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Unobtrusive and continuous monitoring of cardiac and respiratory rhythm, especially during sleeping, can have significant
clinical utility. An exciting new possibility for such monitoring is the design of textiles that use all-textile sensors that can
be woven or stitched directly into a textile or garment. Our work explores how we can make such monitoring possible by
leveraging something that is already familiar, such as pyjama made of cotton/silk fabric, and imperceptibly adapt it to enable
sensing of physiological signals to yield natural fitting, comfortable, and less obtrusive smart clothing.

We face several challenges in enabling this vision including requiring new sensor design to measure physiological signals
via everyday textiles and new methods to deal with the inherent looseness of normal garments, particularly sleepwear like
pyjamas. We design two types of textile-based sensors that obtain a ballistic signal due to cardiac and respiratory rhythm —
the first a novel resistive sensor that leverages pressure between the body and various surfaces and the second is a triboelectric
sensor that leverages changes in separation between layers to measure ballistics induced by the heart. We then integrate
several instances of such sensors on a pyjama and design a signal processing pipeline that fuses information from the different
sensors such that we can robustly measure physiological signals across a range of sleep and stationary postures. We show
that the sensor and signal processing pipeline has high accuracy by benchmarking performance both under restricted settings
with twenty one users as well as more naturalistic settings with seven users.
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Fig. 1. Many parts of a loose textile are naturally under pressure, for example, between the body and the bed/chair, arm and
torso, and clothing under a blanket. These can be leveraged to sense physiological signals in a loose-fitting textile.

1 INTRODUCTION
It is widely thought that electronically active garments are the future of portable, interactive devices. In particular,
an exciting new possibility is the design of textiles that use all-textile sensors and actuators that can be woven or
stitched directly into a textile or garment. While there are many smart textile-based garments that are already on
the market (e.g. Nike’s AeroReact [6], Teslasuit [9], and Zephyr Compression shirts [10]), these generally use
flexible electronic components that are integrated with textiles. However, enhancing textiles with electronics is
demanding because of two reasons: a) they change the aesthetics and tactile perception (or feel) of the textile,
and b) the large, varied mechanical stresses to which textiles are subjected to can easily abrade or damage
microelectronic components and electronic interconnects.

Our work explores how we can use something that is already familiar, such as cotton/silk thread, fabrics, and
imperceptibly adapt it to enable sensing of physiological signals to yield natural fitting, comfortable, and less
obtrusive smart clothing. Specifically, we focus on pyjamas as a representative instance of loosely worn and
comfortable clothing that can be worn at home and during sleep. A comfortable, loosely worn sleepwear that can
measure a variety of physiological signals continuously during sleep and other everyday situations can pave the
way towards smart clothing that looks and feels more like normal clothing.

While the ability to instrument everyday textiles opens up exciting new possibilities, a big challenge that we
face is designing methods to measure physiological signals using loosely worn clothing. Existing solutions for
sensing respiratory and cardiac signals all rely on tightly worn bands or electrodes that are placed at specific
locations on the skin. Similarly, many of the ECG-sensing shirts need a tight fit at several locations on the body
to obtain the cardiac signal. In contrast, our objective is to enable physiological sensing with a wearable at the
other end of the spectrum in terms of looseness i.e. an extremely loose daily-use textile like a pajama that is
designed solely with comfort in mind.

1.1 Leveraging Pressured Surfaces
While looseness may appear to present a problem, we observe that even when we consider “loose clothing”, there
are several parts of such a textile that are pressed against the body due to our posture and contact with external
surfaces. In fact, once we start carefully observing all the different locations where the textile is naturally pressed,
we find that we can classify them in several groups as shown in Figure 1. The first group is locations where there
is a force exerted by the body on an external surface, for example, between our torso and a chair or bed. The
second group is where different limbs of the body put pressure on the torso. For example, when the arm rests on
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its side, it puts pressure on the textile between the arm and torso (i.e. below the armpit). The third group is very
light pressure due to a blanket or even pressure due to the weight of the textile on the chest when an individual
is lying down.
Often, many such pressured surfaces are present concurrently. When sitting, there is pressure between the

body and the chair surface, between the arm and torso, and between the chest and the textile. When sleeping, we
have the above set of pressure points but also additional pressure due to a blanket or the pyjama itself pressing
against the chest. More surprisingly, pressure between the arm and torso, and between the chest and clothing are
even present when standing and there is no contact with an external surface.

In conjunction, these present myriad sensing opportunities but how do we leverage them to measure cardiac
and respiratory signals? One option is to use discrete electronic components like ECG electrodes or pressure
sensors but we lose the comfortable feel of the textile if we use discrete electronics. A second option is to use
textile-based ECG electrodes but this requires tightly worn clothing that is in direct contact with the skin and
raises significant robustness issues due to motion artifacts with dry electrodes.

1.2 The Phyjama Approach
The limitations of existing methods led us to explore ways to sense ballistic movements i.e. pressure changes in
the textile due to breathing and heartbeats, and measure these changes to extract physiological variables. Our
approach seeks to design a novel method that leverages the numerous contact opportunities to measure ballistic
movements while relying solely on comfortable textile-based sensing solutions.
But we face several challenges that make it non-trivial to design such a solution. First, there is no existing

fabric-based method to sense continuous and dynamic changes in pressure. Existing pressure sensing methods
using textiles are binary detectors i.e. they detect high pressure versus low pressure, but they do not measure the
amount of pressure in a continuous manner. Second, the dynamic range of pressure at different opportunistic
sensing points is many orders of magnitude apart. At one end of the spectrum, a substantial amount of body
weight is placed on the textile while sleeping and at the other end, there is a minuscule amount of pressure from
the chest on to the textile during inhalation. Third, we need to measure the signal at multiple locations and fuse
the information since no single location may have a sufficiently good signal for robustly estimating physiological
parameters, and the best location changes depending on the user posture.
Phyjama addresses these challenges using several unique approaches. For locations where there is moderate

to large amounts of pressure, we design a novel all-textile pressure sensor that leverages impedance changes
to measure pressure changes due to respiration and heartbeats. For locations where there is a tiny amount of
pressure but where the fabric is dynamic, we design a triboelectric textile sensor that leverages small amounts of
fabric compression to extract the dynamics of the textile. We show that these patches can be combined in typical
loose-fitting textiles and their signals fused using a combination of signal processing and machine learning to
enable holistic textile-based sensing of physiological variables without sacrificing comfort.
In summary, our contributions are:

▶ We design a novel distributed multi-modal textile-based sensor that can be integrated with loosely-worn
clothing such as pyjamas to measure physiological signals. Our design relies exclusively on textile elements
in sensed regions, while using discrete electronic components only in expected locations such as buttons.

▶ Our design combines a novel fabric-based pressure sensor and a triboelectric sensor, and fuses signals
from a distributed set of sensors to extract ballistic signals from multiple locations. We show that this
combination of sensors allows us to detect physiological signals across diverse postures and leverage all
forms of opportunistic contact between a loose fabric and the body.
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▶ We develop a signal processing pipeline to fuse information from multiple vantage points, and fuse them
while taking into account signal quality from each patch. This allows us to extract precise information
about heart rate, respiration rate, and sleep posture.

▶ We implement and evaluate a full version of the Phyjama in two user studies. The first is a benchmarking
study across 21 users where we show that we can detect BCG peaks with 97% F1-score, breathing rate with
0.64 resp/min median error and heart rate with 0.5 bpm median error. The second is a one-hour nap study
across seven users, four of whom are elderly participants, where we show that we can detect breathing
rate with 0.75 resp/min median error and heart rate with 2.5 bpm median error.

2 RELATED WORK
The goal of this work is the design of a comfortable and unobtrusive vital sign monitoring system that can be
worn continuously during long duration of wear without impacting sleep. To achieve these aims with loosely
fitting textiles, the sensing substrate must be able to simultaneously capture posture information in addition to
signals that contain respiration and heart rate information. Existing sensing systems fall short of these aims.
Flexible and discrete sensors in smart textiles A variety of prior work has looked at using flexible but
non-textile based sensors that are embedded in textiles. For example, one solution to measure vital signs uses
electromechanical film (EMFi) to measure ballistic heart rate [16]. Another solution also senses ballistics using
pressure sensors printed on a polymer substrate [50]. Several such approaches have also been presented for
posture detection using smart textiles. Sardini et al. [48] weave a serpentine shaped copper wire in the back of a
shirt to form a varying impedance due to bending of spine. Dunne et al. [22] use a plastic optical fiber to monitor
spinal posture. Lorussi et al. [38] use an array of piezoelectric sensors to find human posture. While the sensors
are flexible, they are still made of stiff non-textile components that lack the feel of an everyday textile. In addition,
several of these assume tight contact between sensors and skin, which in turn, requires tight clothing.

Several other researchers have integrated discrete sensors like IMUs and pressure switches in textile elements,
primarily to obtain postural parameters. Normally, three IMUs are used to capture spinal angle, placed on thoracic,
thoraco-lumber, and lumber parts [25, 26, 57]. Since any movement would be sensed by the IMU, the garments
are often tight-fitting to avoid unwanted rotation of the IMUs which would substantially increase motion artifact
noise. Our work has no discrete sensing elements and directly measures the ballistic signals.
Fabric-based sensors Much of the prior work on physiological sensing with fabric-based sensors are based on
tight-fitting garments typically by relying on conductive fabric electrodes (existing methods and requirements of
smart textiles are surveyed in [18]). While these electrodes are widely available, they are designed for tight contact
with the skin and unsuitable for loosely worn clothing. There has been some work on measuring impedance
changes for physiological measurements — for example, [45] integrates piezoelectric elements in a smart textile
and tracks changes in impedance using a sinusoid injected across two fabric layers. The work also relies on
tightly worn clothing and close skin contact.

There has been limited work on sensing physiological variables using loose-fitting textiles. One such work is
respiration sensing using conductive foam pressure sensors [16]. This is essentially a binary foam-based sensor
that moves between an open and short circuit configuration while a person breathes. In contrast, Phyjama
provides complete cardiorespiratory rhythm signal while using far more natural fabric elements.

There has also been work on detecting biochemical signals using clothing. For example, prior work has looked
at sweat detection — [32] implements a perspiration detection based on fabric sensors placed in the armpit and
on the back of a shirt, and [36] detects sweat at joints. While not the focus of our current work, it is possible that
some of these methods can be integrated with Phyjama.
Instrumenting furniture and bedding Several prior approaches have explored the use of instrumenting
furniture including chairs and beds; approaches in this body of work typically use discrete strain gauges and
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custom textiles to sense changes in pressure. eCushin[59] presents e-textiles instrumented in chair’s seat cushion
to differentiate between multiple sitting postures. Similarly, Tekscan have developed a system to extract pressure
heat map between two sheets [8]. Also, Health Chair [28] instruments arm-rest and back of a chair to extract
heart rate and respiratory rate of users. Several efforts have also looked at unobtrusively instrumenting beds to
measure ballistic heart rate during sleep. One approach leverages highly sensitive geophones to measure the
seismic motions induced by individual heart beats and slow moving signals from respiration [33, 34]. Commercial
MEMS accelerometer-based units are available that can measure heart rate based on ballistocardiography signals
measured via the bed [5].
Wearable devices There are many wearable devices in the market for sleep sensing, most of which use
photoplethysmography to measure the pulse wave on the wrist or fingers (e.g. Fitbit [2], Polar Vivofit [3], and
Oura Ring[7]). A key distinction is that Phyjama is fully integrated within existing daily wear and does not need
additional wearables.
Non-wearable approaches A variety of non-contact methods have recently become popular for measuring
respiration and heart rate signals. One body of work is on radar-based sensing of respiration and heart rhythm
[11–14, 43, 46]. These methods use FMCW or UWB radars and measure changes in the displacement and the
doppler shifts due to respiration and ballistics of the heart. While non-contact sensing is appealing, robustness is a
major problem due to occlusions (e.g. blanket), variations in sleep posture, movement artifacts, disaggregation of
signals when multiple individuals share the same bed, etc. As a result, these methods typically are more accurate
for respiration sensing which causes larger movements than ballistics of the heart. Other non-contact approaches
include the use of vision-based and depth camera-based methods such as use of cameras to find physiological
variables. These require line-of-sight, proper lighting and a relatively stationary user within an area in front of a
camera.

3 FABRIC-BASED SENSOR DESIGN
The central contribution of our work is the design of a distributed all-textile patch architecture that can measure
cardiac and respiratory signals. The building blocks of our design are two types of all-textile patches — a resistive
patch to measure pressure changes and a triboelectric patch that measures surface charge transfer. The resistive
patch is a first-of-its-kind device and we are unaware of similar devices to measure physiological signals; the
triboelectric patch is similar to previously published designs but this is the first time it has been shown to detect
tiny ballistic signals from the heart. Our overall design is shown in Figure 2 — the Phyjama comprises several
patches to enable us to gather physiological signals from multiple vantage points. In the rest of this section, we
describe the sensor design challenges involved and how we tackled them in Phyjama.

3.1 The Resistive Patch
The first challenge that we faced was how to design an all-fabric pressure sensor that is sensitive to small changes
in pressure due to the ballistics of the heartbeat. At a conceptual level, the design of such a sensor appears quite
straightforward – the sensor has two conductive layers with a highly resistive middle layer as shown in Figure 3
(left and middle). The resistivity of the middle layer is inversely proportional to the pressure on the sensor which
can be measured.

But the design of the middle fabric is not straightforward since the ballistic signal is extremely weak. On one
hand, if the fabric is an insulator like regular cotton, then the resistance is extremely high (teraohms) and it
is extremely complex and expensive to design a sensing circuit to measure minute resistance changes at such
high electrical impedance. Also, we need high impedance in our circuit to measure changes in a high impedance
sensor, but this makes our circuit very sensitive to noise (a small current induced on a high impedance circuit
results in higher noise voltage than the same noise on a low impedance circuit). We have many sources of
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Fig. 2. Phyjama comprises a distributed set of four resistive sensors (A) and a tribolelectric sensor (B).

noise in fabric-based circuits that use large conductive layers including electromagnetic noise, static fields, and
motion artifacts, hence we need to operate in a lower impedance regime to minimize the impact of noise on
the signal. On the other hand, if the fabric is too conductive, then it can short too quickly after a small amount
of pressure is applied and may not be able to cover the range of pressures that are observed in clothing. The
pressure between the body and an external surface can vary by more than an order of magnitude depending on
whether an individual is seated or lying down; similarly, the pressure between the arm and torso is also much
smaller than the pressure between the body and the bed. Thus, we need to operate in a sweet spot where the
fabric is optimized with sufficiently high resistance that it does not create a short circuit even under pressure
while at the same time being sensitive to small pressure changes due to the ballistics of the heart.

Fabric-level optimizations: To address this issue, we explored a number of textile parameters and surface
functionalization reactions to change the surface conductivity of the cotton cloths. First, we explored the impact
of weave density on the overall resistivity of the sensor and found that medium-weave cotton gauze minimized
shorting events, afforded the most stable pressure-induced electrical signals, and remained comfortable to wear
after being incorporated into a garment. Next, a hydrophobic, perfluorinated alkyl acrylate coating was vapor
deposited onto cotton cloths using a custom-built vacuum reactor to impart wash stability. Perfluorinated coatings
are superhydrophobic and are commonly used to create stain- and sweat-repellant upholstery and active wear.
However, this surface coating resulted in fabrics with increased resistivity as compared to pristine samples.
Changing the chemical structure of the grafting point to a siloxane moiety did not attenuate the high surface
resistivity observed with perfluoroalkyl coatings. We hypothesized that such increases in surface resistivity
evolved because the coatings contained saturated alkyl chains without accessible conductive states. As most
textile coatings are similarly insulating, we needed to innovate a new surface coating that would impart either
electronic or ionic conductivity to the cotton cloths.
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Fig. 3. Fabric structure of resistive pressure-sensing patch and electrical model in shown on the left. The fabric is connected
to an analog filtering and amplification circuit as shown on the right.

Finally, we targeted ion conductive coatings because ionic conductors are comparatively more compatible with
salt-rich biological systems than electronic materials. We identified a siloxane molecule, N-trimethoxysilylpropyl-
N,N,N,-trimethylammonium chloride, containing quaternary ammonium moieties as a potential coating: the
siloxane moieties should covalently bond to the free hydroxyl groups present in the repeat unit of cellulose
acetate (cotton), while the quaternary ammonium moieties and their chloride counterions would act as ion
conductors that should reduce the observed surface resistivity of the fabric. The surface resistivity should also be
proportional to the surface concentration of the quaternary ammonium groups, which, in turn, is proportional to
the concentration of the siloxane molecule used during the solution-phase functionalization reaction.
Various test sensors of the same size were created by sandwiching a sheet of cotton (either pristine or

ion-conductive) between two sheets of silver nylon fabric. As desired, cotton gauze functionalized with N-
trimethoxysilylpropyl-N,N,N,-trimethylammonium chloride displayed a more sensitive voltage change with
applied pressure, as compared to pristine cotton gauze or cotton lycra. Therefore, three-layer devices containing
our ion-conductive cotton gauze proved to be efficient and simple sensor of applied pressure. To impart wash
stability to this sensor, we shielded the functionalized surface with an additional hydrophobic, perfluorinated
siloxane coating through vapor deposition. The hydrophobic nature of this coating has been shown in prior work
to provide the fabric with a strong protective layer against aging processes such as washing or oxidation [56].

We note that this is the first time an ion-conductive cotton cloth was created and incorporated into an all-textile
sensor. Commercial textile coatings are aimed at simply imparting hydrophobicity (for stain-repellant fabrics) or
creating antimicrobial surfaces. For both functionalities, the necessary coatings are electrically insulating and,
therefore, known iterations of functionalized cotton cannot be used in the design of the resistive sensor described
in this work.

Sensor model: Having described the sensor chemistry, we now present an electrical model and explain its
behavior under pressure. Figure 3 shows the structure of our layered sensor and its electrical equivalent model.
The resistance of the functionalized fabric is high enough that we can deal with a range of pressure but low
enough that we can use moderate sized resistors in our circuit to minimize noise.
According to Equation 1, the resistance of a transmission medium is inversely proportional to its thickness.
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Req = ρ
l

A
(1)

where ρ is electrical resistivity l is the length, and A is the cross-sectional area of the medium. In our design, l
represents the thickness of the middle fabric layer – Rf abr ic in Figure 3.
Let us now see how the sensor works under pressure and what aspects of pressure we can measure. Upon

applying inward pressure on two outer fabric layers, we see the two simultaneous phenomena. First, the number
of resistive routes between two conductive patches is increased because the air gap reduces between the layers.
At the same time, the thickness of the fabric is reduced and the capacitance of the device also changes. Both these
factors contribute to reduction in impedance of the fabric as a result of increase in pressure.
From a measurement perspective, it is much simpler to design a circuit to measure resistance changes than

capacitance changes, therefore we focus on the resistance changes to measure the ballistic signal. To follow the
pressure applied on the fabric, we use a voltage divider to produce a voltage that follows the changes in resistance
of the fabric. This voltage contains information about the pressure applied to the fabric; however, it is too coarse
grained to be useful for extracting vital signs. This signal is then filtered and amplified in the analog domain
before being used for respiration and heartbeat detection.
The circuit schematic is shown in Figure 3 (right). Due to the very small signal generated by heartbeats, we

need to increase sensitivity from the source. In other words, the whole design needs to be tuned in such a way
that changes in Rvar can cause maximum possible impact on output voltage. This means we need to increase
∂Vpress/∂Rvar .

Vpress = Vdd ×
Rvar

Rvar + R1

−→
∂Vpress

∂Rvar
= Vdd ×

R1

(Rvar + R1)2

(2)

These equations show that sensitivity decreases as Rvar increases. Maximum sensitivity is achieved when
Rvar << R1. Naively, this can be achieved by choosing an extremely large R1, however, very large output
resistance of the sensor can result in a substantial amount of noise to be injected into the electronics circuit. The
more sensible approach is to decrease the resistance of the fabric layer, so we carefully tuned the resistance of
the textile to the desired regime.

3.2 The Triboelectric Patch
The second sensor is designed to measure ballistics under very low pressure situations, such as when a fabric
rests on the chest when a user is standing or sleeping. While breathing is far too slow to induce sufficiently
large changes to the textile to be be detectable, ballistics due to heartbeats induce rapid impulses. While the
magnitude of this change is quite small and imperceptible to the naked eye, the dynamics are quite large due to
the rapid changes in flow resulting in a strong ballistic force on the chest wall. These facts motivated us to use a
triboelectric patch as an additional fabric based sensor to capture dynamics of the body.
The triboelectric patch that we use in this work is constructed using the technology that was proposed by

prior works on the triboelectric textiles [36, 55, 61]. Triboelectric textiles measure motion via charge transfer —
the tribo patch comprises two dielectric layers which transfer charge between them as the distance between
them changes during various movements. In our case, the voltage generated by a triboelectric patch is related to
the speed of contact and separation between two fabric layers which allows us to extract the ballistic changes
due to heart beats. While triboelectric materials have been used for sensing the movement of joints [36], we are
unaware of prior work on leveraging this technology to detect vibrations caused by ballistics of the human heart.
We briefly describe how the triboelectric sensor works in this section.
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Fig. 4. Figure shows an example of two patches together with ECG ground truth in freefaller posture i.e. lying on front (left
panel) and soldier posture i.e. lying on back (right panel). The subject has relatively high body weight, so the patch with
higher pressure shows lower sensitivity. We see that each sensor works well in one posture but not the other, demonstrating
the need for multi-sensor fusion for robust estimation of physiological measures. (Note that signals are shifted vertically for
better presentation.)

The triboelectric textile sensor was created by the face-to-face layering of two different cotton cloths with
opposing equilibrium surface charge characteristics [36, 55, 61]. Commercial polyurethane-coated ripstop nylon,
which is commonly used for water-repellant outerwear, displays a negative surface charge value, on average,
across various ambient environments, due to the presence of the negative triboelectric material, polyurethane.
Cotton functionalized with an aminopropyl siloxane, on the other hand, displays a positive surface charge value,
on average. When these two fabrics are sandwiched between two silver-nylon cloths, a triboelectric device is
formed.
Upon application of pressure, the two oppositely-charged cloth sheets are forced into physical contact, upon

which a small amount of surface charge transfer occurs, creating an observable electrical signal. However, this
charge transfer event is quickly reversed and the signal quickly decays, even if constant pressure is applied. Due
to this behavior, triboelectric devices are perfectly suited for detecting dynamic changes in pressure as a result of
ballistics of the heart.
One question that we have not answered is why we need two types of patches — is the resistive patch not

sufficient to measure pressure due to ballistics? The difference is that the resistive patch is designed to operate
under pressure i.e. it can measure ballistics when sufficient pressure has been exerted on it. The triboelectric
patch is designed to operate under very light pressure, for example, due to the textile resting on the body or a
thin blanket over the textile. Under higher pressure, there is insufficient change in distance between cloth layers
to cause measurable change in charge transfer. Thus, the two types of patches are complementary and cover
medium to high pressure situations (resistive) and low pressure situations (tribo).

4 SIGNAL PROCESSING IN PHYJAMA
Having described the design of the textile sensors, we turn to the analysis of the signal from Phyjama. We first
provide an overview of design goals and challenges followed by a description of the processing pipeline. An
overview of the pipeline is shown in Figure 5.
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Fig. 5. Phyjama signal processing pipeline.

4.1 Goals and Challenges
Our goal is to provide a comprehensive set of physiological measures of respiratory and cardiac rhythm. These
are valuable for many applications — sleep stage classification [58], sleep quality estimation [31], recovery during
endurance training [54], stress management [20, 29, 51], and disease prediction [21, 47, 53]. In addition to cardiac
and respiratory rhythm, we also get sleep posture as side information from the Phyjama by leveraging the fact
that we have several patches on the textile.

The central challenge that we face is that the signals observed by patches depend on several factors including
posture, user weight, textile fit, and extent of contact between textile and the body. An example is shown in
Figure 4. Two different postures are looked into in this figure, namely, soldier and freefaller, which refer to lying
on back and front. In each case, we see one of the patches performing poorly while the other patch provides a
clearer signal. Thus, we see that to obtain robust physiological measures under different real-world situations,
we clearly need to fuse information from different sensors.

4.2 Estimating Posture and Respiration
The analog signal from the resistive patches can be directly used to estimate two measures: a) respiration based
on baseline variations, and b) posture based on relative pressure across patches.

Estimating posture: The DC baseline directly provides the pressure for each patch which, in turn, gives
us information about the contact between different patches and the body. This information can be fused to
determine posture. We focus on sleep postures for the Phyjama; in this case, we find that the baseline signals
from the patches are highly distinct and a simple decision tree performs near perfectly in distinguishing between
postures. We note that posture is useful in two ways in this pipeline — first, sleep posture is a useful output
measure by itself, and second, posture is useful to develop a posture-specific classifier that performs better than a
posture-agnostic one.

Estimating respiration: The DC baseline can also be used to obtain respiration rate in a straightforward
manner. To accurately estimate respiratory rate of the user, we perform two steps. First, we find the frequency
bin with the highest power resulted from respiration signal. Second, we perform band-pass filtering based around
the FFT peak to avoid counting fluctuations of the second harmonic. The result of the band-pass filter is a signal
oscillating around zero. We count the number of zero crossings and divide this number by the duration of the
signal to find duration of a half cycle. Since we get a respiration measure from each sensor, we take the median
across the four resistive patches to obtain an aggregate measure of respiration rate.
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Fig. 6. Top panel shows the raw output signal with all noise sources; second panel shows the respiration signal that is
extracted from the low-frequency components of the raw signal; third panel shows the filtered BCG signal; and fourth is
ground truth ECG.

4.3 BCG Signal Pre-processing
Unlike posture and respiration, estimating heart rhythm is more challenging. In particular, our objective is to
obtain beat-to-beat interval information from the Phyjama signal which can be leveraged to estimate metrics
such as heart rate, heart rate variability, sleep stages, and others.
Figure 6 illustrates the challenge in determining the positions of individual BCG peaks. We can see that the

respiration signal is quite clear but the BCG signal is more variable and has many peaks that could be misclassified
as heart beats. The rest of this section describes our processing pipeline to detect individual heartbeats and peak
locations.

Since BCG is a very weak signal, we need to first perform pre-processing to filter out various noise sources (to
the extent possible). The output voltage is a combination of DC offset generated by amplifiers, low frequency
components corresponding to respiration, higher frequency components corresponding to the BCG signal, and
noise in all frequency bins.

4.4 Feature Extraction from Resistive and Tribo Patches
The BCG signal is dependent on which type of sensor we use – the resistive sensors sense pressure changes
whereas the tribo sensor measures surface charge transfer. Since these are very different types of signals, we use
different feature extraction techniques for these sensors.

Sparse coding features for resistive patches: While ECG feature extraction has been studied for many
decades, applying existing techniques to the problem of extracting BCG features from the resistive patches is
non-trivial for two reasons. First, the BCG signal varies depending on where the patch touches the body since
the ballistic signal is impacted by the skeletal structure, particularly the spine. Second, the types of noise in the
patches also differ because motion-induced artifacts like static noise is different across the different locations.
This diversity means that traditional detectors can provide sub-optimal performance when subject to these
variations. Our work therefore uses unsupervised methods for robust feature extraction to deal with a range of
signal variation and noise sources observed in the ballistic signal.
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Fig. 7. Multiple traces of BCG signals plotted altogether. Note that amplitude of the signals are normalized in standard
deviation.

The approach that we will explore is sparse coding, which has become popular in signal and image processing
since it can leverage vast amounts of unlabeled data to generate features [24, 40, 41, 44, 60]. This method has
also been applied to a limited extent in the context of ECG signals [15, 39, 42] and BCG signals [35]. The general
idea in sparse coding for physiological waveforms is to extract a dictionary of features for detecting the various
peaks (e.g. P, Q, R, S, and T in the case of ECG) in a robust manner despite extremely noisy data. In the context of
Phyjama, we use sparse coding to learn a sparse dictionary of shapes of the ballistic signals observed at different
fabric patches. We provide a brief overview of sparse coding and then describe how we utilize this technique in
Phyjama.

Sparse coding is a method for representing a feature vector X in terms of sparse linear combinations
∑K

k=1 αkBk
of a set of K basis vectors, Bk . Given a set of basis vectors Bk , the sparse coefficient vector alpha is computed as
the solution to the following l1 regularized optimization problem:

argmin
α






Xn −

K∑
k=1

αkBk






2
2

+ λ ∥α ∥1 (3)

Given a data set D = {Xn}n=1:N , the basis is learned to minimize errors between each data case and its
reconstruction with the constraint of sparse coefficients. The typical approach to solve this is by using an
alternate minimization strategy [23]
Our aim is to recognize the highest BCG peak, also known as J-peak, using sparse coding. Figure 7 shows

several instances of such a window overlaid on top of each other for the patch on the users back. We can clearly
see that the BCG waveform that we observe via Phyjama is very similar to the pattern presented in literature [19].
In order to find a J-peak, a peak detector with a fairly relaxed threshold is applied over the signal to over-generate
candidate peaks.

Note that the sparse coding can be used to learn an over-complete basis in a fully unsupervised manner. This
is attractive since we do not need a new user to provide labeled data and can simply expand our dictionary by
leveraging raw data from a new user. This can allow us to construct a more representative population-level
dictionary without requiring additional labeling overhead for a new user.
Using parameters defined for sparse coding, a dictionary of basis vectors are learned from the time series

windows we cropped over candidate peaks. As a result, each window can be represented by a series of weights
corresponding coefficients for linear combination of dictionary elements to recreate the window. These weights
are used as features for the classification stage.
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Fig. 8. Triboelectric behavior plotted alongside ECG ground truth. The envelope of the signal has a clear relation with ECG
R-peaks. This provide rich information for our classifier model to learn correct J-peak labels.

Feature extraction from tribo patch: The signal obtained from the triboelectric patch is different from the
canonical BCG shape that we observe with movement (or pressure) sensors. In the tribo case, we are observing
the charge and discharge of the triboelectric material which approximately corresponds to how it compresses
and releases as a consequence of the ballistics.
Figure 8 shows an example of the triboelectric waveform — we can clearly see that the ballistics of the heart

causes the tribo signal to oscillate much like a spring-mass system with some damping due to the textile properties.
The figure also plots the envelope of the triboelectric signal — the amplitude of the envelope roughly correlates
with the amount of mechanical energy on skin surface.

One issue with the triboelectric waveform is that the oscillations of the tribo signal does not follow the
canonical structure of a BCG waveform. The absence of a clear structure makes it harder to pinpoint which peak
corresponds to the J-peak and which corresponds to the other peaks. In addition, the signal peak is also variable
and unstable since there is relatively weak contact between the tribo patch and the body (given its location on
the stomach).

Instead of using peaks, we use the envelope of the triboelectric signal as the source of features — the envelope
loses information about the location of the peaks but is more robust to outliers. After obtaining the envelope of
the triboelectric signal, we typically see a correlation between location of the peak of this signal and the expected
location of a J-peak. Using this insight, we take 5 samples of the envelope signal with 100 ms interval and use
those values as tribo features for classification.

4.5 J-Peak Classification
The next stage classifies the candidate peaks into valid or invalid BCG J-peaks. This stage is executed per-patch
i.e. we classify peaks for each patch separately in this stage and then fuse them in subsequent stages.
To perform J-peak classification, the first step is to collect labeled data using an ECG sensor as ground

truth. Depending on placement of each fabric patch, the BCG J-peak will have a small delay in regards to its
corresponding ECG R-peak. This delay is called the RJ duration and is affected by many factors including an
individual’s medical condition and patch placement. This duration can reach up to 300 ms [27]. To account for
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this delay, we label the largest peak that appears within a 400ms window after an ECG peak as the BCG J-peak.
We then manually check a few cases per sensor to ascertain that the labeling is valid.

We use five sets of features for our classifiers: a) the sparse coding feature weights corresponding to our
dictionary, b) the posture information coming from the DC baseline, c) the amplitude of the peak, d) five samples
from the envelope of the tribo patch centered around the peak, and e) five samples from the envelope of the
resistive sensor patch centered around the peak. These features are used to classify each candidate peak.

Once we have the features, the classification model can be any simple machine learning model. We use a linear
SVM in our work but other models are equally viable. The classifier is trained based on sparse coding weights
and other mentioned time-domain features and the labels provided for each candidate peaks.

At this stage, we also obtain a classification score for the classification of each peak. The classification score is
the signed distance from the SVM decision boundary; we use this score in the fusion stage to combine the data
from multiple sensor streams and improve the overall results.

4.6 Multi-patch Fusion
The next stage of the processing pipeline fuses the outputs of the individual per-patch classifiers to determine
the location of each J-peak in a more accurate manner.
To fuse the outputs, we first need an estimate of the quality of the measurements from each patch. To obtain

this, we start by defining a signal quality index that seeks to identify which patches provide the most relevant
information so that we can assign more weight to the output from these patches. The signal quality metric that
we define is based on the observation that a poor quality sensor generally has high variance in the inter-peak
intervals since it has more false positives and false negatives. Thus, we define the Signal Quality Index (SQI ) as:

SQIp,u,s = 1/std(I Ip,u,s ) (4)

where I Ip,u,s refers to array of inter-beat intervals for each measurement on user u, in position p, and from sensor
s . Each element of this array is calculated as the duration between two corresponding consecutive peaks classified
as correct J-peaks. :

I Ip,u,s (i) = T
j
p,u,s (i) −T j

p,u,s (i − 1) (5)

Given the SQI per sensor and classification score for each peak of each sensor s from the SVM classifier, we
define the fused score for each peak i as the weighted sum across all sensors. In other words, we simply sum up
the scores across the different sensors while considering SQI as weight for each sensor.

Fused Score(i) =
∑
s=1..4

Score(i) ∗ SQI(s) (6)

Next, we find the J-peak timestamps by locating positively scored candidate peaks in close proximity. In our
implementation, positive labels from different sensors placed closer than 100 ms from one another are considered
as an acceptable interval to place a BCG J-peak. To remove false positives and false negatives, we remove the
peaks that are too close and re-instate peaks at appropriate locations when we see gaps that are much larger than
the average interbeat interval.

The overall process is illustrated in Figure 9. On the left, we see over-generated peaks (red dots), each of which
is classified by the per-sensor classifier. In the middle box, we see classification scores for each of the peaks and
only a small number have a positive peak. The panel on the right shows the fusion stages using the aggregated
scores across sensors — the thin blue rectangles represent the first search intervals with high fused score, and the
large green window is the second search stage where the next highest score is selected to fill a missing peak.
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(a) Candidate peaks (b) Classification scores (c) J-peaks location estimation

Fig. 9. Steps taken to estimate locations of BCG J-peaks. a) depicts overgenerated peaks from each sensor and ECG ground
truth, b) classification result in form of classification score for each peak, c) J-peak estimation using fused scores, and filling
missing J-peaks when gaps are too large. (There are slight timing differences across sensors due to their position, so we fuse
scores across a small window.)

5 IMPLEMENTATION
The implementation of Phyjama takes into account several aspects including aesthetics, robustness, and signal
quality. From an aesthetics and manufacturing perspective, we wanted to rely solely on textile-based elements for
sensing with zero discrete components. This has numerous advantages – the most obvious is that user comfort is
maximized if we minimize discrete electronic components at sensitive pressure points1. But equally important
are the manufacturing advantages since it is much easier to design and fabricate all-textile clothing, and it is
much easier to make textile-based elements washable with appropriate hydrophobic coatings.

5.1 Layered Structure of Resistive Sensor
The resistive sensor is comprised of two layers of ion-conductive functionalized cotton gauze, sandwiched
between two sheets of silver-plated nylon fabric (purchased from LessEMF). All the textiles were sonicated in
water for 15 min, and then rinsed with isopropanol and dried in the air prior to use. To chemically graft the
surface of the cotton gauze (purchased from Joann Fabrics Co.), the textile was soaked in N-trimethoxysilylpropyl-
N,N,N,-trimethylammonium chloride/isopropanol (15:100 V/V) for 30 min and then cured at 100°C for 2 hours,
followed by rinsing with isopropanol and drying in the air. The surface of the functionalized cotton gauze was

1In the popular fable “the princess and the pea”, a princess is able to feel a pea through twenty feather beds atop twenty mattresses; in the
modern context, comfort is highly prized and many of us are highly sensitive to sleep comfort. Even a small discrete sensor padded with
textile layers can, like the pea under the bed, cause perceptual discomfort when sleeping in a particular posture for several hours.
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Fig. 10. We illustrate how the patches in Phyjama are interconnected. To avoid using discrete hard components at sensitive
pressured locations, the all-textile patches are inter-connected by using silver-plated nylon threads as connectors that are
shielded in cotton, The wires coming from each patch end up at a button-size printed circuit board that is placed at the same
location of a button on a pyjama. All textile components were placed within the pyjama and were not visible outside.

then modified with a vapor deposition of trichloro (1H,1H,2H,2H-perfluorooctyl)silane, which provides the sensor
with washability and durability. The 30-min deposition was conducted in a vacuum custom-built round shaped
reactor (290 mm diameter, 70 mm height) at the constant pressure of 1 Torr. The functionalized cotton gauze was
then cut into eight 10 cm x 6 cm sheets, each of which was sewn around the perimeter onto a 8 cm x 4 cm sheet
of silver fabric. Sewing together each pair of these joined gauze-silver sheets yielded four resistive sensors with a
3-layer structure.

5.2 Layered Structure of Triboelectric Sensor
In the triboelectric sensor, the Polyurethane coated ripstop nylon (purchased from Emma Kites) was used as a
negative triboelectric layer. To provide the cotton lycra (purchased from Dharma Trading Co.) with positively-
charging surface, the fabric was soaked in (3-aminopropyl) trimethoxysilane/hexane (10:100 V/V) for 30 min,
followed by rinsing with isopropanol and drying in the air. The two triboelectric fabrics were then cut into 17 cm
x 13 cm sheets and sewn together as they were being placed between two 15 cm x 11 cm sheets of silver nylon
fabric. All the chemicals were purchased from Sigma Aldrich Co.

5.3 Assembling the Phyjama
Having designed the individual fabric patches, the next question is how to design and interconnect fabric patches
in a way that minimizes the number of discrete hard electronic components. Since the pyjama is designed for
maximum comfort, we avoided using wires in our design. instead, we used conductive threads shielded by
normal cotton to pass the wires through pajama. Specifically, we used silver-plated nylon threads as connectors
(purchased from LessEMF). The threads were shielded in a fabric rod made from cotton (purchased from Dharma
Trading Co.) and attached to the silver fabric sheets through snap buttons.

Using these conductive threads, the sensor patches were connected to button-sized PCB boards — two of these
boards were responsible for four resistive patches and the last board is connected to triboelectric sensor. While
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Fig. 11. Block diagram of analog circuit boards and components used. Top figure (left) shows the design for triboelectric
board and bottom (left) shows design for pressure sensing boards. The right panel lists the components used in analog circuit
boards.

these can potentially be combined into a single platform, we designed separate boards for ease of prototyping.
We designed the boards to have small form factor, roughly the size of large buttons as shown in Figure 10. We
believe the size can be further shrunk down to half the current size and they can be integrated into the buttons of
a pyjama. All boards are powered using a single 3V battery.

The PCB boards are optimized for two design goals. First, BCG signals are typically within the 1-10Hz frequency
range [49], and the peak power of the BCG signal is in 7-8 Hz frequency bin [27]. We leverage this information
to choose a cutoff frequency of 4-10 Hz for faster DC rejection and capturing the strongest BCG frequency
component. Second, there is significant power line noise that needs to be rejected to obtain a clean signal. This is
complicated by the fact that the noise depends on the proximity of the conductive layer to the body, so an inner
layer has more noise than an outer layer, making it difficult to remove noise by differential amplification. The
two amplification and noise rejection pipelines that we designed are shown in Figure 11 — the top figure shows
the pipeline for the triboelectric patch which comprises an inverting active band-pass filter, an inverting active
low-pass filter, and a unity gain differential amplifier. The bottom figure shows the pipeline for the resistive patch
which comprises two inverting active band-pass filters, a passive low-pass filters and an inverting active low-pass
filter in addition to a voltage buffer.
Our designs went through several fabrication iterations to improve signal-to-noise, reduce form-factor, and

reduce power consumption. In its current form, the board for the resistive patch draws about 150µA whereas that
for the tribo patch draws 1mA. In total, the power consumption of the analog boards are around 1.7mA from a
3.3 v power source, which leads to 5.6mW of power consumption. The microcontroller/radio board consumes an
additional 15mW when using Bluetooth. Minimizing overall power consumption is possible by further improving
the amplifier and improving duty-cycling but we did not exhaustively explore these directions for this paper.

5.4 Optimizing Patch Placement
Optimizing the location of the sensor patches is an important step in our implementation since the signal
is sensitive to placement. While this process may eventually be optimized to different body types or even
personalized, we optimized patch placement to one individual and used the same setting across all participants.
To find the best placement for the resistive patch on the back and front, we placed a patch at different

locations and measured the signal quality while the user is lying down on their front and back, respectively. The

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 89. Publication date: September 2019.



89:18 • Kiaghadi et al.

Fig. 12. Ballistics signal power measured across different points on user’s body. Signal power is normalized and is plotted as
a heat map. Location with strongest signal is allocated to triboelecrtic patch and seconds strongest places are allocated for
pressure sensors.

measurement setup was carefully done to minimize folds of the textile and random body movements so that we
can isolate the effect of BCG on the output signal.

The patch is placed on 12 different positions on user’s back and for each position, 5 measurements are performed
each with duration of 30 seconds, resulting in total on 150 seconds of data for each position. Then, J-peaks are
manually labeled and the average amplitude across all J-peaks are considered as signal quality factor for each
patch, resulting in a 3 × 4 matrix. The result is then interpolated to achieve higher resolution. A heat map is
generated from resulted amplitudes and plotted in Figure 12.
We observe that the front has superior signal strength compared to the back, especially in the stomach area.

This is because the spine and rib cage diminish power of heart ballistics. Our decision for where to place the
triboelectric patch was also empirically determined. We used only one triboelectric patch to reduce the complexity
of dealing with too many patches. While multiple locations may have worked for the tribo patch, we noticed
that the worst posture for the resistive patch was when the user was lying on their back, particularly when the
individual has high body weight. In this case, the triboelectric patch could compensate for a poor signal from the
resistive patch since it can provide an accurate heart rate signal even when the textile is just lying on the subjects
chest. Since we could not place both the resistive and tribo patches at the same location, we moved the resistive
patch on the chest to its second-best position.

5.5 Data Acquisition
The need to collect raw data from all patches and from a ground truth measurement device (such as ECG or
PPG sensor) presented some challenges due to the large number of channels and cumulatively high data rate
requirements. For benchmark studies where the subject was stationary, we largely used a tethered setup where the
sensors were connected to an eight channel data acquisition unit with 286 Sample/sec rate and 16-bit resolution.
But this was too limiting for longer-term experimentation.

The received data is processed using MATLAB — we use the SPAMS sparse coding toolbox to extract the sparse
dictionary and features, and the Support Vector Machine classifier to classify the peaks using Leave One Subject
Out method.
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Fig. 13. Most common sleeping postures According to a study conducted by Chris Idzikowski [1].

6 DATASET COLLECTION AND GROUND TRUTH LABELING
In this section, we describe two user studies — the first is a benchmarking study to evaluate different building
blocks in Phyjama across different physiological and physical parameters of interest, and the second is a longer
term study with elderly participants in a more uncontrolled and naturalistic setting. All of these datasets were
collected under Institutional Review Board approval.

6.1 Benchmarking Dataset
For this dataset, we asked 21 participants aging from 22 to 38 years old to wear Phyjama and we recorded
the output voltage in various stationary conditions. We instrumented a size XL pajama shirt with our sensors.
However, we did not restrict our recruitment solely to participants of this size since sleepwear is often larger
than normal wear and does not always fit exactly to an individual’s size (it is also not uncommon to wear larger
sleepwear sizes). Participants varied in weight, 107-240 lb, and height, 5’1" to 6’4". 9 out of 21 participants were
females.
We collected data in a variety of postures for each individual including six sleep postures and two other

stationary postures. Sleep postures are typically classified into six categories as shown in Figure 13 [1], so we
collected data from users in all of these postures. In addition to sleep postures, we also look at sitting on a chair
and standing as two other postures of interest since they provide a contrast against sleep postures. In particular,
standing represents the most difficult scenario since there is no pressure against an external surface to rely on.

The duration of each of these measurements is one minute which leads to total of 8 minutes of recording from
single user. Each recording consists of five channels, four of which correspond to pressure sensing patches and
one corresponding to the triboelectric patch.
Since the system is designed to capture vital signs, we also need ground truth for the physiological signals.

For heart rate, we used a three-channel ECG measurement (2 wrists and an ankle) using the AD8232 evaluation
board, [17], and for respiration, we used a PPG sensor to track respiration, Pulsesensor [4].

6.2 Nap Study Dataset
The nap study is designed to evaluate our methods under more realistic conditions. For this, we designed another
study where participants are asked to take a nap for one hour while wearing Phyjama. The study was conducted
in a sleep study testing center that is specifically designed for naturalistic sleep studies and mimics a realistic
environment.
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The dataset for this experiment is collected from seven participants consisting of 3 females and 4 males. Four
of the seven participants were between 60 - 70, whereas the other three were between 30 - 40, which provides us
sufficient data to evaluate performance across different age groups.
One issue we faced was that the wires for ground truth ECG sometimes interfered with the readings for the

Phyjama sensor when the user changed posture in their sleep. This was not a problem with our benchmark study
since users stayed in a single posture and we could place wires to avoid interference. To address this, we used a
finger-worn wireless PPG sensor that wireless transmitted raw data for ground truth rather than ECG electrodes.
While PPG is slightly less accurate than ECG, particularly for estimating the respiration signal, this provides a
sufficiently good ground truth signal while allowing comfortable sleep.

7 EVALUATION
We present the evaluation in three parts. First, we benchmark the resistive patch that we have designed and show
that it is sensitive to the normal range of human weight and sleep activity. Second, we present an analysis of
results for the benchmark dataset. We show that the Phyjama provides accurate physiological measures, and
breakdown contribution from the different hardware and software building blocks. Third, we analyze performance
“in the wild” using the nap study dataset.

7.1 Resistive Patch Benchmarks
In this section, we present benchmarks of the resistive patch — we highlight this sensor since this is a novel
device that has not been previously described in research literature.

Sensitivity to pressure: We first validate our claim that the resistive patch is sensitive to typical range of
human pressure. In this experiment, we carefully change pressure applied on a 1.5 × 2.7inch2 patch and recorded
the resistance of the fabric. The measurement is repeated 10 times for each pressure point by re-applying the
pressure in various rotation and placements to account for probable folds, asymmetry in functionalization and
pressure distribution, The response is presented as a box plot in Figure 14(a).
As we can see, the fabric resistance varies monotonically as the amount of pressure is increased. We see that

the sensitivity of our pressure sensing patch is inversely related to the amount of pressure applied on fabric
surface. To provide a reference, we show roughly the pressure applied by a 240 lb and 107 lb individual when they
are lying on their back. We see that our patch is slightly more sensitive to lighter individuals and less sensitive
for users who are above 240 lb. Overall, these numbers show that we have good sensitivity in the typical regime
of human weight.

Pressure baseline during sleep: We now look at the pressure baseline in a dynamic setting when a user tran-
sitions between sleep postures. Figure 14(b) shows the pressure baseline for the different patches (posture output
in Figure 11). Note that the voltage being measured via the voltage divider circuit in Figure 11 is inversely
proportional to the pressure, so lower voltage means higher pressure.
The figure shows that the resistive patch is highly responsive to the range of human pressure. In the soldier

position (lying on the back), the back patch has the lowest voltage and the front patch has highest voltage. When
the subject transitions to the foetus position, the left patch becomes pressured (since the subject is lying on
the left side), whereas the three patches are not under much pressure. Finally, in the freefaller position (subject
on stomach), the front patch sees the highest pressure as we would expect. The physiological signals are also
visible in the figure — the slower oscillations correspond to the respiration waveform whereas the more rapid but
smaller ripples correspond to the heart beat signal.
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(a) Fabric resistance versus pressure (b) Signal baseline across postures

Fig. 14. Figure benchmarks the resistive patch. On the left, we see that the resistive patch has good sensitivity in the typical
regime of human weight. On the right, we see that posture and respiration information is clearly visible from the resistive
patch (heart rate extraction requires further processing)

7.2 Measuring Physiological Parameters
In this section, we evaluate the performance of Phyjama in detecting key physiological variables of interest —
heart rate and respiration rate. We note that while posture is also an output of the Phyjama, we do not explicitly
present results for posture detection since this is trivial to detect from the analog signal across patches. We find
that a simple decision tree that looks for the difference between front-and-back patches and left-and-right patches
can easily identify posture with 100% accuracy across all subjects. We therefore present results from the other
physiological variables of interest.

The users varied across several dimensions including height, body weight, and gender. Among these variables,
we found that the most significant impact was due to height which determines where the patch is positioned
on the body. Thus, we separated participants into two groups when analyzing the data: the first group consists
of participants for whom our Phyjama prototype can fit relatively well and the second group are the ones who
are mostly too short to wear Phyjama. For the sake of brevity, these users are called height matched and height
unmatched, respectively. Height matched group includes 11 users whose height vary from 5’7" to 6’3". The rest
are height unmatched – this varies quite a bit to include both relatively short and relatively thin individuals (in a
couple of instances, the Phyjama shirt reaches just above the knee). Figure 15 shows the results.

Heart rate estimation: Let us first look at heart rhythm metrics. For height-matched users, error in HR
estimation is generally less than 1 bpm. The only posture that has high error is standing which is to be expected
since we do not have any externally pressured surface so we are relying on weaker signals from the pressure of
the arm against torso and the tribo patch resting on stomach. But the error is not too high even in the standing
case — median HR error is about 2.5bpm. For height un-matched users, the upper quartile and worst-case error is
more but the median error is only a little more than then height-matched case (roughly 2bpm HR error).

Respiration rate estimation: The respiration metrics are also very good — median error is generally below 1
resp/minute. In this case, we see that the error is higher for the starfish and soldier positions. This is because the
resistive sensor on the back sees a weaker respiration signal due to the spine, and because the tribo sensor on the
stomach does not help since it cannot measure slow baseline changes. The signal in this case is primarily due to
the resistive sensor on the chest and sensor fusion is less useful in these positions leading to higher error.
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(a) Heartrate error (b) Breathing rate error

Fig. 15. Performance of Phyjama in estimating heart rate and breathing rate in different postures. Left panel shows the error
in estimating heart rate and right panel shows breathing rate. In both cases, we observe higher error in standing position
and for height unmatched users.

7.3 Breaking Down Contributions
Having discussed the application-level metrics, we now provide a breakdown of how data fusion across different
patches benefits overall system performance. Since our system has different hardware components, software
building blocks, and application metrics, we provide a few different perspectives on the breakdown to illustrate
the advantages of various building blocks. In these results, we do not distinguish between height-matched and
height-unmatched users and aggregate results for all users.
Benefits of data fusion on J-peak classification: Here we show the benefits of data fusion in distinguishing
J-peaks among all candidate peaks.We provide F1-score as a measure of performance of the classifier. Classification
is performed using Leave-One-Subject-out (LOSO).

Figure 16 shows the F1-scores prior to fusion and after fusion. The results on the left show the median F1-score
for each posture-patch combination — we see that the results vary quite a bit. For example, the back patch can
have poor performance when there is too much pressure on it (log and starfish) or when there is no pressure
(fetus), but can offer very good performance in some other positions (freefaller and standing). Similarly, each
patch performs better in some scenarios and worse in others. Also, its important to note that no single patch gets
an F measure above 90, in fact, in most cases, it hovers between 75-80.

The result on the right shows that F1-score increases dramatically after fusion with median score above 95% in
almost all cases. The highest error is for the standing posture for reasons explained earlier. The upper quartiles
have somewhat higher error — this is primarily because of the height-unmatched users whose error is higher
than the height-matched set.
Benefits of data fusion for HR estimation: We now look at the breakdown from the perspective of an
application-level metric, heart rate estimation. We consider three versions of our pipeline. The first version
corresponds to the best-case performance when a single sensor is used. We select the best sensor for each user and
posture for these numbers; clearly, this is not viable in practice but this gives us an upper bound on single-sensor
performance. The second version fuses the posterior probabilities across the sensors without weighting them by
the quality index. The third version is the full pipeline with SQI-based weighting.
The result is shown in Figure 17(a). It is clear that sensor fusion greatly reduces the system error (about 4×

reduction). The use of a weighted measure using the signal quality index improves results further (about 50%).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 89. Publication date: September 2019.



Phyjama: Physiological Sensing via Fiber-enhanced Pyjamas • 89:23

(a) Median F1 score before fusion (b) F1 score after fusion

Fig. 16. F1 scores for classifying J-peaks (aggregated over all participants). On the left, we show the median F1 score from
the classification phase prior to fusion. We see that the scores are relatively poor for individual sensors. On the right, we
show the F1-score after fusion which is considerably higher; the median F1-score is often close to 1.

(a) Breakdown by processing blocks (b) Breakdown by sensor patches (c) Breakdown by sensor type

Fig. 17. Breakdown of contribution of different blocks in the signal processing pipeline and sensor hardware. On the left,
we show the contribution of different signal processing blocks — we see that sensor fusion plays a huge role in improving
Phyjama’s performance. In the middle, we show the corresponding performance if only one sensor were used as opposed
to fusing information from all sensors together — we see that a distributed set of patches helps improve results. On the
right, we see the F1-scores with and without the tribo sensor — we see that information from the tribo sensor helps improve
median and reduces outliers.

While not shown, breaking the results down by height-matched versus height-unmatched shows that the numbers
are much higher for the height-matched users (6× reduction due to sensor fusion and 2× reduction from using
signal quality. Thus, the potential gains can be higher once the textile is matched to the user size.

Sensor contribution: Another interesting question is how much each sensor contributes the overall results
and whether there is one sensor that is superior to others in terms of determining physiological measures of
interest. To answer this question, we plot the accuracy of Phyjama if only one sensor patch were used and contrast
this against the case where the sensor information are fused together. The result is shown in Figure 17(b).
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We see that each sensor has high error in its own estimate of HR, however, after sensor fusion, the estimation
error drops by 4–5×. This result also highlights the benefits of sensor fusion and shows that any one sensor
would not do as well as fusing the readings.

Tribo contribution: Our final set of benchmarks looks at the contribution of the triboelectric patch to overall
classification performance. Figure 17(c) shows that the envelope features from the tribo patch is informative and
improves overall performance. While average improvement is between 2.5 – 5%, the tribo sensor is particularly
helpful with the upper quartile of error cases and outliers which reduce dramatically in many cases.
Overall, these results clearly show the benefits of having a distributed array of sensors on the textile. Unlike

traditional wearables like smartwatches that can only measure at a single point on the body, we have five
distributed sensors whose information is fused, therefore, the Phyjama can capture a strong signal even if one or
two sensors are erroneous due to their positioning.

7.4 Case Study: Nap Monitoring
In this study, we explore the effectiveness of models that we developed from the benchmarking study for a more
realistic longer-term case study involving monitoring hour-long naps. We compare heart rate, breathing rate and
posture estimated by our hardware and algorithms against ground truth.

We made several efforts to keep the study and evaluation as realistic as possible. We gave the users no explicit
instructions regarding how to take a nap. They often moved around a bit before lying down to nap. Some of them
also used a blanket whereas others did not. We also did not use any method to personalize the signal processing
pipeline to the users. So, the entire pipeline was trained from the benchmark dataset and directly applied to the
new user with no performance tuning or transfer learning.

Posture detection results: In this study, subjects typically changed their posture two to three times during
their nap. Given the uncontrolled nature of the study, users often rested in postures that were combinations of
multiple base postures. In this experiment, we considered an estimation correct if it was among one of user’s
contributing postures — for instance, if a user is sleeping on their right with one leg and one arm in fetal position
and the other leg and arm in log position, both fetal and log are counted as acceptable postures. We found that
the posture classification block detects all postures correctly i.e. it has 100% accuracy.

HR and BR detection: The results for heart rate and respiration rate are shown for each subject are shown in
Figure 18. We see that the results are generally quite good, with median error less than 1 cycle for breathing rate
and 2.5bpm for heart rate. We note that for subject #3, the resistive sensor on the right failed. Despite this issue,
both heart rate and respiration estimates are very good, demonstrating the benefits of sensor fusion.

One aspect that we believe can be improved is the upper quartile errors. The reason for these errors are many
— users often moved around before they fell asleep and some had leg movements during their nap whereas our
model is trained from the benchmark dataset which only included stationary data. Also, as with our benchmark
study, there is sometimes a size mismatch for the Phyjama shirt that we used since we did not restrict height and
weight for users we recruited. Despite these differences, the sensor is quite robust and can get a good signal a
significant fraction of the time. We expect these results can be substantially improved with more labeled data, as
well as personalization strategies to tailor the signal processing pipeline to each user. But the results are very
promising and suggest that there is significant clinical utility for the Phyjama.

7.5 User Comfort
Finally, we look at subjective measures of comfort that were obtained from the users. A major advantage of
the Phyjama is the comfortable and unobtrusive nature of its design. The sensors are integrated into everyday
nightwear with discrete elements placed in expected locations like a button; in addition, users do not need to
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(a) Heart rate error (b) Respiration rate error

Fig. 18. Results for longitudinal measurements for heart rate and respiration rate across all users. On the left, we see the
error for HR estimates across the seven users — accuracy is quite good with median error of 2.5 bpm. On the right, we see
the respiration rate estimates which is also very good and has median error of 2.5 bpm. Despite one of the sensors failing for
subject #3, estimates are good because there is sufficient signal across other sensors.

Table 1. Summary of subjective assessment report during one hour experiment

Question Benchmarking
study

Nap study

How comfortable is Phyjama? Avg = 4.95 Avg = 5
Are you interested in tracking vital signs during sleep? YES=17 NO=4 YES=6 NO=1
Would you prefer Phyjama or Fitbit? Phyjama=16 Fitbit=5 Phyjama=5 Fitbit=2
Does Phyjama interrupt your breathing? NO=21 YES=0 NO=7 YES=0

remember to wear an additional device that would be unusual during sleep like a fitness band. To evaluate
comfort, we asked four questions from the participants:

(1) How comfortable is Phyjama? (rate from 1 to 5, 5 being very comfortable).
(2) Do you prefer to track your vital signs during sleep? (This was asked as a general question regarding inclination

towards logging vital signs.)
(3) If you were to track your vital signs, would you prefer Phyjama or Fitbit [2]? (Regardless of their interest in

vital signs tracking, we asked if they would prefer Phyjama over Fitbit for this purpose.)
(4) Does Phyjama interrupt your respiration or impact its pattern? (As a sleep wear, it is very important that the

outcome is completely unobtrusive.)
Results are summarized in Table 1. The results show clearly that users found the Phyjama comfortable,

unobtrusive and often preferable to wristworn wearables.

8 DISCUSSION AND FUTURE WORK
The design of Phyjama is complex due to its vertical integration of novel fabric-based sensors, analog hardware,
and signal processing/machine learning analytics. Given the vast design space, we could not exhaustively explore
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all avenues and restricted ourselves to the most promising directions towards designing a high performance
system. There is, therefore, significant scope for follow-on work that digs deeper along the different directions.
Real-time execution of the signal processing pipeline: In this paper, we designed a signal processing
pipeline without explicit hardware restrictions since we wanted to understand best-case performance. However,
in a real-world system, the computational pipeline will need to be optimized to execute locally on the embedded
processor integrated with the Phyjama. We intend to explore the use of low-power processors for efficient
execution of machine learning pipelines [52].
Reducing power consumption: Our current prototype consumes roughly 5.6mW for the analog front-end,
and an additional 15mW for the microcontroller when using the Bluetooth radio. Thus, the overall power
consumption is about 20mW which is relatively high for continuous operation. Some of the directions we plan
to explore for reducing hardware power consumption include better duty-cycling strategies across the sensor
patches using methods such as sparse and burst sampling [30].
Expanding physiological and physical measures: In this paper, we have focused on the use of the Phyjama
to measure heart rate, breathing rate, and posture. But the Phyjama opens up many other possibilities including
heart rate variability (by measuring inter-peak separation) and blood pressure (by measuring BCG pulse transmit
time between chest and wrist using an additional sleeve patch [37]). Another direction is fine-grained posture
sensing since people rarely sleep in exactly one of the canonical sleep postures; rather, they often slept in
combinations of postures. We plan to explore these avenues in future work.
Manufacturing cost: Another direction we will explore is to fully understand cost and tradeoffs between
manufacturing the entire textile with embedded sensors versus sewing on our sensors to an existing pyjama. We
use mass-produced cotton fabrics and a widely-available, cheap siloxane reagent (that is used as an antimicrobial
coating for medical devices) to create our pressure sensors, and then simple sew these sensors onto any kind of
commercial garment. Therefore, in principle, our prototype does not require customized and novel manufacturing
routines which means that multiple units can be made with reasonable speed and low cost. We will further
explore these tradeoffs in future work.
Personalized design: In this work, we used a single size of the Phyjama across all users but significant
improvements in signal quality may be possible if we personalize the design to a users height and weight. For
example, if a user has high BMI that would increase the pressure and reduce signal amplitude but we may be
able to compensate by using a larger patch. Thus, there is interesting avenues for future work where we look at
custom designs of the Phyjama that is tailored to each individual’s physical characteristics.

9 CONCLUSION
In conclusion, we have designed an all-textile sensing system for physiological sensing using everyday clothing
like pyjamas. Our work has several important applications in healthcare and potentially in other fields such as
entertainment. The sensing techniques that we develop in this paper bring together cutting-edge approaches
in disparate areas including textile chemistry and functionalization, textile-electronics co-design, and wearable
sensing and analytics. The overall architecture and design principles used to combine these elements promise to
be greater than the sum of their parts and fundamentally change the way we think about clothing.
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