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Abstract

Deep neural network-based methods have been proved
to achieve outstanding performance on object detection and
classification tasks. Despite the significant performance im-
provement using the deep structures, they still require pro-
hibitive runtime to process images and maintain the highest
possible performance for real-time applications. Obsery-
ing the phenomenon that human visual system (HVS) re-
lies heavily on the temporal dependencies among frames
from the visual input to conduct recognition efficiently,
we propose a novel framework dubbed as TKD: temporal
knowledge distillation. This framework distills the temporal
knowledge from a heavy neural network-based model over
selected video frames (the perception of the moments) to a
light-weight model. To enable the distillation, we put for-
ward two novel procedures: 1) a Long-short Term Memory
(LSTM)-based key frame selection method; and 2) a novel
teacher-bounded loss design. To validate our approach, we
conduct comprehensive empirical evaluations using differ-
ent object detection methods over multiple datasets includ-
ing Youtube-Objects and Hollywood scene dataset. Our re-
sults show consistent improvement in accuracy-speed trad-
offs for object detection over the frames of the dynamic
scene, compared to other modern object recognition meth-
ods. It can maintain the desired accuracy with the through-
put of around 220 images per second. Implementation:
https://github.com/mfarhadi/TKD-Cloud.

1. Introduction

Object detection plays a critical role in a variety of mo-
bile robot tasks such as obstacle avoidance [3, 44], detec-
tion and tracking [2] and object searching [46, 45]. Dur-
ing the last decade, we have witnessed the great success
of Convolutional Neural Networks (CNNs)-based meth-
ods in the object detection task. This success has led re-
searchers to explore deeper models such as RetinaNet [23]
or Faster-RCNN [35], which yield high recognition accu-
racy. The “secret” sauce behind the success of these deeper
and deeper CNNs models is the stacking of repetitive layers
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Figure 1: An illustration of our TKD model’s actual per-
formance: F-1 score distribution over example object cate-
gories in different environments using TKD.

and increasing the number of model parameters [5]. This
practice becomes possible while the applications are run-
ning on infrastructures with high processing capabilities.

However, the disadvantages of this practice are obvi-
ous and the high performance is achieved by the significant
growth of the model complexity: stacking up layers and in-
creasing the model parameters which are computationally
expensive and also increase the inference time significantly.
Hence, these models are not suitable for real-time and em-
bedded visual processing systems, and thus impede their
deployment in the era of intelligent robots and autonomous
vehicles. The same concerns also lie in the energy conser-
vation and computation limits, since deep models require
a large number of matrix multiplications, which are time-
consuming and energy-demanding for mobile applications.

The aforementioned concerns trigger various ap-
proaches, such as using the alignment of memory and SIMD
(Single Instruction, Multiple Data) operations to boost ma-
trix operations [14]. More recently, studies [5] and [18] pro-
posed transferring the knowledge of deep models to shal-
low models while maintaining the recognition accuracy. Al-
though these approaches do improve the model efficiency,
they ignore the temporal dependencies among the frames
from dynamic scenes, which is one of the critical capa-
bilities to maintain high recognition accuracy while being
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energy-aware.

The motivation for our TKD model comes from the vi-
sual adaptation phenomenon observed in the Human Vi-
sual Systems (HVS). Visual adaption involves temporary
changes in the human perception system when exposed to
intense or new stimulus and by the lingering aftereffects
when the stimulus is removed [42]. Other studies from [42]
show that the visual system adapts to the changes in the
environment and this adjustment can happen in a few mil-
liseconds. More specifically, a study from [7] reveals that
the face recognition process happens at a higher level of
cognition, and later at the stage of visual encoding, we ob-
serve that the sensory systems adapt itself to the prevailing
environment. This shows that HVS relies heavily on the
prior estimation of the objects’ appearance distribution to
improve the perception capability at the current time-stamp.

Moreover, the adaptation happens both in the “low” and
“high” level visual features. The human visual system
adapts to the distribution of “low-level” visual features such
as color, motion, and texture, as well as the “high-level” vi-
sual features such as face classification including identity,
gender, expression, or ethnicity [42]. This adaptation can
be both short-term and long-term. For instance, our percep-
tion system adapts itself to the general visual features of the
environment which we are living in for a long time such as
faces and colors (like training a model). Also, it can adapt
itself dynamically when the environment changes, for ex-
ample, moving from the indoor environment to the outdoor
[42] (like adapting a shallow model). This adaptation capa-
bility is essential for our HVS to perform recognition well
and efficient, with low energy consumption.

Inspired by the aforementioned findings, we design our
TKD framework that utilizes the knowledge distillation
techniques. It transfers temporal knowledge from the heavy
model to a light model to boost visual processing efficiency
while maintaining the heavy model’s (a.k.a., oracle model)
performance. Figure 1 illustrates the overall goal of this
work. In this figure, we show how TKD improves recog-
nition accuracy over different scenes, compared to the ora-
cle model which we assume to be a perfect model. Also,
we show the baseline model which is a tiny model with
low accuracy compared to oracle recognition due to a much
lower number of parameters. TKD achieves higher accu-
racy by adapting itself to the observed environment. In the
case of an indoor scene, the TKD recognition accuracy im-
proves significantly over objects which are more probable
to be observed inside a building. In the outdoor case, TKD
recognition accuracy improves over the objects such as a
car, bus, and truck which are more probable to be observed
outside. For a similar amount of model parameters as the
baseline tiny model, the TKD will achieve much better per-
formance over the more probable objects by dynamically
learning from the oracle model.

To summarize our contributions: 1) we propose an end-
to-end trainable framework to transfer the temporal knowl-
edge (a.k.a., the perception of the moment) of the oracle
model to the student model; 2) we propose a novel teacher-
bonded loss for knowledge distillation which has a sim-
ple structure and performs inferences briskly; and 3) we
propose an efficient method to select key frames from the
dynamic scene, that indicate the right timing to train stu-
dent model and to improve the detection accuracy. We de-
sign and conduct empirical experiments on both the pub-
lic datasets (the Youtube Object dataset and the Hollywood
Scene dataset) as well as on two long videos with multiple
scene changes, which validate each of the aforementioned
novel design choices, by observing a fast object recognition
performance while maintaining high detection accuracy.

2. Related Work

Visual recognition systems, ranging from object recogni-
tion [23], action recognition [22], to scene recognition [47]
have gained attention in recent years. Significant improve-
ments in recognition accuracy have resulted in economic
and societal benefits in Al applications such as autonomous
vehicles [20, 21], and IoT systems [39, 40].

Object Detection: Object detection methods based on Con-
volutional Neural Networks (CNNs) have shown promis-
ing results over the past years. There are two main types
of object recognition systems which are based on CNNs,
one-stage, and two-stage. In one-stage methods, we clas-
sify and localize objects in one-stage. Images, when for-
warded through the network produce a single output which
is then used to classify or localize objects. Some exam-
ples of one-stage methods are Yolo [34], RetinaNet [23]
and DSSD [13]. These models are faster compared to other
methods due to ruining in a single stage. The second types
of models are two-stage methods in which classification and
localization happen as two different stages, using classifi-
cation networks and region proposal networks respectively.
Two famous two-stage models are FasterRCNN [35], R-
FCN [9]. These models reach to higher performance with
high intersection over union (IOU). However, Redmon et al.
[34] showed at lower IOU (I0U=0.5) one-stage models can
perform the same accuracy as two-stage models.

Model Compression: Another thrust of work has focused
on reducing the resources consumption of CNNs (due to
expensive computation and memory usage) by compressing
the network structures [17, 33]. Network pruning is one of
well-studied approach which removes unnecessary connec-
tions from CNN model, to gain inference speedup [43, 19].
Quantizing [16, 12] and binarizing [33, 1] are two other
methods that have been used to reduce network size and
computation load. These methods improve performance at
the hardware level by reducing the size of weights at the
binary code level. However, the standard GPU implementa-
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tion remains challenging for these methods to achieve run-
time speedup [17]. Also, the advantages of these methods
over other one-stage methods without the fully connected
layers (the network pruning target in [16]) is not clear.
Domain Adaptation: Object detection in the real world
still needs to address challenges such as low image quality,
large variance in the backgrounds, illumination variation,
etc. These could lead to a significant domain shift between
the training, validation and test data. Consequently, the field
of domain adaptation has been widely studied in image clas-
sification [41, 25] and object detection [6, 8] tasks. These
methods improve accuracy on well-known bench-marking
datasets. Nevertheless, they typically adopt an offline do-
main adaptation procedure and do not concern with domain-
change during the inference stage.

Knowledge Distillation: Knowledge distillation is another
approach to boost accuracy in CNNs. Under the knowledge
distillation setting, an ensemble of CNN models or a very
deep model will serve as the teacher model, which transfers
its knowledge to the student model (shallow model). Hin-
ton et al. [18] proposed a method to apply teacher predic-
tion as a “soft-label” and distill teacher classifier’s knowl-
edge to the student. Moreover, they proposed a temperature
cross entropy instead of L2 distance as the loss function.
Romero et al. [36] proposed a so-called “hint” procedure
to guide the training of the student model. There are also
other approaches to distill knowledge between different do-
mains such as from RGB to depth images [15, 37]. Knowl-
edge distillation has been also applied to the object detec-
tion task. Chen et al. [5] proposed a method which adopts
all of the soft labeling (labels generated by the teacher), the
hard labeling (the ground truth) and the hint procedure to
transfer knowledge from the teacher with deep feature ex-
tractor to the student with a shallow feature extractor. They
adopt a two-stage method (FasterRCNN [35]) in their sys-
tem. Mehta et al. [27] applied the same procedure to one
stage method (Tiny-Yolo v2).

Mullapudi et al. [30] proposed an online model distil-
lation for efficient segmentation. They adopt a light CNN
model as a student and a heavy model as a teacher. At the
inference time, the student model is trained periodically us-
ing the teacher knowledge. However, the naive usage of a
fixed period may not be efficient in their approach. More-
over, their shallow model struggles to handle emerging new
objects in the scene when these objects are observed in the
middle of the fixed period. Here, ours is able to select the
period length based on the incoming frames, by which TKD
could trigger re-training and thus detecting the emerging
new objects, as demonstrated experimentally in Sec. 5.

3. Temporal Knowledge Distillation

The conventional use of knowledge distillation has been
proposed for training CNNs based classification models.

In these models, we have a dataset (z;,v;),i = 1,2,...,n
where z; and y; are input images and the class labels. The
student model is trained to optimize the following general
loss function (with 3 is a modulation factor):

O; = Student(z); Oy = Teacher(x),
L(Os, (y,01)) = BLgi(Os,y) + (1 = B)Li(Os, On),

where L; is the loss using teacher output (O;) and L4 is the
loss using ground truth y [27, 5, 18].

In addition to the classification task, object detection also
could benefit from the knowledge distillation procedure.
However, it’s not as straightforward as the classification
task. Most notably, the teacher model’s output may yield
misleading guidance to the student model [5]. The teacher
regression result can be contradictory to the ground truth la-
bels, also the output from the teacher regression module is
unbounded. To address these issues, [5] proposed a proce-
dure to only adopt teacher’s output at beneficial times. For
a one-stage object detection setting, [27] optimized the stu-
dent model with a similar loss function to Eq. 1.

In this paper, we propose a novel and bio-inspired way
of adopting the teacher model’s knowledge. Namely, tem-
porally estimating the expectation of object labels, their
sizes, and shapes based on the previously observed frames
or Ely;lay, s, ...,a;_1] where y; is our objects label and
« our observations. This expectation changes in time by
camera or objects movements, and/or the changing of the
field of view. Here, we utilize this extracted knowledge to
improve object detection performance. Unlike the previous
work such as [27, 5], we are not aiming to improve the fea-
ture extractor and/or the general knowledge of the student
model. We optimize the decoder inside the student model to
adapt it to the current environment. It is done by increasing
the likelihood of objects which are more frequently found
from the previous observations. Since the model requires
online training during the inference stage, it should be able
to address the following challenges:

1. Training is a time consuming procedure, running it at
the inference stage hurts model efficiency;

2. Selecting the key frames accurately on which the stu-
dent model needs to be adapted;

3. Objects with low appearance probability may not be
detected by the student model after adaptation;

4. The oracle model still introduces noise at locations
where there are no objects. Simply training the student
model with noisy oracle output decreases the accuracy.

In the following section, we will introduce our approach
to address these challenges respectively.

&)

4. Our Approach

In this work, we adopt Yolo-v3 (as teacher) and Tiny-
Yolo v3 (as student) [34] as the base object detection meth-
ods. These two models are one-stage object detection mod-
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Figure 2: An overview of TKD (Temporal Knowledge Distillation): A low-cost student model is tasked to detect objects in
the main thread. To retain high accuracy, a key frame selector decides to activate the oracle model and adapt the student over
the environment. Since the execution of the Oracle model and retraining the student model occurs in separate threads, it does

not have a significant effect on the inference latency.

els. In both models, object detection is conducted at various
layers. The middle layers are used to detect large objects
and the last layers to detect small objects. Studies [34], [30]
and [23] showed that this strategy successfully improves the
object detection accuracy with a significant edge.

As mentioned in Section 1, the overall objective of our
system is to estimate the expectation of object labels, their
sizes, and shapes on the temporal domain and to improve
the performance of the student model. Following this in-
tuition, we put forward a mechanism with a combination
of an oracle model (which we consider it as the best possi-
ble model) and a student model (which is fast but has con-
siderably lower accuracy compared to the oracle). We are
transferring the temporal knowledge of the oracle model to
the student model at the inference time. By transferring this
knowledge, the student model adapts itself to the current
environment or scene. Without loss of generality, We se-
lect Yolo-v3 object detection model as the oracle model due
to its reliable and dominating performance compared with
other one-stage methods. We select Tiny-Yolo model [34]
as the student model due to its high base frame rate and
having a similar model structure with the Yolo-v3.

4.1. The TKD Architecture

We show our overall framework in Figure 2. In the stu-
dent model, we include two decoders as the TKD decoder
and the general decoder. Then, the pre-trained Yolo-v3 [34]
is adopted as the oracle. We run the Oracle model with the
input image and the weights of student’s TKD decoders get
updates at specific frames from the oracle model’s result.
Finally, we design a decision procedure using an LSTM
model, to generate the signals that indicate the right timing
to use the Oracle knowledge.

Specifically, we train Tiny-Yolo with a general decoder
over the COCO dataset [24]. The design of Tiny-Yolo has
two general decoders to improve the accuracy of different
object sizes. We first make a copy of the general decoders
bounded together as TKD decoder. The TKD decoder is
updated during the inference stage. We only update the last
three layers of Tiny-Yolo and treat it as the decoder, since it
yields enough performance in practice. We keep the general
decoder from Tiny-Yolo together with the TKD decoder to
make the final detection. TKD decoder and general decoder
are executed in two parallel threads which do not increase
the latency. This will preserve the chance of detecting vi-
able objects addressing the challenge (3) in Sec. 3.

4.2. Distillation Loss

Before describing our distillation loss, we provide a brief
overview of the other distillation loss functions. First, Chen
et al. [5] proposed a combination of hint procedure and
weighted loss function. They generate boxes and labels
using both the student and the teacher model, then calcu-
late two loss values comparing the teacher’s output and the
ground truth. In the end, they sum up the weighted loss val-
ues. If the student model outperforms the teacher model,
they continue training only using ground-truth supervision.
More recently, Mehta et al. [27] applied the similar pro-
cedure to the one-stage object detection models (Tiny-Yolo
v2 with some modification). They generate bounding boxes
and labels, and apply Non-Maximum Suppression (NMS)
to these boxes and then follow the loss function to optimize
the student model. The loss is defined in the following equa-
tion:

Lbb(bgt b bZ y 04 ) + LCl(pz 7plvpz y 04 )
+Lgb; (0"

Lfinal - (2)

701'707.,'11)7
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where Lf;, LS, LS, ; are objectness loss, classification loss
and regression loss which are calculated using both ground
truth and the teacher output. Also, b;, Pi, 0; are bounding
box coordinates, class probability and objectness of the the
student model. b?*,p?", 0f" and b, p!, o are values de-
rived from ground truth and the teacher model output.

In our study of the Yolo-v3 and Tiny-Yolo models, we
noticed that the detection layer is the most computation-
ally expensive part. In this layer, several processes are done
(sorting, applying softmax to classification cells, removing
low confidence boxes, etc.) to produce bounding boxes
and then applying NMS to these boxes. These processes
are computationally slow due to the multiple steps of pro-
cessing, and also running over CPU by the implementation.
Consequently, directly adopting these loss functions will be
also computationally expensive during the inference stage.

With this observation, we adopt the mean square error
(MSE) between the tensors generated by the student de-
coder and the oracle decoder, which should be the fastest
method. However, the side effects are also notorious. The
oracle model generates noises over some parts of frame
which have no object existences; hence directly forcing the
student model to retrain will hurt its performance.

Another approach could be calculating the MSE between
the tensor cells which have high confidence of object exis-
tence. But, the approach will hurt the student’s recognition
accuracy too. By applying this loss function, the student
model tends to generate redundant detection boxes which
yield a larger number of false positives.

To alleviate the downsides of both loss designs and still
to preserve their advantages, we introduce a novel loss by a
combination of them in Equation 3:

Lfinal = Z‘|T5H - ToHng
+ D ITE = (A TE) + (1= N« T3,

where TH &TH are the student and oracle cells with a high
chance of object existences and TE&TE are the cells with
a low expectation. More specifically, the first part on the left
side of Eq. 3 calculates the MSE between the parts which
have high confidence of objects. The second part calculates
a modulated MSE between the cells with a low expectation
from both the oracle output tensor and the student output
tensor. Here, A is the modulation factor. Figure 3b shows
the procedure of creating the target tensor.

By using this loss function, the student model will have
a lower chance to generate extra false positives. Also, it
would not strictly force the student model to mimic the or-
acle exactly. We aim to partially address the challenges 1)
and 4) in Sec. 3, with such a fast and effective loss function.

3)

4.3. Key Frame Selection

Another crucial module to enable TKD working properly
is a procedure to demonically select the time instances to

train the student model during the inference stage. Specifi-
cally, TKD seeks the frames that by training over them the
model has a higher expectation of reducing the loss, thus
eventually improves the detection accuracy. For the rest of
the paper, we denote these frames as the key frames.

Selecting a larger number of frames as the key frames
will hurt the performance since re-training is computation-
ally expensive; While selecting too few number of frames
will hurt the detection accuracy as the student may not align
well with the oracle model in time. Thus, an effective and
fast procedure to select the key frames is highly desired to
yield a positive effect on the system’s performance.

We propose a key frame selection procedure which is
both efficient and also practical. First, we check the training
prevention factor 7. If the student model has been trained
in any last 7 frames; we will exit the key selection proce-
dure. It is based on the reasonable assumption that if we
have an environment change, it typically takes 7 frames that
this change to be fully observable. Thus, when we train the
student, training for the next 7 frames would not be ben-
eficiary. Second, we start our decision process which we
formulate in Equations 4:

0 Do not distill knowledge,
refo.1} { 1 Distill knowledge,

[=LSTM(F,) V Ir, Ir~ B(2,P), @
P { maz((P;,—1 — 0.05),0.05) AL < o,
), —

min(2P;—1,1.0) AL > o,
where [ is the indicator that denotes our final decision. It
takes the disjunction of the LSTM’s output and the ran-
dom module’s output. We pass the features extracted from
the student model F (the last layer before the decoder) to
the LSTM module (with one LSTM layer & one fully con-
nected layer) which outputs a signal indicating to train the
student model or not. Here, it is worth to note that we in-
troduce another binary random module I (with binomial
distribution B(2, p;)) which decides in a random fashion to
train the student model or not. The random procedure is
added as a safeguard in case the LSTM model outputs a se-
quence of erroneous decisions. In the end, we update the
LSTM module based on the result feeding back after the

training procedure. If the LSTM makes a correct decision

where the observed loss decrease AL < ¢ wherein our ex-
periments 0 = —0.1, the random factor P, will be reduced
by 0.05. If the LSTM model makes a wrong decision, we
update the LSTM model and double the random factor P;.
Figure 3a shows an example output of key frames selected
by our method. We apply knowledge distillation selectively
to a few numbers of frames which partially addresses the
aforementioned challenges 1) and 2) in Sec. 3.
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(a) Key frames selected using TKD over two scenes from the Hollywood scene
Dataset [26]. The red crosses indicate the key frames selected by our method. See

further discussion in Sec. 5.3.

Figure 3: TKD key frame selection and loss function.
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Hollywood Scene Dataset The pursuit of happiness

Method 10U=0.5 10U=0.6 10U=0.75 10U=0.5 10U=0.6 10U=0.75
AP F-1 AP F-1 AP F-1 AP F-1 AP F-1 AP F-1
Random Selection 0.71 0.75 | 054 | 0.68 | 048 | 049 | 0.65 | 0.65 | 055 | 0.58 | 035 | 0.43
Scene Change Detection 0.68 | 058 | 047 | 0.50 | 023 | 035 | 054 | 058 | 045 | 053 | 035 | 0.44
Tiny-Yolo [34] 045 | 0.16 | 038 | 0.14 | 0.10 | 0.28 | 0.37 | 0.11 0.25 | 0.10 | 0.08 | 0.06
Tiny-Yolo (73%) + Yolo-v3 (27%) | 0.60 | 049 | 0.59 | 049 | 044 | 046 | 058 | 047 | 052 | 046 | 039 | 044
TKD 075 | 0.76 | 0.58 | 0.69 | 049 | 0.50 | 0.73 | 0.67 | 059 | 0.61 | 0.40 | 0.46

Table 1: Performance of TKD with different training methods over Hollywood scene dataset and The pursuit of happiness.

5. Experiments

The presented theoretical framework suggests three hy-
potheses that deserve empirical tests: 1) TKD can perform
visual recognition efficiently, without hurting the recogni-
tion performance significantly; 2) the novel loss function
can improve online training of the decoder; 3) with our
TKD frame selector mechanism, the overall system yields
the best performance over other key-frame selection mech-
anisms, by locating the key frames more accurately (frames
which training over them can improve TKD accuracy).

To validate these three hypotheses, we evaluate TKD on
the Hollywood scene dataset [26], YouTube-Objects dataset
[32], The Pursuit of Happyness [29] and the office [10]. We
have trained all the base models (RetinaNet [23], Faster-
RCNN [35], Yolo-v3 and Tiny-Yolo [34]) over MS COCO
dataset [24]. We implemented the TKD as described in
Sec. 4 with two different configurations. First, we perform
the process of inference and distillation sequentially among
the same thread; the other way, we perform the distillation
in a separate thread and run the student and oracle in paral-
lel, both architecture implemented using the PyTorch envi-
ronment [31]. All experiments are carried out on one single
NVIDIA TITAN X Pascal graphics card.

Hollywood scene dataset [26] has 10 classes of scenes
distributed over 1152 video. In this dataset, videos are col-
lected from 69 movies. The length of these video clips are
from 5 seconds to 180 seconds. The length and diversity of
video clips make this dataset a perfect candidate to evaluate
our key selector method and the novel loss function.

YouTube-Objects dataset [32] is a weakly annotated

dataset from YouTube videos, 10 object classes of the PAS-
CAL VOC Challenge [11] has been used in this dataset. It
contains 9 and 24 video clips for each object class which
length of these videos are between 30 seconds to 3 minutes.
We used this dataset to evaluate TKD’s overall performance
due to its high-quality objects level annotations.

The pursuit of happyness [29] & The office [10] are
two famous movie and TV series. These two video clips
contain several scenes which have smooth transitions. The
Pursuit of happyness serves a great testbed since it has
scenes in different locations such as office, street, etc. It
is also more close to the real world scenario from a camera
of the intelligent agent. Also, the Office is selected as most
of the scenes have been recorded in the same location which
make it suitable for testing our novel loss function.

5.1. Ablation Study

As shown in table 1, we compare different strategies to
highlight the effectiveness of our proposed novel loss and
key frame selector. We consider the output of the oracle
model as ground truth and evaluating different methods over
it. Here, we compare five methods: 1) TKD with random
key frame selection; 2) TKD with Scene Change detection;
3) Tiny-Yolo without any training; 4) Combination of Tiny-
Yolo and Yolo-v3 without training; 5) TKD with our pro-
posed key frame selection method.

In the following experiments, we have set the A to be 0.4
which is obtained heuristically. In 5.3, we will go through
the findings which we observed in our search for the best .

Random Selection: Here, instead of selecting key
frames by our proposed method, decision modules selects
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frames purely randomly for further processing. During the
testing phase, the probability is set to be 27% (to make
sure it selects more frames than our method (25% on aver-
age)). Random selection achieves 0.75 Fj score (I0U=0.5)
in the Hollywood scene dataset and achieves 0.65 F} score
(I0U=0.5) in the pursuit of happiness. On average, it
reaches a frame-rate of 89 frames per second (FPS).

Scene Change Detection:This method uses the content-
aware scene detection method [4]. It finds areas where
the difference between two subsequent frames exceeds the
threshold value and used them as key frames for training the
student. We selected the threshold with the highest perfor-
mance and accuracy to report. This method achieves 0.58
F1 score and 0.58 F score in the Hollywood scene dataset
and The pursuit of happyness respectively. This method se-
lected 24% frames as key frames ultimately. On average,
the system yields a 93 FPS.

Tiny-Yolo without any training: We test Tiny-Yolo
[34] to show the accuracy of a strong baseline model with-
out temporal knowledge distillation. This model achieves
0.16 I} score and 0.11 I} score in the Hollywood scene
dataset and The pursuit of happyness respectively, which
are significantly lower than the other mentioned methods.
However, This model has 220 FPS, the fastest among all.

Tiny-Yolo + Yolo-v3 without training: In this config-
uration, we used Tiny-Yolo and Yolo-v3 v3 [34] together.
We designed a random procedure which runs Yolo-v3 with
a probability of 27% and Tiny-Yolo for the rest of the times.
This model achieves 0.49 F} score and 0.47 F} score in the
Hollywood scene dataset and the pursuit of happyness re-
spectively. Frame-rate approaches 89 FPS.

TKD with our key frame selection method: Initially,
we set 7 (the training prevention factor) to 2 (We ob-
serve that the transition between two scenes takes at least
2 frames); along with setting the minimum random selec-
tion to 5%. In the Hollywood dataset, our method se-
lects around 26% of frames and the F; score achieves 0.76
(I0U=0.5). In the pursuit of happyness movie, our method
selects around 24% of frames and the F; score reaches to
0.67 (I0U=0.5). On average, the system achieves a frame-
rate of 91 FPS sequentially and 220 FPS with running in-
ference and knowledge distillation in parallel.

Table 1 lists the experimental results we observed with
these variants. These experiments show, the TKD, while
maintaining a similar frame-rate as other methods, it can
achieve higher recognition accuracy. To further validate this
claim, we conduct one additional experiment on a single-
shot movie [28], TKD selects 21% and random procedure
selects 27% of the total frames for re-training. They reach
comparable F1-score (TKD:0.807, Random:0.812), but our
TKD method uses 10400 frames less than the random one.

10U=0.5

Method mAP F-1 score
RetinaNet-50 [23] 0.45 0.44
FasterRCNN [35] 0.52 0.50
Tiny-Yolo [34] 0.38 0.33
Tiny-Yolo (73%) + Yolo-v3 (27%) 0.44 0.45
TKD 0.56 0.55
Oracle (Teacher)
[ Yolo-v3 [34] [ 060 T 062 ]

Table 2: Compression of accuracy (IoU=0.5) over Youtube
object dataset.

0.7 T
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Figure 4: Accuracy and speed in Youtube-Objects Dataset.

5.2. Overall Performance

Table 2 shows mean average precision (mAP) and F}
score for five different object detection models as well as
our TKD method over the Youtube object dataset [32]. For
the student models without oracles supervision, we train
them to the best performance we could achieve. Not sur-
prisingly, larger or deeper models with larger numbers of
parameters perform better than shallower models, while
smaller models run faster than larger ones. However, TKD
achieves a high detection accuracy compare to RetinaNet,
FasterRCNN, Tiny-Yolo, the combination of Tiny-Yolo and
Yolo-v3 (same configuration which is described in Sec. 5.1).
TKD’s detection performance also approaches the perfor-
mance of the oracle model (Yolo-v3). In this experiment,
25% of frames have been selected for training using the pro-
posed key frames selection method.

To illustrate the accuracy-speed trade-off, we further plot
them in Figure 4, where we can see that the TKD archives
higher accuracy compare to other shallow methods while
still operating far above the real-time speeds with a 91 FPS.
The oracle model has a better detection accuracy, but it runs
much slower than the TKD.

5.3. Further Study and Discussions

In this section, we provide further insight into the loss
function design, the general knowledge distillation idea,
and suggest an application of the proposed method.

Loss function: we studied the A effect over the number
of true positives and false positives generated by TKD. All
tests are done over an episode from The office [10]. We
choose this video since it was recorded in one indoor en-
vironment, with a consistent objects distribution. Table 3
shows the student model’s detection accuracy varies with
the different choices of \. At A = 0, we observed a lower
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ssd 0 0.2 0.4 0.6 0.8 1

10U | AP 0.47 0.72 0.82 0.83 0.79 0.8

0.5 F-1 0.36 0.649 | 0.676 | 0.656 | 0.634 | 0.643
#TP 3353 8570 8371 7806 7274 7438
#FP 215 2952 1522 1129 814 841

Table 3: Parameter study of A over the TKD.

number of false positives since a fewer number of frames
(5%) selected by the key frame selection module. With a
low A (except at 0), we observe an increase in false positives
as the model tries to generate more boxes and loss func-
tion doesn’t punish hardly enough onto the student model
for generating false positives. With a high A, we observe
drops in the true positive rates since we are forcing the stu-
dent to learn noises which are likely introduced by the ora-
cle model. Consequently, 0.4 is empirically the best choice
here, and we set it as the )\ value for all the experiments.
To validate our loss design, we further compare its per-
formance with the one from Mehta et al. [27], where the
proposed loss is based on Non-Maximum Suppression algo-
rithm. It is computationally more expensive in comparison
with our approach. Figure 5 depicts that, an increasing num-
ber of targets from each frame will result in the increasing of
execution time for calculating the loss function in [27]. Our
loss design has an almost constant execution time, while the
proposed loss function by [27] is linearly growing.
Temporal knowledge distillation: Here, we take a
closer look at the key selection module. Figure 3a shows
its performance over two video clips from the Hollywood
scene dataset. Red crosses are frames selected by our pro-
posed method as key frames. At peaks, we have a scene
change and logically these points would be the best can-
didate for training. Following this insight, we observe our
model has a lag on detecting these points. Here, we ar-
gue that training over these frames is not the best one for
improving the student model’s accuracy. The scene detec-
tion method can identify these points yet table 1 shows it

achieves lower accuracy. Figure 3a shows the TKD after
detecting a change in loss start stabilizing the model by se-
lecting most of the frames (parts A & C) and for the rest
select less number of frames (parts B & D).

The proposed key frame selection method leads to im-
proved performance comparing with [30]’s. Figure 6 shows
that the number of selected key frames is adjusted based on
the domain change. With the fixed camera case in which
the domain does not change, the number of selected frames
decreases along observing more frames (validated over the
UCF Crime dataset [38]). Indeed, for the case of a moving
camera, more key frames are selected to adjust the TKD to
the specific domain. Here, the method presented in [30] re-
lies on a static strategy of selecting frames which are chosen
manually at the beginning.

For further evaluation, we applied TKD on one episode
of the office TV series. Then, we test the trained student
model over another episode without any re-training at the
inference time. We observed an increase of precision by 6%
comparing to the case in which we use the original student
model without applying TKD. The result demonstrates the
domain adaption capability of our method. Furthermore, it
maintains a high recall over other domains which indicates
that unseen objects have a chance to be detected. With the
method presented in [30], the model loses its generality over
unseen objects due to the practice of optimizing the overall
model with the new frames.

6. Conclusion and Future Work

In this paper, we propose a novel approach to distill
temporal knowledge of an accurate but slow object detec-
tion model to a tinier model yielding a light and accurate
object detection paradigm for robotic applications, called
TKD. We conducted experiments on the Hollywood scene
dataset, Youtube object dataset, the pursuit of happyness
movie and the office TV series, and empirically validate that
TKD maintains a high inference efficiency while achieving
a high recognition accuracy. The accuracy even approaches
the original oracle model for the object detection task.

The promising experimental results we observed suggest
several potential lines of future work: 1) the frame selection
procedure could be further optimized to be more selective
while maintaining the recognition accuracy; 2) we plan to
test our TKD model with an oracle model that follows the
two-stage object detection manner; 3) TKD performance
can future improve by adopting temporal features in video.
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