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Quasiconformal and geodesic trees

by
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Abstract. A quasiconformal tree is a metric tree that is doubling and of bounded
turning. We prove that every quasiconformal tree is quasisymmetrically equivalent to a
geodesic tree with Hausdorff dimension arbitrarily close to 1.
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1. Introduction. An important question in geometric analysis is wheth-
er a given metric space (belonging to some class of spaces) is geometrically
equivalent to a model space in a natural way. Many results in mathemat-
ics can be seen from this perspective (such as the existence of isothermal
or conformal coordinates on surfaces or the Riemann mapping theorem).
For general metric spaces there are various ways to interpret geometric
equivalence: up to isometry or up to bi-Lipschitz equivalence, for exam-
ple. In the present paper the relevant notion of geometric equivalence is
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based on a class of homeomorphisms that are close to conformal or quasi-
conformal maps in a classical complex-analytic context, namely quasisym-
metries.

By definition, a homeomorphism f : X → Y between metric spaces
(X, dX) and (Y, dY ) is said to be quasisymmetric, or a quasisymmetry, if
there exists a homeomorphism η : [0,∞) → [0,∞) (playing the role of a
control function for distortion) such that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)
for all distinct points x, y, z ∈ X. The composition of two quasisymmetries
(when defined) and the inverse of a quasisymmetry are quasisymmetric. So
if we call two metric spaces X and Y quasisymmetrically equivalent if there
exists a quasisymmetry f : X → Y , then we have a notion of geometric
equivalence for metric spaces. Since every bi-Lipschitz homeomorphism is a
quasisymmetry, this is a weaker, and hence more flexible, notion than bi-
Lipschitz (or even isometric) equivalence (for more background and related
discussions see [BM17, Section 4.1] and [He01, Chapters 10–12]).

The quasisymmetric uniformization problem (see [Bo06]) asks for natural
conditions when a given metric space X from a class of spaces is quasisym-
metrically equivalent to some model space Y . This problem is relevant in
various contexts. For example, the Kapovich–Kleiner conjecture in geometric
group theory (see [KK00, Conjecture 6]) amounts to the problem of showing
that every Sierpiński carpet arising as the boundary of a Gromov hyperbolic
group is quasisymmetrically equivalent to a “round” Sierpiński carpet (see
[Bo11] for a related discussion).

The prototypical instance of a quasisymmetric uniformization result is
the characterization by Tukia and Väisälä of metric spaces quasisymmetri-
cally equivalent to the unit interval [0, 1]. In order to formulate their theorem
we need two definitions.

We say that a metric space (X, d) is of bounded turning if there exists a
constant K ≥ 1 such that for all x, y ∈ X there exists a compact connected
set E ⊂ X with x, y ∈ E and

diam(E) ≤ Kd(x, y).

In this case, we say that (X, d) is of K-bounded turning.
A metric space (X, d) is doubling if there exists a constant N ∈ N (the

doubling constant of X) such that each ball in X of radius R > 0 can be
covered by N (or fewer) balls of radius R/2.

Tukia and Väisälä showed that a metric space J homeomorphic to [0, 1]
is quasisymmetrically equivalent to [0, 1] if and only if it is doubling and of
bounded turning (see [TV80]). In other words, one can “straighten out” the
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arc J (which may well have Hausdorff dimension > 1) to the interval [0, 1]
by a quasisymmetry.

In the present paper, we study the quasisymmetric uniformization prob-
lem for metric trees. By definition, a (metric) tree is a compact, connected,
and locally connected metric space (T, d) that contains at least two distinct
points and has the following property: if x, y ∈ T, then there exists a unique
arc in T with endpoints x and y. This arc is denoted by [x, y]. We allow
x = y here, in which case we consider [x, y] = {x} as a degenerate arc.

The underlying topological space of a tree is often called a dendrite in the
literature. Since we are mostly interested in metric properties and want to
emphasize this metric aspect, we prefer the name tree for these objects. Mo-
tivated by the Tukia–Väisälä result and the connection with quasiconformal
geometry, we introduce the following terminology.

Definition 1.1. A metric tree is quasiconformal if it is doubling and of
bounded turning.

In the following, we usually call a quasiconformal tree a qc-tree for brevity.
Trees appear in many contexts in mathematics, for example as Julia sets

of polynomials. The Julia set J (P ) of the polynomial P (z) = z2+ i is a tree
(see [CG93, Example after Theorem V.4.2]). Actually, J (P ) ⊂ C is a qc-tree
if it is equipped with the ambient Euclidean metric on C. Indeed, J (P ) is
of bounded turning as easily follows from the fact that C \ J (P ) is a John
domain (see [CG93, Theorem VII.3.1]). Since every subset of a Euclidean
space (such as the complex plane C) is doubling, J (P ) is doubling.

In analogy to the Tukia–Väisälä theorem one can raise the question
whether all arcs in a qc-tree can be straightened out simultaneously by a
quasisymmetry. For a precise formulation of this question the following con-
cept is relevant.

A metric space (X, d) is called geodesic if any two points x, y ∈ X can
be joined by a geodesic segment, i.e., by an arc [x, y] with endpoints x and
y whose length is equal to d(x, y).

The following statement is the main result of this paper.

Theorem 1.2. Every quasiconformal tree is quasisymmetrically equiva-
lent to a geodesic tree.

Every arc that is doubling and of bounded turning is a qc-tree. This
implies that Theorem 1.2 includes the Tukia–Väisälä theorem as a special
case, and so can be viewed as a generalization.

Various improvements and variants of Theorem 1.2 are conceivable. For
example, one can ask whether additional assumptions yield quasisymmet-
ric equivalence to a single specified space. We consider a question of this
type in the follow-up paper [BM20], where it is shown that a qc-tree is
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quasisymmetrically equivalent to the continuum self-similar tree (as defined
in [BT20]) if and only if it is trivalent and uniformly branching (see [BM20]
for the relevant definitions).

Another natural question is “how small” we can make the geodesic tree T
that is the quasisymmetric image of the given qc-tree T. If dimH T denotes
the Hausdorff dimension of T , then clearly dimH T ≥ 1, because T always
contains a non-degenerate arc. We will show that dimH T can actually be
arbitrarily close to 1 and will establish the following improved version of
Theorem 1.2.

Theorem 1.3. If T is a quasiconconformal tree and α > 1, then T is
quasisymmetrically equivalent to a geodesic tree T with dimH T ≤ α.

In general, one cannot achieve dimH T = 1 here. An example when this is
not possible can be found in [BiT01] (see also [Az15, Theorem 1.6] for a gen-
eral related statement). If T is the continuum self-similar tree and T is any
tree that is quasisymmetrically equivalent to T, then actually dimH T > 1.

The conformal dimension confdim(X) of a metric space X is defined
as the infimum of all Hausdorff dimensions of metric spaces Y that are
quasisymmetrically equivalent toX. We refer to [MT10] for more background
on this concept. Theorem 1.3 implies the following immediate consequence.

Corollary 1.4. If T is a quasiconformal tree, then confdim(T) = 1.

This last statement is not new, but was originally proved by Kinneberg
[Kin17, Proposition 2.4].

We will now summarize the main ingredients for the proofs of Theo-
rems 1.2 and 1.3. The basic idea is to define a new geodesic metric % on
the given qc-tree (T, d) so that the identity map idT : (T, d) → (T, %) is a
quasisymmetry. In order to define %, we will carefully choose a sequence of
decompositions Xn of T into subtrees. We call the elements Xn in Xn tiles
of level n or n-tiles. To each n-tile Xn we will assign a weight w(Xn) by
an inductive process on the level n ∈ N. These weights can then be used
to define a distance function %n on T: one infimizes the total length with
respect to this weight over chains of n-tiles from one point in T to another
(see (6.1) and (7.1)). We will show that with our choices, the limit

(1.1) %(x, y) = lim
n→∞

%n(x, y)

exists for all x, y ∈ T (Lemma 7.3) and defines a geodesic metric on T
(Lemma 7.6). We have diam%(X) � w(X) for the %-diameter of each tile X
(see Proposition 7.7(i)). So in a sense the metric % is a “conformal” deforma-
tion of the original metric d on T controlled by the weight w(X) near each
tileX. The fact that idT : (T, d)→ (T, %) is a quasisymmetry can then easily
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be derived from geometric properties of tiles (see Lemma 8.2). Theorem 1.2
follows.

The choice of the weights, and hence the construction of %, involves a pa-
rameter ε0 > 0. We will see that if we choose ε0 close to 0, then the Hausdorff
dimension of (T, %) is close to 1. This immediately gives Theorem 1.3.

The main difficulty in this general approach is how to define the de-
compositions Xn. It is a natural idea to “cut” the tree T into subtrees by
using auxiliary points. We will indeed follow this procedure by defining an
ascending sequence of finite sets V1 ⊂ V2 ⊂ · · · that we use to cut T. More
precisely, the tiles of level n are precisely the closures of the complementary
components of Vn, i.e., the closures of the components of T \Vn. The con-
struction of the sets Vn involves a (small) parameter δ ∈ (0, 1). For each
n-tile Xn we will then have diamd(X

n) � δn. All of this looks natural and
even straightforward, but there is a surprising subtlety here. Namely, one
might expect that the n-vertices, i.e., the elements in Vn used for cutting
the tree, should be branch points of T (points b ∈ T such that T \ {b} has
at least three components); indeed, at least on an intuitive level, cutting T
in a branch point should result in branches with reduced topological or met-
ric complexity. This was exactly the procedure in the recent paper [BT20],
where topological characterizations of metric trees were given. We also use
this idea in our forthcoming paper [BM20]. However, in the present context,
cutting our given qc-tree T at a branch point b leads to the problem that
we cannot expect good uniform control for the size of the components of
T \ {b}, because some of these components might be very small.

For this reason, we cut our given qc-tree T at double points v ∈ T, i.e.,
points v such that T\{v} has precisely two components. These double points
v are chosen so that the two components of T \ {v} are not too small and so
that v stays away from the branch points of T in a precise quantitative way
(see (4.1) and (4.2); the relevant definitions can be found in (2.1) and (2.2)).

The paper is organized as follows. In Section 2 we review some basic
topological facts about trees. We also show that in a tree T of bounded
turning one can replace the original metric up to bi-Lipschitz equivalence by
a diameter metric d. It is characterized by the property that diam [x, y] =
d(x, y) for all x, y ∈ T. The change to a diameter metric will allow us to
make some simplifications in our arguments. In Section 3 we will prove a
general fact of independent interest: if on an arc some points cast a “shadow”
satisfying suitable conditions, then one can always find a “place in the sun”.
We use this to find double points in a qc-tree T with quantitative separation
from branch points (see Proposition 3.1).

In Section 4 we introduce the somewhat technical concept of a (β, γ)-
good double point at scale ∆ > 0. We show that with suitable choices of the
parameters, cutting the qc-tree T in a maximal ∆-separated set of (β, γ)-
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good double points at scale ∆ > 0 results in pieces that have diameter
comparable to∆ (Proposition 4.2). This fact is used in Section 5 to define the
subdivisions of T into tiles as discussed above. We record various statements
about the geometric properties of these tile decompositions. Weights of tiles
are then defined in Section 6. There we establish the facts about weights
that are needed later on. In Section 7 we define the metric % and show that
it is geodesic. The proof of Theorem 1.2 is then completed in Section 8 and
the proof of Theorem 1.3 is given in Section 9. We conclude with remarks
and open problems in Section 10.

1.1. Notation. We summarize some notation used throughout this pa-
per.

When an object A is defined to be another object B, we write A := B for
emphasis. Two non-negative quantities a and b are said to be comparable if
there is a constant C ≥ 1 (usually depending on some ambient parameters)
such that

1

C
a ≤ b ≤ Ca.

We then write a � b. The constant C is referred to as C(�). Similarly, we
write a . b or b & a if there is a constant C > 0 such that a ≤ Cb, and refer
to the constant C as C(.) or C(&). If we want to emphasize the parameters
α, β, . . . on which C depends, then we write C = C(α, β, . . . ).

We use the standard notation N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }.
The cardinality of a set X is denoted by #X and the identity map on X

by idX . Let (X, d) be a metric space, a ∈ X, and r > 0. We denote by
Bd(a, r) = {x ∈ X : d(a, x) < r} the open ball and by Bd(a, r) = {x ∈ X :
d(a, x) ≤ r} the closed ball of radius r centered at a. If A,B ⊂ X, we let
diamd(A) be the diameter, A be the closure of A in X, int(A) be the interior
of A in X, and

distd(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}
be the distance of A and B. If x ∈ X, we set distd(x,A) := distd({x}, A).
We drop the subscript d from our notation for Bd(a, r), etc., if the metric d
is clear from the context.

2. Auxiliary facts. In this section we collect some auxiliary statements
that will be used later.

Let (X, d) be a metric space. A set S ⊂ X is called s-separated for some
s > 0 if all distinct points x, y ∈ S satisfy d(x, y) ≥ s. Such a set S is
a maximal s-separated set if S is not contained in a strictly larger subset
of X that is also s-separated. Every s-separated set S ⊂ X is contained in
a maximal s-separated set S′ ⊂ X. If X is compact, then every s-separated
set S ⊂ X must be finite.
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If the space (X, d) is doubling (as defined in the introduction), then for
each 0 < λ < 1 there is a number N ′ = N ′(λ,N) ∈ N only depending on λ
and the doubling constant N of X such that the following condition is true:
if s > 0 and S ⊂ X is a λs-separated set contained in a ball B(x, s) with
x ∈ X, then S contains at mostN ′ points. Conversely, if this condition is true
for some 0 < λ < 1 and N ′ ∈ N, then X is doubling with a doubling constant
N = N(λ,N ′) only depending on λ and N ′ (see [He01, Exercise 10.17]).

The doubling property is preserved under quasisymmetries, and in par-
ticular under bi-Lipschitz maps; in general though, the doubling constant
will change (see [He01, Theorem 10.18]).

An arc J ⊂ X is a set homeomorphic to the unit interval [0, 1] ⊂ R.
A (metric) arc (J, d) is a metric space homeomorphic to [0, 1]. The points
a, b ∈ J corresponding to 0, 1 ∈ [0, 1] are called the endpoints of J . We denote
by ∂J := {a, b} the set of endpoints of J , and by int(J) := J \ ∂J the set of
interior points of J .

We require an elementary lemma.

Lemma 2.1. Let (J, d) be an arc and n ≥ 2 be an integer. Then we
can decompose J into n non-overlapping subarcs of equal diameter ∆ ≥
1
n diam(J).

More explicitly, decomposing J into n non-overlapping subarcs means
that we can find arcs I1, . . . , In ⊂ J with pairwise disjoint interiors such
that J = I1 ∪ · · · ∪ In.

Proof. The existence of a decomposition of J into n non-overlapping
subarcs of equal diameter is proved in [Me11, Lemma 2.2] (see also [Kul94,
Lemma 2] for a related statement in greater generality). If we denote this
diameter by ∆ > 0, then we must have diam(J) ≤ n∆ as follows from the
triangle inequality.

We now summarize some simple facts about trees. There is a rich lit-
erature on the underlying topological spaces, usually called dendrites. We
refer to [Wh63, Chapter V], [Kur68, §51, VI], [Na92, Chapter X], and the
references in these sources for more on the subject.

By definition, a metrizable topological space X is called a dendrite if X
is a Peano continuum (i.e., it is compact, connected, and locally connected)
and X does not contain any Jordan curve (i.e., a homeomorphic image of the
unit circle). A dendrite is called non-degenerate if it contains more than one
point. The following statement reconciles our notion of a metric tree with
the notion of a dendrite.

Proposition 2.2. Let T be a metric space. Then T is a tree if and only
if T is a non-degenerate dendrite.
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Proof. “⇒” If T is a tree, then it is a Peano continuum and contains
more than one point. Moreover, T cannot contain a Jordan curve J . Indeed,
if T contains the Jordan curve J , then any two distinct points x, y ∈ J can
be connected by at least two distinct arcs in T, namely the two subarcs of
J with endpoints x and y. This is impossible, because T is a tree. It follows
that T is a non-degenerate dendrite.

“⇐” Conversely, suppose T is a non-degenerate dendrite. Since T is a
Peano continuum, it is arc-connected , i.e., for any two distinct points x, y ∈ T
there exists an arc α ⊂ T with endpoints x and y (see [Na92, Theorem 8.23]).
This arc is unique, because if there exists an arc β ⊂ T with β 6= α and
endpoints x and y, then it is easy to see that α ∪ β ⊂ T contains a Jordan
curve. This is impossible, because T is a dendrite. It follows that T is indeed
a tree.

Let T be a tree. Then for all points x, y ∈ T with x 6= y, there exists a
unique arc in T joining x and y, i.e., it has the endpoints x and y. We use the
notation [x, y] for this unique arc. It is convenient to allow x = y here. Then
[x, y] denotes a degenerate arc consisting only of the point x = y. Sometimes
we want to remove one or both endpoints from the arc [x, y]. Accordingly,
we define

(x, y] := [x, y] \ {x}, [x, y) := [x, y] \ {y}, (x, y) := [x, y] \ {x, y}.

If γ is the image of any path in T joining x and y, then necessarily [x, y] ⊂ γ.
A subset X of a tree (T, d) is called a subtree of T if X equipped with

the restriction of the metric d is also a tree. One can show that X ⊂ T is a
subtree of T if and only if X contains at least two points and is closed and
connected. See [BT20, Lemma 3.3] for a simple direct argument; to justify
this, one can also invoke Proposition 2.2 and the fact that a closed and
connected subset of a dendrite is a dendrite (see [Na92, Corollary 10.6]). If
X is a subtree of T, then [x, y] ⊂ X for all x, y ∈ X.

Lemma 2.3. Let (T, d) be a tree and V ⊂ T be a finite set. Then the
following statements are true:

(i) Two points x, y ∈ T\V lie in the same component of T\V if and only
if [x, y] ∩ V = ∅.

(ii) If U is a component of T\V , then U is an open set and U is a subtree
of T with ∂U ⊂ ∂U ⊂ V .

(iii) If U and W are distinct components of T \ V , then U and W have at
most one point in common. Such a common point belongs to V , and is
a boundary point of both U and W .

Proof. (i) Since V ⊂ T is a finite set, it is closed in T. So T \ V is an
open subset of T. Since T is locally connected, each component U of T \ V
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is open. Moreover, as an open and connected subset of the Peano contin-
uum T, such a component U is arc-connected (see [Na92, Theorem 8.26]).
So if two points x, y ∈ T \ V lie in the same component U of T \ V , then
there exists an arc γ in U joining x and y. Then γ = [x, y] ⊂ U , and so
[x, y] ∩ V = ∅.

Conversely, if x, y ∈ T \ V and [x, y] ∩ V = ∅, then [x, y] is a connected
subset of T \V . Hence there exists a component U of T \V with [x, y] ⊂ U ;
so x and y lie in the same component U of T \ V .

(ii) If U is a component of T\V , then U is an open set (as we have seen in
the proof of (i)) and U is a subtree of T (as follows from the characterization
of subtrees discussed before the lemma).

The inclusion ∂U ⊂ ∂U is true for all sets U ⊂ T. It remains to show
∂U ⊂ V . Indeed, if x ∈ ∂U , then x cannot belong to U (since U is open) or
any other component W of T \ V (because otherwise U ∩W 6= ∅); so x lies
in the complement of T \ V in T, i.e., x ∈ V .

(iii) Suppose U and W are distinct components of T \ V . Since U and
W are disjoint open subsets of T by (ii), no interior point of U can belong
to W , and no interior point of W can belong to U . Hence

U ∩W = ∂U ∩W = ∂U ∩ ∂W ⊂ ∂U ∩ ∂W ⊂ V
by (ii). In particular, U ∩W is a subset of the finite set V , and any point in
U ∩W must be a boundary point of both U and W .

Actually, U ∩W consists of at most one point; otherwise, U ∩W contains
two distinct points x and y, and hence the infinite set [x, y], because U and
W are subtrees of T. This is impossible, because the set U ∩ W ⊂ V is
finite.

Let T be a tree, p ∈ T, and U be a component of T\{p}. Then U 6= T is
open, and so ∂U 6= ∅, because T is connected. So by Lemma 2.3(ii) we have
∅ 6= ∂U ⊂ {p}. Hence ∂U = {p} and so U = U∪{p}. Then B := U = U∪{p}
is a subtree of T, called a branch of p (in T).

The components U of any open subset W of a tree T form a null se-
quence in the following sense: for each ε > 0 there are only finitely many
such components U with diam(U) ≥ ε. In particular, the number of compo-
nents of W is finite or countably infinite. This follows from a more general
fact about open subsets of hereditarily locally connected metric continua; see
[Wh63, p. 90, Corollary (2.2)] or [Kur68, p. 269, Theorem 3]. Note that we
can apply this result by Proposition 2.2 and because every dendrite is hered-
itarily locally connected (this is explicitly stated in [Na92, Corollary 10.5]
and follows from the fact, mentioned above, that every subcontinuum of a
dendrite is a dendrite).

In particular, each point p in a tree T can have at most countably many
distinct complementary components U and hence there are only countably
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many distinct branches B of p. Only finitely many of these branches can
have a diameter exceeding a given positive number (for a direct proof of
these facts see also [BT20, Section 3]). This implies that we can label the
branches Bn of p by numbers n = 1, 2, . . . so that

diam(B1) ≥ diam(B2) ≥ · · · .

If there are precisely two such branches, then we call p a double point
of T and define

(2.1) DT(p) = diam(B2).

So DT(p) is the diameter of the smallest branch of a double point p.
If there are at least three branches of p, then p is called a branch point

of T. In this case, we set

(2.2) HT(p) = diam(B3).

So HT(p) is the diameter of the third largest branch of p.
The following statement gives a criterion how to detect branch points.

Lemma 2.4. Let (T, d) be a tree, b, x1, x2, x3 ∈ T with b 6= x1, x2, x3
and suppose that the sets [x1, b), [x2, b), [x3, b) are pairwise disjoint. Then
the points x1, x2, x3 lie in different components of T \{b}, and b is a branch
point of T.

Proof. This is [BT20, Lemma 3.6]. For the reader’s convenience we repro-
duce the argument. The arcs [x1, b] and [x2, b] = [b, x2] have only the point b
in common. So their union [x1, b]∪ [b, x2] is an arc and this arc must be equal
to [x1, x2]. Hence b ∈ [x1, x2], which by Lemma 2.3(i) implies that x1 and x2
lie in different components of T \ {b}. A similar argument shows that x3
must be contained in a component of T \ {b} different from the components
containing x1 and x2. In particular, T \ {b} has at least three components
and so b is a branch point of T. The statement follows.

The tree (T, d) is of K-bounded turning with K ≥ 1 (as defined in the
introduction) if and only if

diam [x, y] ≤ Kd(x, y)

for all x, y ∈ T. Here and in the following, diam [x, y] instead of diam([x, y])
denotes the diameter of the arc [x, y]; we omit the parentheses for better
readability.

We define the diameter distance on T by

(2.3) dd(x, y) := diam [x, y]

for x, y ∈ T. We record some properties of this distance function.
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Lemma 2.5. Let (T, d) be a metric tree. Then the following statements
are true:

(i) dd is a metric on T.
(ii) For each arc J ⊂ T we have diamdd(J) = diam(J), where diamdd

denotes the diameter with respect to dd.
(iii) (T, dd) is of 1-bounded turning.
(iv) (T, d) is of K-bounded turning for K ≥ 1 if and only if the identity

map idT : (T, d)→ (T, dd) is K-bi-Lipschitz.

Proof. This is [Me11, Lemma 2.1], but we include the simple proof for
the convenience of the reader.

(i) All properties of a metric for dd are immediate except the triangle
inequality which follows from the fact that if x, y, z ∈ T, then [x, z] ⊂
[x, y] ∪ [y, z].

(ii) For all x, y ∈ J , we have d(x, y) ≤ dd(x, y), and so diam(J) ≤
diamdd(J). Moreover, for all x, y ∈ J we have [x, y] ⊂ J . Hence dd(x, y) ≤
diam(J); so diamdd(J) ≤ diam(J) and the statement follows.

(iii) This follows directly from (ii), since

dd(x, y) = diam [x, y] = diamdd [x, y]

for all x, y ∈ T.
(iv) If (T, d) is of K-bounded turning, then for all x, y ∈ T we have

dd(x, y) = diam [x, y] ≤ Kd(x, y) ≤ K dd(x, y).

Thus the identity map idT : (T, d) → (T, dd) is K-bi-Lipschitz. Conversely,
if this map is K-bi-Lipschitz, then for all x, y ∈ T,

diam [x, y] = diamdd [x, y] = dd(x, y) ≤ Kd(x, y).
Therefore, (T, d) is of K-bounded turning.

We say a metric d on a metric tree T is a diameter metric if d(x, y) =
diam [x, y] for all x, y ∈ T. In this case, d = dd, where dd is defined as
in (2.3).

Suppose (T, d) is a qc-tree, i.e., a tree that is doubling and of bounded
turning. Then the previous lemma implies that (T, dd) is bi-Lipschitz equiv-
alent, and in particular quasisymmetrically equivalent, to (T, d). Moreover,
(T, dd) is of 1-bounded turning and also doubling, since the latter condition
is invariant under bi-Lipschitz equivalence; so (T, dd) is also a qc-tree. This
implies that in order to prove Theorems 1.2 and 1.3, we are reduced to the
case that the qc-tree in question carries a diameter metric. This reduction
makes the proofs somewhat easier, but we still face major problems, because
there is no obvious way to turn a diameter metric into a geodesic metric by
a quasisymmetry.
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For the rest of the paper we will assume that (T, d) is a qc-tree that is
equipped with a diameter metric d. Nothing essential changes if we rescale
the metric. So we may also assume that diam(T) = 1. We will denote the
doubling constant of T by N throughout the paper.

3. Sun and shadow. In this section we will prove a statement (Propo-
sition 3.1) that will allow us to find double points in our given qc-tree T that
stay away from the branch points of T in a geometrically controlled manner.
In the formulation of the proposition, we use the function defined in (2.2).

Proposition 3.1. There exists a constant γ = γ(N) > 0 only depending
on the doubling constant N of T with the following property: if ∆ > 0 and
J ⊂ T is an arc with diam(J) ≥ ∆, then there exists a double point x ∈ J
of T such that

d(x, b) ≥ γmin{HT(b), ∆}
for all branch points b ∈ T.

To prove this statement, we require two auxiliary facts.
Lemma 3.2. Let (J, d) be a metric arc equipped with a diameter metric d,

J ′ ⊂ J be an arc, and A ⊂ J be a set with #(A ∩ J ′) ≤ M , where M ∈ N.
Then there exists an arc I ⊂ J ′ such that

diam(I) = 1
6M diam(J ′) and dist(I, A ∪ ∂J ′) ≥ 1

6M diam(J ′).

The statement is somewhat technical, because three arcs I ⊂ J ′ ⊂ J are
involved, but in this form the lemma will be useful for us later on.

Proof of Lemma 3.2. The construction that follows is illustrated in Fig-
ure 1. By Lemma 2.1 we can decompose J ′ into M +1 non-overlapping arcs
J ′1, . . . , J

′
M+1 of equal diameter ∆.

J ′1 J ′′ = J ′k J ′M+1

J ′ JI⊂I2I1 I3

Fig. 1. The arcs in the proof of Lemma 3.2

We have
∆ ≥ 1

M+1 diam(J ′) ≥ 1
2M diam(J ′).

Since#(A∩J ′) ≤M and J ′1, . . . , J ′M+1 have pairwise disjoint interiors, by the
pigeon-hole principle there exists k ∈ {1, . . . ,M + 1} such that for J ′′ := J ′k
we have int(J ′′) ∩ A = ∅. We subdivide J ′′ into three non-overlapping arcs
I1, I2, I3 of equal diameter. Then
(3.1) diam(Ii) ≥ 1

3 diam(J ′′) ≥ 1
6M diam(J ′)

for i = 1, 2, 3. We may assume that I1 contains one endpoint of J ′′, I3 con-
tains the other endpoint, and I2 is the “middle” arc in the decomposition
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of J ′′. It easily follows from (3.1) and the intermediate value theorem that
there exists an arc I ⊂ I2 with diam(I) = 1

6M diam(J ′).
If a ∈ A ∪ ∂J ′, then a 6∈ int(J ′′). So if we travel from a point x ∈ I to

the point a along [x, a] ⊂ J , we must traverse I1 or I3. Since d is a diameter
metric, (3.1) implies that

d(x, a) = diam [x, a] ≥ min{diam(I1),diam(I3)} ≥ 1
6M diam(J ′).

Hence dist(I, A ∪ ∂J ′) ≥ 1
6M diam(J ′). The statement follows.

Lemma 3.3 (Ein Platz an der Sonne (1)). Let (J, d) be a metric arc
equipped with a diameter metric d, and S : J → [0, diam(J)] be a function.
Suppose that there is a constant M ∈ N such that for all subarcs I ⊂ J we
have

(3.2) #{p ∈ I : S(p) ≥ diam(I)} ≤M.

Then there exists a constant σ = σ(M) > 0 and a point x ∈ J such that
d(x, p) ≥ σS(p) for all p ∈ J .

In other words, the set J \
⋃
p∈J B(p, σS(p)) is non-empty (here we use

the convention that B(p, 0) = ∅). If we think of each point p ∈ J with
S(p) > 0 as “casting a shadow” of radius σS(p) around p, then the lemma
says that the union of all shadows does not cover J , and so there is a “place
in the sun”.

Proof of Lemma 3.3. Without loss of generality we may assume that
diam(J) = 1. Consider the set A := {p ∈ J : S(p) > 0}. Let λ := 1/(6M)
and define An := {p ∈ A : S(p) ≥ λn} for n ∈ N0. Obviously, An ⊂ An+1

for n ∈ N0 and A =
⋃
n∈N0

An. We will inductively define arcs Jn ⊂ J for
n ∈ N0 such that J0 ⊃ J1 ⊃ J2 ⊃ · · · , diam(Jn) = λn for all n ∈ N0, and
dist(Jn, An−1) ≥ λn for all n ∈ N.

We set J0 := J . Suppose arcs J0, . . . , Jn with the desired properties have
already been defined for some n ∈ N0. Then by our hypotheses #(An ∩ Jn)
≤M. It follows from Lemma 3.2 that we can find an arc Jn+1 ⊂ Jn with

diam(Jn+1) =
1

6M diam(Jn) = λ diam(Jn) = λn+1

and dist(Jn+1, An) ≥ λn+1. Hence Jn+1 has the desired properties, and we
can continue the process indefinitely.

We have
⋂
n∈N0

Jn 6= ∅, and so we can pick a point x ∈ J that lies in all
arcs Jn. If p ∈ A is arbitrary, then there exists a smallest n ∈ N0 such that
p ∈ An. Then S(p) ∈ [λn, λn−1), and so

d(x, p) ≥ dist(x,An) ≥ λn+1 ≥ λ2S(p).
So if we choose σ = λ2 = 1/(36M2), then x is a point as desired.

(1) Mit fünf Mark sind Sie dabei!
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Proof of Proposition 3.1. Let ∆ > 0 and suppose J ⊂ T is an arc with
diam(J) ≥ ∆. Then J = [u, v], where u, v ∈ T are the endpoints of J . We
set S(p) = ∆ for p ∈ {u, v}, S(p) = min{HT(p), ∆} for a branch point
p ∈ (u, v), and S(p) = 0 for all other points p ∈ (u, v). Since diam(J) ≥ ∆
and 0 ≤ S(p) ≤ ∆ for p ∈ J , we can consider S as a function S : J →
[0,diam(J)].

Claim. There exists a constant M = M(N) ∈ N such that for all arcs
I ⊂ J we have

(3.3) #{p ∈ I : S(p) ≥ diam(I)} ≤M.

In other words, S satisfies the hypotheses of Lemma 3.3 with a constant
M =M(N) only depending on the doubling constant N of T.

To see this, fix an arc I ⊂ J and let R := {p ∈ int(I) : S(p) ≥ ρ}, where
ρ := diam(I) > 0. Each point r ∈ R is a branch point of T and there exists
a large component Ur of T \ {r} that is disjoint from I, but attached to I
through the point r. There are #R such components. The doubling property
then gives a bound on #R only depending on N . In the following we present
the details of this argument, illustrated in Figure 2.

JI

a′a

r r′

qr

q̃r

Ur

q′r

Fig. 2. Bounding the number of elements in R

We have I = [a, a′], where a, a′ ∈ I are the endpoints of I. Consider an
arbitrary point r ∈ R ⊂ int(I) = (a, a′). Then r is a branch point of T
with HT(r) ≥ S(r) ≥ ρ > 0. Each of the connected sets [a, r) and (r, a′] is
contained in a component ofT\{r}. Hence there must be another component
Ur of T \ {r} with diam(Ur) ≥ HT(r) ≥ ρ that is disjoint from I = [a, r) ∪
{r} ∪ (r, a′]. There exists a point q̃r ∈ Ur with d(q̃r, r) ≥ diam(Ur)/2 ≥ ρ/2;
otherwise, U r = Ur ∪ {r} ⊂ B(r, ρ/2) and so diam(Ur) ≤ diam(U r) < ρ,
which is a contradiction.

Then (r, q̃r] ⊂ Ur, and it easily follows from the intermediate value the-
orem that we can find a point qr ∈ (r, q̃r] ⊂ Ur with d(qr, r) = ρ/2. We
have

d(a, qr) ≤ d(a, r) + d(r, qr) ≤ diam(I) + ρ/2 = 3ρ/2,

and so qr ∈ B(a, 3ρ/2).
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If r, r′ ∈ R with r 6= r′, then the corresponding points qr and qr′ lie in
different components of T \ {r′}. To see this, note that U r = Ur ∪ {r} is a
connected set with

U r = Ur ∪ {r} ⊂ (T \ I) ∪ (T \ {r′}) ⊂ T \ {r′},

and so U r is contained in a component of T \ {r′}. In particular, qr ∈ Ur
and r ∈ I \ {r′} lie in the same component of T \ {r′}. On the other hand,
qr′ was chosen from a component Ur′ of T \ {r′} that does not contain any
point of I.

Since qr and qr′ lie in different components of T \ {r′}, Lemma 2.3(i)
implies that r′ ∈ [qr, qr′ ]. In particular,

d(qr, qr′) = diam [qr, qr′ ] ≥ d(r′, qr′) = ρ/2.

So the points qr, r ∈ R, have pairwise mutual distance ≥ ρ/2 and are all
contained in the ball B(a, 3ρ/2). It follows that #R is bounded by a constant
only depending on N (see the discussion in the beginning of Section 2). Since
the endpoints of I are not contained in R, we have to possibly increase this
bound by 2 to obtain a bound as in (3.3) with a constant M =M(N). The
Claim follows.

Lemma 3.3 now guarantees the existence of a point x ∈ J such that

d(x, p) ≥ σS(p)

for all p ∈ J , where σ = σ(M) = σ(N) > 0 can be chosen to depend only
on M and hence on N . We may assume that 0 < σ ≤ 1, and so σ2 ≤ σ.

We claim that the statement of the proposition is true with γ := σ2/2
which only depends on N . To see this, let b ∈ T be an arbitrary branch
point of T. As we travel from b to x along the arc [b, x], there is a first point
r ∈ J . We now consider two cases depending on the location of r.

Case 1: r ∈ B(u, σ∆/2) ∪ B(v, σ∆/2). In this case, we may assume
r ∈ B(u, σ∆/2). Since S(u) = ∆, by choice of x we then have

d(x, b) = diam [x, b] ≥ d(x, r) ≥ d(x, u)− d(r, u)
≥ σS(u)− σ∆/2 = σ∆/2 ≥ σmin{HT(b), ∆}/2
≥ γmin{HT(b), ∆}.

This is the desired inequality in this case.

Case 2: r 6∈ B(u, σ∆/2) ∪ B(v, σ∆/2). Then in particular r ∈ int(J).
There exists a component U of T \ {b} that is disjoint from J and satisfies
diam(U) ≥ HT(b). This connected set does not contain r ∈ J and so it is
contained in a component V1 of T \ {r}. Hence

diam(V1) ≥ diam(U) ≥ HT(b).
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Two other components V2 and V3 of T \ {r} contain the half-open (and
non-empty) arcs [u, r) and [v, r), respectively. The situation is illustrated in
Figure 3. It follows that

diam(V2) ≥ diam[u, r) ≥ d(u, r) ≥ σ∆/2.
Here we have used r 6∈ B(u, σ∆/2). Similarly, diam(V3) ≥ σ∆/2, and so

HT(r) ≥ min{diam(Vi) : i ∈ {1, 2, 3}}

≥ min{HT(b), σ∆/2} ≥
σ

2
min{HT(b), ∆}.

It follows that
d(x, b) = diam [x, b] ≥ d(x, r) ≥ σS(r) = σmin{HT(r), ∆}

≥ σ2min{HT(b), ∆}/2 = γmin{HT(b), ∆},
as desired.

r x

B(u, σ∆/2) B(v, σ∆/2)

u v

b

U

V1

V2 V3

Fig. 3. The estimate of Case 2

Note that x ∈ J is a double point of T. Indeed, x is not a branch
point of T, because x has a positive distance to each of them. On the other
hand, d(x, u) ≥ σS(u) = σ∆ > 0, and so x 6= u. Similarly, x 6= v. Since
x ∈ [u, v] = J , the points u and v lie in different components of T \ {x} by
Lemma 2.3(i). In particular, there are at least two, but not more than two
such components. Hence x is a double point of T.

With some small changes in the previous proof one can show that the set
of double points x ∈ J that satisfy the estimate in Proposition 3.1 is not only
non-empty, but in a suitable sense actually fairly large (namely, uniformly
perfect). Such a statement was proved in recent work by Lin and Rohde (see
[LR18, Lemma 4.5]).

4. Good double points. In this section we introduce the concept of
a “good” double point of our given qc-tree T. Attached to this concept are
certain numerical parameters. The goal of this section is to show that with
appropriate choices of these parameters, one can use a maximal set V of good
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double points to obtain a decomposition of T with some desired geometric
properties (see Proposition 4.2).

We fix a scale 0 < ∆ ≤ diam(T) = 1. We consider double points x ∈ T
with the property that both components of T \ {x} are large, meaning that

(4.1) DT(x) ≥ β∆
for some constant β ≥ 1 (DT was defined in (2.1)). We will choose β accord-
ing to the following statement.

Proposition 4.1. There is a constant β = β(N) ≥ 1 only depending on
the doubling constant N of T such that the following statement is true: if
V ⊂ T is a set of double points of T that are ∆-separated and satisfy (4.1),
then either

(i) for each component X of T \ V we have diam(X) ≤ 3β∆, or
(ii) there is an arc I ⊂ T with

diam(I) ≥ ∆ and dist(I, V ) ≥ ∆,
and such that (4.1) holds for each double point x ∈ I of T.

Proposition 3.1 implies that each arc I ⊂ T contains double points of T.
So in case (ii) of Proposition 4.1, we can add a double point x ∈ I of T to V .
Then this new set V ′ = V ∪{x} is again a set of double points of T that are
∆-separated and satisfy (4.1). This implies that for a maximal set V as in
the proposition, statement (i) will always be true.

Proof of Proposition 4.1. By the doubling property, there exists a con-
stant N ′ = N ′(N) ∈ N only depending on the doubling constant N of T with
the following property: if ρ > 0 and B ⊂ T is a ball in T of radius 6ρ, then
every ρ-separated subset of B contains at most N ′ points. We will show that
the proposition is true with the constant β = 6N ′, which only depends on N .

Let V ⊂ T be a set as in the statement. Note that V is a finite set,
because V is ∆-separated and T is compact. If all components X of T \ V
satisfy (i), we are done. Otherwise, there exists a component X of T\V with
diam(X) > 3β∆. Then we can find points z, w ∈ X with d(z, w) ≥ 3β∆. By
Lemma 2.3(i) we then have [z, w]∩V = ∅, which implies that J := [z, w] ⊂ X.

Note that diam(J) ≥ d(z, w) ≥ 3β∆. By decomposing J into three non-
overlapping subarcs of equal diameter ≥ β∆ and trimming the “middle” arc
to appropriate size, we can find an arc J ′ ⊂ J ⊂ X with diam(J ′) = β∆
that has distance ≥ β∆ from each of the two endpoints of J (see the proof of
Lemma 3.2 for a very similar argument). This implies that for every double
point x ∈ J ′ of T the estimate (4.1) holds.

We want to find a subarc I ⊂ J ′ ⊂ T \ V with diam(I) ≥ ∆ and
dist(I, V ) ≥ ∆. To this end, we fix a point a ∈ J ′ as a “base point”. Now
suppose v ∈ V is a point with dist(v, J ′) < ∆. If we travel from v towards a
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along [v, a], there is a first point r = rv that belongs to J ′ (see Figure 4 for
an illustration). Let

R = {rv : v ∈ V, dist(v, J ′) < ∆}

be the set of these “root” points.

a
J ′

rv

v

U

qr

r′

qr′

Fig. 4. Roots in J ′

Claim. #R ≤ N ′.

To see this, first note that for each point r ∈ R we can choose a point
v ∈ V with d(v, r) < ∆ and r = rv. The connected set J ′ ⊂ T \ V ⊂ T \ {v}
lies in one component of T\{v}. Then for the other component U of T \ {v}
we have U ∩J ′ = ∅ and diam(U) ≥ DT(v) ≥ β∆, because v ∈ V . Therefore,
we can find a point q ∈ U with d(q, v) = β∆/2 (see the proof of Proposi-
tion 3.1 for more details in a similar claim). Define vr := v and qr := q. We
then have

d(qr, a) ≤ d(qr, vr) + dist(vr, J
′) + diam(J ′) < β∆/2 +∆+ β∆ ≤ 3β∆.

Thus qr ∈ B(a, 3β∆).
Moreover, if r, r′ ∈ R are distinct, then the corresponding points qr and

qr′ lie in different components ofT\{r}. This can be justified by an argument
similar to the one in the proof of Proposition 3.1. Hence r ∈ [qr, qr′ ] and so
[qr, r] ⊂ [qr, qr′ ]. On the other hand, qr and r lie in different components of
T \ {vr}, and so vr ∈ [qr, r] ⊂ [qr, qr′ ]. It follows that

d(qr, qr′) = diam [qr, qr′ ] ≥ d(qr, vr) ≥ β∆/2.

This shows that the set Q := {qr : r ∈ R} consists of (β∆/2)-separated
points and is contained in the ball B(a, 3β∆). The Claim now follows from
the definition of the constant N ′.
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By the Claim and Lemma 3.2 we can find an arc I ⊂ J ′ with

diam(I) =
1

6N ′
diam(J ′) =

β

6N ′
∆ = ∆

(by choice of β = 6N ′) and dist(I,R ∪ ∂J ′) ≥ ∆.
Then dist(I, V ) ≥ ∆. Indeed, let v ∈ V . If dist(v, J ′) ≥ ∆, then clearly

dist(v, I) ≥ dist(v, J ′) ≥ ∆. If dist(v, J ′) < ∆, then as we travel from v to a
point in I along an arc, we pass through ∂J ′ or the root point rv ∈ J ′ ∩ R.
So dist(v, I) ≥ dist(I,R ∪ ∂J ′) ≥ ∆ in this case as well.

Recall that J ′ ⊂ J was chosen such that every double point of T con-
tained in J ′, and hence every such point contained in I ⊂ J ′, satisfies (4.1).
Therefore, the arc I has the desired properties and the statement follows.

In addition to (4.1), we want to choose double points x of T that are
separated from the branch points of T in a controlled way. More precisely,
we require that

(4.2) d(x, b) ≥ γmin{HT(b), ∆}
for all branch points b ∈ T. Here γ = γ(N) is the constant from Propo-
sition 3.1 that can be chosen to depend only on the doubling constant N
of T. A double point x ∈ T is called (β, γ)-good at scale ∆ if it satisfies (4.1)
and (4.2).

Proposition 4.2. Let β = β(N) ≥ 1 be the constant from Proposi-
tion 4.1, γ = γ(N) > 0 be the constant from Proposition 3.1, and 0 < ∆ ≤ 1.
If V ⊂ T is a maximal ∆-separated set of (β, γ)-good double points at
scale ∆, then

diam(X) ≤ 3β∆

for each component X of T \ V .

Note that such a maximal set V always exists, but we could very well
have V = ∅. In this case, the statement says that 1 = diam(T) ≤ 3β∆. In
other words, V is necessarily non-empty if 0 < ∆ < 1/(3β).

Proof of Proposition 4.2. Let V be a set as in the statement. We argue
by contradiction and assume that there is a component X of T \ V with
diam(X) > 3β∆. Then we can find an arc I ⊂ T as in Proposition 4.1(ii).

By Proposition 3.1 we can find a double point x ∈ I of T such that

d(x, b) ≥ γmin{HT(b), ∆}
for all branch points b ∈ T. Then x satisfies (4.1) and (4.2). Therefore, x is
a (β, γ)-good double point of T at scale ∆. We also have

dist(x, V ) ≥ dist(I, V ) ≥ ∆.
Hence V ′ = V ∪ {x} is a ∆-separated set consisting of (β, γ)-good double
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points at scale ∆. Since x 6∈ V , this contradicts the maximality of V , and
the statement follows.

At this point the importance of (4.2) is not at all obvious. The relevance
of this condition will become apparent only later (see the remarks before
Lemma 5.5).

5. Subdividing the tree. We want to subdivide our given qc-tree T.
As before, we may assume that T is equipped with a diameter metric d and
that diam(T) = 1. We fix constants β ≥ 1 and γ > 0 depending only on
the doubling constant N of T as in Proposition 4.2, and a (small) constant
0 < δ < 1/(3β).

Vertices and tiles. We will now inductively construct sets Vn ⊂ T for
n ∈ N such that

(5.1) V1 ⊂ V2 ⊂ · · · ,
where eachVn is a maximal δn-separated set consisting of (β, γ)-good double
points at scale δn. Since T is compact, each set Vn will necessarily be finite.

For V1 we choose a maximal δ-separated subset of T consisting of (β, γ)-
good double points at scale δ. Suppose for some n ∈ N the sets V1 ⊂ · · · ⊂
Vn ⊂ T with the desired properties have been chosen. Then for ∆ = δn+1

≤ δn the setVn is a∆-separated subset of T consisting of (β, γ)-good double
points at scale ∆. Hence it is contained in a maximal such set. We pick such
a maximal set and denote it by Vn+1. Clearly, Vn ⊂ Vn+1. It follows that
we obtain sets Vn for all n ∈ N, as desired. Since δn ≤ δ < 1/(3β), we have
Vn 6= ∅ for each n ∈ N, as follows from the remark after Proposition 4.2.

Each point v ∈ Vn is called an n-vertex. The closure of a component of
T \ Vn is called an n-tile, and the set of all n-tiles is denoted by Xn. We
also speak of vertices and tiles if their level n is clear from the context or
irrelevant.

We now summarize some topological properties of vertices and tiles. Most
of them are intuitively clear, often relying on the fact that each vertex is a
double point, but we include full proofs for the sake of completeness.

Lemma 5.1. For each n ∈ N the following statements are true:

(i) Each n-tile X is a subtree of T with ∂X ⊂ Vn.
(ii) If X is an n-tile and v ∈ Vn, then X is contained in the closure

of one of the two components of T \ {v} and disjoint from the other
component.

(iii) If X is an n-tile, then ∂X 6= ∅.
(iv) Two distinct n-tiles X and Y have at most one point in common. Such

a common point is an n-vertex and a boundary point of both X and Y .
(v) Each n-vertex v is contained in precisely two distinct n-tiles X and Y .
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(vi) There are only finitely many n-tiles.
(vii) Each (n+ 1)-tile X ′ is contained in a unique n-tile X.
(viii) Each n-tile X is equal to the union of all (n+1)-tiles X ′ with X ′ ⊂ X.
(ix) If v is an n-vertex and X an n-tile with v ∈ X, then v ∈ ∂X. More-

over, there exists precisely one (n+ 1)-tile X ′ ⊂ X with v ∈ X ′.
(x) If X is an n-tile and ∂X = {v} ⊂ Vn is a singleton set, then X =W ,

where W is a component of T \ {v}.

Proof. (i) If X is an n-tile, then X = U , where U is a component of
T \Vn. It then follows from Lemma 2.3(ii) that X = U is a subtree of T
with ∂X = ∂U ⊂ ∂U ⊂ Vn.

(ii) Again we have X = U , where U is a component of T\Vn. Moreover,
v ∈ Vn is a double point of T, and so there exist precisely two components
W1 and W2 of T \ {v}. Since U is a connected subset of T \Vn ⊂ T \ {v},
it is contained in one of these components, say U ⊂ W1. Then X = U ⊂
W 1 =W1 ∪ {v}, and X is disjoint from W2 = T \W 1.

(iii) We have Vn 6= ∅ and so it follows from (ii) that X 6= T. Since
T is connected, this implies that ∂X 6= ∅; otherwise, the non-empty set
X 6= T would be an open and closed subset of the connected space T. This
is impossible.

(iv) This immediately follows from Lemma 2.3(iii).
(v) The point v ∈ Vn is a double point of T. Hence there exist precisely

two components W1 and W2 of T \ {v}. We have W 1 = W1 ∪ {v} and
W 2 =W2 ∪ {v}. Hence v ∈W 1 ∩W 2.

Lemma 2.3(i) implies that for all points x ∈ W1 and y ∈ W2, we have
v ∈ [x, y]. Since v ∈ W 1 ∩W 2, we can choose x and y so close to v that
[x, y] contains no other point in Vn. Then [x, v) is a connected subset of
T \Vn, and so it must be contained in a component U1 of T \Vn. Hence
X := U1 is an n-tile that contains the arc [x, v], and so v ∈ X. Similarly,
(v, y] is contained in a component U2 of T \Vn, and v is contained in the
n-tile Y := U2.

Since v ∈ [x, y], by Lemma 2.3(i) the components U1 and U2 of T \Vn

containing x and y, respectively, must be distinct. So U1 6= U2, and these
sets are disjoint. Since U1 and U2 are open by Lemma 2.3(ii), the sets
X = U1 and U2 are also disjoint. Since ∅ 6= U2 ⊂ U2 = Y , we conclude
that X = U1 6= U2 = Y . So v is contained in at least two distinct n-tiles X
and Y .

Suppose Z = U is another n-tile with v ∈ Z, where U is a component
of T \Vn. A point z ∈ U must be contained in one of the components W1

or W2 of T \ {v}, say z ∈ W1. Then [x, z] ⊂ T \ {v} by Lemma 2.3(i). We
may assume that x and z are so close to v that [x, z] contains no point in
Vn \ {v}. Then [x, z] ∩Vn = ∅, and so x and z are contained in the same
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component of T \ Vn. It follows that U = U1, and so X = U1 = U = Z.
This shows that X 6= Y are the only n-tiles that contain v. So v is contained
in precisely two distinct n-tiles.

(vi) Each n-tile contains an n-vertex as follows from (i) and (iii), and each
vertex is contained in precisely two n-tiles by (v). This implies that there
are at most twice as many n-tiles as n-vertices. In particular, the number of
n-tiles is finite, because the set Vn of n-vertices is finite. Actually, a more
careful argument shows that the number of n-tiles exceeds the number of
n-vertices by exactly 1, but we will not need this stronger result.

(vii) If X ′ is an (n+1)-tile, then there exists a componentW of T\Vn+1

with W = X ′. Since Vn ⊂ Vn+1, the set W is a connected subset of T \Vn

and so contained in a unique component U of T \Vn. Then X ′ is contained
in the n-tile X := U , because X ′ = W ⊂ U = X. There can be no other
n-tile containing X ′, because by (i) the set X ′ is a subtree of T and hence
an infinite set, but distinct n-tiles can have at most one point in common
by (iv).

(viii) If X is an n-tile, then X = U , where U is a component of T \Vn.
Since U is connected, this set cannot contain isolated points. This implies
that the set U \Vn+1 ⊂ X is dense in U and hence also dense in X = U .

If x ∈ U \Vn+1 is arbitrary, then there exists a componentW of T\Vn+1

with x ∈W . Since W is a connected subset of T \Vn+1 ⊂ T \Vn, this set
must be contained in a component of T\Vn. Since x ∈ U∩W , it follows that
W ⊂ U . Then X ′ :=W is an (n+1)-tile with x ∈ X ′ and X ′ =W ⊂ U = X.

This shows that if we denote by Y the union of all (n+ 1)-tiles X ′ ⊂ X,
then Y ⊂ X contains the set U \ Vn+1. By (vi) there are only finitely
many (n + 1)-tiles, and so Y is closed. Since U \ Vn+1 is dense in X and
U \Vn+1 ⊂ Y , it follows that X = Y , as desired.

(ix) By (v) there exists precisely one n-tile Y distinct from X with v ∈ Y .
We then have {v} = X ∩Y and v ∈ ∂X by (iv). By (viii) there exist (n+1)-
tiles X ′ ⊂ X and Y ′ ⊂ Y with v ∈ X ′ ∩ Y ′. Since X and Y have only the
point v in common, it follows that X ′ 6= Y ′ and that Y ′ is not a subset of X.
Since v ∈ Vn ⊂ Vn+1 is also an (n + 1)-vertex, (v) implies that X ′ and
Y ′ are the only (n + 1)-tiles that contain v. In particular, X ′ is the unique
(n+ 1)-tile with v ∈ X ′ ⊂ X.

(x) Suppose that ∂X = {v} ⊂ Vn. We have X = U , where U is a com-
ponent of T \Vn. As we have seen in the proof of (ii), there is a component
W of T \ {v} with U ⊂W . We claim that U =W .

To see this, we argue by contradiction and assume that U 6= W . Then
there exists a point x ∈ U ⊂ W , as well as a point y ∈ W \ U . Hence
[x, y] ∩ Vn 6= ∅, because otherwise y ∈ U . So as we travel from x to y
along [x, y], there must be a first point u ∈ [x, y] that belongs to Vn. Then
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[x, u) ⊂ U , and so [x, u] ⊂ U = X. By (ix) the n-vertex u ∈ X is a boundary
point of X. Hence u ∈ ∂X = {v} and so u = v. Since v = u ∈ [x, y],
Lemma 2.3(i) implies that x and y lie in different components of T \ {v}.
Since x and y lie in the same componentW of T\{v}, this is a contradiction.
We see that U =W and so X = U =W , as desired.

We now discuss some metric properties of vertices and tiles. Since Vn

consists of δn-separated points, for distinct u, v ∈ Vn we have

(5.2) d(u, v) ≥ δn.
For each n-tile Xn we have

diam(Xn) � δn, or more precisely δn ≤ diam(Xn) ≤ 3βδn.(5.3)

Indeed, the upper bound follows from Proposition 4.2.
To see that the lower bound is also true, first note that ∅ 6= ∂Xn ⊂ Vn by

Lemma 5.1(i) and (iii). If ∂Xn is a singleton set {v} ⊂ Vn, then Xn is equal
to the closure of one of the two components of T \ {v} by Lemma 5.1(x).
Since v satisfies (4.1), we have

diam(Xn) ≥ DT(v) ≥ βδn ≥ δn,
as desired (recall that β ≥ 1).

If ∂Xn contains two distinct points in Vn, we obtain the lower bound in
(5.3) from (5.2).

We have good separation of n-tiles in the following sense. If Xn, Y n ∈ Xn

are disjoint n-tiles, then

(5.4) dist(Xn, Y n) ≥ δn.
To see this, pick points x ∈ X := Xn and y ∈ Y := Y n such that d(x, y) =
dist(X,Y ). As we travel from x to y along the arc [x, y], we must meet the
sets ∂X and ∂Y because X and Y are disjoint. Suppose u ∈ [x, y]∩ ∂X and
v ∈ [x, y] ∩ ∂Y . Then u and v are distinct n-vertices and it follows that

dist(X,Y ) = d(x, y) = diam [x, y] ≥ d(u, v) ≥ δn,
as desired.

Since each point v ∈ Vn is a (β, γ)-good double point at scale δn, by
(4.1) we have

(5.5) DT(v) ≥ βδn,
and so the components of T \ {v} are large.

Each n-vertex v stays away from the branch points of T in a controlled
way. More precisely, by (4.2) for each branch point b of T we have

(5.6) d(v, b) ≥ γmin{HT(b), δ
n}.

Finally, for our later discussion it is convenient to set V0 = ∅ and regard
X0 := T as the only 0-tile. Then X0 = {T}. Clearly (5.3) is still true.
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Chains. An n-chain for n ∈ N0 is a finite non-empty sequence P of
n-tiles X1, . . . , Xr with Xi ∩ Xi+1 6= ∅ for i = 1, . . . , r − 1. Again we call
P simply a chain if its level n is clear from the context. We call r ∈ N the
length of P . The chain P joins the points x, y ∈ T if x ∈ X1 and y ∈ Xr.
It is simple if Xi 6= Xi+1 for i = 1, . . . , r− 1 and Xi ∩Xj = ∅ for |i− j| ≥ 2.
The tiles in a simple chain P are all distinct.

Given two distinct points x, y ∈ T, we say that P is a simple n-chain
joining x and y if P is simple, X1 is the only n-tile in P containing x, and
Xr is the only n-tile in P containing y (note that these requirements are
stronger than saying that P is simple and that P joins x and y, because the
latter two conditions allow x ∈ X1 ∩X2).

We use the notation |P | :=
⋃r
i=1Xi. We say that P contains a point x

if x ∈ |P |. Another n-chain Q is called a subchain of P if the sequence of
n-tiles in Q is obtained by deleting some of the tiles in P while keeping the
order of the remaining tiles.

Lemma 5.2. Let n ∈ N0 and x, y ∈ T be distinct points. Then the
following statements are true:

(i) There exists a unique simple n-chain P joining x and y.
(ii) If P is the simple n-chain and P̃ is another n-chain joining x and y,

then |P | ⊂ |P̃ |. More precisely, every n-tile in P also belongs to P̃ .

We will often use the notation Pnxy for the unique simple n-chain joining
the points x, y ∈ T, x 6= y.

Proof of Lemma 5.2. Let x, y ∈ T with x 6= y. We will exhibit an algo-
rithm that produces a simple n-chain P joining x and y, and we will see that
P is the unique such n-chain.

Let x < v1 < · · · < vr−1 < y with r ∈ N be the distinct n-vertices in
(x, y) arranged in the natural order < on [x, y] (obtained by identifying [x, y]
with the unit interval [0, 1]). This list can be empty (then r = 1). We set
v0 := x and vr := y. Then for i = 1, . . . , r the open arc (vi−1, vi) ⊂ [x, y] is
a connected set in the complement of the set of n-vertices in T. Therefore,
there exists a unique n-tile Xi with (vi−1, vi) ⊂ Xi. Then [vi−1, vi] ⊂ Xi, be-
cause Xi is a closed set. For i = 1, . . . , r−1 the n-vertex vi separates the sets
(vi−1, vi) and (vi, vi+1), and so these sets must lie in different components
of T \ {vi} by Lemma 2.3(i). Closures of such components can have at most
the point vi in common as follows from Lemma 2.3(iii). This implies that
Xi ∩Xi+1 = {vi}. If 1 ≤ i < j ≤ r and j − i ≥ 2, then a similar argument
using a point p ∈ [x, y] with vi < p < vi+1 shows that Xi ∩Xj = ∅. Based
on this discussion one can now easily check that the n-tiles X1, . . . , Xr form
a simple n-chain P joining x and y.
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Now suppose P̃ is another n-chain joining x and y. Then |P̃ | is a path-
connected set containing x and y, and thus [x, y] ⊂ |P̃ |. In particular,
(vi−1, vi) ⊂ |P̃ | for i = 1, . . . , r. Since Xi contains (vi−1, vi) and all other
n-tiles are disjoint from (vi−1, vi) as follows from Lemma 5.1(iv), Xi must
be one of the n-tiles in P̃ . Statement (ii) follows.

Finally, to show uniqueness of P , assume that P̃ is a simple n-chain
joining x and y. Since x = v0 ∈ X1 and X1 belongs to P̃ , the n-tile X1

must be the first tile in P̃ . Since X2 6= X1 (in case r ≥ 2) belongs to P̃ and
X1 ∩X2 = {v1} 6= ∅, the n-tile X2 must be the second tile in P̃ . Continuing
in this manner, we see that the tiles in P̃ are given by X1, . . . , Xr. So P̃ = P
and the uniqueness of P follows.

We can construct simple (n+ 1)-chains from simple n-chains.

Lemma 5.3. Let n ∈ N0 and x, y ∈ T be distinct points. Suppose the
simple n-chain P joining x and y consists of the n-tiles X1, . . . , Xr, where
r ∈ N. For i = 1, . . . , r − 1 let vi be the unique n-vertex in Xi ∩ Xi+1,
and let v0 = x and vr = y. If for i = 1, . . . , r we denote by P ′i the simple
(n+ 1)-chain joining vi−1 and vi, then the following statements are true:

(i) The simple (n+1)-chain P ′ joining x and y is obtained by concatenating
P ′1, . . . , P

′
r.

(ii) The chain P ′i consists precisely of all (n + 1)-tiles X ′ ⊂ Xi such that
X ′ ∩ (vi−1, vi) 6= ∅.

Proof. As in the proof of Lemma 5.2, let v1 < · · · < vr−1 be the distinct
n-vertices in (x, y) arranged in the natural order < on [x, y]. Then Xi is the
unique n-tile that contains [vi−1, vi] for i = 1, . . . , r, and we have {vi} =
Xi ∩Xi+1 for i = 1, . . . , r − 1.

We can find the simple (n + 1)-chain P ′ joining x and y by arranging
the (n+1)-vertices in (x, y) in the order <. Since the n-vertices v1, . . . , vr−1
are also (n+ 1)-vertices, they will be among these (n+ 1)-vertices in (x, y).
This means that we may assume that all the (n + 1)-vertices in (x, y) are
labeled vji so that

x < v11 < · · · < vs1−11 < vs11 = v1 = v02 < · · · < vs22 = v2

= v03 < · · · < v
sr−1

r−1 = vr−1 = v0r < · · · < vsr−1r < y.

Here s1, . . . , sr ∈ N. We set v01 = x and vsrr = y. Then the argument in the
proof of Lemma 5.2 shows that for i = 1, . . . , r and j = 1, . . . , si there exists
a unique (n + 1)-tile Xj

i such that [vj−1i , vji ] ⊂ Xj
i . Moreover, the simple

(n+ 1)-chain P ′ joining x and y is given by

X1
1 , . . . , X

s1
1 , X

1
2 , . . . , X

s2
2 , . . . , X

1
r , . . . , X

sr
r .
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It is also clear that for i = 1, . . . , r the simple (n + 1)-chain P ′i joining
vi−1 = v0i and vi = vsii is given by X1

i , . . . , X
si
i , because v1i < · · · < vsi−1i are

all the (n+ 1)-vertices in (vi−1, vi) = (v0i , v
si
i ) ⊂ (x, y). This implies that P ′

is the concatenation of the chains P ′1, . . . , P ′r. Statement (i) follows.
To see (ii), we fix i ∈ {1, . . . , r}. Let Xj

i with j ∈ {1, . . . , si} be an (n+1)-
tile from the simple (n + 1)-chain P ′i joining vi−1 and vi. Then X

j
i is con-

tained in a unique n-tile by Lemma 5.1(vii). Note that (vj−1i , vji ) ⊂ Xj
i and

(vj−1i , vji )⊂(vi−1, vi); so X
j
i contains points in (vi−1, vi). Since (vi−1, vi)⊂Xi

and (vi−1, vi) contains no n-vertices, Lemma 5.1(iv) implies all n-tiles ex-
cept Xi are disjoint from (vi−1, vi). We conclude that Xj

i ⊂ Xi. This shows
that P ′i consists of (n+1)-tiles that are contained in Xi and meet (vi−1, vi).

Conversely, suppose Z ⊂ Xi is an (n + 1)-tile with Z ∩ (vi−1, vi) 6= ∅.
Since

(vi−1, vi) = (v0i , v
1
i ) ∪ {v1i } ∪ (v1i , v

2
i ) ∪ · · · ∪ {v

si−1
i } ∪ (vsi−1i , vsii ),

we then have Z ∩ (vj−1i , vji ) 6= ∅ for some j ∈ {1, . . . , si} or vji ∈ Z for some
j ∈ {1, . . . , si − 1}.

In the first case, Z = Xj
i , because no (n+ 1)-tile except Xj

i ⊃ (vj−1i , vji )

contains points in (vj−1i , vji ). This follows from Lemma 5.1(iv), because no
point in (vj−1i , vji ) is an (n+ 1)-vertex.

In the second case, when vji ∈ Z for some j ∈ {1, . . . , si − 1}, we have
Z = Xj

i or Z = Xj+1
i , because Xj

i and Xj+1
i are the only (n+ 1)-tiles that

contain the (n+ 1)-vertex vji (this follows from Lemma 5.1(v)).
In any case, Z is one of the tiles in the chain P ′i , and statement (ii)

follows.

Choosing δ. We are now going to choose the parameter δ > 0 used
in the definition of vertices and tiles small enough so that (n + 1)-tiles are
contained in n-tiles in a “controlled way”. The choice of δ will depend on
the constants β and γ fixed at the beginning of this section. Recall that we
imposed the preliminary condition 0 < δ < 1/(3β) for the definition of tiles
and vertices. The ultimate choice of δ will be discussed after the proof of
Lemma 5.5.

Lemma 5.4. If 0 < δ < 1/(3β) is sufficiently small only depending on
the doubling constant N of T, then the following statements are true for all
n ∈ N0:

(i) Each n-tile X contains at least three (n+ 1)-tiles.
(ii) If u and v are distinct n-vertices, then the simple (n+1)-chain joining

u and v has length ≥ 3.
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It follows from the first statement that then there are least three 1-tiles.
The second statement implies that each (n+1)-tile X ′ contains at most one
n-vertex.

Proof of Lemma 5.4. Fix n ∈ N0. Then we know by (5.3) that diam(X)
≥ δn for each n-tile X, and diam(X ′) ≤ 3βδn+1 for each (n + 1)-tile X ′. It
follows that (i) is true for 0 < δ < 1/(6β).

If u and v are distinct n-vertices, then d(u, v) ≥ δn by (5.2). Again we
have diam(X ′) ≤ 3βδn+1 for each (n + 1)-tile X ′. Thus (ii) is also true if
0 < δ < 1/(6β).

In the next lemma we consider the location of (n+1)-vertices in an n-tile.
In the proof we will invoke (5.6) derived from (4.2). This is the ultimate rea-
son why we want the elements inVn to satisfy (4.2) in addition to (4.1) (with
∆ = δn). A consequence will be the subsequent Lemma 5.6. It guarantees
that if we decompose an n-tile X into (n + 1)-tiles, then a simple chain of
(n+1)-tiles joining two distinct points in ∂X does not encounter other points
in ∂X. This in turn is behind the important estimate in Lemma 6.1(ii). It
prevents blow up of the auxiliary distance functions %n as n → ∞ that we
will use to define our desired geodesic metric % on T and ultimately leads to
the existence of the limit in (1.1).

Lemma 5.5. If 0 < δ < 1/(3β) is sufficiently small only depending on the
doubling constant N of T, then the following statement is true. Let n ∈ N,
X be an n-tile, u ∈ ∂X ⊂ Vn, and X ′ ⊂ X be the unique (n + 1)-tile
with u ∈ X ′. Then there exists an (n + 1)-vertex u′ ∈ ∂X ′ \ {u} such that
[u, u′] ⊂ [u, v] for all v ∈ ∂X \ {u}.

Note that the existence of a unique (n + 1)-tile X ′ ⊂ X with u ∈ X ′ is
guaranteed by Lemma 5.1(ix). If we are in the setting of Lemma 5.5 and δ is

u
u′

b

v

w

X ′

X

Fig. 5. Branching in an n-tile
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so small that Lemma 5.4(ii) applies, then, as we travel from u to v along
[u, v] ⊂ X, we must exit X ′, because X ′ contains u, but not v. So there is a
last point on [u, v] that belongs to X ′. This must be the point u′ ∈ ∂X ′ \{u}
in the statement, because [u, u′] ⊂ X ′ and u, v lie in different components of
T \ {u′}; so X ′ ∩ (u′, v] = ∅ by Lemma 5.1(ii). According to Lemma 5.5, this
last point u′ in [u, v] ∩X ′ is independent of v, and so we always exit X ′ at
the same (n+ 1)-vertex u′ when traveling from u to any other point in ∂X.
We will later call u and u′ the “main vertices” of X ′.

Proof of Lemma 5.5. We may assume that δ is so small that the state-
ments in Lemma 5.4 are true. It follows from the preceding discussion that
if v ∈ ∂X \ {u}, then there is a last point u′ ∈ [u, v] ∩X ′ as we travel from
u to v along [u, v]. Clearly, u′ ∈ ∂X ′ ⊂ Vn+1. We also have u 6= u′, because
if u = u′, then (u, v] ⊂ X is disjoint from X ′ and so the set (u, v] would be
covered by the finitely many (n + 1)-tiles Y ⊂ X distinct from X ′. These
tiles Y then also cover [u, v], and so u is contained in a tile Y ⊂ X distinct
from X ′. We know that this is impossible, and so indeed u′ 6= u.

It remains to show that this last point u′ on [u, v] ∩ X ′ is independent
of v. So suppose w 6= v is another vertex in ∂X \ {u}. Then the points
u, v, w ∈ ∂X are distinct. For an illustration of the ensuing argument see
Figure 5.

Since T is a tree, the arcs [u, v] and [u,w] share an initial segment [u, b] =
[u, v] ∩ [u,w], where b ∈ T, but no other points. It suffices to show that
[u, u′] ⊂ [u, b]. Since both points u′ and b lie on [u, v], we have [u, u′] ⊂ [u, b]
or [u, b] ⊂ [u, u′]. The first alternative is necessarily true if we can show that
diam [u, u′] < diam [u, b].

First note that b 6= u. Indeed, if b = u then u ∈ [v, w] = [v, u]∪ [u,w], and
so v and w would lie in distinct components of T \ {u}. By Lemma 5.1(ii)
this is impossible, because v and w lie in the same tile X. Similarly, b 6= v
and b 6= w.

It follows from Lemma 2.4 that b is a branch point of T and u, v, w
lie in distinct components Uu, Uv, Uw of T \ {b}, respectively. Note that Uu
contains one component Vu of T \ {u}. Thus by (5.5),

diam(Uu) ≥ diam(Vu) ≥ DT(u) ≥ βδn.
Similarly, diam(Uv) ≥ βδn and diam(Uw) ≥ βδn. It follows that

HT(b) ≥ min{diam(Uu),diam(Uv),diam(Uw)} ≥ βδn ≥ δn,
since β ≥ 1. Thus by (5.6) we have

d(u, b) ≥ γmin{HT(b), δ
n} ≥ γδn.

By (5.3) we know that diam(X ′) ≤ 3βδn+1, and hence

d(u, u′) ≤ diam(X ′) ≤ 3βδn+1.
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So if we assume that 0 < δ < γ/(3β), then it follows that

diam [u, u′] = d(u, u′) ≤ 3βδn+1 < γδn ≤ d(u, b) = diam [u, b].

As we have seen, this implies [u, u′] ⊂ [u, b], as desired.

For the rest of the paper we fix 0 < δ < 1/(3β) such that the statements
of Lemmas 5.4 and 5.5 are true. As we see from the proofs, it is enough to
choose δ = 1

2 min{1/(6β), γ/(3β)}. Then δ only depends on the doubling
constant N of T, because this is true for β and γ. The sets Vn of vertices
and Xn of tiles for n ∈ N0 as constructed at the beginning of this section
correspond to this choice of δ and will be fixed from now on.

Let us record some consequences.

Lemma 5.6. Let n ∈ N0, X be an n-tile, and u, v ∈ ∂X ⊂ Vn with
u 6= v. Then the simple (n+ 1)-chain Pn+1

uv joining u to v consists precisely
of all (n + 1)-tiles X ′ ⊂ X with X ′ ∩ [u, v] 6= ∅. Moreover, Pn+1

uv does not
contain any point w ∈ ∂X distinct from u and v.

It follows from the definition of Pn+1
uv that only the first tile of Pn+1

uv

contains u, and only the last tile contains v. So Pn+1
uv has “contact” with ∂X

only twice: in its first tile, where it meets u, and in its last tile, where it
meets v.

Proof of Lemma 5.6. Let P := Pn+1
uv , and assume P is given by the

(n+ 1)-tiles X1, . . . , Xr, where r ∈ N.
The first statement follows from considerations similar to the ones in the

proof of Lemma 5.3(ii). Note that Lemma 5.1(ix) implies that X ′ = X1 is the
only (n+ 1)-tile X ′ ⊂ X with u ∈ X ′, and X ′ = Xr is the only (n+ 1)-tile
X ′ ⊂ X with v ∈ X ′.

To prove the second statement, we argue by contradiction and assume
that it is false. Then there exists a point w ∈ |P | ∩ ∂X that is distinct from
u and v. Then w ∈ Xi for some i ∈ {1, . . . , r}. In fact, since an (n + 1)-tile
cannot contain two distinct n-vertices (see Lemma 5.4(ii)), we have 2 ≤ i ≤
r − 1. Let vi−1 and vi be the (unique) points in Xi−1 ∩Xi and Xi ∩Xi+1,
respectively.

We now choose the (n+1)-vertex w′ ∈ ∂Xi for the n-vertex w ∈ Xi ⊂ X
as in Lemma 5.5. In particular, w′ is the last point on both [w, u] and [w, v]
as we travel from w to u or from w to v.

Since the set X1 ∪ · · · ∪Xi is connected, we have [w, u] ⊂ X1 ∪ · · · ∪Xi.
So the last point w′ in [w, u] ∩ Xi must be a point in X1 ∪ · · · ∪ Xi−1.
Since P is the simple (n + 1)-chain joining u and v, this is only possible
if w′ = vi−1, because there is no other common point of Xi with any of
the tiles X1, . . . , Xi−1. Similarly, by considering [w, v] ⊂ Xi ∪ · · · ∪ Xr, we
see that w′ = vi. This is impossible, because then w′ ∈ Xi−1 ∩ Xi+1 6= ∅,
contradicting the fact that P is a simple (n+ 1)-chain.
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The following statement gives uniform control for the local combinatorics
of tiles.

Lemma 5.7. There is a constant K ∈ N such that the following state-
ments are true for each n ∈ N0 and each n-tile X:

(i) There are at most K n-tiles that intersect X.
(ii) There are at most K (n+ 1)-tiles contained in X.

Proof. (i) Let X1, . . . , Xk denote all the n-tiles distinct from X that
intersect X, where k ∈ N0 (if n = 0, we have k = 0, and this list is empty).
Since diameters of n-tiles are comparable to δn as in (5.3), there is a constant
C = C(N) > 0 only depending on the doubling constant N of T (and hence
independent of n and X) such that

X ∪X1 ∪ · · · ∪Xk ⊂ B(x,Cδn),

where x is some point in X.
For i = 1, . . . , k the n-tiles X and Xi intersect in an n-vertex vi (see

Lemma 5.1(iv)). By Lemma 5.1(v) each of these n-vertices vi is contained in
precisely two n-tiles, namelyX andXi. It follows that vi 6= vj for i 6= j. Thus
B(x,Cδn) ⊃ X∪X1∪· · ·∪Xk contains at least k distinct n-vertices v1, . . . , vk.
Since C only depends on N and the n-vertices v1, . . . , vk are δn-separated
by (5.2), it follows that there is a constant K1 = K1(N) ∈ N such that
k ≤ K1.

(ii) As before, there is a constant C = C(N) > 0 independent of n and
X such that X ⊂ B(x,Cδn), where x is some point in X (see (5.3)). If k ∈ N
is the number of (n+ 1)-tiles contained in X, then X also contains at least
k/2 distinct (n+ 1)-vertices, because each (n+ 1)-tile contains at least one
(n+1)-vertex and each (n+1)-vertex is contained in at most two (n+1)-tiles.
These (n + 1)-vertices are δn+1-separated by (5.2). So it follows that there
is a constant K2 ∈ N only depending on C and δ (and hence independent of
n and X) such that k ≤ K2.

If we now choose K := max{K1,K2}, then statements (i) and (ii) are
both true for all n ∈ N0 and all n-tiles X.

6. Weights and main vertices of tiles. We will now define weights
of tiles. Later they will be used to construct our desired geodesic metric %.
The weight of each n-tile X, n ∈ N0, is a number w(X) ∈ (0,∞). We will
define it by an inductive process over the level n ∈ N0.

Once we have determined weights of tiles, we can define the w-length of
an n-chain P given by the n-tiles X1, . . . , Xr as

(6.1) lengthw(P ) :=

r∑
i=1

w(Xi).
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For the construction of the geodesic metric it is desirable to have a rela-
tion between the weight w(X) of an n-tileX and the w-length of some simple
(n + 1)-chains P joining points on the boundary of X. For this reason, we
will single out two distinct points p, q ∈ ∂X (i.e., two n-vertices in X) as
the main vertices of X. Of course, this requires that #∂X ≥ 2. In this case,
we call X an arc-tile, because we think of X as carrying the distinguished
arc [p, q]. Otherwise, #∂X ≤ 1. If #∂X = 1, then we call X a leaf-tile.
Finally, if ∂X = ∅, then necessarily n = 0 and X = T (this follows from
Lemma 5.1(iii)).

If X is an arc-tile, p, q ∈ ∂X are the main vertices of X, and P = Pn+1
pq is

the unique simple (n+1)-chain joining p and q, then we will choose weights
in such a way that lengthw(P ) = w(X) (see (6.6)). This will ensure that the
distance functions %n that we use to define the desired geodesic metric do
not degenerate as n→∞ (see (7.1) and Lemma 7.4).

The (n+ 1)-tiles X ′ ⊂ X that do not intersect [p, q] will be given a uni-
formly small relative weight ε0 = w(X ′)/w(X) (see (6.7)). As a consequence,
the distance functions %n are “almost” decreasing (Lemma 7.2) and have a
limit as n → ∞ (Lemma 7.3). Letting ε0 → 0 will later also allow us to
derive Theorem 1.3.

After this outline of some of the ideas, we will now give the details for the
definition of weights and main vertices of tiles. Let K ∈ N be the constant
from Lemma 5.7. We fix a parameter

(6.2) 0 < ε0 ≤ 1/(3K).

There is a single 0-tile X0 = T. We set w(X0) := 1. Since ∂X0 = ∅, we
do not define main vertices of X0.

We now assume that for some n ∈ N0 we have defined the weight of each
n-tile X and its main vertices if #∂X ≥ 2. We fix X and want to define
weights of (n + 1)-tiles X ′ ⊂ X and main vertices for arc-tiles X ′. Since
every (n + 1)-tile is contained in a unique n-tile (see Lemma 5.1(vii)), this
will provide the necessary inductive step. Figure 6 illustrates how we will
choose weights and main vertices of (n + 1)-tiles X ′ ⊂ X in the ensuing
discussion. In this figure, we indicated relative weights w(X ′)/w(X).

Assume first that ∂X = ∅. This happens precisely when n = 0 and
X = X0 = T. We set w(X ′) := ε0w(X) = ε0 for each 1-tile X ′. If X ′ is an
arc-tile and so #∂X ′ ≥ 2, we pick two (arbitrary) distinct points in ∂X ′ and
declare them to be the main vertices of X ′.

Suppose now that X is a leaf-tile, i.e., #∂X = 1. We then set w(X ′) =
ε0w(X) for each (n+ 1)-tile X ′ ⊂ X.

To define main vertices of (n+ 1)-tiles that are arc-tiles contained in X,
recall first that there is a unique (n+1)-tile X ′ ⊂ X that contains the (only)
n-vertex u ∈ ∂X. It follows from our choice of δ and Lemma 5.4(i) that X ′
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must be an arc-tile. We declare u and some other (arbitrary) (n+ 1)-vertex
u′ ∈ ∂X ′ with u′ 6= u to be the main vertices of X ′.

If an (n + 1)-tile X ′ ⊂ X is an arc-tile and does not intersect ∂X, we
again declare two arbitrary distinct (n + 1)-vertices in ∂X ′ to be the main
vertices of X ′. This completes the inductive step in the case that X is a
leaf-tile.

X

p v1 v2 v3 q1
3

1
3

1
3(r−2)

ε0

ε0

u

u′

Y

ε0

ε0

Fig. 6. Relative weights and main vertices of tiles

Finally, suppose that X is an arc-tile, i.e., #∂X ≥ 2, and let p, q ∈ ∂X
be the main vertices of X. By Lemma 5.1(ix) there are unique (n+ 1)-tiles
X ′p ⊂ X and X ′q ⊂ X containing p and q, respectively. By our choice of δ
and by Lemma 5.4(ii), the tiles X ′p and X ′q are distinct and disjoint. We set

(6.3) w(X ′p) = w(X ′q) :=
1
3w(X).

Suppose the simple (n+ 1)-chain P := Pn+1
pq joining p and q is given by

the (n+ 1)-tiles

(6.4) X ′1 = X ′p, X
′
2, . . . , X

′
r = X ′q.

Then P consists of tiles X ′i contained in X. Since p 6= q, we have r ≥ 3.
Moreover, 3 ≤ r ≤ K by Lemma 5.7(ii). Note that P = Pn+1

pq consists
precisely of all tiles X ′ ⊂ X with X ′ ∩ [p, q] 6= ∅ (see Lemma 5.6).

We have X ′1 = X ′p and X ′r = X ′q and so the weights w(X ′1) and w(X ′r)
are already defined. We set

(6.5) w(X ′i) :=
1

3(r − 2)
w(X)
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for i = 2, . . . , r − 1. Then

(6.6)
r∑
i=1

w(X ′i) = w(X).

So the weights are defined in such a way that the w-length (as in (6.1)) of
the simple (n+1)-chain P joining the two main vertices p and q of the n-tile
X is exactly equal to w(X).

To define the main vertices of the tiles X ′i, let vi be the (unique) point in
X ′i∩X ′i+1 for i = 1, . . . , r−1. Furthermore, let v0 := p and vr := q. Then vi−1
and vi are distinct (n+ 1)-vertices in ∂X ′i for i = 1, . . . , r. We declare them
to be the main vertices of X ′i. In other words, two successive (n+1)-vertices
on [p, q] are the main vertices of the unique (n+1)-tile X ′ ⊂ X that contains
them.

We now consider an (n + 1)-tile X ′ ⊂ X that does not intersect [p, q].
We set

(6.7) w(X ′) := ε0w(X).

It remains to define the main vertices ofX ′ ifX ′ is an arc-tile. IfX ′ contains a
point u ∈ ∂X, we let u′ ∈ ∂X ′\{u} be the (n+1)-vertex given by Lemma 5.5.
We declare u and u′ to be the main vertices of X ′. If X ′∩∂X = ∅, we declare
two arbitrary points in ∂X ′ to be the main vertices of X ′. This concludes
the definition of weights and main vertices of tiles X ′ ⊂ X in case X is an
arc-tile.

The inductive step is now complete, because we covered all possibilities
for X. Therefore, weights are defined for all tiles and main vertices for all
arc-tiles. To avoid possible confusion, we point out that if an n-vertex u is
contained in two distinct n-tiles X and Y , and u is a main vertex of X, then
it is not necessarily a main vertex of Y .

The choice of relative weights and main vertices is illustrated in Figure 6.
Main vertices of (n+1)-tiles that intersect neither [p, q] nor ∂X were chosen
arbitrarily, and are not shown in the picture.

Note that for r in (6.5) we have 3 ≤ r ≤ K. Hence

ε0 ≤
1

3K
≤ 1

3(r − 2)
≤ 1

3
.

This and the definition of the weights imply that for each (n + 1)-tile X ′
contained in an n-tile X we have

(6.8) ε0w(X) ≤ w(X ′) ≤ 1
3w(X).

Having defined the weights of tiles, we can now estimate the w-length of
chains (see (6.1) for the definition).
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Lemma 6.1. Let n ∈ N0 and X be an n-tile. Then the following state-
ments are true:

(i) For each simple (n + 1)-chain P consisting of tiles contained in X we
have

ε0w(X) ≤ lengthw(P ) ≤ 4
3w(X).

(ii) If X is an arc-tile, u, v ∈ ∂X with u 6= v, and P = Pn+1
uv is the simple

(n+ 1)-chain joining u and v, then

lengthw(P ) ≤ w(X).

Here we have equality if u and v are the main vertices of X.

Proof. (i) If P is a simple (n + 1)-chain as in the statement, then each
(n + 1)-tile X ′ ⊂ X can appear only once in P . Recall that the number
of (n + 1)-tiles X ′ ⊂ X is at most K; so there are at most K such tiles
X ′ with w(X ′) = ε0w(X). If X is an arc-tile, then among the (n + 1)-tiles
X ′ ⊂ X there are two with w(X ′) = 1

3w(X) and an additional r − 2 with
w(X ′) = 1

3(r−2)w(X). Here r is as in (6.5). Since ε0K ≤ 1
3 by our choice

of ε0, we conclude that

ε0w(X) ≤ lengthw(P ) ≤
(
Kε0 +

2

3
+

r − 2

3(r − 2)

)
w(X) ≤ 4

3w(X),

and (i) follows.
(ii) If P is the simple (n+ 1)-chain in X joining the two main vertices p

and q of X, then we know that lengthw(P ) = w(X) (see (6.6)).
Suppose the simple (n+1)-chain P joins two distinct n-vertices u, v ∈ ∂X,

but not both u and v are main vertices of X. Lemma 5.6 then implies that at
least one of the two (n+1)-tiles X ′ ⊂ X with w(X ′) = 1

3w(X) that contain
main vertices of X does not belong to P . We conclude that

lengthw(P ) ≤
(
1

3
+

r − 2

3(r − 2)
+Kε0

)
w(X) ≤ w(X).

Statement (ii) follows.

It is in fact possible that for a simple (n+1)-chain P as in Lemma 6.1(i)
we have lengthw(P ) > w(X). An example can be obtained from Figure 6,
where one can find a simple (n + 1)-chain P that consists of (n + 1)-tiles
X ′ ⊂ X and contains Pn+1

pq (i.e., the simple (n + 1)-chain joining the main
vertices p and q of X) as a proper subchain.

Let X be an n-tile, and v ∈ ∂X. Then v is an n-vertex, and so an
(n + 1)-vertex as well. If X ′ ⊂ X is the unique (n + 1)-tile containing v,
then X ′ is an arc-tile by our construction, and v is one of the main vertices
of X ′. Repeating this argument, we see that for each k ≥ n + 1, v is a
main vertex of the k-tile Xk ⊂ X ′ containing v, and so (6.3) implies that
w(Xk) = 3−k+n+1w(X ′).
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Lemma 6.2. Let n,m ∈ N0 with |n −m| ≤ 1. Suppose X is an n-tile,
Y is an m-tile, and X ∩ Y 6= ∅. Then

w(X) � w(Y ),

where C(�) is independent of n, m, X, and Y .

Proof. We first consider the case n = m. If X = Y there is nothing to
prove, and so we assume that X 6= Y . There are unique tiles

X0 ⊃ X1 ⊃ · · · ⊃ Xn = X,

Y 0 ⊃ Y 1 ⊃ · · · ⊃ Y n = Y,

where Xi and Y i are i-tiles for i = 0, . . . , n. Let k ≤ n − 1 be the largest
number such that Xk = Y k. Such a number k exists, since there is only a
single 0-tile X0 = Y 0 = T. Then w(Xk) = w(Y k). Since Xk+1, Y k+1 ⊂
Xk = Y k, we have w(Xk+1) � w(Y k+1) with C(�) = 1/(3ε0), as follows
from (6.8).

If k + 1 = n, we are done. Otherwise, if k + 1 < n, we can again apply
(6.8) and obtain

w(Xk+2) � w(Y k+2),

where C(�) = 1/(3ε0)
2. Since Xk+1∩Y k+1 ⊃ X∩Y 6= ∅ and Xk+1 6= Y k+1,

there exists a unique (k + 1)-vertex v such that Xk+1 ∩ Y k+1 = {v}. Then
Xk+2+i ∩ Y k+2+i = {v}, the point v is a main vertex of Xk+2+i and of
Y k+2+i, and so

w(Xk+2+i) = 3−iw(Xk+2) and w(Y k+2+i) = 3−iw(Y k+2)

for i = 0, . . . , n− k − 2. Thus, w(Xn) � w(Y n) with C(�) = 1/(3ε0)
2.

If |n−m| ≤ 1, but n 6= m, we may assume that m = n+ 1. If Y ′ is the
unique n-tile that contains Y , then by the first part of the proof we have
w(X) � w(Y ′) � w(Y ) with implicit constants independent of the tiles and
their levels. The statement follows.

7. Construction of the geodesic metric. Based on the concept of
weights introduced in the previous section, we can now define a new metric
% on our given tree (T, d). For this purpose we first define a sequence of
distance functions %n on T.

Let n ∈ N and x, y ∈ T. Then we define
%n(x, y) := inf{lengthw(P ) : P is an n-chain joining x and y}.(7.1)

If x 6= y, let Pnxy be the simple, and P be an arbitrary n-chain joining x and
y. Then we deduce from Lemma 5.2(ii) that lengthw(Pnxy) ≤ lengthw(P ). It
follows that
(7.2) %n(x, y) = lengthw(P

n
xy)

for distinct points x, y ∈ T.
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In this section we will show that the distance functions %n have a limit
%n → % as n → ∞, and that % is a geodesic metric on T. We will see in
the next section that (T, d) and (T, %) are quasisymmetrically equivalent.
Finally, in Section 9 we will show that by choosing the parameter ε0 used
in the definition of weights suitably small, we can arrange the Hausdorff
dimension of (T, %) to be arbitrarily close to 1.

We start with some simple observations.

Lemma 7.1. For each n ∈ N the following statements are true:

(i) %n(x, y) = %n(y, x) for x, y ∈ T.
(ii) %n(x, y) ≤ %n(x, z) + %n(z, y) for x, y, z ∈ T.

This shows that %n is symmetric and satisfies the triangle inequality.
However, it is not a metric. Indeed, it is immediate from the definition that

(7.3) %n(x, x) = inf{w(X) : X is an n-tile with x ∈ X} > 0

for x ∈ T.

Proof of Lemma 7.1. (i) Let x, y ∈ T. The n-tiles X1, . . . , Xr form an
n-chain P joining x and y if and only if the n-tiles Xr, . . . , X1 form an
n-chain P̃ joining y and x. Moreover, lengthw(P ) = lengthw(P̃ ). If we take
the infimum over all such P here, then (i) follows.

(ii) Let x, y, z ∈ T. Suppose that the n-tiles X1, . . . , Xr form an n-chain
P joining x and z, and the n-tiles Y1, . . . , Ys form an n-chain P̃ joining z
and y. Then the n-tiles

X1, . . . , Xr, Y1, . . . , Ys

form an n-chain Q joining x and y. Note that Xr ∩ Y1 6= ∅, because z ∈
Xr ∩ Y1. We have lengthw(Q) = lengthw(P ) + lengthw(P̃ ). If we take the
infimum over all P and P̃ here, then (ii) follows.

We now prepare the proof of the convergence of the sequence {%n}.

Lemma 7.2. Let n, k ∈ N with k > n, and x, y ∈ T with x 6= y. Then

lengthw(P
k
xy) ≤ lengthw(P

n
xy) +

1
2w(X) + 1

2w(Y ),

where X is the first tile in Pnxy, and Y the last tile in Pnxy.

Proof. Let n ∈ N and x, y ∈ T with x 6= y. Suppose the simple n-chain
P = Pnxy joining x and y is given by the n-tiles X1, . . . , Xr, where r ∈ N.
Let X = X1 be the first tile and Y = Xr be the last tile in P . Then x ∈ X
and y ∈ Y . For i = 1, . . . , r − 1 let vi be the n-vertex where Xi and Xi+1

intersect. We also set v0 := x and vr := y.
For i = 1, . . . , r let Pi be the unique simple (n + 1)-chain joining vi−1

and vi. Since [vi−1, vi] ⊂ Xi, the chain Pi consists of (n+ 1)-tiles contained
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in Xi. If we concatenate P1, . . . , Pr, then we obtain the simple (n+1)-chain
Pn+1
xy joining x and y (see Lemma 5.3(i)).
By Lemma 6.1(ii) we have lengthw(Pi) ≤ w(Xi) for i = 2, . . . , r − 1, be-

cause in this case the simple chain Pi joins two distinct points in ∂Xi. We also
have lengthw(P1) ≤ 4

3w(X1), and lengthw(Pr) ≤ 4
3w(Xr) by Lemma 6.1(i).

It follows that

length(Pn+1
xy ) =

r∑
i=1

lengthw(Pi)

≤
r∑
i=1

w(Xi) +
1
3w(X1) +

1
3w(Xr)

= lengthw(P
n
xy) +

1
3w(X) + 1

3w(Y ).

We now iterate this procedure by increasing the level by 1 in each step until
we reach level k. In this way, we see that

(7.4) lengthw(P
k
xy) ≤ lengthw(P

n
xy) +

1
3

k−1∑
i=n

(w(Xi) + w(Y i)),

where Xi and Y i are i-tiles for i = n, . . . , k − 1 with

x ∈ Xk−1 ⊂ · · · ⊂ Xn+1 ⊂ Xn = X, y ∈ Y k−1 ⊂ · · · ⊂ Y n+1 ⊂ Y n = Y.

It follows from (6.8) and these inclusions that

w(Xi) ≤ 3n−iw(X) and w(Y i) ≤ 3n−iw(Y )

for i = n, . . . , k − 1, and so
k−1∑
i=n

(w(Xi) + w(Y i)) ≤ (w(X) + w(Y ))

∞∑
i=n

3n−i ≤ 3
2(w(X) + w(Y )).

The statement now follows from (7.4).

Lemma 7.3. For all x, y ∈ T the limit

lim
n→∞

%n(x, y) ∈ [0,∞)

exists.

Proof. If n ∈ N and Xn is an n-tile, then w(Xn) ≤ 3−n, as follows from
our definition of weights. This implies that if x = y, then 0 ≤ %n(x, y) ≤ 3−n

and so limn→∞ %n(x, y) = 0.
Suppose that x 6= y. Then it follows from (7.2) and Lemma 7.2 that

%k(x, y) ≤ %n(x, y) + 3−n

for k, n ∈ N with k ≥ n. Letting k →∞, we see that

lim sup
k→∞

%k(x, y) ≤ %n(x, y) + 3−n <∞.
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Now letting n→∞, we conclude that

lim sup
n→∞

%n(x, y) ≤ lim inf
n→∞

%n(x, y).

So
lim sup
n→∞

%n(x, y) = lim inf
n→∞

%n(x, y) <∞.

Hence lim
n→∞

%n(x, y) exists and is a non-negative (finite) number.

We can now define

(7.5) %(x, y) := lim
n→∞

%n(x, y)

for x, y ∈ T. We know from Lemma 7.1 that % is a non-negative symmetric
function that satisfies the triangle inequality. In the proof of Lemma 7.3 we
have seen that %(x, x) = 0 for x ∈ T.

In order to show that % is a metric on T, it remains to verify that
%(x, y) > 0 whenever x, y ∈ T, x 6= y. To this end, the following estimates
will be useful.

Lemma 7.4. Let n ∈ N, and X be an n-tile. Suppose that X is an arc-tile.

(i) If p and q are the main vertices of X, then

%k(p, q) = w(X)

for all k ≥ n.
(ii) If u, v ∈ ∂X are two distinct n-vertices, then

ε0w(X) ≤ %k(u, v) ≤ w(X)

for all k ≥ n.

Proof. (i) Suppose that p and q are the main vertices of X. Then the
simple n-chain Pn joining p and q is given by the single tile X. Thus
%n(p, q) = lengthw(P

n) = w(X), and the statement is true for k = n.
Suppose the simple (n + 1)-chain Pn+1 joining p and q is given by the

(n+ 1)-tiles X ′1, . . . , X ′r, where r ∈ N. Then

%n+1(p, q) = lengthw(P
n+1) =

r∑
i=1

w(X ′i) = w(X)

by (6.6) and (7.2).
For i = 1, . . . , r − 1 let vi be the (n + 1)-vertex where X ′i and X ′i+1

intersect, and set v0 := p, vr := q. Then vi−1 and vi are the main vertices of
X ′i for i = 1, . . . , r (see the discussion after (6.6)).

Lemma 5.3(i) implies that the simple (n+2)-chain Pn+2 joining p and q
is obtained by replacing in Pn+1 the set X ′i by the simple (n+2)-chain Pn+2

i
joining vi−1 and vi for i = 1, . . . , r. Since the main vertices of X ′i are vi−1
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and vi, it follows from (6.6) that length(Pn+2
i ) = w(X ′i). This implies that

%n+2(p, q) = lengthw(P
n+2) =

r∑
i=1

lengthw(P
n+2
i ) =

r∑
i=1

w(X ′i)

= lengthw(P
n+1) = %n+1(p, q) = w(X).

It is clear that we can repeat this argument for higher and higher levels, and
(i) follows.

(ii) Suppose u, v ∈ ∂X are distinct n-vertices. Then the desired upper
bound follows from a reasoning similar to that in (i) if we use the first part
of Lemma 6.1(ii) instead of (6.6) on each level.

In order to verify the lower bound, we may assume k ≥ n + 1, because
%n(u, v) = w(X). Let Pn+1 be the simple (n + 1)-chain joining u and v
given by the (n + 1)-tiles Y ′1 , . . . , Y ′s , where s ∈ N. We know that s ≥ 3 by
Lemma 5.4(ii) and our choice of δ. Let u′ be the (n+1)-vertex where Y ′1 and
Y ′2 intersect. Then u′ is the point given by Lemma 5.5. This means u and u′
are the main vertices of Y ′1 (see the discussion after (6.7)). For each k ≥ n+1
the simple k-chain P kuv joining u and v contains the simple chain P kuu′ joining
u and u′ as a subchain, which follows from Lemma 5.3(i). Applying (i) to
the tile Y ′1 , we see that

%k(u, v) = lengthw(P
k
uv) ≥ lengthw(P

k
uu′) = %(u, u′) = w(Y ′1) ≥ ε0w(X).

This completes the proof of (ii).

We now introduce a quantity that will allow us to give good estimates
for distances of points in T. For distinct x, y ∈ T we define

m(x, y) := max{n ∈ N0 : there exist n-tiles X and Y(7.6)
with x ∈ X, y ∈ Y, and X ∩ Y 6= ∅}.

This maximum exists, because by (5.3) for n-tiles Xn we have

diam(Xn) � δn → 0 as n→∞,
where d is the underlying metric for the diameter of Xn.

Lemma 7.5. Let x, y ∈ T be distinct points, and m := m(x, y) ∈ N0.
Then

d(x, y) � δm and %(x, y) � w(Xm),

where Xm is any m-tile containing x. Here the implicit constants C(�) are
independent of x and y.

Proof. By the definition of m there exist m-tiles X and Y with x ∈ X,
y ∈ Y , and X ∩ Y 6= ∅. Then by (5.3),

d(x, y) ≤ diamd(X) + diamd(Y ) � δm.
Here the implicit constant is independent of x and y.
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For the opposite inequality, consider (m+ 1)-tiles X ′ and Y ′ containing
x and y, respectively. Then X ′ and Y ′ are disjoint by the definition of m,
and from (5.4) we obtain

d(x, y) ≥ distd(X
′, Y ′) ≥ δm+1 � δm.

Again the implicit constant is independent of x and y. The first statement
d(x, y) � δm follows.

To see the statement for %, note that one of the three chains X or Y or
X,Y is the simple m-chain joining x and y. In any case, we have

%(x, y) = lim
k→∞

%k(x, y) ≤ %m(x, y) + 1
2w(X) + 1

2w(Y )

≤ 3
2(w(X) + w(Y )) � w(X),

as follows from Lemmas 7.2 and 6.2. The latter lemma also implies that the
upper bound %(x, y) . w(X) remains true if we replace X with another
m-tile containing x (there are at most two such m-tiles).

To prove the other inequality, let X1, . . . , Xr with r ∈ N be the simple
(m + 1)-chain joining x and y. Then x ∈ X1 and y ∈ Xr, and so we have
X1 ∩Xr = ∅ by definition of m. Hence r ≥ 3. Let u be the (m+1)-vertex in
X1 ∩X2 and v be the (m+ 1)-vertex in X2 ∩X3.

Suppose that k ≥ m + 1, and consider the simple k-chain P kxy joining x
and y. Then P kxy contains the simple k-chain P kuv joining u and v as a sub-
chain, and we see that

%k(x, y) = lengthw(P
k
xy) ≥ lengthw(P

k
uv) = %k(u, v)

� w(X2) � w(X1) � w(X).

Here Lemmas 7.4(ii) and 6.2 were used. We conclude that

%(x, y) = lim
k→∞

%k(x, y) & w(X).

In the previous inequalities, all implicit constants are independent of x and y.
The estimate for % follows.

We are now ready for the main result of this section.

Lemma 7.6. The distance function % is a geodesic metric on T.

Proof. Lemma 7.5 immediately implies %(x, y) > 0 for distinct x, y ∈ T.
This was the last remaining property of a metric we needed to verify for %;
see the discussion after (7.5). Thus % is a metric on T.

In order to show that % is a geodesic metric, we will establish the following
fact.

Claim. %(x, y) = %(x, z) + %(z, y) if x, y ∈ T, x 6= y, and z ∈ (x, y).

To see this, fix n ∈ N and let P = Pnxy be the simple n-chain joining x
and y given by the n-tiles X1, . . . , Xr, where r ∈ N. We know that these tiles
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cover [x, y] (see the proof of Lemma 5.2(i)), and so there exists a smallest
number 1 ≤ s ≤ r such that z ∈ Xs. Then X1, . . . , Xs is the simple n-chain
Q := Pnxz joining x and z.

If z ∈ Xs+1 (which necessitates r ≥ s + 1), then Xs+1, . . . , Xr is the
simple n-chain Q′ := Pnzy joining z and y. Otherwise, if z 6∈ Xs+1, this
n-chain Q′ is given by Xs, . . . , Xr. It now follows from (7.2) that

%n(x, z) + %n(z, y) = lengthw(Q) + lengthw(Q
′)

≤
s∑
i=1

w(Xi) +
r∑
i=s

w(Xi) = lengthw(P ) + w(Xs)

≤ %n(x, y) + 3−n.

Letting n → ∞, we conclude that %(x, z) + %(z, y) ≤ %(x, y). Since the
opposite inequality is true by the triangle inequality, the Claim follows.

Repeated application of the Claim implies that for all u, v ∈ T the length
of the arc [u, v] is equal to %(u, v); in other words, [u, v] is a geodesic segment
(with respect to the metric %) joining u and v. Hence % is a geodesic metric.

We summarize the properties of tiles with respect to the metric %. Recall
that Xn denotes the set of all n-tiles.

Proposition 7.7. For all n, k ∈ N0 the following statements are true:

(i) diam%(X) � w(X) for all X ∈ Xn.
(ii) diam%(X) � diam%(Y ) if |n−k| ≤ 1, X ∈ Xn, Y ∈ Xk, and X∩Y 6= ∅.
(iii) diam%(Y ) . 3−k diam%(X) if X ∈ Xn, Y ∈ Xn+k, and X ∩ Y 6= ∅.
(iv) %(x, y) � diam%(X

m) for all distinct x, y ∈ T, where m = m(x, y) and
Xm is any m-tile with x ∈ Xm.

Here the implicit constants are independent of the tiles and their levels in
(i)–(iii), and independent of x, y, Xm in (iv).

Proof. (i) We will actually show that

(7.7) ε20w(X) ≤ diam%(X) ≤ 2w(X).

If x, y ∈ X with x 6= y, then the tile X constitutes Pnxy, the simple
n-chain joining x and y. So it follows from Lemma 7.2 that for k ≥ n we
have

%k(x, y) = lengthw(P
k
xy) ≤ lengthw(P

n
xy) + w(X) = 2w(X).

Letting k →∞, we see that %(x, y) ≤ 2w(x), and so diam%(X) ≤ 2w(X) as
desired.
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If X is an arc-tile, then it follows from Lemma 7.4(i) that %(p, q) = w(X)
for the two main vertices p and q of X. Hence diam%(X) ≥ w(X).

Suppose X is a leaf-tile. Then n ≥ 1 and ∂X is a singleton set consisting
of one n-vertex u. The unique (n+1)-tile X ′ ⊂ X with u ∈ X ′ is an arc-tile.
By what we have seen, it follows that

diam%(X) ≥ diam%(X
′) ≥ w(X ′) = ε0w(X).

Finally, if n = 0 and X = X0 = T, then X contains a 1-tile X ′. Then X ′ is
an arc- or a leaf-tile, and from what we have seen, we conclude that

diam%(X) ≥ diam%(X
′) ≥ ε0w(X ′) = ε20w(X).

The statement follows.
(ii) This follows from (i) and Lemma 6.2.
(iii) In the given setup, there is an n-tile Y ′ with Y ⊂ Y ′. Then Y ′ ∩X

6= ∅. So (i) and (ii) imply that

diam%(Y ) � w(Y ) ≤ 3−kw(Y ′) � 3−k diam%(Y
′) � 3−k diam%(X),

as desired.
(iv) This follows from (i) and Lemma 7.5.

8. Quasisymmetry. In this section we complete the proof of Theo-
rem 1.2 by showing that the original metric d on T is quasisymmetrically
equivalent to the geodesic metric % constructed above. For this we require
the following fact.

Lemma 8.1. The metric space (T, %) is doubling.

Proof. Let x ∈ T and s > 0. It suffices to show that the closed ball
B%(x, s) can be covered with a controlled number of sets of %-diameter < s/4.

To see this, for k ∈ N0 we define

Uk(x) = {y ∈ T : there exist k-tiles X and Y
with x ∈ X, y ∈ Y , and X ∩ Y 6= ∅}.

In other words, Uk(x) is the union of all k-tiles that meet a k-tile contain-
ing x. Note that

(8.1) Uk(x) \ {x} = {y ∈ T \ {x} : m(x, y) ≥ k},

where m(x, y) is defined as in (7.6). Indeed, if y ∈ T \ {x} and m = m(x, y)
≥ k, then there are non-disjoint m-tiles Xm and Y m with x ∈ Xm and
y ∈ Y m. Then the unique k-tiles Xk and Y k with Xk ⊃ Xm and Y k ⊃ Y m

are non-disjoint and contain x and y respectively. So y ∈ Uk(x) \ {x}. Con-
versely, if y ∈ Uk(x) \ {x}, then m(x, y) ≥ k as follows from the definitions
of Uk(x) and m(x, y).
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We have U0(x) = T ⊃ B%(x, s). Moreover, Proposition 7.7(i) implies that
diam%(U

k(x)) → 0 as k → ∞. Thus there exists a largest number n ∈ N0

with B%(x, s) ⊂ Un(x).
By definition of n we know that B%(x, s) 6⊂ Un+1(x). This means that

there is a point y ∈ B%(x, s)\Un+1(x) ⊂ Un(x)\Un+1(x). Then %(x, y) ≤ s,
and m(x, y) = n as follows from (8.1).

Let k ∈ N0 and Y n+k be an arbitrary (n+ k)-tile contained in an n-tile
Y n ⊂ Un(x). Then there exists an n-tile Xn with x ∈ Xn and Xn ∩Y n 6= ∅.
Then it follows from Proposition 7.7(ii)–(iv) that

diam%(Y
n+k) . 3−k diam%(Y

n) � 3−k diam%(X
n)

� 3−k%(x, y) ≤ 3−ks.

This estimate implies that we can find k0 ∈ N0 independent of x and s such
that diam%(Y

n+k0) < s/4 for all (n+ k0)-tiles Y n+k0 contained in any n-tile
Y n ⊂ Un(x).

The point x is contained in at most two n-tiles, each of which intersects
at most K n-tiles, where K is the constant from Lemma 5.7. Thus Un(x) is
a union of at most 2(K + 1) n-tiles. Each of these n-tiles contains at most
Kk0 (n+ k0)-tiles, and all of these (n+ k0)-tiles have %-diameter < s/4.

Hence B%(x, s) ⊂ Un(x) can be covered by at most N ′ := 2(K + 1)Kk0

sets of %-diameter < s/4. Since N ′ is independent of x and s, we conclude
that the space (T, %) is doubling.

Lemma 8.2. The identity map idT : (T, d)→ (T, %) is a quasisymmetry.

Proof. Let x ∈ T and suppose that {xn}n∈N is a sequence of points with
x 6= xn for n ∈ N. Then Lemma 7.5 implies that, as n → ∞, we have
d(x, xn) → 0 if and only if m(x, xn) → ∞ if and only if %(x, xn) → 0. This
shows that the metrics d and % are topologically equivalent, and so the map
idT : (T, d)→ (T, %) is a homeomorphism.

The space (T, d) is doubling and connected by assumption, and (T, %) is
doubling by Lemma 8.1. So in order to prove that idT : (T, d) → (T, %) is
a quasisymmetry, it is enough to show that it is a weak quasisymmetry (see
[He01, Theorem 10.19]). This means that we have to find a constant H ≥ 1
such that we have the implication

d(x, y) ≤ d(x, z) =⇒ %(x, y) ≤ H%(x, z)

for all x, y, z ∈ T.
Let x, y, z ∈ T with d(x, y) ≤ d(x, z). We may assume that the points

x, y, z are pairwise distinct. Let m := m(x, y) and n := m(x, z) be defined
as in (7.6).
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By the first part of Lemma 7.5 we have δm � d(x, y) ≤ d(x, z) � δn.
Thus there is a constant k0 ∈ N0 independent of x, y, z such that

n ≤ m+ k0.

For i = m, . . . ,m + k0 we choose an i-tile Y i that contains x. By applying
Proposition 7.7(ii) at most k0 times (and so a number of times independent
of x, y, z), we see that

diam%(Y
m+k0) � diam%(Y

m).

We also choose an n-tile Zn that contains x. Since m + k0 ≥ n, and x ∈
Y m+k0 ∩ Zn, Proposition 7.7(iii) implies that

diam%(Y
m+k0) . diam%(Z

n).

So with Proposition 7.7(iv) we arrive at

%(x, y) � diam%(Y
m) � diam%(Y

m+k0) . diam%(Z
n) � %(x, z).

Since all implicit constants in the previous estimates are independent of
x, y, z, the statement follows.

The proof of Theorem 1.2 is now complete.

9. Lowering the Hausdorff dimension. In this section we will prove
Theorem 1.3. We assume that T is the given qc-tree. Let α > 1. We claim
that dimH (T, %) ≤ α for the Hausdorff dimension of (T, %) if we choose ε0
small enough, where ε0 > 0 is the parameter in (6.2) that was used in the
construction of % as described in the previous sections. Then Theorem 1.3
immediately follows, because T := (T, %) is a geodesic tree that is quasisym-
metrically equivalent to T and we have dimH T ≤ α.

As before, let K be the constant from Lemma 5.7. Then we can choose
ε0 > 0 so small (in addition to our previous requirement (6.2)) that

L := (1/3)α−1 +Kεα0 < 1.

We claim that with these choices we have Hα(T, %) = 0 for the α-Hausdorff
measure of (T, %) (we will recall the relevant definitions below). This in turn
implies the desired inequality dimH(T, %) ≤ α.

To see that Hα(T, %) = 0, we first consider an n-tile X, where n ∈ N0.
In the following estimates, X ′ denotes an arbitrary (n+1)-tile with X ′ ⊂ X
and we denote by λ(X ′) := w(X ′)/w(X) the relative weight of X ′. Note that
ε0 ≤ λ(X ′) ≤ 1/3 (see (6.8)).

Suppose first that X is an arc-tile. Let p and q be the main vertices of X.
Then we have ∑

X′∩[p,q] 6=∅

λ(X ′) = 1,
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as follows from (6.6). This shows that∑
X′

w(X ′)α = w(X)α
∑
X′

λ(X ′)α

= w(X)α
( ∑
X′∩[p,q] 6=∅

λ(X ′)α +
∑

X′∩[p,q]=∅

λ(X ′)α
)

= w(X)α
( ∑
X′∩[p,q] 6=∅

λ(X ′)α−1λ(X ′) +
∑

X′∩[p,q]=∅

εα0

)
≤ w(X)α((1/3)α−1 +Kεα0 ) = Lw(X)α.

For a leaf-tile X or for the 0-tile X = X0 = T we have∑
X′

w(X ′)α ≤ Kεα0w(X)α ≤ Lw(X)α,

and so we have the same upper bound as for an arc-tile X.
Now let t > 0, and consider

(9.1) Hαt (T, %) := inf
{∑
i∈N

diam%(Ai)
α
}
,

where the infimum is taken over all countable covers {Ai}i∈N of T by sets
Ai ⊂ T with diam%(Ai) ≤ t for i ∈ N.

We can choose n ∈ N large enough so that for each n-tile X we have

diam%(X) ≤ 2w(X) ≤ 2 · 3−n ≤ t.
Here we have used (7.7) in the first inequality. Then

Hαt (T, %) ≤
∑
X∈Xn

diam%(X)α ≤ 2α
∑
X∈Xn

w(X)α ≤ 2αL
∑

X̃∈Xn−1

w(X̃)α

≤ · · · ≤ 2αLnw(X0)α = 2αLn,

where X0 = T is the unique 0-tile and w(X0) = 1. Since L < 1, and n→∞
as t→ 0+, this implies

Hα(T, %) := lim
t→0+

Hαt (T, %) = 2α lim
n→∞

Ln = 0,

as desired.
The proof of Theorem 1.3 is now complete.

10. Remarks and open problems. The general strategy to prove the
quasisymmetric equivalence of (T, d) and (T, %) follows a pattern that has
been employed before (for example, see [BM17, proof of Theorem 18.1]). In
the follow-up paper [BM20] we state general conditions that ensure quasi-
symmetric equivalence in similar situations. This approach is closely related
to recent work by Kigami [Kig18].
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It is an interesting problem whether every qc-tree T admits a quasisym-
metric embedding ϕ : T → C into the complex plane and whether one can
obtain an image T := ϕ(T) with good geometric properties. For example,
one can ask whether for a suitable quasisymmetric embedding ϕ the image
T is quasiconvex with respect to the Euclidean metric (then T is geodesic if
equipped with its internal path metric) and C \ T is a nice domain (such as
a John domain).

For a given tree T ⊂ C, we may consider the conformal map ϕ :
Ĉ \D→ Ĉ \T. Here Ĉ = C∪ {∞} is the Riemann sphere and D = {z ∈ C :
|z| < 1} the unit disk. Since T is locally connected, ϕ extends to a map on
the boundary f : ∂D → T by Carathéodory’s theorem and one obtains an
equivalence relation on ∂D given by s ∼ t⇔ f(s) = f(t).

Lin and Rohde [LR18] have recently studied which equivalence relations
∼ arise in this way from trees T ⊂ C, where Ĉ \ T is a John domain.
In particular, they were interested in related questions for the continuum
random tree (CRT) (see [BT20] for references and relevant facts about the
CRT in a related setting). The CRT is geodesic, but not doubling, and so
not a qc-tree according to our terminology.

This leads to the question whether a tree that is of bounded turning,
but not necessarily doubling, admits a uniformization similar to the one in
Theorem 1.2. In [Me11] it is shown that an arc is of bounded turning if and
only if it is the image of [0, 1] under a weak quasisymmetry. In analogy, one
may ask whether a tree that is of bounded turning is the image of a geodesic
tree under a weak quasisymmetry.

Trees and tree-like spaces often appear in data structures. Our subdivi-
sion procedure as described in Section 5 essentially gives an algorithm to
decompose trees with good geometric control. It would be interesting to see
whether this procedure has applications in a data-related context.
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