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Abstract—A common tool to defend against Sybil attacks is
proof-of-work, whereby computational puzzles are used to limit
the number of Sybil participants. Unfortunately, current Sybil
defenses require significant computational effort to offset an at-
tack. In particular, good participants must spend computationally
at a rate that is proportional to the spending rate of an attacker.

In this paper, we present the first Sybil defense algorithm
which is asymmetric in the sense that good participants spend at
a rate that is asymptotically less than an attacker. In particular,
if T is the rate of the attacker’s spending, and J is the rate of
joining good participants, then our algorithm spends at a rate

of O(
√

TJ + J).

We provide empirical evidence that our algorithm can be
significantly more efficient than previous defenses under various
attack scenarios. Additionally, we prove a lower bound showing
that our algorithm’s spending rate is asymptotically optimal
among a large family of algorithms.

I. INTRODUCTION

The last decade has seen explosive growth in systems

that are permissionless in that participants are free to join

and leave at will. All such systems are open to the well-

known Sybil attack [21], in which an adversary uses a large

number of forged IDs to take control of the system. One of the

most popular tools for Sybil defense is proof-of-work (PoW),

whereby IDs must periodically solve computational puzzles,

in order to limit the number of forged IDs.

Unfortunately, current PoW-based Sybil defenses suffer

from a key weakness: the computational effort expended by

the good IDs in solving puzzles must at least equal the

computational effort of an attacker.

We present the first algorithm to address this problem. Our

algorithm is a Sybil defense that is asymmetric in the follow-

ing sense: the good IDs spend at a rate that is asymptotically

less than the attacker.

In particular, we present an algorithm, Geometric Mean

COMputation (GMCOM), that spends at a rate of O(
√
TJ +

J), where T is the spending rate of the attacker, and J is

the join rate for good IDs. We also prove a lower bound

showing this rate is asymptotically optimal for a large family

of algorithms.

Why might an asymmetric result be useful? PoW requires

an energy expenditure, and this ultimately translates into a

monetary cost. This is true whether an adversary uses its
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own machines, for which energy costs are well-documented

(see [22], [60]), or offloads the effort by renting a botnet

(see [24]). Therefore, as our title implies, an asymmetric

defense may serve as a convincing deterrent against Sybil

attacks by inflicting a higher cost on the adversary than on

the good participants in the system.

A. Our Model and Problem

Our system consists of identifiers (IDs), and an adversary.

All good IDs follow our algorithm, and all bad IDs are

controlled by the adversary.

Puzzles. We assume a source of computational puzzles of

varying difficulty, whose solutions cannot be stolen or pre-

computed. This is a common assumption in PoW systems [6],

[42], [49]. For completeness, we now describe the standard

way in which this assumption is achieved.

All IDs have access to a hash function, h, about which we

make the random oracle assumption [10], [38]. Succinctly, this

assumption is that when first computed on an input, x, h(x)
is selected independently and uniformly at random from the

output domain, and that on subsequent computations of h(x)
the same output value is always returned. We assume that both

the input and output domains are the real numbers between 0
and 1. In practice, h may be a cryptographic hash function,

such as SHA-2 [53], with inputs and outputs of sufficiently

large bit lengths.

Solving a puzzle requires that an ID find an input x such

that h(x) is less than some threshold. The input found is the

puzzle solution. Decreasing this threshold value will increase

the difficulty, since one must compute the hash function on

more inputs to find an output that is sufficiently small.

We assume that each good ID can perform µ hash-function

evaluations per round for µ > 0, where a round is the amount

of time it takes to solve our easiest computational puzzle plus

the time to communicate the solution to the rest of the network

(see DIFFUSE described below). Additionally, we assume that

µ is of some size polynomial in n0 so that logµ = Θ(log n0).
It is reasonable to assume large µ since, in practice, the number

of evaluations that can be performed per second is on the order

of millions to low billions [12], [13], [32].

Our technical puzzle generation process follows that of [6].

For any integer ρ ≥ 1, we define a ρ-hard puzzle to

consist of finding C logµ solutions using a threshold of



ρ(1 − δ)µ/(C logµ), where δ > 0 is a small constant and

C is a sufficiently large constant depending on δ and µ.

Let X be a random variable (r.v.) giving the expected num-

ber of hash evaluations needed to compute C logµ solutions.

Note that X is a negative binomial r.v. and so, the following

concentration bound holds (see, for example, Lemma 2.2

in [8]) for every 0 < # ≤ 1:

Pr(|X − E(X)| ≥ #E(X)) ≤ 2e−!2(C log µ)/(2(1+!))

Given the above, one can show that every good ID will solve

a ρ-hard puzzle with at most ρµ hash function evaluations,

and that the adversary must compute at least (1 − 2δ)ρµ
hash evaluations to solve every ρ-hard puzzle. This follows

from a union bound over O(nγ
0) join and departure events

by IDs, where γ is any fixed positive constant, and for C
being a sufficiently large constant depending on δ, µ and γ.

Note that for small δ, the difference in computational cost is

negligible, and that µ is also unnecessary in comparing costs.

Thus, for ease of exposition, we assume that each ρ-hard

puzzle requires computational cost ρ to solve.

Finally, we must be able to address an adversary who

attempts (1) to falsely claim puzzle solutions computed and

transmitted by good IDs, and (2) to pre-compute solutions to

puzzles. These details are deferred until Section II-B when we

describe our algorithm.

Adversary. A single adversary controls all bad IDs. This

pessimistically represents perfect collusion and coordination

by the bad IDs. Bad IDs may arbitrarily deviate from our

protocol, including sending incorrect or spurious messages.

The adversary controls an α-fraction of computational

power, where α > 0 is a small constant. Thus, in a single

round where all IDs are solving puzzles, the adversary can

solve an α-fraction of the puzzles. This assumption is standard

in past PoW literature [6], [26], [49], [62].1

Our algorithms employ public key cryptography, and so our

adversary is computationally bounded. Further, we assume the

adversary knows our algorithm, but does not know the private

random bits of any good ID.

Communication. Communication among good IDs occurs

through a broadcast primitive, DIFFUSE, which enables a good

ID to send a message to all IDs. As in past work, we assume

that the time to diffuse a message is small in comparison with

the time to solve a puzzle. Such a primitive is a standard

assumption in PoW schemes [11], [25], [26]. Our adversary

can read messages diffused by good IDs before sending its

own, and can also send messages directly to any ID. All IDs

are assumed to be synchronized, and time is discretized into

rounds as defined above.

Joins and Departures. The system is dynamic with IDs

joining and departing over time, and so system membership

may change from round to round.

Rounds are grouped into epochs. Informally, an epoch

corresponds to an amount of time over which a significant

1We use α = 1/14 in our analysis (see Lemma 6); however, this fraction
can likely be increased, and this is left as an area of future work.

fraction of the system membership (good and bad IDs) has

changed. Succinctly, if the set of IDs at the start of an epoch

is A, and the current set of IDs is B, then an epoch ends when

|A⊗B| ≥ |A|/3, where A⊗B = (A ∪B)− (A ∩B) is the

symmetric difference.

Let ℓi denote the duration of epoch i. Let Ji be the join

rate of good IDs in epoch i; that is, the number of good

IDs that join in epoch i divided by ℓi.We make the following

assumptions about the good IDs which are used to prove the

asymmetric property of GMCOM in Sections III-B and III-C:

• A1. For any epoch, the departure rate of good IDs is within

a factor of (1± 1
2 ) of the join rate of good IDs.

• A2. For i ≥ 1, Ji−1/2 ≤ Ji ≤ 2Ji−1.

• A3. For any i ≥ 1, ℓi ≤ 2|Si−1|/Ji, where Si−1 is the set

of all IDs in the system at the beginning of epoch i.

• A4. Let C > 0 be some fixed constant. Then, in any epoch,

for any integer x ≥ 1, at most Cx good IDs join by time

x/Ji in the epoch.

We assume that the probability that a departing good ID

is in the committee equals the fraction of total good IDs that

are in the committee. Additionally, we assume that in a single

round, an O(1/ log n0)-fraction of good IDs depart. Finally,

the minimum number of good IDs in the system at any point

is assumed to be at least some value n0. These assumptions

are used in Section III-A to prove the invariants defined below.

Invariant Goals. We seek to maintain the following two

invariants.

Population Invariant: The fraction of bad IDs in the system

is always bounded away from 1/2.

Committee Invariant: There is a committee that is known

to all IDs; has size Θ(log n0); and contains less than a 1/2
fraction of bad IDs.

Why are these invariants useful? The population invariant

bounds the amount of system resources consumed by bad IDs.

The committee invariant allows for a scalable solution to

the Byzantine consensus problem [41] (see Section I-A for

details). This allows a committee to agree on and execute

operations in the system despite the presence of bad IDs.

B. Our Results

In our algorithm, an iteration consists of an epoch, plus

a purge test and the selection of a new committee, both of

which occur after the epoch; we describe the purge test and

committee selection later in Section II-B.

Fix a subset of iterations I, and let L be the total length of

time of those iterations. The adversarial spending rate, TI , is

the cost to the adversary for solving puzzles whose solutions

are used in any iteration of I divided by L. The good ID

join rate, JI , is the number of good IDs that join over the

iterations in I divided by L. Finally, the algorithmic spending

rate is the total cost to the good IDs for solving puzzles whose

solutions are used in any iteration of I divided by L.

We now state our result for our algorithm GMCOM.



Theorem 1. GMCOM has the following properties for a

number of ID joins and departures that is polynomial in n0,

with error probability that is polynomially small in n0.

(1) The population and committee invariants are maintained.

(2) For any subset of iterations I not containing iteration 1,

the algorithmic spending rate is O(
√
TI JI + JI).

Our lower bound is as follows. We define a purge-based

algorithm to be any algorithm where (1) IDs pay a cost of

Ω(1) to join; and (2) after a constant fraction of the population

changes, all IDs must pay Ω(1) to remain in the system (else

they are purged). Then we prove:

Theorem 2. For any purge-based algorithm, there is an

adversarial strategy ensuring the following for any iteration.

The algorithmic spending rate is Ω(
√
T J + J), where J is

the good ID join rate and T is the algorithmic spending rate,

over the iteration.

C. Model Discussion

We note that A1-A4 admit a highly-dynamic system, since

the number of good IDs that join or depart in any single round

may be nearly linear in the system size at the beginning of the

epoch; additionally, there are no constraints on the behavior of

bad IDs. Also, there is nothing special about the constants used

in A1-A4; they can be modified at the expense of increasing

the hidden constants in our asymptotic resource costs.

With regard to n0 and the guarantees made in in Theorem 1,

we note that, in practice, there are distributed systems for

which n0 is sizable. For example, measurements of the Main-

line DHT find a minimum size of over 14 million IDs [64],

and data collection on the Bitcoin network indicates a network

of more than 5, 000 IDs over the past two years [14].

Finally, in the event that multiple IDs enter the system near-

simultaneously, such that their ordering cannot be determined,

these joins are assumed to be serialized and agreed upon by

the committee via Byzantine consensus.

D. Related Work

The Sybil Attack. Our work applies to the Sybil attack [21].

In addition to our recent work [31], there is large body of

literature on defenses (see surveys [7], [20], [34], [46], [51]).

Critically, none of these prior defenses are asymmetric.

PoW is a natural tool for combatting Sybil attacks since

computing power costs money, whether obtained via Amazon

AWS [4] or a botnet rental [5].

Beyond PoW, several other approaches have been proposed.

In a wireless setting, Sybil attacks can be mitigated via

radio-resource testing which relies on the inability of the

adversary to listen to many communication channels simul-

taneously [27], [28], [48], [51]. However, this approach may

fail if the adversary can monitor all of the channels.

Several results leverage social networks to yield Sybil

resistance (see the survey [65]). However, social-network

information may not be available in some settings. Another

approach is the use of network measurements to verify the

uniqueness of IDs [9], [19], [58], [63], but these techniques

rely on accurate measurements of latency, signal strength,

or round-trip times, and this may not always be possible.

Containment strategies for overlays are examined in [18], [57],

but the extent to which good participants are protected from

the malicious actions of Sybil IDs is limited.

PoW and Alternatives. As a choice for PoW, puzzles have the

useful property that verifying a solution is easier than solving

the puzzle itself. This places the burden of proof on devices

who wish to participate in a protocol rather than on a verifier.

In contrast, bandwidth-oriented schemes, such as [62], require

verification that a sufficient number of packets are received

before any service is provided to an ID; this requires effort by

the verifier that is proportional to the number of packets.

A recent alternative to PoW is proof-of-stake (PoS) where

security relies on the adversary holding a minority stake in an

abstract finite resource [2]. When making a group decision,

PoS weights each participant’s vote using its share of the

resource; for example, the amount of cryptocurrency held by

the participant. A well-known example is ALGORAND [26],

which employs PoS to form a committee. A hybrid approach

using both PoW and PoS has been proposed in the Ethereum

system [3]. We note that PoS can only be used in systems

where the “stake” of each participant is globally known. Thus,

PoS is typically used only in cryptocurrency applications.

There has been a significant amount of related work on

consensus [39], [54], [55] and scalable blockchains [29], [33],

[44], [66]. When the number of bad participants is assumed

to be a bounded minority, several adversarial fault-tolerant

systems exist (see the survey [61]).

Byzantine Consensus. The Byzantine consensus problem [41]

is described as follows. Each good ID has an initial input and

the goal is for (1) all good IDs to decide on the same input;

and (2) this input to equal the input of at least one good ID.

Byzantine consensus enables participants in a distributed

network to reach agreement on a decision, even in the presence

of a malicious minority. Thus, it is a fundamental building

block for many cryptocurrencies [15], [23], [26], [30]; trust-

worthy computing [16], [17], [40], [59]; P2P systems [52]; and

databases [47], [56]. Establishing Byzantine consensus via a

committee is a common approach (see [26], [37], [43]).

II. OUR ALGORITHM

In this section, we describe our algorithm, GMCOM, whose

pseudocode is provided in Figure 1.

A. Preliminaries

GENID. To initialize our system, we make use of an algorithm

created by Andrychowicz and Dziembowski [6], which we

call GENID. This algorithm, used in Step 1 of our algorithm,

creates an initial set of IDs, no more than an α-fraction of

which are bad. GENID also selects a committee of logarithmic

size that has a majority of good IDs. Finally, GENID has

significant, but polynomial, computational cost; thus we use it

only once during the lifetime of our system.

The Committee. Our algorithm maintains a committee of size

Θ(log n0) with a majority of good IDs. In such a committee





C. Intuition for Why GMCOM is Asymmetric

We now give intuition for our entrance-cost function. In the

absence of an attack, the entrance cost should be small. In this

case, Jcur is always at most a constant factor greater than J̃i−1,

since the good ID join rate changes by at most a constant factor

from epoch to epoch (Assumption A2), and these join events

are roughly evenly-distributed over the epoch (Assumption

A4). Consequently, each good ID will spend O(1) to join.

In contrast, when there is a large attack, the entrance-cost

function imposes a larger cost on the adversary. Consider the

case where a batch of many bad IDs is rapidly injected into

the system. This drives up the entrance cost since Jcur grows

quickly, while J̃i−1 remains fixed over the current epoch.

Imagine that the adversary injects IDs at a rate of (J̃i−1)
k

for some k ≫ 1. Then the entrance cost is (J̃i−1)
k−1. Thus,

the spending rate for the adversary is the entrance cost times

the adversarial join rate, which is T = (J̃i−1)
2k−1. Since the

good ID join rate in epoch i is just Θ(J̃i−1) (by Assumption

A2), the cost rate for the good IDs is approximately (J̃i−1)
k,

which equals Θ(
√
TJ), where J = J̃i−1.

These two extreme cases provide intuition for the asym-

metric cost guaranteed by GMCOM. Interpolating between

these cases, showing that J̃i is a good estimate for Ji−1, and

incorporating multiple epochs and purge costs, is the subject

of our analysis in Section III.

D. A Note on Estimating the Join Rate of Good IDs, J̃i

To calculate the entrance cost in epoch i, GMCOM requires

knowledge of the good ID join rate from the previous epoch,

Ji−1. However, since good IDs cannot be discerned from bad

IDs upon entering the system, the adversary may inject bad

IDs in an attempt to obscure the true join rate of good IDs.

Our analysis in the beginning of Section III-B addresses this

challenge. In order to obtain a robust estimate J̃i−1 of Ji−1,

we leverage the fact that the adversary can provide solutions

for at most an α-fraction of the puzzles issued during a purge.

E. How Puzzles Are Used

Although all puzzles are constructed in the same manner,

they are used in two distinct ways by our algorithm. First,

when a new ID wishes to join the system, it must provide a

solution for an entrance puzzle.

The solution to the puzzle is Kv||s||τ , where Kv is the

public key of v, s is a nonce selected by v in order to solve

the puzzle, and τ is the timestamp of when the puzzle solution

was generated. The value of τ in the solution to an entrance

puzzle must be within some small margin of the current time

which, in practice, would primarily depend on network latency.

Note that, for a bad ID, a solution may have been precom-

puted by the adversary by using a future timestamp. This is not

a problem since the purpose of this puzzle is only to force the

adversary to incur a computational cost at some point, and to

deter the adversary from reusing puzzle solutions. Importantly,

the entrance puzzle is not used to preserve our invariants.

The second type of puzzle is a purge puzzle, which limits

the fraction of bad IDs in the system, and has cost 1. An

TABLE I: A summary of our notation.

Used in Model and Algorithm

Symbol Description

α Fraction of total computational power that the adversary
controls.

n0 Lower bound on number of good IDs in the system at any
time.

Jcur Current number of join events in this epoch divided by

current time elapsed in this epoch.

ℓi Length of epoch i.

Ji (Number of good IDs joining in epoch i) / ℓi.

Si Set of all IDs in the system at the end of iteration i.
Equivalently, the set at the beginning of epoch i+ 1.

J̃i (|Si−1 ⊗ Si|− α(|Si−1|+ |Si|)) /ℓi.

Scur Set of all IDs in the system at current time.

Used in Proofs

Symbol Description

Gi Number of good IDs in the system at the end of iteration i.

Bi Number of bad IDs in the system at the end of iteration i.

Ni Gi +Bi.

ga
i

Number of good IDs that arrive in iteration i.

ba
i

Number of bad IDs that arrive in iteration i.

na

i
ga
i
+ ba

i
.

gd
i

Number of good IDs that depart in iteration i.

bd
i

Number of bad IDs that depart in iteration i.

nd

i
gd
i
+ bd

i
.

Ti Total computational cost to the adversary in iteration i.

announcement is periodically made by the committee that all

IDs already in the system should solve a purge puzzle. When

this occurs, a random string r of Θ(log n0) bits is generated

by the committee and included as part of the announcement.

The string r must be appended to the inputs for all requested

solutions in this round; that is, the input is Kv||s||r. The

string r ensures that the adversary cannot engage in a pre-

computation attack — where it solves puzzles and stores the

solutions far in advance of launching an attack — by keeping

the puzzles unpredictable. For ease of exposition, we omit

further discussion of this issue and consider the use of this

random string as implicit whenever a purge puzzle is issued.

While the same r is used in the puzzle construction for all

IDs, we emphasize that a different puzzle is assigned to each

ID since the public key used in the construction is unique.

Using the public key in the puzzle construction prevents

puzzle solutions from being stolen. That is, ID Kv cannot lay

claim to a solution found by ID Kw since the solution is tied

to the public key Kw.

Can a message mv from ID Kv be spoofed? No, since ID

Kv signs mv with its private key to get signv , and then sends

(mv||signv||Kv) via DIFFUSE. Any other ID can use Kv to

check that the message was signed by the ID Kv and thus be

assured that ID Kv is the sender. Note that, although we make

use of public key cryptography, we do not need a public-key

infrastructure.

III. UPPER BOUNDS

In this section, we begin by showing the correctness of

GMCOM, followed by proving our estimation J̃i−1 to be



“close” to Ji−1, and then finally, we prove Theorem 1.

Throughout the section, we let log be the natural log function.

A. Maintaining the Population and Committee Invariants

We first prove that the population invariant always holds.

For any iteration i, we let Bi and Gi respectively denote the

number of bad and good IDs in the system at the end of epoch

i, and let Ni = Bi + Gi.

Lemma 3. For all i ≥ 0, Bi < Ni/3.

Proof. For i = 0, by the use of GENID for initializing the

system (recall Section II-A), B0 < (3/10)N0. For i > 0,

since α ≤ 1/14, the number of 1-hard puzzles the adversary

can solve during the purge at the end of iteration i is less than

Gi/2. Thus, for all i > 0, we have Bi < Gi/2. Adding Bi/2
to both sides of this inequality yields (3/2)Bi < Ni/2, from

which, Bi < Ni/3.

Let na
i , g

a
i , b

a
i denote the total, good, and bad IDs that

arrive over iteration i. Similarly, let nd
i , g

d
i , b

d
i denote the

total, good, and bad IDs that depart over iteration i. We can

now prove the population invariant.

Lemma 4. The fraction of bad IDs is always less than 1/2.

Proof. Fix some iteration i > 0. By Step 2 of our algorithm,

we always have that |Si−1 ⊗ Scur| ≤ |Si−1|/3 where |Si−1| =
Ni−1. Therefore, we have bai +gdi ≤ Ni−1/3. We are interested

in the maximum value of the ratio of bad IDs to total IDs at

any point during the iteration. Thus, we pessimistically assume

all additions of bad IDs and removals of good IDs come first.

We are then interested in the maximum value of the ratio:

Bi−1 + bai
Ni−1 + bai − gdi

.

By Lemma 3, Bi−1 < Ni−1/3. Thus, we want to find the

maximum of
Ni−1/3+bai
Ni−1+ba

i
−gd

i

, subject to the constraint that bai +

gdi < Ni−1/3. This ratio is maximized when the constraint

achieves equality, that is when gdi = Ni−1/3 − bai . Plugging

this back into the ratio, we get

Ni−1/3 + bai
Ni−1 + bai − gdi

<
Ni−1/3 + bai

2Ni−1/3 + 2bai
= 1/2

Finally, we note that this argument is valid even though Scur

may include bad IDs that have departed without notifying the

committee (recall this is possible as stated in Section I-A).

Intuitively, this is not a problem since such departures can

only lower the fraction of bad IDs in the system; formally, the

critical equation in the above argument is bai + gdi < Ni−1/3,

and this does not depend on bdi .

Next, we prove that GMCOM preserves the committee

invariant for a number of iterations that is polynomial in n0,

say nγ
0 for any fixed positive constant γ.

To simplify our presentation, our claims are proved to hold

with probability at least 1 − Õ(1/nγ+2
0 ), where Õ hides a

poly(log n0) factor. Of course, we wish the claims of Theo-

rem 1 to hold with probability at least 1 − 1/nγ+1
0 such that

a union bound over nγ
0 joins and departures yields a w.h.p.

guarantee. By providing this “slack” of an Ω̃(1/n0)-factor in

each of the guarantees of this section, we demonstrate this

is feasible while avoiding an analysis cluttered with specific

settings for the constants used in our arguments.

Lemma 5. Over a polynomial number of join and departure

events, there is always an honest majority in the committee

with probability 1−O(1/n0).

Proof. For iteration i = 0, the committee invariant holds by

the use of GENID to initialize the system (recall Section II-A;

for details, see Lemma 6 of [6]).

Fix an iteration i > 0. Recall that a new committee is

elected by the existing committee by selecting c log |Si| IDs

independently and uniformly at random from the set Si, for a

sufficiently large constant c > 0 which we define concretely

later on in this proof. Let XG be a random variable which

denotes the number of good IDs elected to the new committee

in iteration i. Then:

E[XG] =
|Gi|

|Si|
c log |Si| = (1− α)c log |Si| (1)

where the last inequality follows from the fact that the

computational power with the adversary is at most α. Next,

we bound the number of good IDs in the committee using

Chernoff Bounds [45]:

Pr (XG < (1− δ)(1− α)c log |Si|)

≤ exp

#

−
δ2(1− α)c log |Si|

2

$

= O
%

n
−(γ+1)
0

&

where the first step holds for any constant 0 < δ < 1, the

second step follows from Equation 1, and the last step holds

for all c ≥ 28
13

(γ+1)
δ2

. For δ = 1/100, we can bound the number

of good IDs in the committee to be at least 9/10c log |Si| with

probability 1−O(n
−(γ+1)
0 ). In other words, a new committee

has a majority of good IDs.

What about the number of good IDs in the committee over

the iteration? Let Yg be a random variable which denotes the

number of good IDs that depart from the committee when the

number of departures of good IDs from the system is less than

|Si−1|/3. Since the probability that a departing good ID is in

the committee equals the fraction of total good IDs that are

in the committee (recall Section I-A), we obtain:

E[Yg] ≤
|Si|

3

'

c log |Si|

|Si|

(

=
c

3
log |Si| (2)

Next, we upper bound the number of departures of good IDs

from the committee using Chernoff Bounds [45]:

Pr

'

Yg > (1 + δ′)
c log |Si|

3

(

≤ exp

#

−
δ′2c

9
log |Si|

$

= O
%

n
−(γ+1)
0

&

where the first step holds for any constant 0 < δ′ < 1 and the

last step holds for all c ≥ 9(γ+1)
δ′2

.



Letting δ′ = 1/5, the following result holds: with probabil-

ity 1−O(n
−(γ+1)
0 ), the minimum number of good IDs in the

committee is greater than (9/10)c log |Si|−(4/10)c log |Si| at

any point during the epoch in iteration i > 0.

The formation of a new committee and generation of a

random string can be performed w.h.p. by the existing com-

mittee using the Byzantine consensus algorithm in [36]. Given

that no more than #′/ log n0 good IDs depart per round, for a

sufficiently small constant #′ > 0, and that the probability that

a departing good ID is in the committee equals the fraction of

total good IDs that are in the committee (recall Section I-A),

then w.h.p. the committee maintains a majority of good IDs

for any iteration i > 0.

Finally, by a union bound over nγ
0 iterations, the committee

invariant is maintained over nγ
0 iterations with probability 1−

O(1/n0), which implies the claim.

B. Bounds on Estimation of Good ID Join Rate

Lemma 6. For any iteration i ≥ 1, Ji/12 ≤ J̃i ≤ 3Ji.

Proof. Fix an iteration i ≥ 1. Note that J̃i equals:

|Si−1 ⊗ Si|− α(|Si−1|+ |Si|)

ℓi
≤

|Gi−1 ⊗Gi|

ℓi

≤
3Jiℓi
ℓi

≤ 3Ji

Where the second step holds since |Gi−1 ⊗Gi| is no more

than the number of join and leave events by good IDs in

iteration i, which is at most ℓi times the rate of good joins

plus the rate of good departures; and by Assumption A1, the

sum of these two rates is at most 3Ji.
Next, we show the lower bound. Observe that:

J̃i =
|Si−1 ⊗ Si|− α(|Si−1|+ |Si|)

ℓi

≥
|Si−1|/3− α|Si−1|− α|Si|

ℓi

≥
|Si−1|/3− α|Si−1|− α(4/3)|Si−1|

ℓi

≥
(1/3− (7/3)α)|Si−1|

ℓi
(3)

Where the second step holds by the condition that triggers

a purge test. In the third step |Si| ≤ (4/3)|Si−1| holds by the

bound on |Si ⊗ Si−1|.
Also, by Assumption A3:

Ji ≤
2|Si−1|

ℓi
. (4)

Substituting
|Si−1|

ℓi
from Eq. 4 into Eq 3, we have:

J̃i ≥ (1/3− (7/3)α)(Ji/2) ≥ Ji/12

where the last inequality holds for α ≤ 1
14 .

Lemma 7. For any iteration i ≥ 2, 1
24Ji ≤ J̃i−1 ≤ 6Ji

Proof. Fix an iteration i ≥ 2. For the upper bound, observe:

J̃i−1 ≤ 3Ji−1 by Lemma 6

≤ 6Ji by Assumption A2 in Section I-A.

Similarly, we can obtain the lower bound:

J̃i−1 ≥
Ji−1

12
by Lemma 6

≥
Ji
24

by Assumption A2 in Section I-A

which completes the proof.

C. Cost Analysis

Let Ti denote the computational cost to the adversary

incurred during iteration i.
We divide epoch i of iteration i into sub-epochs. Sub-epoch

j ≥ 1 begins when (j−1)/Ji time has elapsed in epoch i and

ends when j/Ji time has elapsed. T j
i is the computational

cost paid by the adversary from the beginning of epoch i until

the end of sub-epoch j of epoch i.
Let bji be the number of bad IDs that have joined from the

beginning of epoch i until the end of sub-epoch j of epoch i.
Finally, let bi be the number of bad IDs that join in epoch i.

Lemma 8. For any sub-epoch j ≥ 1 in any epoch i ≥ 2,

bji ≤
)

12 j T j
i .

Proof. The j th sub-epoch ends at time tj = j/Ji. So the

entrance cost for the kth bad ID joining in sub-epoch j is at

least:

max

#

k/tj

J̃i−1

, 1

$

≥
k

J̃i−1 tj
≥

k

6 Ji tj
≥

k

6 j

where the second inequality follows by Lemma 7. Thus:

T j
i ≥

bj
i

*

k=1

k

6 j
≥

(bji )
2

12 j

Solving for bji in this inequality completes the proof.

We use the following fact in the proofs of Lemma 10 and

Theorem 1.

Fact 9. Suppose that u and v are x-dimensional vec-

tors in Euclidean space. For all x ≥ 1,
+x

j=1

√
ujvj ≤

,

%

+x
j=1 uj

&%

+x
j=1 vj

&

.

Proof. Using the Cauchy-Schwarz inequality, we have:

-

.

n
*

j=1

√
ujvj

/

0

2

≤

-

.

n
*

j=1

uj

/

0

-

.

n
*

j=1

vj

/

0

Taking the square-root of both sides, we get:

x
*

j=1

√
ujvj ≤

1

2

2

2

3

-

.

x
*

j=1

uj

/

0

-

.

x
*

j=1

vj

/

0



which completes the argument.

Lemma 10. For any iteration i ≥ 2, the total entrance cost

paid by the good IDs is O
4√

TiJi ℓi + Ji ℓi
5

.

Proof. Fix an iteration i ≥ 2 and let j ≥ 1. Let the j th sub-

epoch end at time tj = j/Ji. By Assumption A4, the entrance

cost paid by a good ID in sub-epoch j is at most:

max

6

(bji + Cj)/tj−1

J̃i−1

, 1

7

≤ 1 +

'
)

12 j T j
i + Cj

(

/(J̃i−1 tj−1)

≤ 1 + 24

'
)

12 j T j
i + Cj

(

/(Ji tj−1)

≤ 1 + 24C

'
)

12 j T j
i + j

(

/(j − 1)

where the second line follows from Lemma 8, the third line

follows from Lemma 7, and the fourth line follows since

tj−1 = (j − 1)/Ji.
Summing over all sub-epochs in epoch i, and using As-

sumption A4, the total entrance cost paid by the good IDs is

at most:

Ji ℓi
*

j=1

C

'

1 + 24C

'
)

12 j T j
i + j

(

/(j − 1)

(

=

Ji ℓi
*

j=1

O

'
)

T j
i /j + 1

(

= O
%

8

TiJi ℓi + Ji ℓi

&

since
+Ji ℓi

j=1

)

T j
i /j = O(

√
TiJi ℓi) follows by Fact 9.

Lemma 11. For any iteration i ≥ 2, |Si−1| ≤ 8
√
12 Ti Ji ℓi+

10Ji ℓi.

Proof. Recall that the number of bad IDs that remain in the

system at the end of iteration i−1 is at most α|Si−1| and that

the number of bad IDs that enter in iteration i is bi. Therefore,

the number of join and leave events in iteration i due to bad

IDs is at most 2bi + α|Si−1|.
The departure rate of good IDs is at most (3/2)Ji by

Assumption A1, so the number of good IDs that join or depart

in iteration i is at most (5/2)Jiℓi . Thus, the total join and

leave events in iteration i is at most 2bi+α|Si−1|+(5/2)Ji ℓi.
By Step 2 of GMCOM, |Si−1 ⊗ Si| = |Si−1|/3. Thus:

|Si−1|/3 ≤ 2bi + α|Si−1|+ (5/2)Ji ℓi.

Note that j∗ = Ji ℓi is the last sub-epoch of epoch i. Hence

by Lemma 8, bi = bj
∗

i =
√
12 Ji ℓi Ti. Solving for |Si−1|:

|Si−1| ≤
2bi + (5/2)Ji ℓi

1/3− α

≤ 4(2bi + (5/2)Ji ℓi)

≤ 8
8

12 Ji ℓi Ti + 10Ji ℓi

where the second line follows from α ≤ 1/14.

Lemma 12. For any iteration i ≥ 2, the total purge compu-

tational cost to good IDs is O(
√
Ti Ji ℓi + Ji ℓi).

Proof. We know that the number of good IDs that solve the

purge puzzle is at most |Si|. Thus, the total purge computa-

tional cost to good IDs in iteration i is at most:

|Si| ≤
4

3
|Si−1|

≤ (4/3)(8
8

12 Ti Ji ℓi + 10Ji ℓi)

< 11
8

12 Ti Ji ℓi + 14Ji ℓi

where the first step follows since |Si−1 ⊗ Si| = |Si−1|/3,

and the second step follows by Lemma 11.

D. Proof of Theorem 1

Finally, we are ready to prove Theorem 1.

Proof. Population and Committee Invariants. Follows from

Lemma 4 and Lemma 5.

Spending Rate. Let I be any subset of all the iterations during

the lifetime of the system. By Lemmas 10 and 12, the total

computational cost paid by good IDs in all iterations in I is:

*

i∈I

O
%

8

TiJi ℓi + Ji ℓi

&

= O

-

.

9

*

i∈I

Ti
*

i∈I

Jiℓi +
*

i∈I

Jiℓi

/

0

Which follows from Fact 9 setting ui = Ti and vi = Jiℓi for

i ∈ I. To calculate the average computational cost per round,

we divide by
+

i∈I ℓi to obtain:

O

:

8
+

i∈I Ti
+

i∈I Jiℓi +
+

i∈I Jiℓi
+

i∈I ℓi

;

= O

:
9

'
+

i∈I Ti
+

i∈I ℓi

('
+

i∈I Jiℓi
+

i∈I ℓi

(

+

+

i∈I Jiℓi
+

i∈I ℓi

;

= O
%

8

TI JI + JI

&

The last step follows since over all iterations in

I, we have TI =
4
+

i∈I Ti
5

/
4
+

i∈I ℓi
5

and JI =
4
+

i∈I Jiℓi
5

/
4
+

i∈I ℓi
5

.

IV. LOWER BOUNDS

In this section, we provide a lower bound that applies to

the class of algorithms which have the following attributes:

• B1. Each new ID must pay an entrance fee in order to

join the system and this is defined by a cost function f ,

which takes as input a join rate.

• B2. The algorithm executes over iterations, but we con-

sider more general iterations that are delineated when

the condition |Si ⊗ Scur| ≥ δ |Si| holds, for any positive

δ < 1/2 (recall, GMCOM uses δ = 1/3).

• B3. At the end of each iteration, each ID must pay Ω(1)
to remain in the system.

We emphasize that B1 captures any cost function where

the change in join cost during an iteration varies only with

the join rate during that iteration. GMCOM’s cost function

has this property, since J̃i−1 is fixed throughout iteration i.



With regard to B2 and B3, recall that we wish to preserve the

population invariant (i.e., a majority of good IDs). It is hard

to imagine an algorithm that preserves this invariant without

a computational test being imposed on all IDs.

A. Lower-Bound Analysis

Restating in terms of the conditions above, we have:

Theorem 2. Suppose our algorithm satisfies conditions B1-

B3, then there exists an adversarial strategy that forces G =
Ω(

√
T J +J), where J is the good ID join rate, and T is the

algorithmic spending rate, both taken over the iteration.

Proof. Fix an iteration i. Let n be the number of IDs in the

system at the start of iteration i. Let ρ be any adversarial

join rate during this iteration. We show that the adversary can

always force the good nodes’ spending rate to be Ω(
√
T J),

where T is the spending rate of the adversary in iteration i,
and J is the join rate of good IDs in iteration i. The adversarial

strategy is for bad IDs to join uniformly at a rate of ρ during

the iteration, and then depart right before the purge.

We first calculate the algorithmic spending rate due to purge

puzzle costs in iteration i. We use the fact that the purge begins

when the system sees a δ-factor symmetric difference, for δ <
1/2, and that the average rate of joins in iteration i is Θ(ρ+J).
Hence, by Attribute B2, the length of iteration i is:

ℓi = O(n/(ρ+ J))

By Attribute B3, each good ID pays a purge cost of Ω(1) at

the end of each iteration. Hence the average spending rate due

to purge costs in iteration i is Ω(n/ℓi) which is:

Ω

'

n

n/(J + ρ)

(

= Ω(J + ρ) (5)

We now have two cases:

Case 1: f(ρ + J) > ρ/J . The overall rate of joins and

departures of IDs is ρ+J during this iteration. The adversarial

join rate is ρ , so we have:

T = ρf(ρ+ J).

Rearranging we get:

f(ρ+ J) = T/ρ. (6)

Since f(ρ+ J) > ρ/J , we have:

ρ < J f(ρ+ J)

= JT/ρ by Equation 6.

On solving the above for ρ, we get:

ρ <
√
T J. (7)

By definition, the good ID join rate is J . Thus, the spending

rate for the algorithm due to entrance costs is Ω(J f(ρ+ J)).
Adding in the spending rate for purge costs of Ω(J + ρ) from

Equation 5, we get that the average cost to the algorithm is:

G = Ω(J f(ρ+ J) + (J + ρ))

= Ω(J T/ρ+ (J + ρ)) by Equation 6

= Ω

%√
T J + J

&

by Equation 7

Case 2: f(ρ + J) ≤ ρ/J . In this case, we have:

T ≤ ρ f(ρ+ J) ≤ ρ2/J

Rearranging, we get:

ρ ≥
√
T J (8)

By Equation 5, we have that the algorithmic spending rate due

to purge costs is Ω(J + ρ). Thus:

G = Ω(ρ+ J)

= Ω

%√
T J + J

&

where the last line follows from Equation 8.

V. EXPERIMENTS

We simulate GMCOM to evaluate its performance with

respect to the computational cost from solving puzzles. Given

this goal, we do not model Byzantine consensus or committee

formation. In all of our experiments, we assume a computa-

tional cost of k for solving a puzzle of difficulty k.

In Section V-B, we validate the asymptotic behavior of

the asymmetric spending rate. In Section V-A, we compare

GMCOM with two PoW-based Sybil defenses.

Our simulation code [1] is written in MATLAB and was

executed on a Mac machine with High Sierra (version 10.13.6)

using a 1.7 GHz Intel Core i5 processor and 4 GB of 1333

MHz DDR3 RAM.

A. Validating Asymptotics

We simulate GMCOM to validate that it exhibits the asym-

metric spending rate O(
√
T J+J), where T is the adversary’s

computational cost for solving puzzles divided by the duration

of an attack, and J is the average join rate of good IDs over

the duration of the experiment. The system is initialized with

10, 000 good IDs, and J is set to 2 IDs per second. The number

of good IDs remains fixed throughout the simulation; thus 2
good IDs depart every second. We denote the average cost to

the good IDs by G.

We assume α = 1/14, and T ranges over [2, 2100], where

for each value of T , the system is simulated for 10, 000
seconds. The adversary solves entrance puzzles to add bad

IDs to the system. We pessimistically ignore the cost paid by

the adversary for solving purge puzzles.

Figure 2 illustrates our first results. The blue line depicts the

average computational cost to good IDs per second obtained by

executing GMCOM when the adversary spends T per second.

The green and red line are the plots when G = T and G =√
T .

Note that the x-axis and y-axis are both log scaled. Initially,

the blue line increases slowly due to T not being substantially

larger than J , and hidden constants. However, as T grows, we

observe behavior very close to G =
√
T , which validates the

asymptotic behavior of the asymmetric cost.
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