑖𝑘

 is calculated from 572 

 𝑉𝑏𝑙𝑎𝑑𝑒
𝑖𝑗

= −𝐿𝑆𝑅
𝑗

𝐿𝐵𝑆 [[
𝑢
𝑣
𝑤

] + [
𝑝𝑟

𝑞
𝑟

] × [
𝑥𝑖𝑗

𝑦𝑖𝑗

𝑧𝑖𝑗

]] and (A6) 573 
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 𝑉𝑏𝑙𝑎𝑑𝑒
𝑖𝑘 = −𝐿𝐵𝑀

𝑘 [[
𝑢
𝑣
𝑤

] + [
𝑝𝑟

𝑞
𝑟

] × [
𝑥𝑖𝑘

𝑦𝑖𝑘

𝑧𝑖𝑘

]], (A7) 574 

𝑉𝑜
𝑖𝑗,𝑖𝑘

 is calculated from 575 

 𝑉𝑜
𝑖𝑗

= 𝐿𝑆𝑅
𝑗

𝐿𝐵𝑆𝐿𝐸𝐵 [

𝑈𝑤
𝑖𝑗

𝑉𝑤
𝑖𝑗

𝑊𝑤
𝑖𝑗

] and (A8) 576 

 𝑉𝑜
𝑖𝑘 = 𝐿𝐵𝑀

𝑘 𝐿𝐸𝐵 [

𝑈𝑤
𝑖𝑘

𝑉𝑤
𝑖𝑘

𝑊𝑤
𝑖𝑘

], (A9) 577 

where the undisturbed water velocities in ℑ𝐸 are functions of the wave field, current profile, blade element 578 

or mesh grid location, and time. 579 

The angle of attack of each element section is calculated by 580 

 𝛼𝑖𝑗,𝑖𝑘 = 𝜙𝑖𝑗,𝑖𝑘 − 𝛽𝑖𝑗,𝑖𝑘, (A10) 581 

where the relative flow angle is calculated by 582 

 𝜙𝑖𝑗,𝑖𝑘 = 𝑡𝑎𝑛−1 (
𝑉̄𝐴

𝑖𝑗,𝑖𝑘

−𝑉̄𝑇
𝑖𝑗,𝑖𝑘) (A11) 583 

and 𝛽𝑖𝑗,𝑖𝑘 is the blade section pitch angle.  584 

The lift coefficient matrix, 𝐶𝐿
𝑖𝑘(𝛼𝑖𝑘), calculated over the mesh field for the angles of attack calculated 585 

using (A10) is used to calculate the lift per unit length, 𝐿𝑖𝑘, that is used in (A17) and (A18) for calculating 586 

the quasi-static wake field. Additionally, both the lift and drag coefficient matrices, 𝐶𝐿
𝑖𝑗
(𝛼𝑖𝑗) and 𝐶𝐷

𝑖𝑗
(𝛼𝑖𝑗), 587 

found using the angles of attack calculated in (A10) are used to calculate the axial (normal), 𝐶𝐴
𝑖𝑗

, and 588 

tangential, 𝐶𝑇
𝑖𝑗

, force coefficients respectively [23]. 589 

These coefficients are then used to estimate the axial and tangential loads on each of the blade sections by 590 

 𝑓𝐴
𝑖𝑗

=
1

2
 𝜌 𝛿𝑟𝑖 𝑐𝑖 𝐶𝐴

𝑖𝑗
((𝑉̄𝐴

𝑖𝑗
)2 + (𝑉̄𝑇

𝑖𝑗
)2) and (A12) 591 
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 𝑓𝑇
𝑖𝑗

=
1

2
 𝜌 𝛿𝑟𝑖 𝑐𝑖 𝐶𝑇

𝑖𝑗
((𝑉̄𝐴

𝑖𝑗
)2 + (𝑉̄𝑇

𝑖𝑗
)2), (A13) 592 

where 𝜌 is the density of seawater, 𝛿𝑟𝑖 is the radial length of element (•)𝑖, and 𝑐𝑖 is the cord length at the 593 

center of section (•)𝑖. These forces are converted to ℑ𝐵 by using the appropriate transformation matrices. 594 

Using the forces on the discrete sections of the rotor, the total force on the rotor is found. Similarly, the 595 

hydrodynamic moment from the rotor about the origin of ℑ𝐵 (the rotor axis) is calculated using the forces 596 

calculated on the individual blade components and their relative locations.  597 

The second part of applying the unsteady BEM rotor model is calculating the effect of the rotor on the 598 

flow field. As mentioned previously, the effect of the rotor on the incoming flow is calculated over a mesh 599 

of points spread over the swept area of the rotor blade using a polar coordinate system that is fixed with 600 

respect to ℑ𝐵. To account for the end effects of the rotor blade on the flow field, Prandtl’s tip loss correlation 601 

factor is first calculated as suggested by [23]: 602 

 𝐹𝑖𝑘 =
2

𝜋
𝑐𝑜𝑠−1 (𝑒

−
𝐵(𝑅−𝑟𝑖)

2 𝑟𝑖  𝑠𝑖𝑛𝜙𝑖𝑘), (A14) 603 

where 𝐵 is the number of blades and 𝑅 is the rotor radius.  604 

The axial induction factor calculated using the wake field from the previous time step is defined by [23] 605 

as  606 

 𝑎𝑖𝑘 =
𝑊𝐴

𝑖𝑘(𝑛−1)

‖𝑽𝑜
𝑖𝑘‖

2

, (A15) 607 

where ‖•‖2 denotes the 𝑙2 or Euclidean norm. Using this axial induction factor, the Glauert correction is 608 

calculated by 609 

 𝑓𝑔
𝑖𝑘 = {

1 𝑓𝑜𝑟 𝑎𝑖𝑘 ≤ 𝑎𝑐
𝑎𝑐

𝑎𝑖𝑘 (2 −
𝑎𝑐

𝑎𝑖𝑘) 𝑓𝑜𝑟 𝑎𝑖𝑘 > 𝑎𝑐
’ (A16) 610 

where 𝑎𝑐 = 0.2 as suggested by [23]. The quasi-static wake field is now calculated in terms of its axial and 611 

tangential components for time step 𝑛 [23]: 612 
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 𝑊𝐴𝑞𝑠

𝑖𝑘 (𝑛) =
−𝐵 𝐿𝑖𝑘  𝑐𝑜𝑠(𝜙𝑖𝑘)

4 𝜋 𝜌 𝑟𝑖 𝐹𝑖𝑘√(𝑉𝐴
𝑖𝑘+𝑓𝑔

𝑖𝑘 𝑊𝐴𝑜
𝑖𝑘 (𝑛−1))2+(𝑉𝑅

𝑖𝑘)2+(𝑉𝑇
𝑖𝑘)2

 and (A17) 613 

 𝑊𝑇𝑞𝑠

𝑖𝑘 (𝑛) =
−𝐵 𝐿𝑖𝑘  𝑠𝑖𝑛(𝜙𝑖𝑘)

4 𝜋 𝜌 𝑟𝑖 𝐹𝑖𝑘√(𝑉𝐴
𝑖𝑘+𝑓𝑔

𝑖𝑘 𝑊𝐴𝑜
𝑖𝑘 (𝑛−1))2+(𝑉𝑅

𝑖𝑘)2+(𝑉𝑇
𝑖𝑘)2

, (A18) 614 

where (•)𝑜 denotes that the utilized wake field is not corrected for the wake skew angle (A21) and 𝐿𝑖𝑘 is the 615 

lift per unit length. To account for the time delay before the axial and tangential wake fields reach their 616 

equilibrium values, a dynamic wake model is used [23]. Following the method suggested by S. Oye, a filter 617 

is used that consists of two first order differential equations [23]. These differential equations can be solved 618 

analytically using the intermediate wake variable vectors, 𝐻𝑖𝑘 and 𝑊𝑖𝑛𝑡
𝑖𝑘 , as follows [23]:  619 

 𝐻𝑖𝑘 = 𝑊𝑞𝑠
𝑖𝑘(𝑛) + 𝑘𝜏1

𝑊𝑞𝑠
𝑖𝑘(𝑛)−𝑊𝑞𝑠

𝑖𝑘(𝑛−1)

𝛥𝑡
, (A19) 620 

 𝑊𝑖𝑛𝑡
𝑖𝑘 (𝑛) = 𝐻𝑖𝑘 + (𝑊𝑖𝑛𝑡

𝑖𝑘 (𝑛 − 1) − 𝐻𝑖𝑘)𝑒−Δ𝑡/𝜏1, and  (A20) 621 

 𝑊𝑜
𝑖𝑘(𝑛) = 𝑊𝑖𝑛𝑡

𝑖𝑘 (𝑛) + (𝑊𝑜
𝑖𝑘(𝑛 − 1) − 𝑊𝑖𝑛𝑡

𝑖𝑘 (𝑛))𝑒−Δ𝑡/𝜏2. (A21) 622 

For these equations the time constants 𝜏1 and 𝜏2 are calculate as suggested by [23]: 623 

 𝜏1 =
1.1

(1−1.3𝑎1
𝑖𝑘)

𝑅

𝑉𝑜
 and  (A22) 624 

 𝜏2 = (0.39 − 0.26 (
𝑟𝑗

𝑅
)
2

)𝜏1, where (A23) 625 

 𝑎1
𝑖𝑘 = {

𝑎𝑖𝑘 𝑓𝑜𝑟 𝑎𝑖𝑘 < 0.5

0.5 𝑓𝑜𝑟 𝑎𝑖𝑘 > 0.5
. 626 

The wake model used in this numerical simulation has been calculated for discrete locations over the swept 627 

area of the rotor blade with the mesh fixed with respect to ℑ𝐵. To estimate the wake at the blade elements, 628 

𝑊𝑜
𝑖𝑗
(𝑛), the wake is linearly interpolated between the closest two azimuth angles in mesh grid 𝑊𝑜

𝑖𝑗
(𝑛) for 629 

the same radial location: 630 

 𝑊𝑜
𝑖𝑗
(𝑛) = 𝑓(𝑊𝑜

𝑖𝑘(𝑛), 𝛿𝑚
𝑘 ).   (A24) 631 
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A yaw model is included in this simulation so that the unsteady BEM method will predict the restoring 632 

yaw moment [23]. The method proposed by Glauert is used to calculate the wake field corrected for yaw 633 

[23] by 634 

 𝑊𝑖𝑗,𝑖𝑘(𝑛) = 𝑊𝑜
𝑖𝑗,𝑖𝑘

(𝑛)(1 +
𝑟𝑖

𝑅
𝑡𝑎𝑛(

𝜒

2
) 𝑐𝑜𝑠( 𝜃𝑤𝑖𝑛𝑔 − 𝜃𝑜)), (A25) 635 

where the wake skew angle, 𝜒, is defined as the angle between the current velocity in the wake and the 636 

rotational axis of the rotor and 𝜃𝑜 is the angle where the blade is deepest into the wake. The skew angle can 637 

be found by  638 

𝜒 = 𝑡𝑎𝑛 2−1 (‖∑ (𝑊̃𝑦
𝑘 + 𝑉̃𝑦

𝑘)
𝑀𝛿
𝑘=1 , ∑ (𝑊̃𝑧

𝑘 + 𝑉̃𝑧
𝑘)

𝑀𝛿
𝑘=1 ‖

2
, −∑ (𝑊̃𝑥

𝑘 + 𝑉̃𝑥
𝑘)

𝑀𝛿
𝑘=1 ), (A26) 639 

where 𝑡𝑎𝑛 2−1 (•,•) denotes the four-quadrant inverse tangent function and (•̃) denotes that the skew angle 640 

is assumed to be constant with radius and is calculated at 𝑟𝑖/𝑅 = 0.7 as suggested by [23]. 641 

E.  Streamline body force modeling 642 

The main turbine body that houses the generator and the two buoyancy compensation modules are 643 

somewhat streamlined bodies. To calculate the drag forces on these components constant drag coefficients 644 

are used. For the axial drag on the buoyancy compensation modules, 𝐶𝑑𝑥
𝑆𝐿 = 0.2, and for the main turbine 645 

body, 𝐶𝑑𝑥
𝑆𝐿 = 0.4. A constant coefficient is also used for the tangential drag on across all three of these 646 

bodies, 𝐶𝑑⊥
𝑆𝐿 = 1.0. The drag forces and resulting moments on these bodies are calculated using the mean 647 

axial relative velocity to calculate the axial forces and by numerically integrated the relative velocity to 648 

calculate off axis forces. 649 

F.  Cable Force Model 650 

A finite element lumped mass cable model is used for the cable that attaches the turbine to the flounder 651 

plate. Each element is modeled as being linear, with the position and velocity of the end nodes defined by 652 

the orientation and velocity of the turbine and the position of the flounder plate. The force on each cable 653 

node can be found using a method presented by [38 and 39]. This cable model includes forces from gravity, 654 

buoyancy, hydrodynamic drag, and internal strain. 655 
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G.  Environmental Models 656 

The environmental disturbances included in this simulation are calculated using both current and wave 657 

models. These current and wave models are used to calculate the undisturbed free stream water velocity 658 

utilized by the rotor model in (A10), and when calculating the relative free stream water velocities utilized 659 

to calculate the forces on the streamline bodies. The undisturbed free stream water velocity is calculated 660 

from: 661 

 𝑉𝑊
𝑖𝑗,𝑖𝑘

= 𝑉𝑊𝐶

𝑖𝑗,𝑖𝑘
+ 𝑉𝑊𝑊

𝑖𝑗,𝑖𝑘
, (A27) 662 

where 𝑉𝑊
𝑖𝑗,𝑖𝑘

 is the free stream water velocity in ℑ𝐸, 𝑉𝑊𝐶

𝑖𝑗,𝑖𝑘
 is the current induced free stream water velocity 663 

in ℑ𝐸, and 𝑉𝑊𝑊

𝑖𝑗,𝑖𝑘
 is the wave induced free stream water velocity in ℑ𝐸 (A28). 664 

    1)  Current model 665 

The ocean current induced free stream water velocity is modeled as varying linearly with depth. The water 666 

velocity vector at the surface and the vertical gradient of the current are used to calculate the free stream 667 

water velocity each time step for based on the instantaneous depth of each turbine component. 668 

    2)  Wave model 669 

A wave model is included in the simulation to estimate the impact of a wave field on the performance of 670 

an OCT. This model is presented in detail by [26] and is summarized here for the reader’s convenience. The 671 

orbital water velocity induced by the wave field is calculated each time step for each location on the OCT 672 

where the hydrodynamic force is calculated. 673 

This simulation assumes a fully developed sea using a wave spectrum which is the product of a frequency 674 

spectrum and a directional spreading function. A Pierson-Moskowitz spectrum is used to model the 675 

frequency spectrum portion, 𝑆(𝜔𝑖), of this wave model [40]. The propagation direction of the individual 676 

wave components is calculated using a cosine “2s” directional spreading function, 𝐷(𝛩𝑖), based on the work 677 

of Pierson in 1955 [41]. A spreading value of 10 is recommended for wind waves, 25 for swell with short 678 

decay and 75 for swell with long decay distance [42]. The orbital velocities from the individual wave 679 
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components calculated from this spectrum are assumed to decay with depth according to linear wave theory 680 

[43]. The orbital water velocities are calculated for each of the 𝑁𝑊 wave components, (•)𝑖, according to:  681 

𝑉𝑊𝑊

𝑖𝑗,𝑖𝑘
=

[
 
 
 
 
 
 ∑ [

𝐻𝑖 𝑔 𝑘𝑖

2 𝜔𝑖

𝑐𝑜𝑠ℎ(𝑘𝑖(ℎ−𝑍𝑖𝑗,𝑖𝑘))

𝑐𝑜𝑠ℎ(𝑘𝑖 ℎ)
𝑐𝑜𝑠(𝑘𝑖 𝑝𝑖

𝑖𝑗,𝑖𝑘
− 𝜔𝑖 𝑡 + 𝜑𝑖) 𝑐𝑜𝑠(𝛩𝑖 + 𝛩0)]

𝑁𝑊
𝑖=1

∑ [
𝐻𝑖 𝑔 𝑘𝑖

2 𝜔𝑖

𝑐𝑜𝑠ℎ(𝑘𝑖(ℎ−𝑍𝑖𝑗,𝑖𝑘))

𝑐𝑜𝑠ℎ(𝑘𝑖 ℎ)
𝑐𝑜𝑠(𝑘𝑖 𝑝𝑖

𝑖𝑗,𝑖𝑘
− 𝜔𝑖 𝑡 + 𝜑𝑖) 𝑠𝑖𝑛(𝛩𝑖 + 𝛩0)]

𝑁𝑊
𝑖=1

∑ [
−𝐻𝑖 𝑔 𝑘𝑖

2 𝜔𝑖

𝑠𝑖𝑛ℎ(𝑘𝑖(ℎ−𝑍𝑖𝑗,𝑖𝑘))

𝑐𝑜𝑠ℎ(𝑘𝑖 ℎ)
𝑠𝑖𝑛(𝑘𝑖 𝑝𝑖

𝑖𝑗,𝑖𝑘
− 𝜔𝑖 𝑡 + 𝜑𝑖)]

𝑁𝑊
𝑖=1 ]

 
 
 
 
 
 

, with (A28) 682 

 𝐻𝑖 = √2 𝑆(𝜔𝑖) 𝐷(𝛩𝑖) 𝛥𝜔 𝛥𝛩 and 683 

 𝑝𝑖
𝑖𝑗,𝑖𝑘

= 𝑋𝑖𝑗,𝑖𝑘 𝑐𝑜𝑠(𝛩𝑖 + 𝛩0) + 𝑌𝑖𝑗,𝑖𝑘 𝑠𝑖𝑛(𝛩𝑖 + 𝛩0), 684 

where 𝐻𝑖 is the wave component amplitude, 𝜔𝑖 is the wave component frequency, 𝑘𝑖 is the wave component 685 

number, 𝛩𝑖 is the wave component direction with respect to the mean wave propagation direction 𝛩0, 𝜑𝑖 is 686 

the random phase angle which is uniformly distributed from 0 to 2𝜋 and constant with time, ℎ is the water 687 

depth, 𝑡 is the time in seconds, 𝛥𝜔 is the frequency step sized used discretizing the frequency spectra, and 688 

𝛥𝛩 is the angular step size used when discretizing the spreading function. 689 

Linear wave theory for deep water waves predicts the orbital velocity at the surface for each wave 690 

component, and that this orbital water velocity will decay with depth according to 𝑒𝑥𝑝( − 4 𝜋2 𝑍/(𝑔 𝑇𝑐
2)). 691 

Applying these relationships to a single wave component with 𝐻𝑐 = 1.859 m and 𝑇𝑐 = 6.8 s, both the 692 

horizontal and vertical water velocity magnitudes will be 0.86 m/s at the surface and these velocities will 693 

decay according to 𝑒𝑥𝑝( − 0.087 ⋅ 𝑍). This shows that at a depth of 8.0 m the wave induced water velocities 694 

will be 50% of those at the surface and that at depth of 30 m the water velocities decreased to only 7% of 695 

the surface velocity. 696 

IX.  REFERENCES 697 

[1] K. Hass, “Assessment of energy production potential from ocean currents along the United States coastline,” Georgia Tech Research Corp., Atlanta, GA, 698 

Tech. Rep. DOE/EE/2661-10, 2013.  699 



 38 

[2] M. C. P. M.  Machado, J. H. VanZwieten, I. Pinos, “A measurement based analysis of the hydrokinetic energy in the Gulf stream,” Journal of Ocean and 700 

Wind Energy, vol. 3, pp. 25-30, 2016.  701 

[3] J. T. Imamura, K. Takagi, T. Waseda, and K. Kiyomatsu, “Kuchinoshima island ocean current measurements for Kuroshio current energy,” in Proc. 702 

IEEE/MTS Oceans Conference, Monterey, CA, USA, Sep. 19-23, 2016. 703 

[4] I. Meyer, J. L. Van Niekerk, “Towards a practical resource assessment of the extractable energy in the Agulhas ocean current,” International Journal of 704 

Marine Energy, vol. 16, pp. 116-132, Dec. 2016.  705 

[5] J. M. Bane, R. He, M. Muglia, C. F. Lowcher, Y. Gong, and S. M. Haines, “Marine hydrokinetic energy from western boundary currents,” Annu. Rev. Mar. 706 

Sci., vol. 9, pp. 105–23, 2017.  707 

[6] N. Tom and R. W. Yeung, “Experimental confirmation of nonlinear-model- predictive control applied offline to a permanent magnet linear generator for 708 

ocean-wave energy conversion,” IEEE Journal of Oceanic Engineering, vol. 41, no. 2, pp. 281-295, Apr. 2016.  709 

[7] W. Sheng and A. Lewis, “Power takeoff optimization for maximizing energy conversion of wave-activated bodies”, IEEE Journal of Oceanic Engineering, 710 

vol. 41, no. 3, pp. 529-540, Jul. 2016.  711 

[8] W. Sheng and A. Lewis, “Power takeoff optimization to maximize wave energy conversions for oscillating water column devices,” IEEE Journal of Oceanic 712 

Engineering, vol. 43, no. 1, pp. 36-46, Jan. 2018. 713 

[9] H. T. Pham, J. M. Bourgeot, and M. E. H Benbouzid, “Comparative investigations of sensor fault-tolerant control strategies performance for marine current 714 

turbine applications,” IEEE Journal of Oceanic Engineering, vol. 43, no. 4, pp. 1024-1035, Oct. 2018. 715 

[10] J. H. VanZwieten, F. R. Driscoll, A. Leonessa, and G. Deane, “Design of a prototype ocean current turbine—part ii: flight control system,” Ocean Eng., 716 

vol. 33, pp. 1522–1551, Aug. 2006. 717 

[11] K. Takagi, Y. Suyama, K. Kagaya, “An attempt to control the motion of floating current turbine by the pitch control,” in Proc. IEEE/MTS Oceans Conference, 718 

Waikoloa, HI, USA, Sep. 19-22, 2011.  719 

[12] K. Sakata, T. Gonoji, K. Takagi, “A motion of twin type ocean current turbines in realistic situations,” in Proc. IEEE/MTS Oceans Conference, Yeosu, South 720 

Korea, May 21-24, 2012. 721 

[13] J. H. VanZwieten, N. Vanrietvelde, and B. L. Hacker, “Numerical simulation of an experimental ocean current turbine,” IEEE Journal of Oceanic 722 

Engineering, vol. 38, no. 1, Jan. 2013. 723 

[14] J. H. VanZwieten, P. Pyakurel, T. Ngo, C. Sultan, and N.I. Xiros, “An assessment of using variable blade pitch for moored ocean current turbine flight 724 

control,” International Journal of Marine Energy, vol. 13, pp. 16-26, Apr. 2016.  725 

[15] R. E. Skelton, and M. D. Lorenzo, “Space structure control design by variance assignment,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 4, pp. 726 

454-462, Jul. 1985.  727 

[16] R. E. Skelton, and C. Sultan, “Controllable tensegrity, a new class of smart structures,” in Proc. SPIE Intl. Symposium on Smart Structures and Materials, 728 

San Diego, CA, USA, 1997. 729 

[17] C. Sultan, and R. E. Skelton, “Integrated design of controllable tensegrity structures,” in Proc. ASME Intl. Mechanical Engineering Congress and Exposition, 730 

Dallas, TX, 1997. 731 

[18] T. Oktay, and C. Sultan, “Comfortable helicopter flight via passive/active morphing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 732 

4, Oct. 2016.  733 

[19] G. Zhu, K. M. Grigoriadis, and R. E. Skelton, “Covariance control design for Hubble space telescope,” Journal of Guidance, Control, and Dynamics, vol. 734 

18, no. 2, pp. 230-236, Mar. 1995. 735 



 39 

[20] T. D. Ngo, C. Sultan, J. H. VanZwieten, and N.I. Xiros, “Variance constrained cyclic blade control of moored ocean current turbines,” in Proc. American 736 

Control Conference, Boston, MA, USA, 2016. 737 

[21] F. R. Driscoll, G. M. Alsenas, P. P. Beaujean, S. Ravenna, J. Raveling, E. Busold, and C. Slezycki, “A 20 KW open ocean current test turbine,” in Proc. 738 

MTS/IEEE Oceans Conference, Quebec City, Canada, Sep. 15-18, 2008.  739 

[22] National Renewable Energy Laboratory, “Certification of FAST and ADAMS® with AeroDyn”. Available:  https://nwtc.nrel.gov/SimulatorCertification 740 

[23] M. O. L. Hansen, Aerodynamics of Wind Turbines. London, UK: Earthscan, 2008. 741 

[24] F.R. Driscoll, R.G. Lueck, and M. Nahon, “Development and validation of a lumped-mass dynamics model of a deep-sea ROV system,” Applied Ocean 742 

Research, vol. 22, no. 3, pp. 169–182, Jun. 2000.  743 

[25] B. Radanovic, and F.R. Driscoll, “Development of an efficient general purpose cable model and simulation for marine applications,” in Proc. IEEE Oceans 744 

Conference, Biloxi, MI, USA, Oct. 29-31, 2002.  745 

[26] N. Vanrietvelde, “Numerical performance prediction for FAU’s first generation ocean current turbine,” M.S. thesis, Dept. Ocean and Mech. Eng., Florida 746 

Atlantic University, 2009.  747 

[27] G. D., Padfield, Helicopter Flight Dynamics (AIAA Education Series), 2nd ed. Reston, VA, USA: AIAA, 2007.  748 
 749 
[28] N.I. Xiros, J.H. VanZwieten, C. Sultan, and V. Tzelepis, “Modeling, system identification and linearization of underwater turbine power plant dynamics,” 750 

in Proc. ASME International Mechanical Engineering Congress & Exposition, Houston, TX, USA, no. IMECE2015-53455, November 13-19, 2015. 751 

[29] G. Zhu, M. A. Rotea, and R. Skelton, “A convergent algorithm for the output covariance constraint control problem,” SIAM Journal of Control Optimization, 752 

vol. 35, no. 1, pp. 341-361, Jan. 1997.  753 

[30] C. Hsieh, R. Skelton, and F. M. Damra, “Minimum energy controllers with inequality constraints on output variances,” Optimal Control Applications and 754 

Methods, vol. 10, no. 4, pp. 347-366, Oct. 1989.  755 

[31] T. I. Fossen, Guidance and control of ocean vehicles. New York: John Wiley and Sons, 1994, pp. 10,30. 756 

[32] M. Drela “XFoil: An analysis and design system for low Reynolds number airfoils,” in Proc. Conf. on low Reynolds Number Airfoil Dynamics, University 757 

of Notre Dame, 1989 758 

[33] C. Hansen, “AirfoilPrep - NWTC design codes,” National Wind Technology Center – National Renewable Energy Laboratory, Golden, CO, 2007,   759 

[34] Z. Du and M. S. Selig “A 3-D stall-delay model for horizontal axis wind turbine performance prediction,” In Proc. ASME Wind Energy Symp., Reno, NV, 760 

Jan. 12-15 1998, A98-16844 03-44  761 

[35] A. Eggers, K. Chaney, and R. Digumarthi, “An assessment of approximate modeling of aerodynamic loads on the UAE rotor,” In Proc. 41st Aerospace 762 

Sciences Meeting and Exhibit, Reno, NV, Jan. 6-9 2003, AIAA-2003-868 763 

[36] L. A. Viterna and DC Janetzke “Theoretical and experimental power from large horizontal-axis wind turbines” Pres. 5th Biennial Conf. and Workshop on 764 

Wind Energy, Washington D.C., Oct. 5-7 1981,  765 

[37] D. J. Laino and A. C. Hansen “User’s guide to the wind turbine aerodynamics computer software AeroDyne,” National Wind Technology Center – National 766 

Renewable Energy Laboratory, Golden, CO, Dec. 2002. 767 

[38] B. Radanovic, “Development of an efficient general purpose cable model and simulation for marine applications,” M.S. thesis, Dept. Ocean Eng., Florida 768 

Atlantic Univ., Boca Raton, FL, 2002. 769 

[39]  J. VanZwieten, F. R. Driscoll, A. Leonessa, and G Deane, “Design of a prototype ocean current turbine – Part I: mathematical modeling and dynamics 770 

simulation,” Ocean Eng., vol 33, pp. 1485-1521, Aug. 2006, 771 

[40] W. J. Pierson, and L. Moskowitz, 1963 “A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodsku,” J. 772 

Geophysical Research, vol. 69, no. 24, pp. 5181-5190, 1964, 773 



 40 

[41] M. S. Longuet-Higgins, D. E. Cartwright, and N. D. Smith, “Observations of the directional spectrum of sea waves using the motion of a floating buoy,” in 774 

Proc. Conf. Ocean Wave Spectra”, 1963, pp.111-136 775 

[42] Y. Goda, Random seas and design of maritime structures. Tokyo, Japan: University of Tokyo press, 1985, ch. 2 776 

[43] R. G. Dean and R. A. Dalrymple, Water wave mechanics for engineers and scientists. River Edge, NJ: World Scientific, 1991, pp. 86 777 


