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Abstract— Reliable environmental context prediction is crit-
ical for wearable robots (e.g., prostheses and exoskeletons)
to assist terrain-adaptive locomotion. This article proposed a
novel vision-based context prediction framework for lower limb
prostheses to simultaneously predict human’s environmental
context for multiple forecast windows. By leveraging the Bayesian
neural networks (BNNs), our framework can quantify the
uncertainty caused by different factors (e.g., observation noise,
and insufficient or biased training) and produce a calibrated
predicted probability for online decision-making. We compared
two wearable camera locations (a pair of glasses and a lower limb
device), independently and conjointly. We utilized the calibrated
predicted probability for online decision-making and fusion.
We demonstrated how to interpret deep neural networks with
uncertainty measures and how to improve the algorithms based
on the uncertainty analysis. The inference time of our framework
on a portable embedded system was less than 80 ms/frame.
The results in this study may lead to novel context recognition
strategies in reliable decision-making, efficient sensor fusion, and
improved intelligent system design in various applications.

Note to Practitioners—This article was motivated by two
practical problems in computer vision for wearable robots:
First, the performance of deep neural networks is challenged
by real-life disturbances. However, reliable confidence estimation
is usually unavailable and the factors causing failures are hard to
identify. Second, evaluating wearable robots by intuitive trial and
error is expensive due to the need for human experiments. Our
framework produces a calibrated predicted probability as well
as three uncertainty measures. The calibrated probability makes
it easy to customize prediction decision criteria by considering
how much the corresponding application can tolerate error.
This study demonstrated a practical procedure to interpret
and improve the performance of deep neural networks with
uncertainty quantification. We anticipate that our methodology
could be extended to other applications as a general scientific
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and efficient procedure of evaluating and improving intelligent
systems.

Index Terms— Bayesian neural network (BNN), environmental
context prediction, prosthesis, uncertainty quantification.

I. INTRODUCTION

RELIABLE environmental context prediction is critical
for wearable robots (e.g., prostheses and exoskele-

tons) to better assist terrain-adaptive locomotion. For exam-
ple, environmental context information can be used to
predict human locomotion mode transition in advance for
smooth lower limb prostheses control. Traditional approaches
detected the locomotion mode transition using mechanical
measurements [2], [3] (e.g., forces and motions), electromyo-
graphy (EMG) signals [4], or inertial measurement units
(IMUs) [5]—which are usually delayed, user-dependent, and
sensor location sensitive.
Progress has been made to capture environmental con-

text information for wearable robots. A laser distance meter
and IMU-based system were developed in our previous
studies [6], [7] to identify the terrain in front of the human,
which was then fused with the human’s neuromuscular sig-
nals to predict the user’s locomotor task transitions. The
single-point information from the laser distance meter is,
however, inadequate to capture enough environmental fea-
tures. Meanwhile, computer vision has attracted considerable
attention because it is informative, noninterrupting, and user-
independent. Depth images were used to detect user move-
ment intent or recognize terrains (e.g., stairs and ramp) by
edge detection [8]–[10] or 3-D point cloud classification [11].
Attempts have also been made to recognize terrains by
learning from informative RGB images [12], [13]. Previous
works showed promising results for scenarios with controlled
variations in the environment and human behaviors. Studying
variations in the real-life environment and human behaviors
is necessary for wearable robotics applications. Moreover,
a reliable confidence estimation is desired to quantify the
uncertainty in the predictions of the vision algorithms, which
was important for wearable robots to decide the competence of
the algorithms and prevent potential risks to the human users.
Deep learning has shown promising potential in various

vision applications, such as semantic segmentation [14] and
site recognition [15]. In practice, the performance of the
neural networks is challenged by data ambiguity, data noise,
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Fig. 1. Imaging devices and environmental context. (a) On-glasses camera configuration using a Tobii Pro Glasses 2 eye tracker [1]. (b) Lower limb
data acquisition device with a camera and an IMU chip. (c) and (d) Example frames from the cameras for the two data acquisition configurations. (e) and
(f) Example images of the data collection environment and terrains considered in our experiments.

and insufficient or biased training. For wearable robots, even
occasional mistaken actions can lead to injuries. Accommo-
dating actions (e.g., alarming the user or switching to a
default “safe” mode) can be taken if the systems are aware
of the low reliability of the current predictions. Thus, accurate
uncertainty measures of the predictions are desired. There are
two main types of uncertainty a model can have: epistemic
and aleatoric uncertainty. Epistemic uncertainty captures the
uncertainty of the model—because of a lack of understanding
of the data generating mechanism, the model parameters are
poorly determined, and the posterior over parameters are
broad. Epistemic uncertainty is usually caused by insufficient
or biased training and can be explained away with more
training data. For example, if a terrain classifier is only trained
with indoor scenes, large epistemic uncertainty is expected
for outdoor scenes. Aleatoric uncertainty is usually caused
by observation noises or insufficient sensing capability—for
example, motion blur or overexposure for images. Aleatoric
uncertainty is usually heteroscedastic (data-dependent) and
cannot be reduced with more training data.
Prevailing deep learning models represent model parameters

as deterministic values and do not capture epistemic model
uncertainty. In addition, the observation noise is usually mod-
eled as homoscedastic (not data-dependent) uncertainty and
ignored as part of the weight decay. Recently, Gal and Ghahra-
mani [16] proposed a dropout-based Bayesian approximation
method to combine the advantages of the Bayesian theory
and the state-of-the-art deep neural networks, leading to deep
Bayesian neural networks (BNNs). This method was adapted
to more complex neural network architectures, such as con-
volutional neural networks (CNNs) [17] and recurrent neural
networks (RNNs) [18]. This method was then extended to cap-
ture both heteroscedastic aleatoric and epistemic uncertainty in
a unified model [19]. The capability of capturing uncertainty
provides BNNs with significant potentials in safety-sensitive
fields, such as medical applications [20] and autonomous
driving [21]. Although promising correlations with prediction
errors were observed, the uncertainty measures of BNNs are

not calibrated. Furthermore, the performance of BNNs for
wearable robotics applications is unclear. Previous studies only
applied BNNs to standard classification and regression tasks,
such as depth estimation and semantic segmentation [19].
For wearable robots, user behavior is a significant source
of uncertainty that does not exist in the previously studied
applications. Moreover, it is an open question on how to
verify and improve an intelligent system with the uncertainty
measures from BNNs.
Another challenge of applying computer vision to wearable

robots is the requirement for portability, which tightly con-
strains the sizes and locations of the sensors and processors.
Various sensor locations have been used in present designs
of wearable robots to capture environmental information,
including chest [12], leg [9], [11], [13], and waist (side [6]
or front [10]). In the previous studies, however, the choices of
sensor locations were usually arbitrary, which warrants for a
more formal study of the benefits of different sensor locations.
In this study, we proposed a novel environmental context

prediction framework for lower limb prostheses, which can:
1) predict (simultaneously for multiple forecast windows) the
type of terrain, which the user will be stepping on based
on the current video streams from the wearable cameras;
2) quantify predictive uncertainties from different perspec-
tives for interpretation; and 3) produce a calibrated predicted
probability for online decision-making and fusion. In this
study, we considered six types of terrains (tile, cement, brick,
grass, upstairs, and downstairs as shown in Fig. 1) and four
forecast windows (current, 1s, 2s, and 4s). Our framework
can be extended to recognize more complex contexts, such
as driving, sitting on the bus, and walking on a sidewalk
with pedestrians and vehicles around. Other potential wearable
robotic applications include: 1) notifying users in real time
with context-aware suggestions for safety or rehabilitation and
2) autonomous patient condition analysis (e.g., analyzing gait
behaviors on different terrains).
In addition, we evaluated and compared different wear-

able camera locations (see Table I) and fusion strategies
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TABLE I

WEARABLE CAMERA LOCATION COMPARISON

Fig. 2. Pipeline of the environmental context prediction framework. The framework reads the videos from the data acquisition devices (e.g., glasses and
lower limb camera) and simultaneously outputs the terrain prediction and the calibrated predicted probability for different forecast windows.

from practical perspectives, such as prediction performance,
generalization, and developing costs. We designed an eval-
uation methodology to verify and interpret the proposed
framework considering the uncertainty measures, calibrated
predicted probability, and the performances for different fore-
cast windows under realistic disturbances. By leveraging the
analysis, we developed a frame selection strategy that signifi-
cantly reduced computations with similar prediction accuracy.
We demonstrated a complete procedure of interpreting deep
learning models with uncertainty measures, utilizing calibrated
predicted probability for online decision-making and fusion,
and closing the loop by improving the algorithms based on the
uncertainty analysis. The results in this study may lead to novel
context recognition strategies for reliable decision-making,
efficient sensor fusion, and improved intelligent system design.

II. METHOD

A. Framework Overview

Fig. 2 shows the main components of our framework: fea-
ture extraction, terrain prediction, uncertainty quantification,
and probability calibration.
First, we used MobileNetV2 [23] pretrained with the

ILSVRC data set [24] to extract features from images.
We adopted the implementation from Keras and extracted
the features after the global average pooling layer but before
the last Softmax layer. MobileNetV2 is popular for low
computational cost and high prediction accuracy. We resized
the images to 224 × 224 × 3 before feeding them into the
MobileNetV2.
Second, trained a BNN to predict current and future terrains

based on the features extracted by the MobileNetV2. During
inference, we performed the Monte Carlo dropout sampling
for 40 times to obtain the terrain prediction and the three
uncertainty measures: aleatoric uncertainty, entropy uncer-
tainty, and mutual information uncertainty. We studied two

BNN architectures: Bayesian multilayer perceptron (BMLP)
and Bayesian gated recurrent unit (BGRU). BMLP had three
fully connected layers, and BGRU had one variational gated
recurrent unit layer between two fully connected layers. For
both networks, the first two layers had 512 units and used
ReLU activation function. For each forecast window, the last
layer had two components: 1) a fully connected layer with
six units and a Softmax activation function to classify the
six types of terrains and 2) a fully connected layer with one
unit and a SoftPlus activation function to predict the aleatoric
uncertainty parameter σ . The last layers for different forecast
windows shared the first two layers. We applied dropout to
each layer with a dropout probability of 0.1. We also applied
l2 regularization to the bias and the kernel parameters with the
weight set to 10−5.
Finally, we trained a probability calibration network project-

ing the three uncertainty measures to one calibrated predicted
probability. This network had three fully connected lay-
ers with 32, 64, and 1 units, respectively. The tanh activation
function was used for the first two layers while Sigmoid for
the last layer.

B. Bayesian Deep Neural Network

BNNs extend standard neural networks by modeling the
distributions over the weight parameters. Denote the input
of a BNN as x , the collection of the parameters as W , and
the output as f W (x). The prior of W is usually assumed
as a standard Gaussian distribution N (0, I ) with a trans-
formation (if needed). Given a training data set with X =
{x1, . . . , xN } as the input (the images/video feed in our case)
and Y = {y1, . . . , yN } as the targets (the terrain which the
subject will step on) where N is the number of training obser-
vations, the Bayesian inference is used to find the posterior
distribution P(W |X,Y ). Then, the prediction for a new input
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sample x∗ is

P
(
y∗|x∗, X,Y

) =
∫

P
(
y∗|x∗,W

)
P(W |X,Y ) dW. (1)

However, for deep neural networks, P(W |X,Y ) is analyt-
ically intractable. One direction of solutions is to approxi-
mate P(W |X,Y ) with a simple distribution q∗

�(W ). � is the
collection of parameters of q∗

�(W ) and can be estimated by
minimizing the Kullback–Leibler divergence to P(W |X,Y ).
We utilized the Monte Carlo dropout sampling [16] to approx-
imate the prediction and measure the epistemic uncertainty.
Denote by Wi as the parameters (a matrix of size Ki × Ki−1)
of the i th layer of a BNN, �i as the variational parameters
(a matrix of the same size as Wi ), and pi as the dropout
probability for the i th layer. Then, q∗

�(W ) can be defined as

Wi = �i · diag
([
zi, j

]Ki−1

j=1

)
zi, j ∼ Bernoulli(pi).

With the abovementioned formulation, standard dropout can
be used as a Bayesian approximation.
In addition, the aleatoric uncertainty σ can be learned

from the data as an output of the model [19]. By Monte
Carlo dropout sampling Ŵ ∼ q�(W ), the sampled predictions
and the aleatoric uncertainty measure can be obtained as
[ŷ, σ̂ 2] = f Ŵ (x). The loss function L(�) (associated with
the likelihood) to train BNN for regression is given by

1

N

N∑
n=1

[
1

2
σ̂−2
n ||yn − ŷn||2 + 1

2
log

(
σ̂ 2
n

)]
. (2)

This loss has two terms: a mean square error tempered by
σ and a regularization term of σ . The first term discourages
the model from predicting very small σ to samples with large
error, and the second term discourages predicting large σ to all
the samples. During training, the neural network is trained to
adapt the weighting of the prediction errors—assigning large σ
to the most challenging samples that are usually contaminated
by noise. No ground-truth value is needed to train for σ
because it is trained implicitly through the loss attenuation.
Suppose we performed the Monte Carlo dropout sampling

for T iterations for each sample, the prediction can be
approximated via

E(y) ≈ 1

T

T∑
t=1

ŷt (3)

and the uncertainty is given by

U ≈ 1

T

T∑
t=1

ŷ2t −
(
1

T

T∑
t=1

ŷt

)2

+ 1

T

T∑
t=1

σ̂ 2
t (4)

where the first two terms capture the epistemic model
uncertainty and the second term captures the aleatoric
uncertainty.
We extended the regression aleatoric uncertainty to our clas-

sification task by modeling the regression uncertainty of the
logit vector—the output of the last layer before the Softmax
activation function. We placed a Gaussian distribution over the
logit vector as ẑ ∼ N (y, σ 2), where [y, σ 2] = f W (x), f W is

the neural network, and x is the input data. The expected log
likelihood for each training sample is then

L = log
{
EN(ẑ;y,σ 2)[Softmax(ẑc)]

}
(5)

where c is the ground-truth label of x .
Since (5) is analytically intractable, we approximated it by

Monte Carlo integration. Denote ẑk = f Ŵ + σ · εk , where
εk follows a standard Gaussian distribution. The loss function
becomes

L = log
1

K

K∑
k=1

exp

[
ẑk,c − log

∑
c′

exp
(
ẑk,c′

)]
(6)

where K is the number of Monte Carlo sampling iterations
and c′ is the class index of the logit vector ẑ.
Given T the number of Monte Carlo dropout sampling

iterations, the output Softmax vector p∗ for inference can
be approximated as

p∗ ≈ 1

T

T∑
t=1

Softmax
(
f Ŵt

(
x∗)). (7)

For classification, we adopted two alternative uncertainty
metrics: predictive entropy and mutual information. Predictive
entropy [25] measures the uncertainty of deciding the class of
a sample—large if the estimated distribution is “broad” over
different classes and small if “sharp” on one of the classes.
With the Monte Carlo dropout sampling, it was approximated
as

H
[
y∗|x∗, X,Y

] = −
∑
c′

(
1

T

T∑
t=1

P
(
y∗ = c′|x, Ŵt

))

· log
(
1

T

T∑
t=1

P
(
y∗ = c′|x, Ŵt

))
. (8)

Mutual information between the posterior over W and the
prediction y∗ quantifies the uncertainty in the BNN’s out-
put [26]. This measure is larger when the stochastic predictions
are less constant. It was calculated via

I
[
y∗,W |x∗, X,Y

] = H
[
y∗|x∗, X,Y

]
+ 1

T

∑
c′,t

[
P
(
y∗ = c′|x, Ŵt

)
· log(P(

y∗ = c′|x, Ŵt
))]

. (9)

Predictive entropy captures both epistemic and aleatoric
uncertainty, while the mutual information captures the epis-
temic model uncertainty [27].

C. Probability Calibration

Intuitively, an event of probability 0.75 should occur 75%
of the time. Given a multiclass classifier with a prediction
and corresponding predicted probability [ŷ, p̂] = H(x) for an
input x , a sufficient condition for calibration is

P(ŷ = y| p̂ = p) = p, ∀p ∈ [0, 1]. (10)

Unfortunately, the three uncertainty measures in our frame-
work were not calibrated, which is a common issue for
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Fig. 3. Geographic density map of our data set with example images of the indoor and outdoor sites. The grass and brick can be found in (d)–(i) images;
tile in (a) and (c) images; stairs in (a)–(c) and (h) images; and cement in (b), (d), (f), and (i) images.

BNNs [28]. A calibration function � : R
3 → [0, 1] is desired

such that � ◦M produces calibrated probability, where M rep-
resents the three uncertainty measures from the BNN. In our
framework, we trained a neural network to approximate � .

D. Vision Fusion

We used two vision fusion strategies to combine the infor-
mation from the glasses and the lower limb camera.

1) Feature fusion: After extracting image features with the
pretrained network (see Fig. 2), the feature vectors for
glasses and lower limb were concatenated before fed
into the terrain prediction network.

2) Decision fusion: The terrain prediction and probability
calibration network (see Fig. 2) were first trained for
glasses and lower limb separately. During inference,
the predictions with the higher predicted calibrated prob-
ability were taken as the fused predictions.

Compared with feature-level fusion, decision-level fusion
is more favorable in practice because it does not require
collecting expensive synchronized training data with multiple
devices. It is possible to aggregate the data sets collected by
different users from multiple locations with only one of the
devices, creating the opportunity to employ crowd-sourcing
strategies.

III. EXPERIMENTAL METHOD

A. Experiment Setup and Protocol

All participants provided informed, written consent to par-
ticipate in our research approved by the Institution Review
Board (IRB) of The University of North Carolina at Chapel
Hill and North Carolina State University. Seven able-bodied
participants (five males and two females) and one transtib-
ial amputee (male) participated in this study. Their ages
were between 20 and 60 years old. During the experiment,
participants wore the Tobii Pro Glasses 2 eye tracker [1]
[see Fig. 1(a)] and a lower limb device [see Fig. 1(b)].
The eye-tracker recorded videos at 25 frames/s (FPS) and
a resolution of 1240 × 1080. Videos were recorded by the

camera at the center of the glasses and stored locally in the SD
card. The lower limb device was attached to the shins of the
able-bodied participants. For the amputee subject, the device
was attached on top of the pants around the socket of passive
lower limb prosthesis. The device was made of a Raspberry Pi
3 Model B, a PiCamera, and an Adafruit BNO055 IMU chip.
The PiCamera recorded video at 25 FPS with a resolution of
1240 × 1080 and the IMU chip recorded the accelerometer
and gyroscope data at a rate of around 100 Hz. Data were
recorded from the IMU chip and the camera and stored to an
SD card in the Raspberry Pi. For accurate and fast labeling,
we used another stand-alone camera to record the terrain
context of the participants. We did not use the videos from
the glasses or the lower limb device for labeling because
the videos were sometimes blurry. At the beginning and the
end of each data collection session, we let the three cameras
record a running timer simultaneously. We synchronized the
three videos by finding the frames of the timer with the same
displayed number. The participants were instructed to walk
according to their own will on NC State University Centennial
campus. During the experiments, we also recorded the GPS
coordinates of the participants. Fig. 3 shows the geographic
density map of our data set. Fig. 3(a)–(c) show the examples
of indoor sites, and Fig. 3(d)–(i) show the examples of outdoor
sites. The data set totals around 11 h of recording. The source
code and data are available online.1 After sampling to 10 FPS,
the data set had around 327000 RGB images—69000 for
tile, 55000 for grass, 110000 for brick, 59000 for cement,
19000 for upstairs, and 15000 for downstairs.

B. Training and Testing Procedure

The entire data set was divided into training, validation, and
testing data sets. The results in Section IV-D are based on the
data of the amputee, while the results in other sections are
based on the data of the able-bodied participants.
We performed the leave-one-participant-out cross-validation

for three able-bodied participants because they had a similar
amount of data—each participant had four sessions of data

1https://research.ece.ncsu.edu/aros/paper-tase2020-lowerlimb
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Fig. 4. Results of the terrain prediction: lower limb and glasses indicate the results of utilizing only one of the two data acquisition devices; feature fusion
and decision fusion indicate the results of fusing both devices.

and each session had 20∼25 min of video. For each iteration
of evaluation, we had around 244000 RGB images in the
training data set, around 40000 in the validation data set
and 43000 in the testing data set. In addition, around half
of the testing videos were collected during busy hours with
more pedestrians in the cameras’ field of view. We verified
the difference between the two groups of videos by detecting
people in the videos from the glasses camera with an object
detection algorithm [29]. People can be detected in 52.9% of
the frames for videos during busy hours while 5.2% for the
other videos. We analyzed the effect of this disturbance later
in Section IV-B.
We collected around 35 min of video (21000 images after

downsampling to 10 FPS) for the amputee and did not collect
videos during busy hours for safety. We used the data of the
able-bodied participants for the training and validation data set
and the data of the amputee for the testing data set.
We trained the terrain prediction network and the calibration

network (see Fig. 2) in three steps. First, the terrain prediction
network was trained with the training data set. Second, we gen-
erated the Monte Carlo dropout predictions and uncertainty
measures for the validation data set with the trained terrain pre-
diction network. Third, if one sample was mistakenly/correctly
predicted in step two, we labeled it as 0/1. These labeled
samples were used to train the calibration network whose input
was the uncertainty measures and ground-truth output were
the 0/1 labels. Binary cross-entropy loss was used to train the
calibration network. Finally, we conducted the evaluation and
analysis with the testing data sets. A video demonstrating our
experiments is available online.2

C. Probability Calibration Diagnosis

Reliability diagram [30] is a common visual tool to evaluate
model calibration. The diagram plots the observed frequency
of an event against the estimated probability of this event.
In our situation, the event was defined as successful ter-
rain predictions. Given a data set {(xn, yn)}Nn=1 of size N ,

2https://youtu.be/Cly0PJx9Gz4

[ŷn, p̂n] = H(xn) were the prediction and predicted proba-
bility. We grouped the predictions into K interval bins of size
(1/K ). Given Ik = (((k − 1)/K ), (k/K )] as the kth interval,
the number of samples belong to Ik was Bk = ∑N

n=1 �{ p̂n ∈
Ik}. Then, the observed classification accuracy for Ik was

acck = 1

Bk

N∑
n=1

�{ŷn = yn, p̂n ∈ Ik}

which was a consistent and unbiased estimator of P(Ŷ =
Y |P̂ ∈ Ik). The mean predicted probability for Ik was defined
as

probk = 1

Bk

∑
p̂n∈Ik

p̂n.

For a perfect calibrated model, probk = acck for all
k ∈ {1, 2, . . . , K }.
Expected calibration error (ECE) and maximum calibration

error (MCE) [31] are two statistical metrics of miscalibration
calculated as

ECE = 1

N

K∑
k=1

Bk |acck − probk | (11)

and

MCE = K
max
k=1

|acck − probk |. (12)

For a perfect calibrated probability, ECE and MCE equal to
0, and larger values indicate worse calibration.

IV. RESULT AND DISCUSSION

A. Performance Comparison

The lower limb camera had a better performance when
predicting closer terrains, while the glasses were better at
predicting further-away terrains. Fusing both cameras achieved
the best performance.
Fig. 4 presents the performances of different camera loca-

tions and prediction methods. The performance of the lower
limb camera decreased while predicting further into the future.
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TABLE II

AVERAGE TERRAIN PREDICTION ACCURACY AND STANDARD DEVIATION (IN BRACKETS). HIGHEST (DARK BLUE) AND
SECOND HIGHEST (LIGHT BLUE) ACCURACY ARE HIGHLIGHTED

Fig. 5. Confusion matrix of terrain prediction with the two data acquisition devices individually and jointly (feature fusion). The results are for predicting
the terrain 1 s in the future using the BGRU model. For each confusion matrix plot, the true positive rates and the positive predictive values are in the row
and column summery, respectively.

The glasses camera achieved the best performance (up to
91.30% for BGRU) when predicting 1∼2 s into the future.
It was better than predicting the current terrain (89.92% for
BGRU) because the glasses camera did not always capture
the immediate terrains. Feature fusion achieved the best per-
formance (up to 95.36% for BGRU) since it jointly modeled
the information from both cameras. In general, decision fusion
gave slightly worse results than feature fusion—for BGRU and
1s forecast window, the accuracy was 93.84% for decision
fusion while 95.15% for feature fusion. Decision fusion,
however, has the benefit of not requiring synchronized data
collection with multiple devices.
Table II shows the terrain prediction accuracy for different

approaches. Given that the subject stepped on a new terrain
at time ts , we defined the transition period as the 5 s period
before ts , i.e., [ts − 5, ts). The transition period accuracy was
the terrain prediction accuracy during the transition periods.
We reported the average and standard deviation of the accu-
racy. In general, BNNs showed similar prediction accuracy as
the standard neural networks since the BNN in our framework
inherited the merits of modern deep neural networks while

enhancing them with reliable and interpretable uncertainty
measures. Compared with lower limb, glasses showed a
larger standard deviation in performance because human head
movements usually have larger variations. Predicting during
transition periods was more challenging (lower accuracy than
the overall accuracy) because it required accurate estimation
of the walking speed, direction, and distance to the terrain
boundary.
Fig. 5 shows the confusion matrices of terrain prediction.

The results are for predicting 1 s into the future using BGRU.
For each plot, the true positive rates and the positive predictive
values are in the row and column summary, respectively. Iden-
tifying upstairs and downstairs was more challenging (lower
true positive rates and positive predictive values) compared
with the other four terrains because: 1) our data set had less
training samples for upstairs and downstairs and 2) it was
difficult for the cameras to capture stairs. The lower limb
camera’s view was often limited to partial or one staircase,
while the glasses could hardly capture the downstairs. Com-
pared with using one camera, fusing both cameras increased
the performance by up to 10% for upstairs and downstairs.
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Fig. 6. Performance of the framework under one challenging scenario—camera view contamination caused by surrounding pedestrians. The images on the
left are example frames captured by the glasses camera with the contaminated and clean views.

B. Performance With View Contamination

Surrounding pedestrians tended to compromise the perfor-
mances of the glasses more than the lower limb camera.
We observed a decrease in the prediction accuracy by around
1% for lower limb while around 5% for glasses.
Fig. 6 shows the performance of our framework under one

realistic challenging scenario—camera view contamination
caused by surrounding pedestrians. For BMLP and 1s forecast
window, the prediction accuracy was 85% for glasses and 84%
for lower limb with contamination, while the accuracy was
90% for glasses and 85% lower limb without contamination.
The lower limb was more robust to this type of disturbance
because lower limb focused on recording the terrain, while
glasses captured images consisting of the information of the
surrounding environment (such as buildings and sky), beyond
just terrain information.

C. Uncertainty Analysis

We verified the model calibration (see Section IV-C1) and
studied the correlations between uncertainty measures and
prediction errors (see Section IV-C2). We also analyzed the
uncertainty patterns for gait phases with the lower limb device
(see Section IV-C3).
1) Model Calibration: Our predicted probability was well

calibrated while the standard Softmax probability tended to be
overconfident.
Fig. 7 shows the reliability diagrams of our calibrated

probability from BNNs (left) and the Softmax probability
from standard neural networks (right). The histograms at the
bottom present the distributions of the predicted probabilities.
Our predicted probability was able to better match the true
accuracy, while the Softmax probability tended to be over-
estimated, which is a common issue for modern deep neural
networks [32]. The Softmax probability of MLP-lower limb
showed better calibration than the others. We assume that this
is because less overfitting is present in the MLP-lower limb
approach compared with the other methods since the videos
from lower limb contained more variations than the videos
from glasses, and compared with GRU, MLP had lower model
complexity—no temporal relationship needs to be modeled.

Fig. 7. Reliability diagrams (top) and predicted probability histograms (bot-
tom) for our calibrated probability of BNNs (left) and the Softmax probability
of standard neural networks (right). The results show an average of all forecast
windows (i.e., current, 1s, 2s, and 4s).

Overfitting has a negative impact on model calibration [32].
Table III reports the ECE and the MCE. Besides the trends that
we observed in Fig. 7, the fusion methods tended to have better
model calibration than methods using only one device and
decision fusion showed better calibration than feature fusion.
We also studied the calibration performance for different

combinations of input uncertainties. We modified the cali-
bration function � : R

k → [0, 1] to map a subset of the
three uncertainty measures to a calibrated probability, where
k = 1, 2, 3. We have seven subsets of uncertainties to com-
pare. We calculated the ECE/MCE for eight device–method
combinations and all forecast windows: BMLP/BGRU-
lowerlimb/glasses (four combinations) and BMLP/BGRU-
feature/decision-fusion (four combinations). We then Z-score
normalized the ECE/MCE values for each device–method
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TABLE III

RESULTS OF ECE AND MCE. LOWEST (DARK BLUE) AND SECOND
LOWEST (LIGHT BLUE) ERRORS ARE HIGHLIGHTED

Fig. 8. Normalized ECE and MCE for different combinations of the input
for the calibration network. “σ ,” “E,” and “M” represent aleatoric, predictive
entropy, and mutual information uncertainty, respectively.

combination and compared the summarized performances
in Fig. 8. “σ ,” “E,” and “M” represent aleatoric, predictive
entropy, and mutual information uncertainty, respectively. Fus-
ing all three uncertainty measures (“σ + E + M”) achieved the
best calibration performance. In general, entropy uncertainty
is critical for a good calibration although entropy uncertainty
itself is not enough and needs to be combined with aleatoric or
mutual information uncertainty (see “E + M” and “E + σ”).
In this study, we modeled the uncertainties based on a few
assumptions, such as the Gaussian prior to the weights and
the Gaussian aleatoric uncertainty on the logit vector. Our
assumptions can approximate but not perfectly represent the
actual data/noise/weight distributions. We assume that this is
one of the reasons why fusing all three uncertainty measures
produced the best calibration performance in this experiment.
The results in this section are based on an average of all

forecast windows (e.g., current, 1s, 2s, and 4s). The results for
each forecast window were similar.
2) Aleatoric and Epistemic Uncertainty: Compared with

BMLP, BGRU showed lower aleatoric and epistemic uncer-
tainty. In our experiments, epistemic uncertainty played a
greater role than aleatoric uncertainty in detecting mistaken
predictions, especially for BGRU.
Fig. 9 shows the distributions of different uncertainty

measures for correct and mistaken terrain predictions. For
both BMLP and BGRU, the calibrated probability could
well distinguish the two groups with aleatoric uncertainty
playing a less significant role than epistemic uncertainty.

Fig. 9. Distributions of uncertainty measures and calibrated probability for
correct and mistaken terrain predictions. Two neural network structures are
involved: Bayesian MLP (left) and Bayesian GRU (right). The plots are based
on the results for the lower limb camera.

With the information from multiple frames, BGRU decreased
the aleatoric uncertainty from occasional observation noises.
Compared with BMLP, BGRU produced lower entropy and
mutual information uncertainty for correct predictions bene-
fiting from additional temporal features (e.g., walking speed
and direction). However, the entropy and mutual informa-
tion uncertainty remained high for mistaken predictions that
occurred under challenging scenarios (e.g., multiple terrains
ahead or changing walking speeds). Due to the large variations
in human behavior, the training data set was not large enough
to explain away the epistemic uncertainty. Fig. 9 reports the
averaged results of all forecast windows (i.e., current, 1s, 2s,
and 4s) with lower limb . The results for the glasses camera
and different forecast windows were similar.
3) Gait Analysis: The uncertainty measures showed peri-

odic patterns for lower limb for gait cycles. In general,
the framework showed the lowest uncertainty during the
middle-stance gait phase.
The video and IMU signals from the lower limb device

showed periodic patterns correlated with the lower limb walk-
ing motions. We analyzed the uncertainty measures using the
normalized gait cycle by following these steps: 1) we used a
peak detection algorithm (implemented by MATLAB [33]) to
segment the gait cycles based on the gyroscope signals; 2) the
uncertainty measures were Z-score normalized for each gait
cycle; and 3) we normalized the gait cycles to the same length
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Fig. 10. Top: averaged uncertainty measures and calibrated probability
with respect to the normalized gait cycle. The values are Z-score normalized
for each gait cycle. Two neural network structures are compared: Bayesian
MLP (left) and Bayesian GRU (right). (a) and (b) Two example frames taken
by the lower limb camera and the dotted lines indicate the corresponding
gait phases.

and then aligned and averaged the corresponding uncertainty
measures. Fig. 10 shows the processed uncertainty measures
aligned with the normalized gait cycle. We labeled the stance
and swing phases with the IMU signals and the context videos.
The images on the top are example frames during different
phases indicated by the dotted lines. The results are the
averaged data of all three able-bodied participants, and the
results for each participant were similar.
For BMLP, the framework showed the highest calibrated

probability (lowest uncertainty) in the middle of the stance
phase [see Fig. 10(a)] because the camera was able to capture
the current and future terrains with small irrelevant regions
(e.g., sky or too far-away terrains). Moreover, less camera
movement during this time led to less blurry images. Dur-
ing the early swing phase [see Fig. 10(b)], the captured
images were blurry and tended to miss further-away terrains.
As a result, the framework showed high uncertainty, espe-
cially for predicting further-away terrains. The aleatoric uncer-
tainty showed similar trends for different forecast windows
because it focused on measuring the occasional observation
noises (e.g., motion blur and overexposure) in the input data.

Fig. 11. Results of the terrain prediction with different frame selection
strategies. The fps10 and fps2 correspond to uniform sampling at 10 FPS and
2 FPS, respectively. The middle stance and early swing correspond to sampling
at the indicated gait phases (gait percentages are as indicated in Fig. 10).

For BGRU, the patterns were similar but had fewer fluctua-
tions than BMLP because BGRU fused the information from
multiple historical frames.
4) Gait-Based Frame Selection: Selecting frames during

the middle-stance gait phase showed better performances than
other strategies with similar temporal density. Our optimal
frame selection strategy reduced the computations by 80%
while scarifying only 1%∼6% of the accuracy.
The analysis in Section IV-C3 showed the correlation

between the gait phases and uncertainty measures. We further
utilized this analysis to select “good” frames for prediction.
First, we applied a peak detection algorithm (implemented by
MATLAB [33]) to the gyroscope signals to detect the end
of the gait cycles. Second, the current gait cycle duration
was estimated by averaging the duration of the past five gait
cycles. Third, we sampled two subsequent frames based on
the estimated gait phases. Two subsequent frames were used
to mitigate the impact of observation noises (e.g., motion blur
and overexposure). Finally, we trained a BGRU for terrain
prediction with only the selected frames. In our experiment,
the averaged time for one step was around 1 s (10 frames),
and after the frame selection, only 2 frames were processed per
step, decreasing around 80% of the computations. We com-
pared the performances of five frame selection settings: uni-
form sampling at 10 FPS (fps10), uniform sampling at 2
FPS (fps2), selecting 2 frames at the middle stance and the
early swing gait phase. Fig. 11 shows that the performance of
fps10 (our baseline using all images) was only 1%∼6% better
than the performance of middle stance. Middle stance showed
around 5%∼8% better performance than early swing. For fps2,
the frames were not consistently sampled at the same gait cycle
phases, which added difficulty for extracting temporal features,
such as walking speed and direction. As a result, fps2 showed
the worst performance, especially for larger forecast windows,
in which the temporal features were critical.

D. Feasibility for Amputees

Our framework showed high prediction accuracy for training
with able-bodied participants and testing with the amputee.
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Fig. 12. Confusion matrix of terrain prediction for the amputee with the two data acquisition devices individually and jointly (feature fusion). The results
are for predicting the terrain 1 s in the future using the BGRU model. For each confusion matrix plot, the true positive rates and the positive predictive values
are in the row and column summery, respectively.

Our analysis in Section IV-C3 also applied to the amputee
although the trends were slightly different.
Fig. 12 shows the confusion matrices when training with

the able-bodied participants and testing with the amputee.
The high prediction accuracy demonstrated the feasibility
of training our framework with able-bodied participants and
applying the trained framework to amputees. The lower limb
showed better performance than glasses for all terrains except
upstairs. The overall accuracy was 91.14% for lower limb,
88.96% for glasses, and 93.26% for feature fusion when
predicting 1 s into the future using BGRU. It has been
observed that amputees tend to look at the terrains near
their feet more than able-bodied individuals [34]. Since the
framework was trained only with the data of the able-bodied
participants, the difference in behavior confused the vision
algorithms when estimating the distances to the terrains ahead.
Compared with glasses, lower limb would be easier to
generalize to the amputee population because the captured
videos were only slightly influenced by the difference in gaits.
Fig. 13 presents the uncertainty measures aligned with the
normalized gait cycle. Figs. 10 and 13 showed similar trends
although the highest and lowest uncertainty points shifted
due to the different gait patterns for able-bodied participants
and amputees. In addition, the results of the amputee showed
similar reliability diagrams (see Fig. 7) and uncertainty distri-
butions (see Fig. 9) as the able-bodied participants, indicating
the consistency of the uncertainty measures for able-bodied
participants and amputees.

E. Feasibility for Mobile Real-Time Computing

The end-to-end inference time was less than 80 ms/frame on
a portable embedded system, which is promising for mobile
real-time applications.
We implemented our framework with the Tensorflow library.

We trained the framework on a PC with an i7-8700K CPU, two
NVIDIA 1080Ti GPUs, and 32 GB of RAM. We evaluated our
framework on two devices: the PC that we used for training

Fig. 13. Top: averaged calibrated probability with respect to the normalized
gait cycle for the amputee. The values are Z-score normalized for each gait
cycle. Two neural network structures are compared: Bayesian MLP (left) and
Bayesian GRU (right). (a) and (b) Two example frames taken by the lower
limb camera and the dotted lines indicate the corresponding gait phases.

and an NVIDIA Jetson TX2 system [35]. The Jetson TX2 is
a portable embedded AI computing system of size 50 mm ×
87 mm, weight 85 g, and typical energy usage 7.5 W [36].
We performed the end-to-end inference of our framework for
1000 times with one frame each time (batch size equals to one)
and calculated the averaged inference time of each component
as well as the entire pipeline. We set the batch size to one
in our evaluation to mimic the real-time prediction scenario
in practice. Table IV shows the inference time (per frame),
the number of floating-point operations (FLOPs), and the num-
ber of trainable parameters (Params). We performed 40 iter-
ations of the Monte Carlo dropout sampling for the terrain
prediction networks. The reported inference time and FLOPs
in Table IV included the computations of all 40 iterations.
Since we used MobileNetV2 to extract general image features,
the distribution of the parameters in MobileNetV2 can be
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TABLE IV

INFERENCE TIME AND RESOURCE USAGE

approximated by deterministic values [37]. Thus, by con-
sidering computational efficiency, we did not perform the
Monte Carlo sampling for the large feature extraction network
(MobileNetV2). On Jetson TX2, the end-to-end inference time
of our framework was less than 80 ms, which is potentially
efficient for real-time applications. Thus, although we trained
each part of the pipeline sequentially, after deploying the end-
to-end pipeline, the prediction and uncertainty analysis can
be obtained in real time. The algorithm efficiency can be
further improved by tuning the number of iterations for Monte
Carlo sampling [28] or optimizing inference computing with
TensorRT [38]. We left these as our future work.

V. CONCLUSION AND FUTURE WORK

In this article, we developed a novel environmental context
prediction framework for lower limb prostheses. The frame-
work inherited the advantages of the Bayesian theory and
modern deep neural networks. It was able to capture the uncer-
tainty caused by different factors, including observation noise
and insufficient or biased training. These uncertainty measures
were then projected to one calibrated predicted probability by
our probability calibration network. We compared two wear-
able camera locations and fused them for better performance.
Furthermore, we developed a frame selection strategy for the
lower limb device inspired by the uncertainty analysis. The
results showed promising prediction accuracy and model cali-
bration. Afterward, we demonstrated the feasibility of training
our framework with the data of able-bodied participants and
applied it to amputees. This study showed the potential for
interpreting deep neural networks with uncertainty quantifi-
cation, utilizing calibrated predicted probability for online
decision-making and fusion, and improving the system design
by uncertainty analysis. The results in this article may trigger
future developments of vision-based context recognition with
reliable decision-making, efficient sensor fusion, and improved
intelligent system design in multiple applications.
For future work, the proposed vision framework can be

integrated into the control systems of wearable robots for
real-time evaluation. For example, the control mode for lower
limb prosthesis, programed to support amputees in walking
on different terrains (e.g., level-ground walking and stair
ascent), can be automatically switched according to the terrain
predictions. However, pure vision information may not be
sufficient to decide the precise switch timing; incorporating
other sensing modalities, such as EMG or depth sensors,
is needed.
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