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Abstract. Isoscalar giant resonances, being the archetypal forms of collective nuclear behavior, have been
studied extensively for decades with the goal of constraining bulk nuclear properties of the equation of
state, as well as for modeling dynamical behaviors within stellar environments. An important such mode is
the isoscalar electric giant monopole resonance (ISGMR) that can be understood as a radially symmetric
density vibration within the saturated nuclear volume. The field has a few key open questions, which have
been proposed and remain unresolved. One of the more prov-ocative questions is the extra high-energy
strength in the A ≈ 90 region, which manifested in large percentages of the E0 sum rule in 92Zr and 92Mo
above the main ISGMR peak. The purpose of this article is to introduce these questions within the context
of experimental investigations into the phenomena in the zirconium and molybdenum isotopic chains, and
to address, via a discussion of previously published and preliminary results, the implications of recent
experimental efforts on extraction of the nuclear incompressibility from this data.

1 Background

Within the context of the scaling model as described in
ref. [1], one can calculate the nuclear incompressibility of a
finite nucleus, KA, from the energy of the compressional-
mode electric isoscalar giant monopole resonance,

EISGMR = h̄

√
KA

m〈r2
0〉

, (1)

where m is the free-nucleon mass, and 〈r2
0〉 is the ground-

state mean-square nuclear mass radius. Generally, the IS-
GMR energies would be associated with one of the mo-
ment ratios

√
m3/m1, m1/m0, or

√
m1/m−1, where the

moments mk of the strength function are defined generally
as

mk =
∫

Sλ(Ex)Ek
x dEx, (2)
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with λ being the multipolarity of the resonance in question
and Sλ(Ex) being its associated strength distribution [1].
Further, one should recall that eq. (1), relating KA with
the resonance energies extracted in this manner, is pred-
icated on the assumption that the strength distribution
of the resonance is contained within a single collective
peak [2]. Section 4 contains a more complete description
of these quantities.

It is well-established that measurements of KA in fi-
nite nuclei are the most direct means by which one can
constrain the incompressibility of nuclear matter, K∞, de-
fined as

K∞ = 9ρ2
0

d2ε

d2ρ

∣∣∣∣
ρ=ρ0

. (3)

The nuclear incompressibility is thus a measure of the
curvature of the nuclear equation of state, ε(ρ) at the
saturation density of nuclear matter, ρ0. K∞ is a bulk
property of the nuclear force and thus should be invariant
to the choice of the finite nucleus one uses to constrain
its value. Indeed, this is the case, provided that approxi-
mately 100% of the energy-weighted sum rule (EWSR) is
exhausted within the peak of the ISGMR response [2].

For details about how one obtains values of K∞ from
finite nuclei, we refer the reader to refs. [3,4]; for fur-
ther exposition on the ISGMR and for the models for
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Fig. 1. (Color online) Experimental KA values extracted
within the scaling model using the methodology of refs. [7–
10] for 90,92,94Zr and 92,96,98,100Mo. Shown is the reportedly
stark disparity between extracted values of KA for the A = 92
isobars relative to the other nuclei in this mass region. Data
adapted from ref. [7].

extracting KA from experimental ISGMR strength dis-
tributions, refs. [1,5,2,6] are most comprehensive. It has
been shown that the microscopic calculations of K∞ are
strongly correlated with the ISGMR response of finite nu-
clei. Thus, in a general sense, any structure effects which
are shown to influence the distribution of ISGMR strength
would have substantial influence upon the calculated bulk
properties of nuclear matter.

As argued by the Texas A&M (TAMU) group in
refs. [7–10], this conclusion has been challenged on the ba-
sis of experimental observations of the ISGMR strength in
even-even isotopes of zirconium and molybdenum, namely,
90–94Zr and 92–100Mo. Figure 1 illustrates these results. In
particular, the results indicated that for 92Zr and 92Mo,
a large portion of the E0 strength lies above the main
ISGMR peak, resulting in KA values which are commen-
surately large. While the structure of the ISGMR in these
nuclei is indeed important to the understanding of collec-
tive excitations, it should be kept in mind that, as previ-
ously stated, the association of KA with the GMR ener-
gies demands care, and can become untenable within the
framework of eq. (1) for multiply-peaked distributions of
ISGMR strength.

A major primary motivation for studying the ISGMR
is to probe bulk nuclear properties of the nuclear equa-
tion of state. As such, it is highly unexpected that effects
arising from microscopic shell structure would appreciably
influence the collective behavior of the nucleus undergo-
ing these excitations. As we shall discuss in the subsequent
sections, the reported structure effects in the TAMU re-
sults themselves are in dispute, as results from our own
independent experimental campaign into determining the
nature of ISGMR strength for nuclei within this mass re-
gion seem to disagree with TAMU group’s conclusions.

2 The experiments

A pair of experiments were carried out at the Research
Center for Nuclear Physics (RCNP), at Osaka University.

Each used identical methodologies, one of the goals be-
ing to constrain the behavior of the ISGMR response in
90,92Zr and 92Mo within the context of the questions posed
in refs. [7–10]. The present discussion will be restricted to
the ISGMR data of 90,92Zr and 92,94,96Mo; a full descrip-
tion of the giant resonance strengths of 94–100Mo will be
presented in a forthcoming publication [11].

In the experiments, α-particles were accelerated by the
coupled azimuthally-varying field and ring cyclotrons to a
beam energy of Eα = 386MeV. Zirconium and molyb-
denum targets with isotopic purity of approximately 95%
and areal densities of ∼ 5mg/cm2 were bombarded and
the scattered α-particles were then momentum analyzed
by the high-precision mass spectrometer, Grand Raiden,
a schematic drawing of which is presented in fig. 2. The
focal-plane detector system was comprised of a pair of
vertical and horizontal position-sensitive multiwire drift
chambers in addition to plastic scintillators for particle
identification. The vertical and horizontal positions at the
focal plane allowed for a precise reconstruction of the scat-
tering angles. The unreacted α beam passed unhindered
at the high-energy side of the focal plane and was dumped
in a well-shielded Faraday cup; see fig. 2.

Figure 3 shows a series of plots which delineate the
steps taken in the data reduction for these nuclei. The
particle identification was completed via examination of
the energy deposited into the scintillators located at fo-
cal plane. Figures 3(a) and 3(b) show, respectively, the
correlation between energy-deposition and excitation en-
ergy as well as the one-dimensional energy-loss histogram.
The enclosed region in (a) corresponds to α-events which
were gated upon in the offline analysis discussed hereafter,
while the other events were rejected and correspond to
other atomic species.

Figures 3(c) and 3(d) show typical vertical focal-plane
position spectra. Operation of Grand Raiden in vertical
focusing mode allows for true events which originate from
scattering off the target to be coherently focused along the
vertical plane, whereas events originating up- or down-
stream from the scattering chamber (for example, from
scattering off the beamline or collimator) are over- or
under-focused. In fig. 3(d), the black doubly-hatched re-
gion corresponds to events which are focused to the me-
dian of the vertical focal-plane position and thus corre-
spond to a combination of “true” events and those aris-
ing from instrumental background effects. The red and
green singly-hatched regions correspond to gates on the
off-median focal-plane positions in the spectra, which arise
purely from instrumental background. This property of
the measurement allows for a nearly complete and unam-
biguous subtraction of instrumental background.

The background contribution to the spectra is largest
near forward angles, as the elastic cross sections are
high and thus, elastically scattered particles which sub-
sequently scatter off elements in the beamline can con-
tribute to the background at this spectrometer setting.
Further, we make the point that the various background
gates shown in fig. 3(d) result in nearly identical back-
ground contributions to the excitation-energy spectra, as
evidenced in fig. 3(e).



Eur. Phys. J. A (2019) 55: 228 Page 3 of 9

0 1 2 m

GR at 0 degrees

0 degree beam dump

D2

D1

Focal Plane

Beam

Fig. 2. (Color online) Schematic drawing of the Grand Raiden spectrometer in the zero-degree arrangement. Shown in green
are the magnetic quadrupoles and dipoles; we have labeled the momentum-analyzing magnets D1 and D2. Figure courtesy of
Prof. A. Tamii. Further details on the applicability of Grand Raiden to giant resonance studies can be found in ref. [12]

Fig. 3. (Color online) Depictions of the gates applied within the offline data reduction process in this work. (a) Particle
identification spectrum, showing the energy deposited into a plastic scintillator against excitation energy. The enclosed, strong
line shown corresponds to α-events, which were gated upon in the offline analysis, while the excluded weaker line is comprised
of events from other species which were rejected. (b) Projection of the scintillator energy deposition histogram onto the vertical
axis. Visible is the strong α-peak as well as the comparatively small rejected peak. (c) Two-dimensional histogram displaying the
correlation between the energy-calibrated horizontal focal-plane position versus the vertical focal-plane position after application
of the particle identification gate of (a). (d) Vertical focal-plane position of (c) projected onto the vertical axis. (e) Excitation-
energy spectra for each of the hatched regions in (d), as well as the subtracted spectrum which is comprised essentially of
instrumental-background-free α-events.
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A precise energy calibration was obtained via examina-
tion of energy spectra from the 12C(α, α′) and 24Mg(α, α′)
reactions, taken at each angular setting of Grand Raiden
and at each magnetic field setting. The energy losses of the
scattered α-particles through the target foils are small, but
were accounted for using SRIM calculations [13] under the
assumption that the scattering event occurred at the mid-
point of the foil. The acceptance of the spectrometer along
the lateral dispersive plane ranged from excitation ener-
gies corresponding to approximately 10 ≤ Ex ≤ 32MeV.
Angular distributions were extracted over a laboratory-
frame angular range of 0◦–10◦ in each experiment. These
central angles are then averaged over the acceptance of
their solid angles and finally converted to the center-of-
mass frame using the appropriate relativistic kinematics.

To constrain the optical model parameters (OMP) re-
quired for the analysis (sect. 3), elastic scattering angular
distributions as well as the cross sections of inelastic scat-
tering to low-lying discrete states (2+

1 , 3−1 ) were measured
on 90,92Zr, 92,98Mo. These data were taken over an angular
range of approximately 5◦–30◦ in the laboratory frame.

3 Data analysis

In order to reliably extract multipole strength distribu-
tions using the methodology presented here, it is neces-
sary to have a reliable optical model with which one can
perform calculations within the Distorted-Wave Born Ap-
proximation (DWBA) framework.

The computer code PTOLEMY was used for the DWBA
calculations, using an optical model of the form

U(r) = VCoul(r) − Vvol(r) − iWvol(r), (4)

within which VCoul is a point-sphere Coulomb potential,
and Vvol and Wvol are chosen as the hybrid single-folding
optical model prescribed by Satchler and Khoa [14]. In this
model, the imaginary volume potential takes the shape of
a Woods-Saxon function:

Wvol(r) =
Wvol

1 + exp( r−RI

aI
)

, (5)

while the real volume potential adopts the form of a point-
nucleon Gaussian interaction which is folded with the tar-
get nuclear density and a modified density dependence:

Vvol(r) = Vvol

∫
d3r′ρ(r′)f(ρ′)v̄G(s). (6)

Here, Vvol, Wvol, RI , and aI are free parameters in the op-
tical model parameter (OMP) set found in the fitting pro-
cedure, while s = |r−r′| is the inter-particle distance, and

f(ρ′) = 1 − ζρβ(r′)
v̄G(s) = exp

(
−s2/t2

)
, (7)

are the modified density dependence and Gaussian
interaction. The parameters ζ = 1.9 fm2, β = 2/3, and
t = 1.88 fm were adopted from ref. [14], along with the
extension to the calculation of transition form-factors

within this framework. The target nuclear densities, ρ(r′),
are taken to be two-parameter Fermi distributions and
are available from ref. [15].

Results of the least-χ2 analysis for the elastic scatter-
ing angular distributions within this model framework are
shown in fig. 4, with the resulting OMPs listed in table 1.
Validation of the predictive power of an OMP-set, and
its ability to reproduce inelastic scattering angular dis-
tributions was tested on the experimentally available low-
lying discrete states. The angular distributions of inelastic
scattering to the 2+

1 and 3−1 states were calculated in the
DWBA framework using the previously-known B(Eλ)s.
These are compared in fig. 4 with the experimental angu-
lar distributions and show excellent agreement.

The inelastic scattering spectra were sorted into
1MeV-wide bins for 90,92Zr and 92Mo (500 keV for
94,96Mo) at each angle and angular distributions were
extracted for each excitation energy. Using the OMPs
from elastic scattering data (see table 1), a multipole-
decomposition analysis (MDA) was carried out whereby
the experimental angular distributions are decomposed
into a superposition of angular distributions correspond-
ing to pure angular momentum transfers of λ = 0 to
λ = 10. For 94,96Mo, elastic scattering data were not mea-
sured, and the optical model parameters obtained from
98Mo within the same experiment were instead utilized
for the subsequent multipole decomposition. The MDA is
defined as follows:

d2σexp(θc.m., Ex)
dΩ dE

=
∑

λ

Aλ(Ex)
d2σDWBA

λ (θc.m., Ex)
dΩ dE

. (8)

If the DWBA calculations are completed using cou-
pling parameters which correspond to 100% of the EWSR,
then Aλ corresponds to the fraction of the corresponding
EWSR exhausted within that particular energy bin [2,
18–20]. The distributions of isovector giant dipole reso-
nance (IVGDR) strength for these nuclei are known from
refs. [21,22], and those, in combination with DWBA cal-
culations incorporating the Goldhaber-Teller model [18],
allow for the IVGDR strengths to be explicitly accounted
for in the MDA procedure. Although multipolarities were
included up to λmax = 10, our angular range is sufficient
to reliably extract strengths only for λ ≤ 2; the extracted
monopole strengths are insensitive to increasing values of
λmax, however.

The details of the MDA procedure employed here,
as well as its suitability with regards to estimations of
parameter uncertainties, are discussed in ref. [23]. The
Python implementation, emcee, for the Markov Chain
Monte Carlo algorithm of Goodman and Weare was em-
ployed [24,25]. The algorithm allows for the generation
of multidimensional probability distributions for Aλ co-
efficients. The 68% confidence interval, centered at the
distribution mean, was taken as the uncertainty in each
parameter.

Shown in fig. 5 is a subset of the multipole decompo-
sitions obtained in the analysis of 94Mo. The figures are
largely representative of the results of the MDA for all
nuclei.
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Fig. 4. (Color online) Top: elastic scattering angular distributions for each nucleus, normalized to the Rutherford cross section,
shown with results of the optical-model fits obtained with parameters listed in table 1. Middle: angular distribution of differential
cross section for excitation of the Jπ = 2+

1 state, and results of DWBA calculations using the optical-model parameters obtained
from fitting the elastic scattering data, with adopted B(E2) values from ref. [16]. Bottom: same as above, but for the Jπ = 3−

1

state, with B(E3) values from ref. [17].

Table 1. Table listing the optical-model parameters extracted from fits to elastic scattering angular distributions and used for
the DWBA input to the multipole-decomposition analyses. The efficacy of these OMPs are shown in fig. 4. Also shown are the
low-lying 2+

1 and 3−
1 excitations in addition to the reduced transition probabilities from refs. [16,17].

Optical Model Parameters Density Parameters 2+
1 3−

1

Nucleus Vvol Wvol RI aI c a Ex B(E2) Ex B(E3)

[MeV] [MeV] [fm] [fm] [fm] [fm] [MeV] [e2b2] [MeV] [e2b3]
90Zr 37.6 35.5 6.13 0.623 4.908 0.523 2.186 0.061 2.740 0.056
92Zr 35.4 38.8 6.02 0.687 4.958 0.523 0.934 0.083 2.339 0.075
92Mo 32.4 40.4 6.04 0.610 4.975 0.523 1.509 0.097 2.849 0.077
98Mo 30.5 47.2 5.19 1.090 5.105 0.523 0.787 0.267 2.017 0.133

4 Results

The extracted ISGMR strengths are shown in fig. 6, in
addition to the Lorentzian distributions, which were fitted
to the data:

S(Ex, S0, E0, Γ ) =
S0Γ

(Ex − E0)2 + Γ 2
. (9)

Figure 6 also shows the running EWSR exhausted by
the obtained Lorentzian distributions. In further analyses
of 94–100Mo, it was found that deformation effects became
manifest in the more neutron-rich nuclei. To account for
this, the ISGMR strength distributions for those nuclei
were fitted with a constrained combination of two peaks to
account for potential coupling of the ISGMR strength with
the K = 0 component of the ISGQR [26,27,12,28–30].

In the analysis of 90,92Zr and 92Mo in the earlier mea-
surements [31,23], only one peak was found sufficient for
the description of the ISGMR response. The parameters
for the Lorentzian distribution fits to the experimental IS-
GMR strength distributions are presented in table 2. In
the cases of 94,96Mo, although a second peak was included
in the modeling of the data, the extracted EWSR for the
low-energy peak is consistent with 0%. This would sug-
gest that the deformation effects (and thus, any shifting
of the “main” ISGMR peak) are negligible insofar as a
comparison with the peak energies of 90,92Zr, 92Mo data
is concerned. The uncertainties in the parameters shown
in table 2 are somewhat higher for 94,96Mo due to the
inclusion of a second, highly-correlated peak in the fit-
ting procedure, but are still consistent with the results of
90,92Zr and 92Mo. Hereafter, we will refer only to the main
ISGMR peak in the discussion.
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Fig. 5. (Color online) Results of the MDA for 94Mo for excitation-energy bins centered at 10, 15, 20 and 25 MeV. Shown are
λ = 0, 1, 2, as well as the contribution from the IVGDR, other multipoles λ > 2, and the total fit distribution to experimental
data. Gaps in the data correspond to angular regions where the contribution by the elastic scattering channel from the hydrogen
contamination present in the targets is dominant. These results are typical for various energies and for all nuclei present in the
study.

Table 2. Fit parameters for each nucleus in the two experiments. Data are fit to one- or two-peak Lorentzian distributions
(eq. (9)). Listed also is the integrated EWSR underneath the fitted peaks up to an excitation energy of 35 MeV.

Low Peak High Peak Total E0

Nucleus E0 Γ EWSR E0 Γ EWSR Assigned EWSR

[MeV] [MeV] [%] [MeV] [MeV] [%] [%]

90Zr – – – 16.8 ± 0.2 2.4 ± 0.4 84 ± 2 84 ± 2

92Zr – – – 16.4 ± 0.1 2.2 ± 0.3 91 ± 2 91 ± 2

92Mo – – – 16.5 ± 0.1 2.3 ± 0.1 73 ± 2 73 ± 2

94Mo 12.7 ± 0.5 2.4 ± 0.4 2+3
−2 16.4 ± 0.21 2.4 ± 0.4 86 ± 3 88 ± 4

96Mo 12.7 ± 0.5 2.3 ± 0.3 4+3
−4 16.4 ± 0.2 2.4 ± 0.3 89 ± 3 93 ± 4

We report that the peaks appear in the same loca-
tion within the experimental-fit uncertainties. Even fur-
ther, 92Zr and 92Mo are characterized by nearly identical
locations of the ISGMR response, as determined from the
fitting procedure, with a complete absence of any coherent
peaks in the strength distribution above 20MeV.

The distribution of strength extracted over the energy
range 10 ≤ Ex ≤ 35MeV can be characterized by various
moment ratios [2,1,32]:

Econstrained =
√

m1

m−1
,

Ecentroid =
m1

m0
,

Escaling =
√

m3

m1
. (10)

These moment ratios were calculated from the ex-
tracted ISGMR peaks and are listed in table 3. Within the
extracted uncertainties, it is evident that the results for
90,92Zr and 92–96Mo for any given moment ratio are largely
in agreement with one another. This is shown graphically
in fig. 7. Further, the resonance energies associated with
the various moment ratios generally obey very well the
general empirical trend of EGMR ∼ A−1/3.

Econstrained and Escaling can be respectively associated
with finite incompressibilities KC

A and KS
A. Within the

constrained model, there is a radial dependence of the
nuclear density, whereas in the scaling model the nuclear
density changes uniformly [32]. These finite nuclear incom-
pressibilities can be calculated using the empirical density
distributions parameterized in table 1, eq. (1), and the
appropriate moment ratio.
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Fig. 6. (Color online) Extracted ISGMR strengths for 90,92Zr
and 92,94,96Mo, along with the fitted Lorentzian distributions
from table 2. Shown on the right axes is the cumulative distri-
bution function, or integrated EWSR, which has been identi-
fied in the fitted peaks, with the shaded region indicating the
propagated uncertainties to the cumulative EWSR. Uncertain-
ties arising due to the model-dependence of the optical model
(∼ 20% of the EWSR magnitude) are not shown. In 92Mo,
a different choice of optical model could increase the EWSR
exhausted. Published data from ref. [23].

It is clear that the previously reported enhanced nu-
clear incompressibility of the A = 92 isobars is not ob-
served in the present work. The additional ISGMR peak
reported in refs. [7–10] is not present in the results of
our analysis, which provides the justification for modeling
the peak that appears within the giant resonance region
with eq. (9). As this peak is shown generally to exhaust

Table 3. Moment ratios of eq. (10) calculated between exci-
tation energies 0–35MeV from the fit distributions of table 2.
These moment ratios differ from those presented in refs. [28,31]
where the moments presented therein were calculated from the
binned ISGMR strength itself, rendering the moments sensitive
to fluctuations in the high-energy tail of the distribution.

Nucleus
p

m1/m−1 m1/m0

p

m3/m1

[MeV] [MeV] [MeV]
90Zr 15.7 ± 0.1 16.9 ± 0.1 18.9 ± 0.2
92Zr 15.2 ± 0.1 16.5 ± 0.1 18.7 ± 0.1
92Mo 15.5 ± 0.1 16.6 ± 0.1 18.6 ± 0.1
94Mo 15.2 ± 0.3 16.4 ± 0.2 18.5 ± 0.5
96Mo 15.2 ± 0.3 16.3 ± 0.2 18.4 ± 0.4
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Fig. 7. (Color online) Top: ISGMR strength distributions of
the nuclei at the mass-extrema in this study: 90Zr and 96Mo.
Evident is the structural and positional agreement of the dis-
tributions. Middle: various moment ratios for the nuclei in this
study. Lines connect 90,92Zr and 92–96Mo. Bottom: TAMU ex-
tractions of KS

A shown previously in fig. 1 from refs. [7–10]
(black and green triangles), juxtaposed with the finite nuclear
incompressibilities KS

A (blue squares) measured for 90,92Zr and
92–96Mo within these works. Shown clearly is a near-constant
scaling-model nuclear incompressibility for the nuclei in this
mass region. In all cases, we have calculated KA from the reso-
nance energies of eq. (10) over an energy range within which we
have identified nearly 100% of the EWSR, using the resonance
energies listed in table 3.
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≈ 100% of the EWSR over the excitation-energy range
of our experiments, our calculation of KA from the mod-
eled line-shape may be deemed as valid. The obvious ques-
tion remains as to what caused this difference in extracted
strength above 20MeV which is reported by the TAMU
group. It was argued in refs. [31,23] that the modeling
of the instrumental background could introduce some ef-
fects of this nature. Some studies have been done to as-
certain the sensitivities of the giant resonance strengths
to the choice of continuum in this alternative method of
analysis [33]. In any event, as the background-subtraction
described in sect. 2 and graphically depicted in fig. 3 en-
deavors to measure the instrumental background itself and
to subtract it from the data prior to analysis with no as-
sumptions or arbitrariness, it may be concluded that our
methodology for isolating the ISGMR response is more
reliable.

Inspection of fig. 7 indicates that the nuclear incom-
pressibilities of 90,92Zr and 92–96Mo are consistent within
the scaling model. In addition to answering the question of
the enhanced nuclear incompressibility of 92Zr and 92Mo,
one concludes immediately that 96Mo is exactly as incom-
pressible as 90Zr, which is one of the “standard” nuclei
to which many theoretical models are benchmarked. Fur-
ther, the results for the ISGMR energy of 90Zr are very
well-consistent with the results of ref. [8].

5 Conclusions

It was previously argued that the current understanding
of the collective-model description of the giant resonance
allows for the determination of the nuclear incompressibil-
ity only if the detailed effects of nuclear structure do not
play a role in the positioning of the ISGMR energy [31].
The structure effects that reportedly manifested in 92Zr
and 92Mo are disputed in the results of the present work
reporting an independent measurement of the ISGMR
strength distributions in this mass region.

It is clear from the moment ratios and extracted
scaling-model incompressibilities of fig. 7 that there does
not seem to be any major differences manifesting along
the zirconium or molybdenum isotopic chains. This is seen
even more plainly from inspection of the strength distri-
butions themselves, as also shown in fig. 7. The ISGMR
strengths of nuclei between 90Zr and 96Mo structurally
look nearly identical; any differences could be easily ex-
plained within models depicting the resonance energy scal-
ing inversely with the nuclear radius.
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Colò, Phys. Rev. C 93, 064325 (2016).

31. Y.K. Gupta, U. Garg, K.B. Howard, J.T. Matta, M.
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