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Abstract—Computer vision has shown promising potential
in wearable robotics applications (e.g., human grasping target
prediction and context understanding). However, in practice,
the performance of computer vision algorithms is challenged by
insufficient or biased training, observation noise, cluttered back-
ground, etc. By leveraging Bayesian deep learning (BDL), we
have developed a novel, reliable vision-based framework to assist
upper limb prosthesis grasping during arm reaching. This frame-
work can measure different types of uncertainties from the model
and data for grasping target recognition in realistic and challeng-
ing scenarios. A probability calibration network was developed
to fuse the uncertainty measures into one calibrated probability
for online decision making. We formulated the problem as the
prediction of grasping target while arm reaching. Specifically,
we developed a 3-D simulation platform to simulate and ana-
lyze the performance of vision algorithms under several common
challenging scenarios in practice. In addition, we integrated our
approach into a shared control framework of a prosthetic arm
and demonstrated its potential at assisting human participants
with fluent target reaching and grasping tasks.

Index Terms—Bayesian deep learning (BDL), grasping strat-
egy, reliable computer vision, upper limb prosthesis.

I. INTRODUCTION

OMMERCIALLY available upper limb prostheses make

use of muscle activation signals to control a single degree
of freedom of the device and switch between various modes,
which makes control of these devices unnatural, inefficient,
and mentally taxing. Automation based on visual and inertial
sensing can alleviate these issues. Computer vision has demon-
strated great potential in wearable robotics applications (e.g.,
human intent prediction and context understanding) because it
is informative and noninterrupting (i.e., it can be used to obtain
continuous context awareness that can be used for automation
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of some of the robotic components). For example, computer
vision has been used to acquire orientation, shape, and size
parameters of the objects to assist grasping performance for
upper limb prostheses [1]. DeGol et al. [2] adopted deep learn-
ing techniques to classify the objects in images and select the
appropriate grasping gestures of a prosthetic hand accordingly.
However, tasks in those studies were accomplished with a sin-
gle object in the field of view, uncluttered background, and
limited variability on the physical setup—for example, vision-
recognition tasks were usually evaluated in scenarios where the
prosthetic hand had to stop in front of the target, producing
unnatural, disrupted reaching, and grasping motion. A recent
study demonstrated the potential of computer vision for human
intent recognition under real-life scenarios [3]. Cameras were
mounted on human hands to predict daily activities in uncon-
trolled environments. These studies did not explore reliable
computer vision solutions or demonstrate the feasibility for
wearable robotics applications. For wearable robots, mistaken
actions can be prevented by estimating the uncertainty in the
algorithm’s output. For example, if the vision algorithm is
uncertain with the decision, the accommodations could be “no
action” or letting the users take over the control. Furthermore,
for human—machine shared control, uncertainty measures of
the algorithm’s decision can be used to divide the control
between human and machine (arbitration) [4].

Deep learning has shown significant potential in a num-
ber of applications, such as object detection [5] and semantic
segmentation [6]. However, the performance of the neural
networks is challenged by insufficient or biased training,
observation noises, cluttered background, etc. Progress has
been made to understand the competence of deep learning-
based vision algorithms, such as class activation maps [7]
and studying adversarial examples [8]. An alternative way of
understanding these algorithms is via uncertainty quantifica-
tion. Unfortunately, most modern deep learning models cannot
capture the uncertainty of the predictions well. To address
this issue, researchers combined the Bayesian probabilistic
framework with neural networks, leading to Bayesian neural
networks (BNNs) [9]. More recently, Gal and Ghahramani [10]
proposed a simple, but effective, Bayesian approximation
framework via standard dropout. This provided the poten-
tial to seamlessly combine the advantages of BNN and the
state-of-the-art deep neural-network architectures. Kendall and
Gal [11] then extended this framework to quantify aleatoric
and epistemic uncertainty in a unified model. Epistemic uncer-
tainty (model uncertainty) captures the uncertainty of the
model caused by insufficient training data, unseen scenarios,
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Fig. 1. Reliable vision-based framework for upper limb prosthesis grasping. Images taken from a view corresponding to the forearm are passed through

our feature extraction, target recognition, and uncertainty quantification pipelines. Finally, the uncertainty measures are fused together into a single calibrated

probability for decision making.

etc. Aleatoric uncertainty (data uncertainty) is data dependent
and caused by insufficient sensing modalities or noise in the
input. In addition, efforts have been made to extend BNNs
to other neural-network architectures, such as convolutional
neural networks (CNNSs) [12] and recurrent neural networks
(RNNs) [13]. The capability of capturing uncertainty pro-
vides BNN with great potential in reinforcement learning [14],
active learning [15], and safety-sensitive systems, such as
autonomous driving [16] and medical applications [17].
Several open questions and challenges still exist for BNNs.
First, most of the BNN evaluations have used one of two
extremes: 1) synthetic data points sampled from explicit func-
tions or 2) uncontrolled real-life datasets. The former is too
simple to represent realistic visual tasks while the later contains
multiple uncontrolled factors that influence algorithm behav-
ior. Thus, in real-life settings, the behavior of BNNs has not
been fully interpreted. Second, a unified, calibrated, and inter-
pretable confidence estimation is desired to clear the criterion
of accepting a prediction in human-machine systems. Third,
present BNN applications are limited to traditional classifica-
tion and regression tasks, such as semantic segmentation and
depth estimation [11]. Vision tasks for wearable robots are more
challenging due to the high uncertainty in human behavior and
actual ambiguities present in these scenarios. The performance
of BNNs on vision tasks for wearable robots is unknown.
Human motion during reaching and grasping is fluent.
Humans prepare for grasping the targeted object by adjusting
hand orientation and aperture angle during the arm reaching
phase. Our long-term research goal is to use computer vision
and continuous shared control to achieve natural reaching
and grasping performance with a prosthesis. Hence, prosthe-
sis grasping, in order to mimic human action, is a complex
problem with multiple subtasks, such as detecting grasping tar-
get while arm reaching, detecting grasping gestures from other
daily activities, and selecting appropriate grasping strategies
(e.g., hand gesture, wrist orientation, and contacting point). In
this article, we focused on predicting grasping target during
arm reaching in challenging scenarios (e.g., multiple objects
appeared on the table with a cluttered background). We assume
that the grasping action, strategy, and timing (e.g., contact
point) have been given because these also depend on the type

of end effector of the prosthesis and can be operated by human
users. We trained the vision models to identify the target object
based on the video streams from the camera mounted on the
forearm (Fig. 1) during arm dynamic motions. Our specific
contributions are as follows:

1) a new framework for grasping target recognition and
uncertainty quantification which incorporates a Bayesian
deep neural network that produces three categories of
uncertainties and a probability calibration network that
projects the three uncalibrated uncertainties into a single
calibrated confidence measure;

2) a new methodology for evaluation of this framework
using synthetic data and real arm-trajectory data grasp-
ing objects in virtual scenes; we demonstrate the effect
of several factors, including ambiguous observations,
noisy data, new unseen targets and scenes, and additional
inertial sensing;

3) a proof-of-concept demonstration of our framework in
a real shared control mechanism with humans in the
loop in order to measure the impact of uncertainty
quantification on the grasping task;

4) a discussion of the scalability of our framework to
accommodate real-world situations, complex actuation,
other sensing, and the need for training data.

The remainder of this article is organized as follows. In
Section II, we describe our reliable vision-based framework
followed by the explanation of uncertainty estimation with
Bayesian deep learning (BDL) and a probability calibration
strategy. In Section III, we explain our procedure of verifying
and analyzing the framework, and the corresponding results
are shown in Section IV. Afterward, we discuss the exten-
sion and generalization potential of our framework. Finally,
we conclude this article in Section V by summarizing and
offering our insights for future work.

II. METHOD
A. Problem Statement

In this article, we focus on target recognition during arm
reaching for upper limb prosthesis grasping. Note that there
are many ways to achieve actual grasping, which is not the
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focus of this article. One of the reasons is that there have been
excellent publications in robotics that have already partially
or successfully addressed the challenge such as [18]-[20]. In
addition, the actual grasping action for prostheses depends on
the type of end effector (e.g., prosthetic hook versus dexter-
ous hand) and the action that can be achieved easily by the
prosthesis user—this means that the grasping does not have to
be fully autonomous. One simple solution is predefining the
grasping gesture/orientation based on the target. The actual
grasping action of the prosthesis can be carried out by the
user via EMG signals or other user interfaces (as shown in
our real-time demos). In addition, inertial measurement units
(IMUs) can be used to determine the grasping task contexts
so that the vision framework can focus on the target recogni-
tion for prosthesis control. In [21], IMUs were used to detect
grasping from general reaching movements, and in [22], the
IMU-based approach showed promising results in distinguish-
ing various daily activities, including cleaning a table, typing
a document, and carrying a box.

Unlike grasping for robots, a prosthesis does not know
the grasping target and the humans can share the control.
Considering these facts, this article focused on analyzing the
vision algorithms during reaching to predict grasping target
and make participatory actions to adjust wrist postural for
easy grasping, for which producing continuous and coordi-
nated human-like motions is important. We consider a simple
setup which uses a robotic prosthesis (Fig. 1) attached to the
forearm of an individual with two degrees of freedom: 1) a
gripper manually controlled by the user and 2) a wrist auto-
matically rotated by the machine. The camera and the gripper
are rigidly connected except for the rotation at the wrist. For
simplicity, we consider a single grasping gesture defined over
an interval [0, 7], where ¢ = 0 is when the gesture is recog-
nized and r = T is when the gripper is about to touch the
target object Y. There is also a rotation oy associated with the
angle needed for grasping that object. In addition, there is a
set of rigid coordinate transformations g, parameterized over
time that defines the coordinate frame of the forearm (and the
camera) and a set of images captured I; : Q — R3, where Q
is the image domain and R> represents the color space.

Given that we have a set of possible targets {Yx}, our goal is
to train a classifier f that gives a prediction Yo = S{}i<c)
at time t based on all prior observations and a probability
p(’) associated with the likelihood of ¥7 being correct [i.e.,
P(Y™ = Y)]. Sections II-C and II-D describe how we obtain
these estimates using our network structure. This task goes
beyond object recognition because it aims at the detection of a
target based on how a human moves his/her forearm for grasp-
ing. This means that even if multiple objects are observed in
an image, the prior associated with the gesture could make
it possible to determine which target is the most likely to be
grasped. Also, if only one object is visible and it is too far, we
may need to specify low probabilities of correctness because
the motion may lead us to some other objects as the fore-
arm obtains closer to the target. Finally, we will make use of
these predictions to train a decision process that will determine
when to actuate the wrist in order to ensure that we obtain the
correct grasping orientation «y before we obtain to time 7.

Section II-E describes our proof-of-concept setup to illustrate
this task.

B. Framework Overview

In our experiments, we defined the vision task as identifying
the target object based on the video streams from the camera
on the forearm. Fig. 1 presents the four main steps of the
framework as follows.

1) Step One: MobileNetV2 [23] was used to extract fea-
tures from images. The network was pretrained with
the ILSVRC, a large-scale dataset for image classi-
fication [24]. MobileNetV2 was designed for mobile
visual recognition, and it is well known for its very low
computation complexity and accuracy.

2) Step Two: A new neural network with dropout applied to
each layer was then trained for target recognition. The
dropout layers played three roles: a) a standard tech-
nique to prevent overfitting during training; b) a practical
Bayesian approximation for neural networks; and c)
a way to generate stochastic dropout samples during
inference for uncertainty quantification. We considered
two versions of neural-network structures (Fig. 1). The
first one had three fully connected layers (denoted as
Bayesian multilayer perceptron or BMLP) and the sec-
ond one had one variational gated recurrent unit (GRU)
layer between two fully connected layers (denoted as
Bayesian GRU or BGRU). BMLP performed predictions
only based on the current frame while BGRU integrated
the information of historical frames. In practice, BGRU
was expected to perform better because of its higher
robustness to data noises by combining the information
from multiple frames. Evaluating BMLP was worth-
while to understand how the information from individual
frames contributed to the predictions. Moreover, datasets
of nonsequential images are easier to collect and make
up a large proportion of available grasping datasets.

3) Step Three: Monte Carlo dropout sampling was used
to obtain a number of stochastic samples to obtain
uncertainty measures and predictions. Three types of
uncertainty were modeled for different analyses: a)
predictive entropy uncertainty; b) mutual information
(MI) uncertainty; and c) data uncertainty. Predictive
entropy captures both epistemic and aleatoric uncertainty
while the MI captures the epistemic uncertainty [25].

4) Step Four: A probability calibration network was trained
to map the three uncertainty measures (from step three)
to a single calibrated probability estimation. With the
calibrated probability, the prediction decision criteria
can be easily customized by considering how much the
corresponding application tolerates error.

C. Uncertainty Estimation in Bayesian Deep Learning

BNN extends standard networks by modeling the distribu-
tions over the weight parameters. Given x is the input and W
is the collection of model parameters, we denote the output
of a BNN as fV(x). With a transformation (if needed), the
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prior of W can be assumed as W ~ A/ (0, I), a standard mul-
tivariate Gaussian distribution. Given a training dataset with
X ={x1,...,xn} as the input, ¥ = {y1, ..., yn} as the corre-
sponding targets, and N as the number of training observations,
the Bayesian inference is used to find the posterior distribu-
tion P(W|X, Y) over the model parameters. The prediction for
a new input x* can be predicted via

P(y*|x*, X, Y) =/P(y*|x*,W) P(WIX,Y)dW. (1)

However, P(W|X, Y) is analytically intractable for deep neu-
ral networks. Several inference techniques are available to
approximate the posterior with a simpler distribution gy (W),
the parameters of which are denoted as 6. These parame-
ters can be estimated by minimizing the Kullback-Leibler
divergence

KL[qg(W)IP(W|X, Y)]. 2)

Here, we adopted the ideas in [10] to use the Monte Carlo
dropout sampling to approximate the prediction and quan-
tify the epistemic uncertainty. We formulated the distributions
over BNN parameters as Bernoulli distributions and performed
the Bayesian approximation via standard deep neural-network
dropout. Then, the KL divergence (2) was minimized by
minimizing the cross-entropy loss function with a standard
optimizer such as stochastic gradient descent. As a result, it
is possible to design BNN with the same network structures
as present modern deep neural networks.

In addition, we trained the BNN to estimate the aleatoric
uncertainty via a data-dependent observation noise parame-
ter o [11]. The sampled prediction and aleatoric uncertainty
were computed via [, 62] = f% (x), where W were computed
via stochastic dropout sampling W~ qo(W). The loss func-
tion £(0) (associated with the likelihood) to train BNN for
regression was

1 i[l&_z lyn = 5> + llog(82):| 3)
N P 2 n n n 2 n

where the first term corresponds to the negative log likelihood
and the second term regularizes o. Since the increase of o
decreases the first term and increases the second term, mini-
mizing £(0) encourages the neural network to assign larger o
to the most challenging samples which are usually the samples
that are corrupted by noises. In practice, the network is trained
to predict log(c?) because it is more numerically stable.

For inference, given that the stochastic dropout sampling
was performed 7T times for each sample, the approximated
prediction was

T
E(y) ~ % t:Z]&t @)
and the uncertainty was formulated as
A S A S A
V(y)wfgyt —(;;y,) +;;o, )

where the first two terms represent the epistemic uncertainty
and the last term represents the aleatoric uncertainty.
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The intermediate regression aleatoric uncertainty was mod-
eled using a logit/probit link so that it could be framed as a
classification problem. The sampled latent logit/probit vector
was then defined as z; = fW + o - €, where ¢, followed a
multivariate standard Gaussian distribution. Monte Carlo inte-
gration was used to approximate the exact distribution, which
yielded the corresponding cross-entropy loss function for a
single sample

K
1 R A
L =log I E exp |:zk,c — log E eXp(Zk,c/):| (6)
k=1 el

where ¢ represented the ground-truth class index in logit vec-
tor z and K was the number of Monte Carlo samples during
training. During inference, given T stochastic dropout samples,
the predicted probability vector is given by

1 < ;
p*~ =Y Softmax|f" (x*)|. (7)
Y om0

We adopted two additional measures to model the uncer-
tainty for classification: 1) predictive entropy and 2) MI.

1) Predictive Entropy Uncertainty [26]: This metric mea-
sures the uncertainty of assigning a label to a sample
based on the predicted distribution. This measure is large
when the predicted distribution is “flat” over different
classes and small when the distribution is “sharp” on
one of the classes. We approximated it with Monte Carlo
sampling

T
H[y*p(*’X, Y] = — 2:|:%1 Z]P’(y* — C/|X*, Wt)i|
t=1

C/

T
X 10g|:% ZP()}* = c’|x*’ Wt):|
=1
(®)

2) Mutual Information Uncertainty: MI between the
prediction y* and the posterior over W captures the neu-
ral network’s uncertainty in its output [27]. We also
approximated it via Monte Carlo sampling

I[y*, Wix*, X, Y] = H[y*|x*, X, Y]

1 .
+ 7 [Pb" = b )
.t
X log(IP’(y* = /|x¥, W,))]

©)

D. Probability Calibration

Intuitively, if the probability of an event is 0.8, then this
event should occur 80% of the time. The problem addressed
in this article is a supervised multiclass classification problem.
Given a labeled dataset X, Y € X x ), these random variables
follow a ground-truth joint distribution 7 (X, Y). Given H as a
classifier which also outputs a probability confidence measure,
then H(x) = [9, p], where y is the class prediction (i.e., the
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output of our model fV) and p is the estimated confidence. A
sufficient condition for calibration is

PG =ylp=p)=p Vpel0 1]

However, none of the uncertainty measures in our frame-
work were calibrated. This is actually a common issue for
Gaussian processes [28], of which BNNs are closely related
to. In addition, since the three uncertainty measures in our
framework quantify different sources of uncertainty, decision
making should depend on all of them. Thus, we create a recal-
ibration model ® : R3 — [0, 1] on top of the BNN classifier
% such that ® of" generates the desired calibrated probabil-
ity p. In our framework, we used a small neural network with
three fully connected layers as the calibration network.

(10)

E. Uncertainty-Aware Shared Control

We integrated our vision framework into a shared con-
trol pipeline [Fig. 2(a)] to leverage human input when the
vision algorithm was not confident in its prediction. Fig. 2(b)
shows the prosthetic arm we used for evaluation. It had man-
ual control commands and used the video feed as input. The
gripper was controlled manually via the user’s input while
the wrist rotation was controlled manually by the user, or
automatically by the vision algorithm. The vision algorithm
analyzed the video stream from the on-arm camera and pre-
dicted which object the user was grasping. The wrist control
unit in the diagram was a virtual control logic unit. Manual
control of the wrist was always enabled regardless of the cali-
brated probability—the users could switch to manually control
mode if they decided to send control commands. To avoid con-
flicts and user confusion, sending manual control commands
would disable the autonomous control for a period of time (3
s in our experiments). If the calibrated probability was less
than a threshold (0.5 in our experiment), the prosthetic arm
would keep the original position. Otherwise, the wrist would
automatically rotate to a predefined angle associated with the
object. Here, we predefined the grasping angle for each object
as a proof of concept. With sufficient training data, deep neu-
ral networks can predict appropriate grasping strategies for
unseen objects. We discuss the extension and generalization
ability of our framework in Section I'V-H.

The prosthetic arm [Fig. 2(b)] connected to a PC with one
1080Ti GPU received manual control commands from the
keyboard and sent the control commands to the servos via
a USB servo controller. The video was streamed from the
camera attached at the bottom, and the gripper and wrist were
controlled by two servos. On the keyboard, the space key con-
trolled the gripper while the arrow keys controlled the wrist.
Pressing the space key changed the gripper from “close” to
“open” or “open” to “close” based on its current state. Pressing
the left/right arrow keys continuously rotated the wrist to
left/right, respectively. The wrist rotation would stop once the
largest angles were reached (the range was [ — 90, 90] degrees
using the direction of gravity as the zero-degree reference
direction). In the experiments, our shared control and pure
manual control were compared. Pure manual control is iden-
tical to shared control that is operating with the probability

o> (o] :
» —

Wrist
(v ]

Manual
Input

Control
Unit

Vision
Algorithm -
$
Calibrated 1
@ Probability

Predicted
Orientation o d

Fig. 2. (a) Diagram of the shared control framework. (b) Prosthetic arm with
one camera and two servos for gripper and wrist. (c) Experimental environ-
ment setup. The objects in the red boxes are the targets and the keyboard in
the green box is for manual control input. All the other objects on the table
are used to make the background complex enough to represent a realistic
environment.

threshold set to 1 (i.e., all of the automatic control commands
are ignored).

Fig. 2(c) shows our experimental setup. The objects in the
red boxes were the targets to be grasped and manual con-
trol commands were performed via the keyboard in the green
box. In our experiments, the subjects were asked to grasp and
move the objects from one position on the table to another.
There are six “X” shape signs attached to the table indicating
the locations the three objects should be moved to. [Two “X”
shape signs denoting the start/end positions for an object are
shown in 2(c).] The results of this experiment are presented
in Section IV-G.

III. EVALUATION METHODOLOGY

We developed a 3-D simulation environment in
Unity3D [29] to evaluate our framework under different
situations. In the virtual room scenario (Fig. 3), several
objects were placed on a table. Images were captured by
simulating the arm-mounted camera’s view during reaching
and grasping. We assumed that the camera was placed at the
center of the forearm, facing the objects. The camera moved
together with the arm during grasping. The interpretation
of deep neural networks’ performance is challenging on
uncontrolled real-life datasets since multiple factors can
influence the model simultaneously. Thus, we generated
two simulation datasets to evaluate our framework: 1) a
dataset that used highly controlled synthetic trajectories
with designed variations and 2) a dataset that used realistic
grasping trajectories captured with human subjects.

A. Synthetic Trajectory Dataset

In this article, we designed segmented trajectories, shown
in Fig. 3(d). Segment E was defined as an evident segment.
Segments A, B, C, D, and F were defined as ambiguous
segments because the computer vision framework was not
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View from camera "

Fig. 3. 3-D simulation setup. (a) Top view of the virtual environ-
ment. (b) View from the camera’s perspective. (¢) Example of a different
background. Five different backgrounds were tested. (d) SyTj design. The
trajectory followed one of the paths in this graph. Segment A, B, C, and D
represent ambiguous segments while approaching the target. Segments E cor-
responds to the segments where the target should be evident. (e) Experimental
setup for capturing human grasping trajectories via a motion capture system.
The red circles indicate the locations of motion capture markers. The mark-
ers on the forearm and elbow were used to calculate the arm’s location and
orientation while the markers on the table indicate the points that are used as
a reference for determining the locations and orientations of the objects.

capable of capturing sufficient information to determine the
current grasping intent. When multiple objects are very close
to each other or the arm is far from the target, the grasp-
ing target recognition task may be ambiguous due to the lack
of information from the image captured by the on-arm cam-
era. When the model does not have enough information to
determine the current intent, the uncertainty of the model is
expected to be high on the ambiguous segments. In addition,
we simulated four types of noise/artifacts in our experiments:
1) occluded images; 2) task-irrelevant images caused by ran-
dom camera orientation; 3) motion blur; and 4) illumination
variations. Several sample noisy frames can be found in the
Appendix [30]. We randomly add this noise to 10% of the
training data.

The intent of this dataset was not to generate realistic grasp-
ing trajectories; rather, the intent was to emulate scenarios
that are typically challenging for grasping tasks. We gener-
ated another dataset with realistic human grasping trajectories
in the next section.

We simulated four challenging, but commonly occur, sce-
narios for object grasping. We expected the proposed model
to show higher uncertainty under conditions for which some
ambiguities, noise, or unknown objects/targets are present.

Scenario One (Baseline): This is a dataset in which no data
noise was added, and all targets and background scenes had
been previously observed.

Scenario Two (Data Noise): Data noise can severely affect
the performance of a computer vision system. We created a
testing dataset in which 80% of the data were corrupted by the
four types of noise mentioned at the beginning of this section.

Scenario Three (Undefined Targets): We trained the algo-
rithms on four defined targets and studied their behaviors on
two undefined targets (UdTg) (i.e., their object class was not
part of the training). Sample frames with the UdTg can be
found in the Appendix [30].

Scenario Four (Unfamiliar Background): Background vari-
ations are usually challenging for computer vision algorithms.

IEEE TRANSACTIONS ON CYBERNETICS

One way to solve this problem is to include sufficient vari-
ability of the background in the training data. However, this
solution is impractical for uncontrolled realistic environments.
In this article, we studied the influence of training data
variations on our proposed model in handling unfamiliar back-
ground (UfBg). Section IV-B specifies how many different
backgrounds were used for training and testing.

B. Human Grasping Trajectory Dataset

Real human reaching and grasping motions were recorded
by a VICON motion capture system [31] [Fig. 3(e)]. The
experimental setup and protocol were approved by the institu-
tion review board (IRB) of the University of North Carolina at
Chapel Hill. The positions of the markers placed on the fore-
arm and elbow were captured at 100 Hz during arm reaching
and grasping.

The experiments included objects which require either hor-
izontal or vertical hand orientations for grasping. In each
session, three objects with the same orientation were placed on
a table in a row with equal spacing between them. A human
subject first sat in front of one object and grasped each object.
Each object was repeatedly grasped five to seven times. Then,
the subject sat in front of another object and repeated the same
grasping tasks. During the experiments, the subjects needed
to fully stretch their arms to grasp the furthest objects. In this
way, we collected grasping trajectories approached the targets
from different directions. This procedure was repeated until
the human subjects completed grasping the objects (with the
two grasping orientations) at all three sitting locations. Data
were collected from two healthy human subjects.

We assumed that a hypothetical camera was placed in the
center of the forearm. Therefore, during the data processing
phase, we first calculated the camera’s positions, angles, and
distances to the targeted objects for each frame based on the
markers’ positions. The full dataset consisted of 108 trials for
each object/grasping orientation. Next, we mapped the camera
trajectory captured in human experiments to the 3-D simula-
tion space. The scaling factor between the real and the virtual
spaces was based on the ratio of the sizes between the real
table and the virtual table. Since the dataset contained grasping
trajectories from different directions, it was possible to have
multiple objects in the camera’s field of view including images
in which the target object looked smaller than the others. We
provided sample frames for this situation in the Appendix [30].

C. Diagnostic Tools for Probability Calibration

In order to determine how good our probability calibration
is, we make use of reliability diagrams and standard metrics
of their quality.

Reliability Diagrams [32]: They are one of the most com-
mon visual tools to evaluate whether a confidence estimation is
calibrated. In the diagrams, the true confidence is plotted as a
function of empirical probability. For a dataset {(x;, yn)}l,:]:] of
N realizations of random variables (i.e., our data observations),
then [y, pn] = H(x,) are the prediction and corresponding
confidence measures for the classifier H. To approximate the
true confidence with a finite number of samples, we group
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the predictions into K interval bins with the same size (1/K).
Given I = ((k — 1/K), (k/K)] as the kth interval, the number
of samples that fall in I is By = Y_, 1{p, € I}. Then, the
fraction of correctly classified samples

N
1 A R
accy = - Z U = yu, Pn € I}
n=1
is an unbiased and consistent estimator of P(y = p|p € Iy).
Finally, the mean empirical probability for I; is defined as

1 n
prob;, = B Z Dn.

Pn€ly

For a perfect calibrated model, prob, = acci for all £k =
1,2,...,K.

In addition to reliability diagrams, we also calculated the
histograms of the empirical probabilities over all the test-
ing samples because reliability diagrams only show whether
a probability interval is calibrated, not how many samples are
calibrated (see Fig. 7 for an example).

Quantitative Metrics: Expected calibration error (ECE) and
maximum calibration error (MCE) [33] are two statistical mea-
sures of miscalibration. For a perfect calibrated probability,
both of them equal zero. The ECE is

K
1
ECE = NZBk|acck—probk| (11D
k=1
and the MCE is
MCE = rg’%;g | acck — proby |. (12)

D. Decision-Making Metrics

We proposed two metrics to evaluate our framework as

follows.

1) Success Rate: Success rate (SR) measures the
predictions’ accuracy at the trial level. Each grasping
trial began with the arm in a starting position and ended
when the arm stopped in front of the object to be
grasped. The trial was labeled as successful if the iden-
tified targeted object at the end of the trial was correct.
The SR was defined to be the fraction of the num-
ber of successful trials among all the trials. Hence, the
SR was not influenced by the predictions on ambiguous
segments.

2) Number of Prediction Changes: The number of
prediction changes (NPC) measures the number of
changes of the predicted object orientations along one
grasping trajectory. A lower NPC is desired for two rea-
sons: a) a low number of actions reduces the prosthesis’
power consumption and b) prosthesis actions that mis-
match the user’s intent may lead to devise rejection by
users.

E. Real-Life Shared Control System Evaluation

The protocol for this evaluation made use of three differ-
ent objects with grasping angles equal to 0 °, 45 °, and 90 °
[Fig. 2(c)]. The six “X” shape signs on the table were placed

in two rows and three columns. At the beginning of one ses-
sion, the three objects were placed on the row closer to the
subjects. The subjects were asked to move the objects to the
corresponding “X” shape signs on the other row and then move
them back. While grasping, the subjects were asked to perform
a dual cognitive task (counting backward) similarly as the one
used in [34]: at the beginning of each session, the subjects
were given a random number from 80 to 100 and needed to
count backward with a step of 2. We used the dual task to
increase the difficulty of the task by adding a cognitive load
of the users. Two 20-30 years old able-bodied subjects partic-
ipated in the experiment (one male and one female). The time
spent with our shared control and pure manual control was
compared. To eliminate the effect of the order of the objects,
each subject conducted 12 sessions for each control with two
sets of all six permutations of the locations of the three objects.

IV. RESULT AND DISCUSSION
A. Implementation Details

The algorithms were implemented with Keras and
Tensorflow. The inputs of our framework were 224 x 224 x 3
color images. The values of the pixels were scaled to [0, 1]
before they were fed into the MobileNetV2 feature extrac-
tion network. MobileNetV2 [23] was pretrained by Keras. For
both BMLP and BGRU, the first two layers had 128 nodes and
used the activation function ReLU. ReLU has shown promis-
ing results in various computer vision applications because it
leads to sparsity and can reduce the likelihood of the vanish-
ing gradient issue [24]. The last layer had two parts: 1) a fully
connected layer with Softmax activation function and 2) a fully
connected layer with no activation function and one node to
estimate the data uncertainty o. We also applied /, regulariza-
tion to both the bias and the kernel, with the parameter being
set to 107>, Dropout was applied to each fully connected layer
with the dropout probability set to 0.1. For the variational
GRU layer, both recurrent and input dropout were used with
the dropout probability set to 0.1. The probability calibration
network was composed of three fully connected layers with
32, 64, and 1 nodes, respectively. We used the ReLU activa-
tion function for the first two layers and a sigmoid activation
function for the last layer. The parameters and structures of
the neural networks were optimized via trial and error using
the validation dataset.

The target recognition and probability calibration networks
were trained using a batch size of 64 and a cross-entropy
loss function. We did the Monte Carlo dropout sampling for
100 repetitions to obtain the approximated predictions and
the uncertainty measures. The experiments were performed on
a PC with CPU i7-8700K, two NVIDIA 1080Ti GPUs, and
32-GB RAM. With this platform, the inference time for one
frame took 14 ms for feature extraction network, 1.7 ms (2.9
ms) for BMLP (BGRU)-based target recognition network, and
0.7 ms for the probability calibration network.

We created a video' demonstrating the behavior of our
framework under different scenarios.

1 https://youtu.be/fFZdTbNutFc
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B. Training and Testing Procedure

In our framework, two networks are needed to be trained:
1) the target recognition network and 2) the probability cali-
bration network. The feature extraction network was pretrained
on the ILSVRC dataset [24].

In total, we developed five 3-D simulation backgrounds:
four of them were used as the fraining and validation datasets
and one was used to test our framework’s performance under
UfBgs. We generated the data while permuting the locations of
the four targets. For each background, we generated four sets
of the 24 permutations (4 x 24 = 96 grasping trials per target)
of data. We randomly chose 85 of the 96 trials as the training
dataset and the other 11 as the validation dataset. Since there
were four backgrounds, there were in total 85 x 4 = 340
trials per target in the training dataset and 11 x 4 = 44 trials
per target in the validation dataset. Finally, we generated four
types of festing datasets as follows.

1) Clean Dataset: No noisy data and backgrounds appeared

in training.

2) Noisy Dataset: Noisy data occurred 80% of the time and
backgrounds appeared in training.

3) UfBg Dataset: No noisy data and the background did
not appear in the training dataset.

4) UdTg Dataset: No noisy data, backgrounds appeared in
training, and two of the targets whose object class was
not part of the training set.

Each testing dataset had one set of the 24 permutations of
data for each background—UfBg used the one background
that did not appear in the training dataset while Clean, Noisy,
and UdTg used the other four backgrounds.

The above data generation procedure applied to both the
synthetic trajectory (SyTj) and the human grasping trajectory
(GrTj) datasets.

Then, we trained the target recognition network with the
training dataset. The validation dataset was fed into the
trained network for target recognition and uncertainty mea-
sures predictions. If a sample was correctly/mistakenly pre-
dicted, it was labeled as “1/0.” We used these labeled samples
to train the calibration network with the three uncertainty mea-
sures as the input and the “1/0” labels as the ground-truth
output. The selected loss function was binary cross-entropy. In
this way, the network was trained to fuse the three uncertainty
measures into one calibrated probability estimation. Finally,
we evaluated the trained framework on the testing datasets.

C. Target Recognition Performance

We note that targets are not well defined at every location
in a trajectory. In particular, for the synthetic trajectories, tar-
gets are only well defined on the evident segments. Hence,
recognition accuracy needs to be restricted to these segments
as shown in Table 1. The Evident, Noisy, and UfBg labels indi-
cate the results for the evident segments of the Clean, Noisy,
and UfBg testing datasets, respectively. Detailed descriptions
of these testing datasets can be found in Section IV-B. GrTj
indicates the results for the GrTj dataset (Section III-B), for
which we only used the data when the arm was moving
toward the targets. The classification accuracy was not high

IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
TARGET RECOGNITION ACCURACY (%). HIGHEST (BLUE) AND SECOND
HIGHEST (GREEN) ACCURACY ARE HIGHLIGHTED

Dataset Type | BMLP BGRU MLP  GRU
Evident 73.02 7237 7370  71.17
Noisy 48.60 62.97  49.01 59.24
UfBg 51.96 4442 48.79 4272
GrTj 82.42 8142  81.58 81.02

for all methods because our datasets were designed to be
challenging, which highlights the need for a methodology for
identifying reliable predictions. Compared to standard neural
networks (e.g., MLP and GRU), our framework (BMLP and
BGRU) showed better performance because it inherited the
advantages of modern deep neural networks and utilized a
superior representation of the weight parameters and obser-
vations by modeling their corresponding distributions instead
of only tracking their deterministic values. For the Noisy
dataset, BGRU/GRU showed better results than BMLP/MLP
because BGRU/GRU was able to integrate the information
from multiple corrupted frames. For Evident, UfBg, and GrTj,
BMLP/MLP showed better performance than BGRU/GRU
because BGRU/GRU had higher model complexity which
could lead to overfitting issues.

D. Uncertainty Quantification

In this section, we analyze the distributions of the uncer-
tainty measures computed for the different scenarios consid-
ered. This type of analysis can help identify the sources of
uncertainty and their discriminative power between evident
and ambiguous segments.

Uncertainty From Insufficient Training Data: We studied
the effect of the amount of training data on our framework
with two training dataset sizes: 5 and 340 trials for each tar-
get. Fig. 4 shows the results for BMLP on the SyT]j dataset.
The color codes and letters of the segments matched the
ones shown in Fig. 3. We provided the results for Bayesian
GRU (BGRU) in the Appendix [30]. The x-axis indicates the
frame ID (representing time) and the y-axis indicates the val-
ues of the uncertainty measures, calibrated probability, target
recognition, and distance between the hypothetical camera and
targets.

As shown in Fig. 4(a), with an insufficient amount of train-
ing data, MI was more significant than the entropy uncertainty
because the neural network was not well trained and hence not
confident in its output. As highlighted by the green arrows,
with more training data, entropy uncertainty started to play
a more significant role because the neural network was more
confident in its outputs but not confident in assigning labels
because of the ambiguity in the data. The data uncertainty
was high with little training data because most of the samples
were challenging for such a neural network. With more train-
ing data, the data uncertainty started to show similar trends
as the entropy uncertainty—high values were assigned to the
sample with high data ambiguity.

As highlighted by the red arrows, data and MI uncertainty
for the evident segments (E) decreased with the increase of
the training data size while for the ambiguous segments, it
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Uncertainty measures in the SyTj dataset with varying training data sizes: (a) five trials per target and (b) 340 trials per target. The six snapshots

on the top are examples of what the camera saw during different segments. The first three rows of the scatter plots are the three measures of uncertainty.
The fourth row is the calibrated probability from the probability calibration network. The fifth row is the network’s target recognition result, 1 indicates the
prediction was correct and O indicates an incorrect prediction. Since we assign labels to the entire trajectory, we do not expect the model to make correct
predictions for the trajectory segments that are ambiguous (i.e., Segments A, B, C, D, and F). The last row is the distance from the camera to the target. The
lower this value is the closer the camera is to the target. The result is based on the Clean testing dataset with BMLP as the model.

remained the same. Data uncertainty was not explained away
with more training data for the ambiguous segments because
it captured the essential ambiguity in the data.

As highlighted by the blue arrows, with sufficient training
data [Fig. 4(b)], MI and entropy uncertainty showed different
trends on the ambiguous segments. Entropy uncertainty cap-
tures the uncertainty of assigning labels while MI uncertainty
captures the network’s uncertainty in its output. When the cam-
era approached the target, the BNN model started to assign
higher probabilities to some of the classes instead of a “flat”
distribution over all the classes, leading to decreased entropy
uncertainty. However, the sampled predictions were also get-
ting higher fluctuations since the model was still confused
between several of the classes, leading to increased MI uncer-
tainty. This phenomenon was not significant for BGRU (results
provided in the Appendix [30]) because BGRU was able to
extract temporal features (e.g., the direction of motion) which
decreased the entropy uncertainty. In addition, the uncertain-
ties on segment F were expected to have a large range and
high fluctuation because we did not include F' segments in the
training of either the target recognition network or the cali-
bration network, and the data generated for this segment had
larger variations than the other segments as well.

The above discussion was based on the SyTj dataset. Similar
trends were also observed with the GrTj dataset.

Uncertainty Under Challenging Scenarios: We studied the
behaviors of BMLP and BGRU under different challenging
scenarios. The results of calibrated probability and uncertainty
measures are shown in Figs. 5 and 6, respectively. The y-axis
of each plot represents the percentage of samples with the

0.8 = 08
2| 06 0.6
g
o
& 04 04 = Evident
o .
=== Noisy
=
02 02 / urBg
udTg
5 8 / = Ambiguous
04 0.6 0.8 1 0.2 0.4 0.6 0.8 1

BMLP BGRU

Measure value

Fig. 5. Sample distribution with respect to the calibrated probability for
Evident, Noisy, UfBg, UdTg, and Ambiguous data. Two models are compared:
BMLP (left) and BGRU (right). The results are based on sufficient training
data (340 trials per target).

calibrated probability or uncertainty values less than the value
on the x-axis.

Fig. 5 presents the results of the calibrated probability on
different testing datasets. Ambiguous indicates the results for
the ambiguous segment of the Clean testing dataset. Evident,
Noisy, UfBg, and UdTg indicate the results for the evident seg-
ments of the Clean, Noisy, UfBg, and UdTg testing datasets,
respectively. The results for BMLP (left) and BGRU (right)
showed similar trends. The framework was most confident in
its predictions on Evident, least confident for Ambiguous, and
the confidences for Noisy, UfBg, and UdTg were mostly in
between as expected. For Ambiguous, little information perti-
nent to the user intent can be captured for target recognition
while for Noisy and UfBg, it was still possible to obtain
enough information for prediction. BGRU was less sensitive
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Fig. 6. Sample distribution with respect to different uncertainties for Evident,
Noisy, UfBg, UdTg, and Ambiguous data. Two models are involved: BMLP
(left) and BGRU (right). The results are based on sufficient training data (340
trials per target).

to data noise because it can compensate the disturbance by
fusing the information from multiple frames. The uncertainty
for UdTg was not as high as that for Ambiguous because
our framework utilized a discriminative model and the uncer-
tainty was measured with respect to the difficulty of classifying
the sample into one of the defined classes—for Ambiguous,
multiple “defined” objects were in the camera’s field of view
causing higher confusion in classification. In practice, higher
uncertainty for UdTg is desired which is a limitation for
discriminative models.

Fig. 6 shows the behaviors of the three uncertainty mea-
sures under different scenarios with BMLP (left) and BGRU
(right). For BGRU, Noisy, UfBg, and UdTg showed low data
and entropy uncertainty but high MI uncertainty while BMLP
showed the opposite trends. With the capability to combine
multiple frames for prediction, BGRU increased its confi-
dence in assigning labels (“sharper” distributions over classes).
However, the disturbances decreased the confidence in the out-
puts of BGRU (higher fluctuation in the sampled predictions).
This observation indicates that BGRU had more overfitting
issues than BMLP, matching our observations in Section I'V-C.
Evident and Ambiguous showed similar distributions of the MI
uncertainty for BMLP because the framework yielded higher
MI uncertainty at the beginning of the evident segment than
in the ambiguous segments as we observed in Fig. 4.

E. Probability Calibration

This section describes our probability calibration results. A
well-calibrated probability measure gives an appropriate mea-
surement of the reliability of a prediction. Fig. 7 shows the
reliability diagrams and the histograms of our calibrated proba-
bility for BMLP (left) and the Softmax probability for standard
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Fig. 7. Confidence histograms (bottom) and reliability diagrams (top) for

calibrated probability (left) and Softmax probability (right). The results are
based on the BMLP model with sufficient training data (340 trials per target).

TABLE II
REsuULTS OF ECE AND MCE. LOWEST (BLUE) AND SECOND LOWEST
(GREEN) VALUES ARE HIGHLIGHTED

Clean Noisy UfBg GrTj InSf

BMLP | 0.0330 0.1077  0.0934  0.0499  0.0172

ECE BGRU | 0.0605 0.0221 0.1031  0.0552  0.0079
MLP | 0.1511 0.0919 0.1326  0.4051 0.3426

GRU | 03564 0.4352 0.3838 0.4646  0.4207

BMLP | 0.1068 0.1361 0.1168 0.1366  0.1349

MCE BGRU | 0.1295 0.0820 0.2136 0.1167  0.0668
MLP | 03351 0.2619 03072 0.6453 0.4583

GRU | 05712 0.5304 0.4895 0.7043  0.4828

MLP (right). Detailed descriptions of the testing datasets are
in Section IV-B. The results reported in this section were
based on the data from both the ambiguous and the evident
segments. Our calibrated probability outperformed Softmax
probability and was promising in fusing the three uncertainty
measures into one calibrated probability. Softmax probability
tended to assign overestimated probabilities to most of the
samples—matching the observations reported in [35]—while
our calibrated probability did not show this bias. The results
for BGRU/GRU are similar to those for BMLP/MLP and we
provided the corresponding results in the Appendix [30].
Table II shows the quantitative measures of model cali-
bration: ECE and MCE. Lower ECE and MCE indicate that
the predicted probability is better calibrated. InSf indicates
the results for the Clean testing dataset with a small train-
ing dataset—five trials per target. Clean, Noisy, UfBg, and
GrTj utilized a large training dataset—340 trials per target.
The proposed calibrated probability showed promising results
for all scenarios. In addition, MLP was, in general, better
calibrated than GRU because of issues with overfitting.

F. Decision-Making Performance

With the calibrated probability, decisions of whether or not
to believe the predictions can be easily made by considering
how much the application tolerates mistakes. As stated in
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Fig. 8. Plot of SR with respect to NPC. (a) Clean dataset with synthetic
trajectories. (b) Noisy dataset with synthetic trajectories. (c) UfBg dataset
with synthetic trajectories. (d) Clean dataset with human grasping trajectories
(GrTj).

Section III-D, we proposed the use of the SR and NPC to
quantify the system’s performance. Generally speaking, a good
system should have a relatively high SR with a reasonably
low NPC. We further proposed to find out a good tradeoff
point between SR and NPC based on the following strategy.
By changing the probability threshold (6) for decision making,
we obtained different pairs of SR and NPC. The step length of
change in 6 was 0.002. The results were grouped by different
NPC intervals. Here, we took all the results with NPC from
0 to 30 and grouped them into 60 uniform intervals (interval
length 0.5). Finally, the averaged NPC and SR for each interval
were calculated and plotted in Fig. 8. The “gaps” on the lines
indicated that no samples fell in the corresponding intervals
in this experiment. In addition, we assumed that the system
was always initialized with a default state that was different
from any of the targeted states. That is, if no action was taken
along the entire trajectory, it was labeled as incorrect while
calculating SR.

As shown in Fig. 8, MLP and GRU usually could not
achieve an NPC lower than 2, even with a high probability
threshold (e.g., 0.998) because they were usually overcon-
fident in their predictions—especially for GRU which has
higher model complexity. In contrast, BMLP and BGRU
showed a better tradeoff curve between SR and NPC and
can achieve a high SR with small NPC simultaneously. In
Fig. 8(b), when NPC > 4, with the same NPC, BGRU/GRU
produced higher SR than BMLP/MLP because BGRU/GRU
was able to mitigate the impact of data noises by integrat-
ing the information from multiple corrupted frames. For UfBg
[Fig. 8(c)], given the same NPC, BMLP/MLP showed bet-
ter SR than BGRU/GRU because BGRU/GRU required more
background variability to avoid overfitting, which matches our
observations in Section IV-C.

Compared with the SyTj dataset, the trajectories in the
GrTj dataset were more realistic, resulting in grasping intents
that were usually clearer. In SyTj, we intentionally designed

TABLE III
AVERAGE TIME SPENT AND STANDARD DEVIATION (SECONDS) WITH
OUR SHARED CONTROL AND PURE MANUAL CONTROL FRAMEWORKS

Shared Control
22.2 (1.6)
20.03 (1.53)

Manual Control
25.15 (2.16)
23.76 (1.01)

Subject 1
Subject 2

the ambiguous segments for which no clear intent could be
observed. Thus, the models show 100% SR on the GrTj dataset
with only 2-3 NPC.

G. Performance of Real-Life Shared Control System

Section II-E described our shared control system and
Section III-E described our evaluation protocol. In this experi-
ment, we used the same neural-network structure, the number
of layers, and the number of units as we described in
Section IV-A.

Since each subject conducted 12 sessions, there were 12
data points of recorded time per subject. Table III reports the
mean (standard deviation) after deleting the highest and the
lowest values for each subject (left with ten data points per
subject). Our shared control showed around 14% improvement
over the pure manual control in respect of the average time
spent for each session. In each session, the subject grasped and
placed the objects six times as described in Section III-E. On
average, one grasping and placing action took around 3.5 s,
which is a reasonable amount of time since the cognitive dual
tasks slowed down the grasping action.

H. Extensions and Generalization

This article aimed at developing a reliable vision-based
framework to assist upper limb prosthesis grasping. Our anal-
ysis focused on the performance of the vision algorithms
and the uncertainty measures under controlled but challenging
scenarios. In this section, we discuss the extension and gener-
alization capabilities of our framework for real-life upper limb
prosthesis grasping.

The framework can be extended to incorporate other sens-
ing modalities, such as depth sensors and IMUs. For example,
an IMU can be used to determine the grasping task contexts
so that the vision framework could focus on the target recog-
nition for prosthesis control. In this article, we assumed that
these techniques were ready and available—in [21], IMU was
used to detect grasping from general reaching movements and
in [22], the IMU-based approach showed promising results
in distinguishing various daily activities, including clean-
ing up a table, typing a document, and carrying a box.
Additional sensing modalities could also be combined with
the vision information for better target recognition. As a proof
of concept, we incorporated the velocity of the arm into our
vision framework and evaluated it on the GrTj dataset. The
experiment details and results are in the Appendix [30].

Our target recognition framework can be trained for dif-
ferent tasks based on how the training data are labeled. For
example, if the images of the objects are labeled with the
appropriate grasps (e.g., pinch, power, etc.), the framework
can be trained to decide the prosthetic hand gestures for
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grasping [2], [36]. In addition, deep neural networks have
shown promising generalization capability for grasping unseen
objects [2], [18], [20], [36], [37]. We expect our framework
to share similar generalization capabilities to the modern deep
neural-network structures that it consists of. We demonstrated
this capability by applying our framework to a grasp classifi-
cation task [2] as shown in the Appendix [30]. DeGol et al. [2]
achieved 93.2% accuracy for predicting the appropriate grasps
for unseen objects whereas our framework (BMLP) achieved
91.2% with a less powerful but more efficient pretrained
network.

V. CONCLUSION

We presented a reliable vision-based framework to assist
upper limb prosthesis grasping by recognizing grasping tar-
gets in realistic and challenging scenarios during arm reaching.
This framework combined the benefits of the Bayesian theory
and recent deep learning developments. It was able to quan-
tify the uncertainty of its predictions and estimate a calibrated
probability for each prediction. The framework’s behaviors
under several ambiguous or noisy scenarios were compared
and analyzed. Moreover, we showed how to fuse different
uncertainty measures into a single calibrated probability that
can be applied to decision making. Finally, the algorithm was
integrated into a shared control framework that was applied
to a prosthetic arm and evaluated using human subjects that
performed realistic grasping tasks.

This article focused on evaluating the performance of the
vision algorithms and analyzing the uncertainty measures
under challenging scenarios. In the future, we plan to incor-
porate the framework with a more advanced upper limb
prosthesis system (e.g., additional sensing modalities or more
degrees of freedom) and conduct a comprehensive evaluation
in a realistic environment. It is also worthwhile to evaluate
and compare the forearm camera design in this article with
other data-acquisition designs (e.g., eye-tracking glasses).
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