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Abstract

Computer Vision applications often require a textual
grounding module with precision, interpretability, and re-
silience to counterfactual inputs/queries. To achieve high
grounding precision, current textual grounding methods
heavily rely on large-scale training data with manual an-
notations at the pixel level. Such annotations are expen-
sive to obtain and thus severely narrow the model’s scope
of real-world applications. Moreover, most of these meth-
ods sacrifice interpretability, generalizability, and they ne-
glect the importance of being resilient to counterfactual in-
puts. To address these issues, we propose a visual ground-
ing system which is 1) end-to-end trainable in a weakly
supervised fashion with only image-level annotations, and
2) counterfactually resilient owing to the modular design.
Specifically, we decompose textual descriptions into three
levels: entity, semantic attribute, color information, and
perform compositional grounding progressively. We vali-
date our model through a series of experiments and demon-
strate its improvement over the state-of-the-art methods.
In particular, our model’s performance not only surpasses
other weakly/un-supervised methods and even approaches
the strongly supervised ones, but also is interpretable for
decision making and performs much better in face of coun-
terfactual classes than all the others.

1. introduction

Deep neural networks have spawned a flurry of suc-
cessful work on various computer vision applications, from
modular tasks like object instance detection [20, 22, 36] and
semantic segmentation [43, 10], to more complex multi-
modal ones like visual question answering (VQA) [1] and
image captioning [2, 33]. For complex vision applica-
tions (e.g., visual search engine and video auto-captioning),
it is critical to build a reliable textual grounding system,
which connects natural language descriptions and image re-
gions [67, 34, 32, 58, 65].

Current methods typically formulate the textual ground-
ing problem as a search process or image-text matching. For
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Figure 1: Illustration of our textual grounding framework
that decomposes textual descriptions into three levels: en-
tity, semantic attributes and color information. As an exam-
ple, for textual grounding from the sentence shown above,
our system localizes the entity (person), semantic attributes
(boy, woman), the color blue, and progressively produces
the final textual grounding by combining results. Note that
owing to the decomposable description and modular design,
our system is highly interpretable and resilient to counter-
factual inputs/qeueries (bottom row).

Person

example, [58] proposed textual-visual feature matching by
reconstruction loss. [9] fulfills textual grounding with two
steps: the generation of object proposals and match with the
query. [67] utilizes pre-trained module to conduct search-
ing and matching progressively. Given a novel image and
queries, these models return the proposals which yield the
highest matching score/probability as the final output. Al-
though they achieve state-of-the-art performance in terms of
grounding precision, they rely on a large-scale training sets
with manually annotated bounding boxes on the objects of
interest. This inevitably prevents them from generalizing to
other data domains which have no such fine-grained manual
annotations for model training or fine-tuning [65].

Moreover, these models lack the interpretability for de-
cision making and the resilience to counterfactual queries,
which often appear jointly to make these models even more
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Figure 2: Examples of counterfactual objects and applying our system to video captioning alignment. Although there are
three persons in the beginning of the video, they may disappear later for some frames. This poses a challenge for video
captioning, our system acts as a tool to ground the object temporally and correct mismatched description and frames.

vulnerable in real-world applications [24, 62, 14, 15]. For
example, as demonstrated by Figure 1, if one is asking
“who is the woman in blue shirt in the image”, a good
model should return nothing instead of the closest person
or someone with high matching score. Even more pre-
ferred, the model should explain why the decision is made
in addition to the final grounding result. The interpretabil-
ity and counterfactual resilience properties are also useful
in literature and practical deployment. As demonstrated by
another example about our application to correcting video
auto-captioning, as shown in Figure 2 (details in Section 5).
There exist three people in the first frame, while they may
disappear in the following frames but the captioning are still
not updated. Our counterfactually resilient grounding sys-
tem is able to correct captioning mis-alignment issue.

In this work, we propose to modularize the textual
grounding system by decomposing the textual description
into multiple components, and perform grounding progres-
sively through these components towards the final output.
Recently, modular design is being advocated in the com-
munity [29, 27, 67], mainly focusing on visual-question-
answering and referring expression visual matching. We
show that such a modular design also increases the inter-
pretability of our textual grounding system, that it explains
along the way how the final decision is being made. It is
worth noting that the modular design supports diverse train-
ing protocols to learn each component. Therefore, to al-
leviate the requirement for large-scale fine-grained manual
annotations (e.g., bounding box), we propose to train our
entity grounding module in a weakly supervised manner
which only needs image level labels. We note that such
data are easy to obtain, e.g., from internet search engine or
social media with image tags [21, 3, 8].

To validate our system, we carry out extensive exper-
iments on the COCO dataset [41] and Flickr30k Entities
dataset [56]. We show that our system outperforms other

weakly-supervised methods on textual grounding and even
surpasses some strongly-supervised approaches. By intro-
ducing another dataset consisting of counterfactual cases,
we emphasize that our system performs remarkably better
than other methods w.r.t counterfactual resilience. To sum-
marize our contributions:

1. We propose a textual grounding system with modular
design. Together with the decomposition of textual de-
scriptions, it allows for more diverse and specialized
training protocols for each components.

2. We collect a counterfacutal textual grounding test set,
and show that our system achieves better interpretabil-
ity and resilience to counterfactual testing.

3. We demonstrate practical applications based on our
system and expect future explorations based on our
work.

In the rest of the paper, we first review related work, then
describe our system in Section 3. We elaborate our training
procedure and demonstrate the effectiveness of our system
through experiment in Section 4 and broad application in
Section 5, respectively, before concluding in Section 6.

2. Related Work

Multi-modal tasks, eg. assistive visual search [6, 38] and
image captioning [66, 60], has been studied for decades in
the community. While those tasks are classical topics in
computer vision and natural language processing, current
advancement has further energized it by interplaying vi-
sion (images) and language (high-level guide) for practical
applications. Specific examples include referring express-
ing understanding [49, 29] and reasoning-aware visual-
question-answering [28].

State-of-the-art textual grounding methods [67, 31, 58,

, 64, 44] are based on deep neural networks and relying
on large-scale training data with manual annotations for the
object bounding box and relationship between phrases and
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figures/objects. This setup largely limits their broad appli-
cations as such strong supervision is expensive to obtain,
and they also lack interpretability and resilience to counter-
factual cases which do not appear in training.

Weakly supervised learning receives increasing atten-
tion [13, 50, 11, 46, 52, 55, 63]. It focuses on learning
granular detectors given only coarse annotations. This is of
practical significance as granular annotations (e.g., bound-
ing boxes and pixel-level labels) are much more expensive
to obtain compared to coarse image-level annotations. Re-
cent study shows that weakly supervised methods can even
outperform the strongly supervised method for image clas-
sification [46]. Unlike current work, we perform weakly-
supervised learning for textual grounding, including train-
ing for both entity grounding and textual-visual matching
through a progressive modular procedure.

Modular design is also receiving more attention recently,
mainly for complex systems like visual-question-answering
or image captioning [29, 27, 67]. Such modular design is
carried out by realizing some linguistic structures. In our
work, we propose to decompose the query textual descrip-
tion into progressive levels, each of which is passed to a
corresponding module, and then produce the final ground-
ing result by progressively merging the intermediate results.
In this way, our system enjoys high interpretability and re-
silience to counterfactual inputs.

3. Modularized Textual Grounding System

To obtain better interpretability and counterfactual re-
silience, we propose to modularize the our whole textual
grounding system by decomposing the textual descriptions
into multiple levels, each of which is passed to a specific
module to process. We generate the final grounding result
by progressively merging intermediate results from these
modules.

Without losing generalization, in this work, we decom-
pose the textual descriptions into three levels, and pro-
gressively process them with three different modules, re-
spectively: entity grounding module M., semantic attribute
grounding module M,, and color grounding module M..
We extracted phrases/words that belong to these three lev-
els from text, and feed them into their corresponding sub-
modules. We note that such a modular design allows for
training different modules using different specialized pro-
tocols, e.g., fully supervised learning or weakly supervised
learning, while also enabling end-to-end training. For the
final grounding heat map G, we merge progressively the in-
termediate results from these modules (see Figure 3):

G:Me'(Ma+Mc)- (1)

In practice, we observe that such a merging approach
achieves the best performance over a straightforward mul-
tiplicative or an additive fusion. This is because that the

entity grounding defines the object constraints, and the sum-
mation over the attribute and color modules determines how
the final results are generated interpretably, though they
may partially cover some regions belonging to the object
of interest. For the rest of Sec. 3, we elaborate the three
modules with their adopted training protocols respectively.

3.1. Entity Grounding Module (M.)

To overcome the limitation of current methods that re-
quire expensive manual annotations at fine-grained level,
we propose to train the entity grounding module in a weakly
supervised manner. This can help our system achieve better
generalizability to other novel data domains which may just
require fine-tuning over dataset annotated coarsely at image
level. This weakly supervised learning can be expressed as
selecting the best region r in an image I given an object of
interest represented by a textual feature ¢, e.g., a word2vec
feature. With well pre-trained feature extractor, we first ex-
tract visual feature maps v over the image, based on which
we train an attention branch F' that outputs a heatmap ex-
pected to highlight a matched region in the image.

Mathematically, we are interested in obtaining the region
R = F(t,v) in the format of heatmap and making sense of
it. In practice, we find training a classification model at im-
age level with the attention mechanism works well for entity
grounding, which is the output through the attention maps,
as illustrated by Figure 3 left. Moreover, rather than using a
multiplicative gating layer to make use of the attention map,
we find that it works better by using a bilinear pooling layer
[42, 17, 35].

For bilinear pooling, we adopt the Multimodal Compact
Bilinear (MCB) pooling introduced in [16] that effectively
pools over visual and textual features. In MCB, the Count
Sketch projection function [7] W is applied on the outer
product of the visual feature vy and an array repeating the
word feature v; for dimensionality reduction: W(t) * W(v).
If converted to frequency domain, the concatenated outer
product can be written as: ® = FFT Y(FFT(¥(t)) ®
FFT(¥(v))). Based on @, the final 2D attentive map R
is computed through several nonlinear 1x1 convolutional
layers : R = conv(V), with the final one as sigmoid func-
tion to shrink all values into [0, 1]. Later we retrieve the re-
gional representation f by a global pooling over the element
wise product between entity attentive map and original vi-
sual feature maps: f = pool(R @ v), on which the weakly
supervised classification loss is applied. Overall, to train
the entity grounding module with the attention mechanism
in a weakly supervised learning fashion, we train for image-
level K-way classification using a cross-entropy loss.

3.2. Semantic Attribute Grounding Module (M,)

The semantic attribute grounding module improves in-
terpretability of the whole textual grounding system by ex-
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Figure 3: Illustrative diagram for our entity grounding module (left) and the whole textual grounding system (right). The
textual phrase is first decomposed into sub-elements, e.g., “older man in blue” can be parsed to “person” category with
“older man” and “blue” to be it’s attributes, and later fed into corresponding sub-module. The bounding boxes are generated
and selected based upon the merged attention maps. We train the entity/semantic attribute grounding module in a weakly
supervised fashion with a attention mechanism. The semantic attribute module also adopt similar architecture of entity
module, however with a dictionary learning loss. (best viewed in color)

plaining that it explains how the final decision is being
made. For example, a model finding the “man in black
suits” as shown in Figure 2 should not only output the fi-
nal grounding mask, but also explain how the final result is
being achieved by showing where “man” and “black suits”
are localized in the image.

We also train this module with a weakly supervised
learning protocol with similar architecture in the entity
module. But instead of training with K-way classification
over K predefined attributes as in training entity grounding
module, we model this as a multi-label problem, since an
image may deliver multiple attributes which are not exclu-
sive to each other. Moreover, rather than classifying them,
we propose to use regression for training, since attributes
can become large in number while the features representing
attribute names can lie in a manifold in the semantic space.
This makes our module extensible to more novel attributes
even trained with some pre-defined ones.

Note that we represent each attribute with the word2vec
feature [47]. Although the word2vec model demonstrates
very semantic grouping on words, we find that these fea-
tures representing attributes do not deliver reasonable dis-
criminativeness. For example, in word2vec features, “man”
is more similar to “woman” than “boy” but we care more
about the gender meaning in practice. Though retraining
such a word2vec model solves the problem, we adopt an
alternative method in this paper by proposing a dictionary
based scoring function over the original word2vec features.
We note that this method not only offers more discrimina-
tive scoring power, but also inherits the semantic manifolds
in word2vec features, extensible to novel attributes without
re-training whole model as done in K -way classification.

To introduce our dictionary based scoring function, we
revisit the classic logistic normalization widely used in bi-
nary classification as below:

1

T 1+ exp(—wlx) @

Yi
where w; here represents the learning parameters, and
X, y; are the input vectors and predicted probability with re-
spect to class i. Note again that, although the logistic loss
works well for binary classification or multi-label classifi-
cation, it is not extensible to novel classes unless retraining
the whole model. Our solution to this is based on the pro-
posed dictionary based scoring function. Suppose there are
C attributes, represented by word2vec and stacked as a dic-
tionary D = [dy,...,d¢]. We can measure the (inverse)
Euclidean distance between x and each dictionary atom for
the similarity about which attribute x is predicted.

So the dictionary acts as the parameter bank which can
be fixed if we want to preserve the semantic manifold in the
word2vec feature space, and we have the following modi-
fied sigmoid transformation:

2

p— 3
T+ exp(d; — x]2) ©)

Yi

However, as this may also be less discriminative, we opt to
learn a new latent space. Concretely, we build new layers
before the sigmoid transformation, and these layers form
new function ¢ and ) to transform the feature x and dic-
tionary atoms, respectively. Then we have the following
dictionary based scoring function for the i*” attribute:

2
1+ exp([[p(D); — ¢(x)[|2)

Yi “)
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Furthermore, despite using the dictionary based scoring
function as a modified sigmoid for logistic loss over the
holistic feature globally pooled over the image, we also per-
form it at pixel levels. Concretely, during each iteration on
each training image, we choose the 7" pixels with the top
scores to feed into the logistic loss. This practice is es-
sentially a multi-instance learning at pixel level [53]. We
find in our experiment that jointly using the two losses helps
generate better attention maps.

3.3. Color Grounding Module (M,)

When querying in natural languages, human beings typ-
ically rely on textual descriptions for low-level vision char-
acteristics, e.g., color, texture, shape and locations. Recent
work also demonstrates the feasibility of grounding low-
level features in unsupervised learning [61]. In our work
for the datasets we studied in our work, we notice that color
is the most used one. In the Flickr30k Entities dataset [56]
as studied in this paper, 70% attributes words are colors de-
scribing persons. Therefore, without loss of generalization,
we develop a separate color grounding module to improve
the interpretability of the overall textual grounding system.

Different from entity grounding and semantic attribute
grounding modules, we train this color grounding module
in a fully supervised way over a small-scale dataset, called
Color Name Dataset [59], which contains 400 images with
color name annotations at pixel level. We essentially per-
form pixel-level color segmentation over the input image
to ground color reference. Moreover, we build this color
grounding module over a ResNet50 model [23] pretrained
on ImageNet dataset [ | 2], and concatenate intermediate fea-
tures at lower levels for pixel-level color segmentation. We
find this works better than combining high-level features.
We conjecture the reason is due to that color is a very low-
level cue that does not require deep architectures and high-
level feature abstraction. This is consistent with what re-
ported in [40].

3.4. Architecture and Training

Our three modules are based on the ResNet architec-
ture [23]. Similar to [10, 37], we increase the output res-
olution of ResNet by removing the top global 7 x 7 pooling
layer and the last two 2 x 2 pooling layers, replacing them
with atrous convolution with dilation rate 2 and 4, respec-
tively to maintain a spatial sampling rate. Our model thus
outputs predictions at 1/8 the input resolution which are
upsampled for benchmarking. For (multi-label or K-way)
classification, we use a global pooling layer that produces a
holistic image feature for classification. In addition, we also
insert an Lo regularization over the attention maps, and we
observe that such a regularization term helps reduce noises
effectively.

We use the standard stochastic gradient decent (SGD) for

training in a stagewise fashion. Specifically, we first train a
plain classification model for entity and semantic attribute
grounding modules, then we build the attention branch for
attentional learning.

Though our textual grounding system is end-to-end
trainable, we train each module separately. And though
joint training is straightforward to implement, we do not
do this for practical reasons: 1) we can easily plug in a bet-
ter trained module without retraining the whole system for
better comparison; 2) we focus on the modular design, iso-
lating the influence of the settings and parameters of each
module.

4. Experiments

We now experimentally validate our system and com-
pare it with the state-of-the-art methods. To highlight the
generalizability of our system, we train it on COCO2017
dataset [41] while test it on another Flickr30K Entities
dataset [56]. We first introduce the two datasets briefly be-
fore conducting thorough comparisons, then we carry out
another experiment to show our (weakly supervised) model
performs remarkably better than other (fully supervised)
methods on a collected dataset consisting of counterfactual
testing cases. We implement our algorithm using PyTorch
toolbox [51] on a single GTX1080 Ti GPU '.

4.1. Datasets and Preprocessing

The two datasets we used in our experiments are:
COCO02017 [41] for training our system and Flickr30k En-
tities Dataset [56] for testing it.

COCO2017 dataset contains 110k training images with
80 object categories at image level. These 80 object cate-
gories are used for training our entity grounding module as
they can be seen exclusive to each other. The captioning
task and the annotations provided in COCO2017 enables
us to train our semantic attribute grounding module. Us-
ing [4, 48], we tokenize and mine out words related to se-
mantic attributes (e.g., man, woman, boy, old and young) to
form our corpus. To train the semantic attribute grounding
module, we retrieve images from COCO2017 whose cap-
tions contain the attributes existing in our corpus. Even-
tually, 10,000 images and 34 attributes are collected from
COCO2017 for weakly supervised training our modules.
To alleviate imbalanced distribution of these attributes, we
adopt inverse frequency reweighting during training.

The Flickr30k Entities dataset contains over 31k images
with 275k bounding boxes with natural languages descrip-
tions, and we only use this dataset for testing our system
with the bounding boxes.

To carry out counterfactual testing experiment, we col-
lect a new testing set with images from Flickr30k and Ref-

lhttps://qithub.Com/jacobswanl/MTGfpytorch
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Figure 5: Qualitative examples of attention maps from the
entity module.

COCO+ [34]. The images only contain persons and relevant
attributes (e.g., gender, age, etc), so we call this dataset Per-
son Attribute Counterfactual Grounding dataset (PACG).

By developing an easy-to-use interface, we are able to gen-
erate counterfactual captions for a given image with the
good captions provided by the original dataset. Similar to
work in [24], we generate counterfactual attributes by min-
ing the negation of existing attributes. The overall PACG
dataset consists 2,000 images, a half of which are with
counterfactual attributes not existing in the image and the
other half with “correct” attributes.

Language Processing: To deal with free-form textual
queries, we use a language parser [4] to select the key-
words according to the functionalities of the three modules.
We first extract the entity words and pick the most similar
object classes by word similarities. We then extract the se-
mantic attribute words in the same way. Finally, we extract
the the color keywords simply for the color grounding. To
represent the textual attributes and color names, we adopt
the word vectors from GloVe [54]. This enables meaningful
similarity between the defined attributes/colors and novel
ones when encountered at testing stage.

4.2, Textual Grounding Evaluation

We compare our modular textual grounding system with
other supervised/unsupervised methods on the Flickr30k
Entities dataset. We use the mean average precision (mAP)
metric to measure the quantitative performance. The de-
tailed comparison is listed in Table 1.

As the first baseline method similar to [65], we select the
largest proposal as the final result. This method achieves
24.34% mAP. Then, we build another baseline model that
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Aprroach Image Features  mAP (%)
Supervised
SCRC [31] VGG-cls 27.80
GroundeR; [58] VGG-cls 47.81
CCA [56] VGG-det 50.89
IGOP [64] YOLO+DeepLab 53.97
Unsupervised
Largest proposal n/a 24.34
GroundeR,, [58] VGG-det 28.94
Mutual Info. [68] VGG-det 31.19
UTG [65] VGG-det 35.90
UTG [65] YOLO-det 36.93
Weakly-Supervised
Ours! Res101 29.01
Ours(Attr)* Res101 32.04
Ours(Attr+Col)! Res101 33.43
Faster-RCNN? [57] Res101-det 35.35
Ours+Attr? Res101-det 47.46
Ours+Attr+Col? Res101-det 48.66

Table 1: Phrase localization performance on Flickr 30k En-
tities (accuracy in %).

we train the entity grounding module only through weakly
supervised learning over a ResNet101 backbone, which is
pretrained over ImageNet dataset. Then, over the entity
grounding heatmaps, we generate bounding boxes candi-
dates by sub-window search [39] together with contour de-
tection results, followed by a Non-Maximum Suppression
to further refine the proposal boxes. We select the box that
encompasses largest ratio of object according to equation 1.
We note that this simple baseline module (29.01% mAP)
outperforms GroundR, [58] (28.94% mAP) that learns
grounding in an attentive way over large-scale training data.
If we include our semantic attribute module, we improve the
performance further (32.04% mPA), outperforming Mutual
Info. [68]. If we further insert the color grounding mod-
ule, we achieve comparable performance (33.43%) to UTG
(36.93% mAP), which adopts an unsupervised method to
link image concepts to query words [65]. We note that our
models are trained on COCO dataset only, unlike all these
methods which are trained on the same dataset (Flickr30k
dataset). The effectiveness of our model is demonstrated by
its good transferability, as it is trained and tested on differ-
ent data domains.

It is also worth noting that, all the compared unsuper-
vised methods unanimously adopt a well-trained object de-
tector, even though they claim to be unsupervised learning.
To gain an idea how the detector improves the performance,
we fine-tune the faster-RCNN detector [19] on COCO and
train our modules with weak supervision again. We re-
port our results as the bottom two rows in Table 1. Now
we can see our models perform significantly better, and

even surpasses some fully supervised methods (SCRC [31]
and GroundeR [58]). Although it seems unfair that our
system adopts ResNetlO1 architecture while most com-
pared methods uses shallower VGG networks, we note that
IGOP which adopts both VGG and ResNet101 (denoted by
DeepLab) achieves the best performance with fully super-
vised training. Even though our best model does not out-
perform IGOP, we believe the performance gap is small
and reasonable as our training is carried out on a different
dataset (COCO) rather than Flickr30k, and it does not rely
on any strong supervision signals. We show output exam-
ples of entity grounding module in Figure 5 with various ob-
ject categories as input, and attribute grounding outputs in
Figure 4, with both existing attributes and counterfactual at-
tributes as queries. These visualizations demonstrates how
our system rejects in an explainable way the counterfactual
queries through the modular output.

4.3. Counterfactual Grounding Evaluation

We now carry out in-depth study on how our system per-
forms when facing of counterfactual textual queries over
our collected PACG dataset, and compare with three base-
line or state-of-the-art methods, Faster-RCNN [57], Mat-
tNet [67], SNLE [30]. We plot the ROC curves for these
methods in Figure 6. Textual grounding system then selects
the region with highest scores/probability. We compare the
prediction scores/probabilities of the predicted regions be-
tween the counterfactual queries and normal queries and ex-
pecting to observe distinct difference between their numer-
ical scores.

We clearly see from the figure that our system achieves
the highest AUC among of these methods, meaning that
modular design successfully increases the counterfactual
resilience of the grounding system. Specifically, end-to-
end models like SNLE [30] encode the textual query into
a vector representation to extract spatial feature maps from
the image as response map. However, such encoding do
not consider the internal structure of sentences [45], also
neglecting semantic nuances of near-synonyms. Note that
MattNet [67] also adopts a modular design, but it is trained
with fully supervised learning, also it is not easily ex-
tended to novel attributes and unable to reject counterfactual
queries as effectively as our method. The AUC of Faster-
RCNN is approximately 0.5 since the recognition ability is
restricted to entity-level and not been able to discern among
semantic attributes. We conclude that with the modular de-
sign and better scoring function in each modules, our model
demonstrated highly resilient ability against counterfactual
queries, even with only weakly-supervised training.

5. Extensive Applications

The counterfactual resilient design can be furthered ap-
plied to various tasks. In this section we showcase some
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Figure 6: ROC of our modular network demonstrates high
resolving ability on PACG dataset with an AUC of 0.88,
comparing to other state of the art baseline models (best
viewed in color).

Girl in yellow coat.

Figure 7: Temporal/Spatial grounding in video sequences.
Time-segments contain phrases are selected to filter out ir-
relevant frmaes.

practical applications.

Grounding Textual Phrase in Video To ground textual
phrase in video, the system needs to first determine which
temporal segment and moment to retrieve [25], then local-
ize the region associated with the descriptions. In this case,
textual information may be irrelevant to most of the video
frames, thus requiring the system to be counterfactual re-
silient to query and discern whether it is existing or not
in the current segment. Unlike an existing approach [ 18],
which treats the problem as temporal localization, we score
a set of frames and select out segments that are more likely
to be relevant to sentence. We demonstrate this process
in Figure 7 that modular network successfully conduct a

i Man in red hat
is seen for first
. time.

] Boy on right
picks something
. up from table.

' Three Kids run
up.

Figure 8: Video captioning alignment. With unordered cap-
tions, our system links each sentence to it’s corresponding
frames. Examples took from DiDeMo [26].

temporal-spatial grounding task in video clips.

Video to Captioning alignment Our model can be used to
correct misaligned captioning sentences like the work in [5].
Given mis-matched frames and captions, we examine the
sentence-frame relevance and find the corresponding frame
for each sentence. Figure 8 shows an example of the cap-
tioning alignment, the temporal linked sentences can be re-
ordered based on video.

6. Conclusion

In this paper, we propose to modularize the complex
textual grounding system by decomposing the textual de-
scription/query into three parts: entity, semantic attributes
and color. Such a modular design largely improves the in-
terpretability and counterfactual resilience of the system.
Moreover, we propose to train the modules in a weakly su-
pervised way, so we merely needs image-level labels which
are easy to obtain. This largely helps alleviate the require-
ment of large-scale manual annotated images for training,
and for fine-tuning if transferring the system to a new data
domain. Through extensive experiments, we show our sys-
tem not only surpasses all unsupervised textual grounding
methods and some of fully supervised ones, but also deliv-
ers strong resilience when facing counterfactual queries.

Our modularized textual grounding system is of practical
significance as it can be deployed in various problems. In
this paper, we show how our system can be applied to video
captioning correction and visual-textual search. We expect
more applications can benefit from our modular design.
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