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Abstract—This paper presents an adaptive image sampling
algorithm based on Deep Learning (DL). It consists of an adaptive
sampling mask generation network which is jointly trained with
an image inpainting network. The sampling rate is controlled
by the mask generation network, and a binarization strategy is
investigated to make the sampling mask binary. In addition to
the image sampling and reconstruction process, we show how it
can be extended and used to speed up raster scanning such as
the X-Ray fluorescence (XRF) image scanning process. Recently
XRF laboratory-based systems have evolved into lightweight and
portable instruments thanks to technological advancements in
both X-Ray generation and detection. However, the scanning
time of an XRF image is usually long due to the long exposure
requirements (e.g., 100µs − 1ms per point). We propose an
XRF image inpainting approach to address the long scanning
times, thus speeding up the scanning process, while being able
to reconstruct a high quality XRF image. The proposed adaptive
image sampling algorithm is applied to the RGB image of the
scanning target to generate the sampling mask. The XRF scanner
is then driven according to the sampling mask to scan a subset
of the total image pixels. Finally, we inpaint the scanned XRF
image by fusing the RGB image to reconstruct the full scan
XRF image. The experiments show that the proposed adaptive
sampling algorithm is able to effectively sample the image and
achieve a better reconstruction accuracy than that of existing
methods.

Index Terms—Adaptive sampling, convolutional neural net-
work, X-Ray fluorescence, inpainting

I. INTRODUCTION

W ITH the increasing demand for multimedia content,

there has been more and more interest in visual data

acquisition. Many visual data, such as Lidar depth map,

scanning probe microscopy (SPM) image, XRF image, etc,

is acquired by the time consuming raster scan process. Thus

sampling techniques need to be investigated to speed up the

acquisition process. Compressed sensing (CS) has shown that

it is possible to acquire and reconstruct natural images under

the Nyquist sampling rates [1], [2]. Rather than full image

acquisition followed by compression, CS combines sensing

and compression into one step, and has the advantages of faster

acquisition time, smaller power consumption, and lighter data

throughput. Adaptive image sampling is a sub-problem of CS
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that aims for a sparse representation of signals in the image

domain. In this paper, we present a novel adaptive image

sampling algorithm based on Deep Learning and show its

application to RGB image sampling and recovery. We also

applied the proposed adaptive sampling technique to speed

up the raster scan process of XRF imaging, based on the

correlation between RGB and XRF signals.

Irregular sampling techniques have long been studied in

the image processing and computer graphics fields to achieve

compact representation of images. Such irregular sampling

techniques, such as stochastic sampling [3], may have bet-

ter anti-aliasing performance compared to uniform sampling

intervals if frequencies greater than the Nyquist limit are

present. Further performance improvement can be obtained if

the sampling distribution is not only irregular but also adaptive

to the signal itself. The limited samples should be concentrated

in parts of the image rich in detail, so as to simulate human vi-

sion [4]. Several works have been reported in the literature on

adaptive sampling techniques. An early significant work in this

direction is made by Eldar et al. [5]. A farthest point strategy

is proposed which permits progressive and adaptive sampling

of an image. Later, Rajesh et al. [6] proposed a progressive

image sampling technique inspired by the lifting scheme of

wavelet generation. A similar method is developed by Demaret

et al. [7] by utilizing an adaptive thinning algorithm. Ramponi

et al. [8] developed an irregular sampling method based on a

measure of the local sample skewness. Lin et al. [9] viewed

grey scale images as manifolds with density and sampled them

according to the generalized Ricci curvature. Liu et al. [10]

proposed an adaptive progressive image acquisition algorithm

based on kernel construction. Recently, Taimori et al. [11]

investigated adaptive image sampling approaches based on

the space-frequency-gradient information content of image

patches.

Most of these irregular sampling and adaptive sampling

techniques [3], [5]–[11] need their own specific reconstruction

algorithm to reconstruct the fully sampled signal. Furthermore,

all these sampling techniques are model-based approaches re-

lying on predefined priors, and according to our knowledge, no

work has been done on utilizing machine learning techniques

to design the adaptive sampling mask.

Inspired by the recent successes of convolutional neural net-

works (CNNs) [12]–[15] in high level computer vision tasks,

deep neural networks (DNNs) emerged in addressing low

level computer vision tasks as well [16]–[23]. For the task of
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Fig. 3. The proposed pipeline for the XRF image inpainting utilizing an adaptive sampling mask. The binary adaptive sampling mask is generated based on
the RGB image of the scan target. Then, the XRF scanner sampled the target object based on the binary sampling mask. Finally, the subsampled XRF image
and the RGB image are fused to reconstruct the fully sampled XRF image.
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Fig. 4. Proposed pipeline of XRF image inpainting. The visible component
of the input subsampled XRF image is fused with the input RGB image
to obtain the visible component of the reconstructed XRF image. The non-
visible component of the input XRF image is super-resolved to obtain the
non-visible component of the reconstructed XRF image. The reconstructed
visible and non-visible component of the output XRF image are combined to
obtain the final output.

missing pixels in images. The XRF images are acquired

through a raster scan process. We could therefore speed up

the scanning process by skipping pixels and then utilizing an

image inpainting technique to reconstruct the missing pixels.

If we are to skip 80% of the pixels during acquisition (a 5x

speedup), we could use a random sampling mask (shown in

Figure 2 (a)), or we could design one utilizing the available

RGB image (shown in Figure 2 (b)). The idea of the adaptive

binary sampling mask is based on the assumption that the XRF

image is highly correlated with the RGB image. We would like

to allocate more pixels to the informative parts of the image,

such as high frequency textures, sharp edges, and high contrast

details, and spend fewer pixels on the uninformative parts of

the image.

With the proposed adaptive sampling algorithm, we propose

an image inpainting approach to speed up the acquisition

process of the XRF image with the aid of a conventional

RGB image, as shown in Figure 3. The proposed XRF

image inpainting algorithm can also be applied to spectral

images obtained by any other raster scanning processes, such

as Scanning Electron Microscope (SEM), Energy Dispersive

Spectroscopy (EDS), and Wavelength Dispersive Spectroscopy

(WDS). First, the RGB image of the scanning target is

utilized to generate the adaptive sampling mask. Then, the

XRF scanner will scan the corresponding pixels according

to the binary sampling mask. The speedup in acquisition

is achieved since many pixels will be skipped. Finally, the

subsampled XRF image is fused with the conventional RGB

image to reconstruct the full scan XRF image, utilizing an

image inpainting algorithm. For the fusion-based XRF image

inpainting algorithm, similarly to our previous super-resolution

(SR) approach [35], [36], we model the spectrum of each

pixel using a linear mixing model [37]. Because the hidden

part of the painting is not visible in the conventional RGB

image, but it can be captured in the XRF image [38], there

is no direct one-to-one mapping between the visible RGB

spectrum and the XRF spectrum. We model the XRF signal

as a combination of the visible signal (on the surface) and

the non-visible signal (hidden under the surface), as shown in

Figure 4. We emphasize that while our framework is general

enough to handle separation of visible and hidden layers,

it easily handles the case of fully visible layers. To inpaint

the visible component XRF signal, we follow an approach

similar to the one applied to hyper-spectral image SR [39]–

[41]. A coupled XRF-RGB dictionary pair is learned to explore

the correlation between XRF and RGB signals. For the non-

visible part, we inpaint its missing pixels using a standard

total variation regularizer. Finally, the reconstructed visible

and non-visible XRF signals are combined to obtain the final

XRF reconstruction result. The input subsampled XRF image

is not explicitly separated into visible and non-visible parts in

advance. Instead, the whole inpainting problem is formulated



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

Fig. 5. Pipeline for adaptive sampling mask generation utilizing CNNs.

as an optimization problem. By alternately optimizing over the

coupled XRF-RGB dictionary and the visible/non-visible fully

sampled coefficient maps, the fidelity of the estimated fully

sampled output to both the subsampled XRF and RGB input

signals is improved, thus resulting in a better inpainting output.

Real experiments show the effectiveness of our proposed

method in terms of both reconstruction error and visual quality

of the inpainting result.

While there is a large body of work on inpainting con-

ventional RGB images [21]–[23], [32]–[34], [42]–[44], very

little work has appeared in the literature on inpainting XRF

images [32], and there is no work on fusing a conventional

RGB image during the inpainting process. Some learning

based approaches [45], [46] have been proposed to perform

multi-modality image inpainting. However, due to the limited

amount of high quality XRF image training data, they can

not be applied yet. XRF image inpainting poses a particular

challenge because the acquired spectrum signal usually has

low SNR. In addition, the correlation among spectral channels

needs to be preserved for the inpainted pixels. In our previous

work on spatial-spectral representation for XRF image super-

resolution [36], the spatial resolution of the visible component

XRF signal is increased by fusing an HR conventional RGB

image while the spatial resolution of the non-visible part is

increased by using a standard total variation regularizer [47],

[48]. Here we propose an XRF image inpainting algorithm by

fusing an HR conventional RGB image, which can be regarded

as an extension of our previous XRF SR approach.

III. ADAPTIVE SAMPLING MASK GENERATION UTILIZING

CONVOLUTIONAL NEURAL NETWORK

In this section, we present our proposed adaptive sampling

mask generation using a CNN. In other words, we describe the

details of the “Sampling Mask Generation” block in Figure 3.

We first formulate the problem of adaptive sampling mask

design, followed by the presentation of the overall network

architecture consisting of both the inpainting network and the

mask generation network.

A. Problem Formulation

As shown in Figure 5, we denote by z an input original

image. Our mask generation network NetM produces a binary

sampling mask m = NetM(z, c), where c ∈ [0 1] is the

predefined sampling percentage. The entries of m are equal to

1 for the sampled and 0 otherwise. The corrupted image z′ is

obtained by

z′ = z ⊙m = z ⊙NetM(z, c), (1)

where ⊙ is the element-wise product operation. The recon-

structed image z̄ is obtained by the inpainting network NetE,

z̄ = NetE(z′) = NetE(z ⊙NetM(z, c)). (2)

The overall pipeline is shown in Figure 5. We could regard

the whole pipeline (Equation 2) as one network with input

z and output z̄ and perform an end to end training. If we

simultaneously optimize the mask generation network NetM

and the inpainting network NetE according to the following

loss function,

L(z) = ‖z − z̄‖2 = ‖z −NetE(z ⊙NetM(z, c))‖2, (3)

NetM will perform an optimized adaptive sampling strategy

according to the input image, and NetE will perform opti-

mized image inpainting. After the mask has been generated

by the network NetM , we can replace the inpainting network

NetE with other image inpainting algorithms. The detailed

network architecture of NetE and NetM are discussed in

the following two subsections III-B and III-C, respectively.

The detailed training procedure of NetM and NetE will be

discussed in Section V-A2

B. Deep Learning Network Architecture for Inpainting Net-

work

The network architecture in [23] is used for the inpainting

network, as shown in Figure 6. The network is an encoder-

decoder pipeline. The encoder takes a corrupted image z′ of

size 64×64 as input and encodes it in the latent feature space.

The decoder takes the feature representation and outputs the

restored image z̄ = NetE(z′). The encoder and decoder are

connected through a channel-wise fully-connected layer. For

the encoder, four convolutional layers are utilized. A batch nor-

malization layer [49] is placed after each convolutional layer to

accelerate the training speed and stabilize the learning process.

The Leaky Rectified Linear Unit (LeakyReLU) activation [50],

[51] is used in all layers in the encoder.

The convolutional layers in the encoder only connect all

the feature maps together, but there are no direct connec-

tions among different locations within each specific feature

map. Fully-connected layers are then applied to handle this

information propagation. To reduce the number of parameters

in the fully connected layers, a channel-wise fully-connected

layer is used to connect the encoder and decoder, as in [21].

The channel-wise fully connected layer is designed to only

propagate information within activations of each feature map.

This significantly reduces the number of parameters in the

network and accelerates the training process.
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A. Problem Formulation

As shown in Figure 4, we are seeking the estimation of

a reconstructed XRF image Ȳ ∈ R
W×H×B that is fully

sampled, with W , H , and B the image width, height, and

number of spectral bands, respectively. We have two inputs:

a subsampled XRF image X̄ ∈ R
W×H×B with the known

binary sampling mask S̄ ∈ R
W×H (X(i, j, :) is equal to the

zero vector if not sampled, i.e., corresponding to S(i, j) = 0),

and a conventional RGB image Ī ∈ R
W×H×b with the same

spatial resolution as the target XRF image Ȳ , but a small

number (equal to 3) of spectral bands, i.e., b ≪ B. Scanned

data X̄ and Ī is linearly scaled to [0 1], i.e., 0 ≤ X(i, j, k) ≤ 1
and 0 ≤ I(i, j, k) ≤ 1. Note that the RGB image is fully

sampled, and therefore the primary goal of the reconstruction

algorithm is to transfer image information from the RGB

image to regions of the XRF where no samples are acquired.

The input subsampled XRF image X̄ can be separated into two

parts: the visible component X̄v ∈ R
W×H×B and the non-

visible component X̄nv ∈ R
W×H×B , with the same binary

sampling mask S̄ as X̄ . We propose to estimate the fully

sampled visible component Ȳ ∈ R
W×H×B by fusing the

conventional RGB image Ī with the visible component of the

input subsampled XRF image X̄v , and the fully sampled non-

visible component Ȳnv ∈ R
W×H×B by using standard total

variation inpainting methods.

To simplify notation, the image cubes are written as ma-

trices, i.e., all pixels of an image are concatenated, such

that every column of the matrix corresponds to the spectral

response at a given pixel, and every row corresponds to

a lexicographically ordered spectral band. Those unsampled

pixels are skipped in this matrix representation. Accordingly,

the image cubes are written as Y ∈ R
B×Nh , X ∈ R

B×Ns ,

I ∈ R
b×Nh , Xv ∈ R

B×Ns , Xnv ∈ R
B×Ns , Yv ∈ R

B×Nh ,

Ynv ∈ R
B×Nh , where Nh = W ×H and Ns = W ×H × c

is the number of sampled XRF pixels. We therefore have

X = Xv +Xnv, (7)

Y = Yv + Ynv, (8)

according to the visible/non-visible component separation

models as shown in Figure 4.

Let us denote by y ∈ R
B , yv ∈ R

B , and ynv ∈ R
B the

one-dimensional spectra at the same pixel location of Ȳ , Ȳv

and Ȳnv , respectively. That is, a column of Yv and Ynv is

represented according to the linear mixing model [58], [59]

described as

yv =
M∑

j=1

d
xrf
v,j αv,j , Yv = Dxrf

v Av, (9)

ynv =

M∑

j=1

d
xrf
nv,jαnv,j , Ynv = Dxrf

nv Anv, (10)

where d
xrf
v,j and d

xrf
nv,j are column vectors representing

respectively the endmembers for the visible and non-

visible components, M is the total number of endmem-

bers, Dxrf
v ≡ [dxrfv 1 , d

xrf
v 2 , . . . , d

xrf
v M ] ∈ R

B×M , Dxrf
nv ≡

[dxrfnv 1, d
xrf
nv 2, . . . , d

xrf
nv M ] ∈ R

B×M , and αv,j and αnv,j are

the corresponding per-pixel abundances. Equation 8 can be

written per column, by utilizing the same column in each of

the three matrices involved, that is y = yv + ynv . We take

the corresponding αv,j,j=1,...,M and stack them into an M×1
column vector. This vector then becomes the kth column of the

matrix Av ∈ R
M×Nh . In a similar manner, we construct matrix

Anv ∈ R
M×Nh . The endmembers Dxrf

v and Dxrf
nv act as basis

dictionaries representing Yv and Ynv in a lower-dimensional

space R
M , with rank{Yv} ≤ M,and rank{Ynv} ≤ M .

The visible Xv and non-visible Xnv components of the in-

put subsampled XRF image are spatially subsampled versions

of Yv and Ynv respectively; that is

Xv = YvS = Dxrf
v AvS, (11)

Xnv = YnvS = Dxrf
nv AnvS, (12)

where S ∈ R
Nh×Ns is the subsampling operator that describes

the spatial degradation from the fully sampled XRF image to

the subsampled XRF image.

Similarly, the input RGB image I can be described by the

linear mixing model [58], [59],

I = DrgbAv, (13)

where Drgb ∈ R
b×M is the RGB dictionary. Notice that the

same abundance matrix Av is used in Equations 9 and 11.

This is because the visible component of the scanning object is

captured by both the XRF and the conventional RGB images.

Matrix Av encompasses the spectral correlation between the

visible component of the XRF and the RGB images.

B. Proposed Solution

To solve the XRF image inpainting problem, we need to

estimate Av , Anv , Drgb, Dxrf
v and Dxrf

nv simultaneously.

Utilizing Equations 7, 11, 12, and 13, we formulate the

following constrained least-squares problem:

min
Av,Anv,D

rgb,

Dxrf
v ,Dxrf

nv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖
2
F

+ γ‖∇I(D
xrf
v Av)‖

2
F + λ‖∇(Dxrf

nv Anv)‖
2
F

+ ‖I −DrgbAv‖
2
F

(14a)

s.t. 0 ≤ D
xrf
v ij ≤ 1, ∀i, j (14b)

0 ≤ D
xrf
nv ij ≤ 1, ∀i, j (14c)

0 ≤ D
rgb
ij ≤ 1, ∀i, j (14d)

Av ij ≥ 0, ∀i, j (14e)

Anv ij ≥ 0, ∀i, j (14f)

1
T(Av +Anv) = 1

T, (14g)

‖Av +Anv‖0 ≤ s, (14h)

with ‖ · ‖F denoting the Frobenius norm and ‖ · ‖0 the ℓ0
norm, i.e., the number of nonzero elements of the given matrix.

D
xrf
v,ij , D

xrf
nv,ij , D

rgb
ij , Av,ij , and Anv,ij are the (i, j) elements
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of matrices Dxrf
v , Dxrf

nv , Drgb, Av , and Anv respectively, and

1
T denotes a row vector of 1’s compatible with the dimensions

of Av and Anv . Equations 14b, 14c, and 14d enforce the

nonnegative, bounded spectrum constraints on endmembers,

Equations 14e and 14f enforce the nonnegative constraints

on abundances, and Equation 14g enforces the constraint that

the visible component abundances and non-visible component

abundances for every pixel sum up to one. These physically

grounded constraints from [40] are shown to be effective in

our previous work [36], by making full use of the fact that the

XRF endmembers are XRF spectra of individual materials,

and the abundances are proportions of those endmembers.

The first term in Equation 14a represents a measure of the

fidelity to the subsampled XRF data X , the second term is the

total variation (TV) regularizer of the visible component, the

third term is the TV regularizer of the non-visible component,

and the last term is the fidelity to the observed RGB image I .

The TV regularizer of the visible component ∇I(D
xrf
v Av) is

defined as

‖∇I(D
xrf
v Av)‖

2
F

=

H−1∑

i=1

W−1∑

j=1

wdown
i,j ‖Dxrf

v Āv(i, j, :)−Dxrf
v Āv(i+ 1, j, :)‖22

+w
right
i,j ‖Dxrf

v Āv(i, j, :)−Dxrf
v Āv(i, j + 1, :)‖22

= ‖Dxrf
v AvP (I)‖2F ,

(15)

where Āv ∈ R
W×H×M is the 3D volume version of Av and

Āv(i, j, :) ∈ R
M is the visible component abundance of pixel

(i, j). wdown
i,j and w

right
i,j are the adaptive TV weights in the

vertical and horizontal directions respectively; that is,

wdown
i,j = e−α‖Ī(i,j,:)−Ī(i+1,j,:)‖2

2 , (16)

w
right
i,j = e−α‖Ī(i,j,:)−Ī(i,j+1,:)‖2

2 , (17)

where Ī(i, j, :) is the RBG image pixel at position (i, j).
P (I) ∈ R

Nh×((W−1)(H−1)) in Equation 15 is the adaptive

horizontal/vertical first order difference operator determined

by the input RGB image I according to Equations 16 and 17.

Equations 16 and 17 indicate that the TV regularizer of the

visible component adapts to the dense set of information that

is available in the conventional RGB image Ī . When the

difference between two adjacent RGB pixels is small, a strong

spatial smoothness constraint is placed on their corresponding

XRF pixels, and vice versa. This adaptive TV regularizer

is one of the main differences between this fusion-based

XRF image inpainting algorithm and our previous fusion-

based XRF image SR algorithm [36]. We found out that such

TV regularizer on the visible component is essential for the

inpainting problem, otherwise the inpainting results are not

satisfactory. For the SR approach, we do not need such a

TV regularizer on the visible component. The SR degradation

model assumes that the LR measured XRF image is a weighted

sum of all the pixels in the target HR XRF image, so there is an

implicit spatial smoothness constraint imposed by the LR XRF

image. However, for the XRF image inpainting problem, we

subsample the XRF image to obtain the measurement so that

many pixels are not sampled at all, making the reconstruction

more difficult than for the SR problem.

The third term in Equation 14 is a TV regularizer of the

non-visible component. Its detailed definition can be found in

our previous work [36] (see Equation (10)).

The optimization in Equation 14 is non-convex and difficult

to carry out if we are to optimize over all the parameters

Av , Anv , Drgb, Dxrf
v , and Dxrf

nv directly. Empirically we

found out that it is effective to alternatively optimize over

these parameters. Also, because Equation 14 is highly non-

convex, a good initialization is needed. Let Y (0) ∈ R
B×Nh

be the initialization of Y . Such initialization can be obtained

by utilizing some standard image inpainting algorithms [42],

[44] to inpaint the subsampled XRF image channel by channel.

Then, the coupled dictionary learning technique in [60], [61]

can be utilized to initialize Drgb and Dxrf
v by

min
Drgb,Dxrf

v

‖I −DrgbAv‖
2
F + ‖Y (0) −Dxrf

v Av‖
2
F

+β

Nl∑

k=1

‖Av(:, k)‖1,

s.t. ‖Drgb(:, k)‖2 ≤ 1, ∀k,
‖Dxrf

v (:, k)‖2 ≤ 1, ∀k,

(18)

where ‖ · ‖1 is the ℓ1 vector norm, parameter β controls the

sparseness of the coefficients in Av , and Av(:, k), D
rgb(:, k),

and Dxrf
v (:, k) denote the kth column of matrices Av , Drgb,

and Dxrf
v respectively. Details of the optimization can be

found in [60], [61]. Drgb and Dxrf
v are initialized using

Equation 18 and Dxrf
nv is initialized to be equal to Dxrf

v .

Av is initialized by Equation 18 as well, while Anv is set

equal to zero at initialization. Note that this formulation allows

our approach to naturally handle the problem when no hidden

layers are present. The iterative optimization algorithms we

deploy are similar to the ones used in our previous work [36],

and they are not repeated here.

Once the optimization problem in Equation 14 is solved

according to Equations 8, 9, and 10, the reconstructed fully

sampled XRF output image Y can be computed by

Y = Yv + Ynv = Dxrf
v Av +Dxrf

nv Anv. (19)

V. EXPERIMENTAL RESULTS

In this section, we will first demonstrate the advantages of

our developed adaptive sampling mask when applied to RGB

image sampling and reconstruction. We will then demonstrate

the performance of the proposed fusion-based XRF inpainting

algorithm.

A. Adaptive Sampling Mask for RGB Image Sampling and

Reconstruction

For the RGB image sampling and reconstruction task, we

show the benefits of our developed adaptive sampling mask,

over the use of a random sampling mask, as well as other

adaptive sampling algorithms, such as Adaptive Irregular Sam-

pling (AIrS) proposed in [8], Kernel-based Adaptive Sampling
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c=0.05 c=0.1 c=0.2

NetE Harmonic Mum-Sh BPFA time(s) NetE Harmonic Mum-Sh BPFA time(s) NetE Harmonic Mum-Sh BPFA time(s)

Random 18.44 18.15 18.56 15.42 - 19.94 19.88 20.08 19.01 - 22.06 21.76 22.08 21.80 -

AIrS 17.27 16.72 18.01 13.24 0.22 18.50 18.52 19.53 16.56 0.23 18.22 20.30 20.60 18.49 0.24

KbAS 18.41 17.84 19.79 14.64 23.37 20.58 20.88 21.98 18.85 50.87 23.01 23.63 24.51 22.52 104.55

Mascar 18.39 17.44 19.20 14.67 0.04 20.18 19.95 20.87 19.30 0.04 21.63 22.27 23.13 21.53 0.04

NetM 20.35 20.22 20.70 15.82 0.02 21.93 22.42 22.98 20.82 0.02 24.31 24.38 25.04 24.16 0.02

TABLE I
SAMPLING AND INPAINTING RESULTS ON IMAGENET TEST IMAGES. RANDOM, AIRS [8], KBAS [10], MASCAR [11] AND PROPOSED NetM SAMPLING

STRATEGIES ARE COMPARED IN PSNR UNDER NetE [23], HARMONIC [63], MUM-SH [42], AND BPFA [44] INPAINTING ALGORITHMS. COMPUTATION

TIME OF DIFFERENT SAMPLING STRATEGIES IS ALSO COMPARED. BEST RESULTS ARE SHOWN IN BOLD. THE RESULTS SHOWN ARE AVERAGED OVER A

SET OF 1000 TEST IMAGES.

(KbAS) proposed in [10] and Measurement-Adaptive Sam-

pling and Cellular Automaton Recovery (Mascar) proposed

in [11].

1) Datasets: To train our proposed adaptive sampling mask

generation CNN in Section III, the ImageNet [62] database

without any of the accompanying labels is used. We randomly

select 1, 000, 000 images for the training set, 1000 for the

validation set, and 1000 for the testing set. All images are

selected randomly among all categories to capture as diverse

image structures as possible and are cropped to have spatial

resolution 64× 64 pixel.

2) Implementation Details: Our proposed adaptive sam-

pling mask generation CNN (Section III) is implemented in

PyTorch1. ADAM [64] is applied as the stochastic gradient

descent solver for optimization. We use the same hyper-

parameters suggested in [23] and batch size equal to 128
during training. 400 epochs are applied during the training

process. We test 3 sampling rates: c = 5%, c = 10%, and

c = 20% for the sampling percentage parameter. A 5%, 10%,

and 20% sampling percentage roughly speed up the raster

scanning procedure by a factor of 20, 10, and 5, respectively.

For training, we first initialize the inpainting network NetE

according to [23]. A random sampling mask with sampling

rate c is utilized to sample the input RGB image. The mask

generation network NetM is initialized randomly. We then

train the whole network architecture in Figure 5. The learning

rate of the mask generation network NetM is set equal to

0.0002 during training. The learning rate of the inpainting

network NetE is set to 0, i.e., we fix NetE when training

NetM . We did not optimize NetM and NetE simultane-

ously; although the best reconstruction of z would have been

obtained, the two networks would have been dependent on

each other. Notice that the channel-wise fully connected layer

in NetE (Figure 6) is able to learn a high-level feature

mapping, making NetE able to perform semantic image

inpainting. However, we would like to utilize other image

inpainting algorithms other than NetE to make the adaptive

sampling mask be as general and applicable to as many

image inpainting algorithms as possible. Also as mentioned

in Section III-C, during training, the output of NetM is

D ∈ R
2, a probabilistic map, instead of the binary mask

Ber(D). So training NetE with NetM jointly would make

NetE learn to reconstruct images corrupted by multiplying

them by a continuous probabilistic mask, instead of a binary

1https://github.com/usstdqq/deep-adaptive-sampling-mask

mask, which does not represent the inpainting problem. By

fixing NetE, which is pre-trained by random binary sampling

masks, NetM is constrained to be optimized for the general

image inpainting problem instead of the “probabilistic” image

inpainting problem. An adaptive sampling mask is thus trained

suitable for general image inpainting problem. Note that, since

NetE architecture is differentiable, it allows us to train the

NetM atchitecture to optimize the mask, while taking into

account both the RGB image content, and the reconstruction

algorithm.

3) Performance on ImageNet Testing Images: To compare

the performance of our adaptive sampling mask (NetM ) with

the random, AIrs [8], KbAS [10] and Mascar [11] sampling

masks, we apply all of them to corrupt 1000 testing images

from the ImageNet database. Three sampling rates c = 0.05,

c = 0.1 and c = 0.2 are tested for the sampling methods. For

image inpainting algorithms, NetE Inpainting [23], Harmonic

Inpainting [63], Mumford-Shah (Mum-Sh) Inpainting [42],

and BPFA inpainting [44] are used to reconstruct the fully

sampled RGB images.

The average PSNRs in dB over all 1000 test images are

shown in Table I. First, we observe that under all three

sampling rates, the proposed NetM mask outperforms the

random, AIrS, KbAS and Mascar sampling masks consis-

tently over all inpainting reconstruction algorithms in terms

of PSNR, showing the effectiveness of our proposed adaptive

sampling mask generation network. Furthermore, the proposed

NetM is significantly faster than AIrS, KbAS, and Mascar in

generating the sampling mask. Finally, it can be concluded that

the smaller the sampling rate, the larger the advantage of our

proposed algorithm compared to other sampling algorithms.

This implies that our proposed NetM is able to handle

challenging sampling tasks (small sampling rates) and have

better reconstruction accuracy under various reconstruction

algorithms.

The visual quality comparison of the adaptive sampling and

random sampling masks is shown in Figure 8. Two test images

are picked from the testing set of 1000 images in total. Under

sampling rate c = 0.2, the advantages of the proposed NetM

mask over the random, AIrS, KbAS and Mascar sampling

masks can be observed by comparing the resulting reconstruc-

tions by the same inpainting algorithm. For the test image

#39, the NetM mask is able to capture the white dots in the

red hat, resulting in accurate reconstruction results of those

white dots. KbAS misses one white dot in the image. Although

AIrS and Mascar are able to sample all the white dots in the
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Fig. 8. Visual Comparison of the reconstructed images using random, AIrS, KbAS, and NetM sampling masks at sampling rate c = 0.2. The first column is
the input test image and the second column is the sampling mask, either random, AIrS, KbAS, or NetM , the third column is the sampled image obtained by the
sampling mask, and the rest of the columns are the reconstruction results of NetE Inpainting [23], Harmonic Inpainting [63], Mumford-Shah Inpainting [42],
and BPFA inpainting [44] respectively.

image, they fail to capture the structure of these white dots.

For test image #91, compared to random sampling mask, the

proposed NetM mask samples the contour structure of the

bird, resulting in its better reconstruction. When compared to

AIrS, KbAS and Mascar masks, the proposed NetM mask

samples the whole image more evenly, resulting in fewer

artifacts in the inpainted images. The improved performance

of the adaptive sampling mask over other sampling masks

is consistent over all inpainting reconstruction algorithms we

tested.

4) Performance on Painting Images: We also tested our

proposed adaptive sampling algorithm on painting images at
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Fig. 9. Visualization of sampling and inpainting result of the “Bloemen en insecten” painting. (a) original RGB image with red bounding box. (b) region
inside the bounding box of (a) for visualization purposes. (c), (g), (k), (o) and (s) random, AIrS, KbAS, Mascar and NetM sampling masks respectively. (d),
(h), (l), (p) and (t) reconstruction results of each sampling mask using Harmonic algorithms. (e), (i), (m), (q) and (u) reconstruction results of each sampling
mask using Mumford-Shah algorithm. (f), (j), (n), (r) and (v) reconstruction results of each sampling mask using BPFA algorithm. Computation time of each
sampling mask and PSNR of the entirety of each reconstructed images are also shown.

sampling rate c = 0.1. As shown in Figures 9 (a), the RGB

image of the painting “Bloemen en insecten” is tested. It has

spatial resolution 580 × 680 pixels. Random, AIrS, KbAS,

Mascar and NetM sampling masks are generated as shown

in Figures 9(c), (g), (k), (o) and (s) with the corresponding

computation time. Harmonic Inpainting [63], Mumford-Shah

Inpainting [42], and BPFA [44] algorithms are utilized to

reconstruct the sampled RGB images, and the reconstruction

results are shown in Figures 9 (d)-(f), (h)-(j), (l)-(n), (p)-(r) and

(t)-(v) with the corresponding PSNR values. By comparing the

rows of different sampling masks, it can be concluded that our

proposed NetM mask outperforms other sampling masks in

terms of both visual quality of the reconstructed images and

the PSNR values. Notice that NetM is significantly faster

than AIrS, KbAS and Mascar in computation speed. Although

KbAS samples densely on the foreground, it still misses many

details due to the complexity of the flower structure. Similarly,

Mascar samples densely on the foreground, while it misses the

flower stem structure. NetE Inpainting [23] is not utilized

in this experiment since it is trained to inpaint RGB images

with spatial resolution 64 × 64 pixels. The network structure

shown in Figure 6 is not fully convolutional, as there is the

channel-wise fully connected layer in the middle. NetM is

fully convolutional (Figure 7) so that it can generate sampling

masks of input images with arbitrary resolution.

B. Adaptive Sampling Mask for X-Ray Fluorescence Image

Inpainting

In the previous section (Section V-A), we demonstrated

the effectiveness of our proposed NetM sampling mask on

the RGB image sampling and inpainting problem. To further

evaluate the effectiveness of the NetM sampling mask and

evaluate the performance of our proposed fusion-based in-

painting algorithm (Section IV), we have performed experi-

ments on XRF images. The basic parameters of the proposed

reconstruction method are set as follows: the number of atoms

in the dictionaries Drgb, Dxrf
nv and Dxrf

v is M = 200;
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parameter λ and γ in Equation 14 are set equal to 0.1;

parameter α in Equation 16 and Equation 17 is set to 16.

The optional constraint in Equation 14h is not applied here.

1) Error Metrics: The root mean squared error (RMSE),

the peak-signal-to-noise ratio (PSNR), and the spectral angle

mapper (SAM, [65]) between the estimated fully sampled XRF

image Y and the ground truth image Y gt are used as the error

metrics.

2) Comparison Methods: According to our knowledge, no

work has been reported on solving the XRF (or Hyperspectral)

image inpainting problem by fusing a conventional RGB

image. So, we can only compare our results with traditional

image inpainting algorithms such as Harmonic Inpainting [63],

Mumford-Shah Inpainting [42], and BPFA inpainting [44].

Harmonic Inpainting and Mumford-Shah Inpainting methods

are for image inpainting, so we have to inpaint the XRF

image channel by channel. BPFA inpainting [44] is able to

inpaint multiple channels simultaneously. For the sampling

mask comparison, we still compare with random, AIrS [8],

KbAS [10] and Mascar [11] sampling masks.

3) Real Experiment: For this experiment, real data were

collected by a home-built X-ray fluorescence spectrometer

(courtesy of Prof. Koen Janssens), with 2048 channels in spec-

trum. Studies from the XRF image scanned from Jan Davidsz.

de Heem’s “Bloemen en insecten” (ca 1645), in the collec-

tion of Koninklijk Museum voor Schone Kunsten (KMKSA)

Antwerp, are presented here. We utilize the super-resolved

XRF image in our previous work [36] as the ground truth. The

ground truth XRF image has dimensions 680×580×2048. We

first extract 20 regions of interest (ROI) spectrally and work

on them, to decrease the spectral dimension from 2048 to 20.

We decrease the spectral dimension so as to compare with

other inpainting algorithms, e.g., [42], [63], which therefore

reconstruct the subsampled XRF image channel by channel

and large spectral dimensions will make the computational

time very long. The sampling ratio c is set to be 0.05,

0.1, and 0.2. Different sampling strategies are applied and

analyzed. Various inpainting methods are subsequently applied

to reconstruct those subsampled XRF images.

As shown in Table II, our proposed fusion-based inpainting

algorithm with the proposed adaptive sampling mask provides

the closest reconstruction to the ground truth XRF image com-

pared to all other methods. Our proposed algorithm utilizes

as guidance a conventional fully sampled and high contrast

RGB image (Figure 9 (a)), resulting in better inpainting

performance. By comparing the difference between results by

“Mum-Sh” and results by “Proposed” under various sampling

rates, it can be concluded that the benefit gained by our

proposed fusion-based inpainting is large when the adaptive

sampling masks are applied. For example, at sampling rate

c = 0.2, there is a 0.78 dB improvement in PSNR by ap-

plying our proposed fusion-based inpainting algorithm when a

random sampling masks are applied, while there is a 6.71 dB,

7.94 dB, 9.06 dB and 7.33 dB improvement in PSNR

when an AIrS, KbAS, Mascar and NetM sampling mask is

applied, respectively. This is because the adaptive sampling

masks sampled the corresponding visible component of the

XRF image efficiently and the fusion inpainting propagated

Fig. 10. RMSE versus number of iterations for our proposed fusion inpainting
algorithm on the “Bloemen en insecten” data when c = 0.2. The Mumford-
Shah inpainting algorithm is utilized as initialization of our proposed algo-
rithm. Different sampling masks are compared.

the measured XRF pixels properly. Furthermore, the NetM

sampling mask provides the best XRF image reconstruction

compared to other sampling masks.

The iteration process of our proposed fusion inpainting

algorithm when c = 0.2 is shown in Figure 10. Notice that

at the initial iterations of our proposed fusion inpainting algo-

rithm, the RMSE is higher than the Mumford-Shah inpainting

algorithm. This is because we decompose the inpainting result

of Mumford-Shah inpainting algorithm by sparse representa-

tion, according to Equation 18. Due to the complexity of the

“Bloemen en insecten” data, we lose some accuracy during the

first few iterations. However, with more iterations, the RMSE

of both random sampling and adaptive sampling decreases and

becomes smaller than the RMSE of Mumford-Shah inpainting

algorithm. Our proposed NetM sampling mask provides the

smallest RMSE for both Mumford-Shah initialization and the

proposed fusion inpainting algorithm, showing the effective-

ness of NetM in the task of XRF image sampling and

reconstruction. In addition, the optimization of Equation 14

exhibits monotonic convergence under all sampling masks.

When c = 0.2, the visual quality of the different inpainting

algorithms and sampling strategies on channel #16, corre-

sponding to the Pb Lη XRF emission line, is compared in

Figure 11. The same random, AIrS, KbAS, Mascar and NetM

sampling masks as the sampling masks in Figures 9 (b), (f), (j),

and (n), are applied here. The reconstruction results obtained

by the Harmonic, Mum-Sh, BPFA, and Proposed algorithms

using AIrS, KbAS, Mascar and NetM sampling masks are

sharper than those using the random sampling mask. This is

because the majority of the XRF signal in the “Bloemen en

insecten” data correlates to the RGB signal, and the sampling

masks, which are designed for the RGB image, would also be

suitable for the visible component of the XRF signal. Among

the AIrS, KbAS, Mascar and NetM sampling masks, NetM

sampling mask outperforms others for different reconstruction

algorithms, both quantitatively (Table II) and qualitatively
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c=0.05

Harmonic Mum-Sh BPFA Proposed

RMSE PSNR SAM RMSE PSNR SAM RMSE PSNR SAM RMSE PSNR SAM

Random 0.0428 27.37 5.06 0.0319 29.93 3.85 0.1141 22.57 8.27 0.0300 30.45 3.67

AIrS 0.1224 18.24 8.20 0.0378 28.45 4.33 0.1446 17.80 13.49 0.0355 37.03 4.14

KbAS 0.2374 12.49 12.62 0.0309 30.19 3.95 0.1791 15.08 19.51 0.0297 39.25 3.85

Mascar 0.2374 12.49 12.62 0.0309 30.19 3.95 0.1791 15.08 19.51 0.0297 39.25 3.85

NetM 0.0333 29.56 4.22 0.0279 31.09 3.43 0.0910 24.22 7.21 0.0261 39.54 3.27

c=0.1

Harmonic Mum-Sh BPFA Proposed

RMSE PSNR SAM RMSE PSNR SAM RMSE PSNR SAM RMSE PSNR SAM

Random 0.0260 31.70 3.10 0.0247 32.14 2.84 0.0369 28.71 3.27 0.0229 32.80 2.66

AIrS 0.0408 27.78 3.77 0.0284 30.92 3.04 0.0703 23.12 4.30 0.0260 38.54 2.84

KbAS 0.1473 16.63 7.78 0.0231 32.74 2.83 0.1268 18.06 9.00 0.0220 41.59 2.73

Mascar 0.2374 12.49 12.62 0.0309 30.19 3.95 0.1791 15.08 19.51 0.0297 39.25 3.85

NetM 0.0227 32.87 2.84 0.0211 33.53 2.50 0.0353 29.66 3.61 0.0195 41.87 2.38

c=0.2

Harmonic Mum-Sh BPFA Proposed

RMSE PSNR SAM RMSE PSNR SAM RMSE PSNR SAM RMSE PSNR SAM

Random 0.0195 34.19 2.18 0.0184 34.70 1.92 0.0176 35.29 2.01 0.0168 35.48 1.79

AIrS 0.0185 34.66 1.94 0.0154 36.24 1.59 0.0336 29.50 2.48 0.0141 42.95 1.49

KbAS 0.0518 25.71 3.35 0.0157 36.08 1.78 0.0683 23.39 3.21 0.0148 44.02 1.72

Mascar 0.2374 12.49 12.62 0.0309 30.19 3.95 0.1791 15.08 19.51 0.0297 39.25 3.85

NetM 0.0160 35.90 1.86 0.0145 36.77 1.54 0.0151 36.70 1.80 0.0137 44.10 1.48

TABLE II
EXPERIMENTAL RESULTS ON THE “BLOEMEN EN INSECTEN” DATA COMPARING DIFFERENT INPAINTING METHODS, UNDER RANDOM, AIRS, KBAS, AND

NetM SAMPLING STRATEGIES, DISCUSSED IN SECTION V-B2 IN TERMS OF RMSE, PSNR, AND SAM. BEST SAMPLING MASKS UNDER THE EACH

RECONSTRUCTION ALGORITHM ARE SHOWN IN ITALIC. BEST RECONSTRUCTION RESULTS ARE SHOWN IN BOLD.

(Figure 11). The proposed fusion inpainting algorithm further

improves the contrast and resolves more fine details in (q).

When compared to the ground truth image (b), we can

conclude that those resolved details have high fidelity to the

ground truth image (b).

Our proposed adaptive sampling algorithm NetM is not

designed and trained for the task of XRF image sampling

and reconstruction. However, NetM still outperforms random

sampling, as well as three other adaptive sampling algorithms,

under various XRF reconstruction algorithms and under differ-

ent sampling rates. This illustrates the effectiveness of NetM

in extracting image information with limited sampling budget.

This also demonstrates that NetM can generalize well into

some other imaging tasks.

4) XRF Inpainting v.s. XRF Super-Resolution: In this ex-

periment, we further compare the proposed XRF inpainting

utilizing NetM adaptive sampling with our previous XRF-

SR approach [36]. The XRF scanner can perform regular

sub-sampling with a sampling step size K on both image

dimensions. An upscale factor K SR can be applied to

reconstruct the fully sampled XRF images. We set K = 5 to

match the SR setting of [36]. We retrain NetM with sampling

rate c = 0.04, which has the same number of samples as a

K = 5 regular sub-sampling. The training procedure is the

same as described in Section V-A2.

As shown in Table III, as expected, the proposed XRF

inpainting algorithm utilizing NetM outperforms the XRF-SR

approach. Please notice that both methods fuse an RGB image

during the XRF reconstruction, and the main difference is the

sampling pattern. This experiment further argues the improved

effectiveness of the proposed NetM based sampling.

RMSE PSNR SAM

XRF-SR 0.0382 28.36 4.77

Proposed 0.0278 31.12 3.55

TABLE III
EXPERIMENTAL RESULTS ON THE “BLOEMEN EN INSECTEN” DATA

COMPARING PROPOSED XRF INPAINTING UTILIZING NetM ADAPTIVE

SAMPLING WITH XRF SR. BEST RECONSTRUCTION RESULTS ARE SHOWN

IN BOLD.

NetE Harmonic Mum-Sh

Random 19.94 19.88 20.08

AIrS 18.50 18.52 19.53

KbAS 20.58 20.88 21.98

Mascar 20.18 19.95 20.87

NetM pre train joint 19.53 19.72 19.89

NetM rand init joint 15.37 19.87 20.08

NetM sequential 21.93 22.42 22.98

TABLE IV
SAMPLING AND INPAINTING RESULTS ON IMAGENET TEST IMAGES.

RANDOM, AIRS [8], KBAS [10], MASCAR [11],
NetM pre train joint , NetM rand init joint AND PROPOSED

NetM SAMPLING STRATEGIES ARE COMPARED IN TERMS OF PSNR (IN

DB) UNDER NetE [23], HARMONIC [63] AND MUM-SH [42] INPAINTING

ALGORITHMS. BEST RESULTS ARE SHOWN IN BOLD. THE RESULTS SHOWN

ARE AVERAGED OVER A SET OF 1000 TEST IMAGES.

5) Simultaneous Training of NetE and NetM : With an

initial look at Fig. 5, it would seem meaningful to train

NetE and NetM simultaneously and not sequentially, as

described in Section V-A2. In this experiment, we performed

certain experiments to test such approach and eventually

support our proposed sequential training procedure. There

are two approaches in training NetE and NetM simulta-

neously. The first one is to train NetE individually first,
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Fig. 11. Visualization of inpainting results on the “Bloemen en insecten” data when c = 0.2. Channel #16 related to the Pb Lη XRF emission line is selected.
(a) ground truth XRF image with black bounding box. (b) region inside the bounding box of (a), shown for visual comparison purposes. The sampling masks
for random, AIrS, KbAS, Mascar and NetM are the same as the sampling masks in Figures 9 (c), (g), (k), (o) and (s) respectively. (c)-(v) reconstruction
results of different inpainting algorithms for different sampled XRF image within the same region of (a) as (b).

and then train NetE with NetM jointly using Equation 3.

The second one is to perform random initialization on both

NetE and NetM , and then simultaneously train them using

Equation 3. We tested both of these training approaches at

sampling rate c = 0.1. We henceforth refer to the first

approach as NetM pre train joint, to the second approach

as NetM rand init joint and to the proposed training

approach as NetM sequential. Notice that we quantize the

probabilistic map D generated by NetM during testing.

We tested these two above described networks utilizing

the same 1000 ImageNet test set and compared them with

the other inpainting approaches considered in this paper in

terms of PSNR (in dB). As is clear from Table IV, the

results obtained by the networks NetM pre train joint and

NetM rand init joint , with which NetM and NetE were

trained simultaneously, are not competitive with the results

obtained by the proposed sequential training of NetE and

NetM , i.e., NetM sequential. It is mention again here that

NetE in both of these simultaneous training approaches was

trained with input images corrupted by a probabilistic map D.

The resulting sampling masks from these two approaches can-

not also get good reconstruction accuracy using Harmonic [63]

and Mum-Sh [42] inpainting. There is approximately a 2
dB difference in reconstruction accuracy, indicating that the

trained NetM is not as effective. When comparing these

two simultaneous optimization approaches to each other, it is

observed that using the pre-trained NetE before joint training

provides some benefit on both NetE and NetM .

VI. CONCLUSION

In this paper, we presented a novel adaptive sampling mask

generation algorithm based on CNNs and a novel XRF image

inpainting framework based on fusing a conventional RGB

image. For the adaptive sampling mask generation, we trained

the mask generation network NetM along with the inpainting

network NetE to obtain an optimal binary sampling mask
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based on the input RGB image. For the fusion-based XRF

image inpainting algorithm, the XRF spectrum of each pixel

is represented by an endmember dictionary, as well as the RGB

spectrum. The input subsampled XRF image is decomposed

into visible and non-visible components, making it possible

to find the nonlinear mapping from the RGB to the XRF

spectrum. Experiments show the effectiveness of our proposed

network NetM in both RGB and XRF image sampling

and reconstruction tasks. Higher reconstruction accuracy is

achieved in both RGB and XRF image sampling, and also the

computation time of mask generation is significantly smaller

than other adaptive sampling methods.
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