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ABSTRACT

Boundaries can have a significant impact on the physics of microorganism locomotion. Here we examine the effects of confinement by a rigid boundary or symmetric
channel on undulatory locomotion in an anisotropic fluid, treated as a nematic liquid crystal. The competition between hydrodynamics, fluid elasticity, and anchoring
conditions results in a complex locomotion problem with unique transport properties. We examine this problem analytically using a well-known mathematical model,
an infinite swimming sheet with small wave amplitude, and numerically for large amplitude waves using a modification of the immersed boundary method. For a
prescribed stroke and strong planar anchoring in the narrow channel, we demonstrate that the swimming speed approaches its Newtonian value, though the power
required to maintain the swimmer’s speed depends on the properties of the liquid crystal. We also show that an unusual prograde swimming (in the direction of
transverse wave propagation) theorized to exist at small wave amplitude persists at large amplitude, and that the presence of a sufficiently close boundary returns
the swimming behavior to the more standard retrograde motion (opposite the direction of the traveling wave).

1. Introduction

The theory of swimming microorganisms is of importance to inter-
disciplinary topics spanning microbiology, medicine, and applied math-
ematics [1]. With the exception of marine microorganisms, locomotion
largely occurs in confinement, and hydrodynamic forces induce long-
range interactions between a shape-changing body and flexible or in-
flexible solid boundaries. The original works on an infinite waving sheet
(the Taylor swimmer [2]) locomoting near an inflexible solid bound-
ary in a Newtonian fluid showed that the presence of the wall tends to
increase the swimming speed for a prescribed swimming stroke [3,4].
These works studied two complementary limits: the small-amplitude ap-
proximation in which the swimmer amplitude is small compared to the
swimmer wavelength [3], and the lubrication approximation in which
the swimmer wavelength is long relative to the distance to the wall [4].
Extensions of these studies have included the effects of confinement in
isotropic complex fluids [5-7], on flagellar shapes [8], in large ampli-
tude simulations [9,10], on helical waves [11,12], and with wall elas-
ticity [7,13,14]. More generally, the behavior of finite-sized active par-
ticles near flat surfaces has seen considerable attention in both Newto-
nian [15-19] and non-Newtonian fluids [20,21]. Dynamics in confine-
ment with more complex geometries (including funnels and gears) have
resulted in particularly interesting trajectories [22-35]. For recent re-
views of the field see Refs. [36-38]. In all of the works above the fluid
has been assumed to be isotropic. In this article we study a Taylor swim-
mer near a surface in an anisotropic complex fluid.
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A typical model for anisotropic fluids is a liquid crystal, which has
orientational order but not positional order [39]. Recent experimental
investigations have shown that self-propelled bacteria in a nematic lig-
uid crystal swim along the molecular director field [40-42]. This princi-
pal behavior has been exploited to extract mechanical work in the trans-
port of passive colloids [43,44], and shown to result in anomalous super-
diffusion [45] and bacterial entrapment in topological defects [46]. In
addition, this choice of medium is prompted by the commonalities be-
tween liquid crystals and several environments populated by bacteria,
such as extracellular DNA suspensions [47] and flocks confined to very
thin films, where recent experiments have revealed the existence of ne-
matic order for dense populations [48]. Other biological environments
which contain long biopolymers also show signs of liquid crystalline
order, including various types of mucus [49-52].

Our previous work on locomotion in hexatic [53,54] and ne-
matic [55] liquid crystals revealed novel properties which suggest that
the extension to confined spaces may be of interest in both biological
and technological applications. In the absence of confinement, tuning
the material parameters of the liquid crystal was found to either en-
hance or reduce the swimming speed, even changing the direction of
swimming for a given swimmer waveform. In particular, for certain sets
of fluid properties the swimmer’s waveform can remain stationary in the
lab frame even though it is continuously passing a traveling wave along
its body. In addition, this work suggests that an unconfined swimmer al-
ways induces a global volumetric flux in the fluid, which is so far unique
to anisotropic fluids and suggests novel mechanisms for pumping which
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Fig. 1. Geometry of the confined locomotion problem in two-dimensions. An
infinite sheet passes a traveling transverse wave of amplitude a, wavenumber
g, and wavespeed ¢ = w/q along its body. The sheet is centered in a channel of
width 2d, so that when a = 0 the distance between the swimmer and the wall
is d. The director field is locally represented as n = (cos 6, sin ), and the tangent
angle on the surface of the sheet is ¢.

may find application in microfluidics [56-58]. This led to the design of
a theoretical swimmer which instead of deforming its body via a travel-
ing wave interacts with the liquid crystal instead via a traveling wave of
preferred anchoring angle [55]. We therefore seek to understand how
these effects may change when the system is placed under confinement.

The organization of the paper is as follows. In Section 2, we de-
fine our model for the Taylor swimmer and reprise the basic scaling
for the small-amplitude and lubrication limits for swimming in a con-
fined Newtonian liquid. We then introduce the equations of nematohy-
drodynamics to be solved in Section 3. The small-amplitude expansion
is described and analyzed in Section 4, followed by analysis of the lu-
brication approximation in Section 5. In both the small-amplitude and
long-wavelength limits, we find that the swimming speed approaches
the isotropic Newtonian speed as the swimmer approaches the wall. We
present a numerical method in Section 6, and compute solutions to the
full nonlinear equations in Section 7 in order to examine large wave am-
plitudes and large director deformations arising from competing bound-
ary conditions on both the swimmer body and the channel wall. Some
closing remarks are given in Section 8.

2. Swimming in a confined Newtonian fluid

We begin by reviewing how a swimming microorganism in a Newto-
nian fluid at zero Reynolds number behaves in an unconfined fluid, and
also how it behaves in a narrow channel. We consider a Taylor swim-
mer [2], or an infinite filament in two dimensions with a traveling wave
of deformation, confined between two walls which are each at a distance
d from the mid-line of the swimmer (Fig. 1). Initially, we consider the
limit d - oo, so that the walls have no impact on the swimmer. Taylor
solved this problem by expanding the Stokes equations and the no-slip
boundary condition on the body of the swimmer in the small amplitude
of the traveling wave. Given a traveling wave amplitude a, frequency
, and wavenumber g, the governing approximation is e = ag < 1. Per-
turbation theory then is used to derive the leading-order contribution to
the swimming speed,

UTaylor = %Ezc» (1)
where c is the wave speed (¢ = w/q). Here, the swimmer travels opposite
the direction of the traveling wave (retrograde motion), as is typical for
undulatory swimmers such as mammalian spermatozoa.

When d is finite, there are three length scales in the problem: d, a,
and q. As long as a < d, we may still usefully consider the case of small .
Employing similar methods as Taylor, Reynolds [3] found the swimming
speed at leading order in the confined case to be

sinh?(qd) + ¢%d? ) @

1o
Ureyotas = °¢ < sinh(qd) — ¢?d?
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Note that for fixed a the swimming speed diverges for small qd as

2
UReynolds ~ 32_;2 (3)
However, the divergence is cut off when d ~ a, since the calculation be-
comes invalid at d = a as the swimmer in this case is in physical contact
with the wall.

An alternative scheme for perturbative expansion was employed
by Katz [4] (see also [59]), who used lubrication theory with the as-
sumption of a long wavelength relative to the distance to the wall, or
6§ = qd < 1, and found the swimming speed to be

3c
Ugyy = ———— 4
Kaz = 2 4 (d/a)? @
to leading order in é. The small wavenumber limit of Ugeynolds agrees

with the small amplitude limit of Uy,y,.

3. Governing equations for a nematic liquid crystal

We here present the governing equations for a nematic liquid crystal,
along with reduced expressions for the two-dimensional system, rele-
vant boundary conditions, and nondimensionalization. Our conventions
for the field equations follow those of Landau and Lifshitz [60], spe-
cialized to two dimensions [55], where the velocity field is written as
v = (u, v) and director field as n = (cos 6, sin ). The elastic energy density
for deformations of the director is the Frank energy,

F:%(V~n)2+%(n-VXn)2+%[nX(VXn)]2, 5)

where K; is the splay elastic constant, K, is the twist elastic constant,
and K; is the bend elastic constant [60,61], and the two-dimensional
nematic is assumed to be twist-free. The total free energy in the fluid
(per unit length) is E, = [ Fdxdy.

Equilibrium configurations of the director field are found by mini-
mizing E; subject to |n| = 1. The stress corresponding to the elastic free
energy F is

A 1
o}, = —I0,m — 3 (nihy + nihy) + 3 (nihy = nihy), 6)

where II;; = 0F /d(d;n;), h=H—n(n - H) is the transverse part of the
molecular field, H= —6E,/én, and repeated indices imply summa-
tion [39,60]. At equilibrium, h = 0. Balancing torques on the directors
implies the balance of elastic forces, —0;p., + 0;0;; =0, as long as the
pressure is equal to pq = —F [39]. The parameter 4 is not a dissipa-
tive coefficient, but is related to the degree of order and the tempera-
ture of the sample. Rod-like molecules tend to have 4> 0, and disc-like
molecules tend to have 1 < 0. The parameter 4 is sometimes known as the
“tumbling parameter” since in simple shear flow the director tends to ro-
tate if A< 1, and align with the principal direction of shear if A>1 [61].
The tumbling parameter varies between A = 0.6-0.9 [62] in disodium
cromoglycate (DSCG), a lyotropic chromonic liquid crystal used in ex-
periments on swimming microorganisms in liquid crystals [40,42,63].

Meanwhile, the director field has a preferential angle on the bound-
aries of the swimmer and the channel wall due to anchoring conditions.
We will study the case of tangential anchoring, which is the case ob-
served for the boundaries of microorganisms in DSCG [63], by including
an additional energy density

2z 2r
F,=-W / cos [2(0 — ¢)1dt — W / cos (20)dt,,, (7
0 0

where ¢ is the (time-dependent) tangent angle of the boundaries (the
tangent angle is zero for a flat wall), W and W are anchoring strengths,
and dt and dt,, are infinitesimal line elements along the swimmer and
the wall, respectively.

The fluid’s viscous stress response to deformation is approximated
by incorporating terms linear in the strain rate that preserve n —
—n symmetry. In an incompressible nematic, the deviatoric viscous
stress [60,61] is

o4 =2uE+2pmn(m-E-n)+ y,(E-n+n- En), ®)
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with E = [Vv + (Vv)T] /2 the symmetric rate-of-strain tensor. The shear
viscosity of an isotropic phase is u, and y; and u, are viscosities arising
from the anisotropy. The coefficients y; and u, can be negative, but
the physical requirement that the power dissipation be positive yields
bounds of y>0, p, > —2u, and p; + p, > —3u/2. A particular case of
interest is the parameter set K; = K3, u; = 4, =0, and 4 = 0, which is
the limit of a hexatic liquid crystal [53].

The Cauchy momentum equation in the limit of small Reynolds num-
ber (the limit relevant to microorganism locomotion [64]) results in in-
stantaneous force balance,

-Vp+V-(¢¥+0") =0, )]

and mass conservation is satisfied by demanding that the velocity field
is divergence free, V - v = 0. Torque balance is expressed by

0,n+v-Vn—%(va)xn:i(l—nn)-E~n+lh, (10)
4

where y is a rotational or twist viscosity and nn is a dyadic prod-
uct [60,61]. In DSCG, y/u ranges from roughly 5 to 50 [65]. The viscous
torque arising from the rotation of the director relative to the local fluid
rotation balances with that from the viscous torque through E and elas-
tic torque through —h. The equations of motion in the two-dimensional
system of interest are presented in Appendix A. For the duration we will
work in the rest frame of the swimmer.

The no-slip velocity boundary condition is applied on the swimmer
surface and the solid boundary. The swimming body is modeled as an
infinite sheet undergoing a prescribed transverse sinusoidal undulation
of the form

Y (x,1) = asin(gx — wt), (1)

measured in the frame moving with the swimmer. We will focus only on
transverse waves. The boundary conditions on the fluid flow are then

V0, Y(x, 1)) = (0, 00—);(x, t)), 12)

v(x,+d) = (U,0), (13)

where —U is the (signed) swimming speed which must be determined.
The system is closed by demanding that the swimming body remains
force-free at all times.

4. Small-amplitude expansion

We begin by exploiting the assumption of small wave amplitude, £ =
aq < 1 to perform a semi-analytical calculation of the swimming speed.
For now we also assume that the swimmer is sufficiently well separated
from the wall, a< d. The passage of transverse waves in a Newtonian
fluid results in retrograde swimming, where the swimming body moves
in the direction opposite that of the traveling wave (here, then, with
U> 0) [2]. Among the unusual behaviors theorized for motion in a liquid
crystal, we showed in Ref. [55] that if the rotational viscosity y is large
compared to the shear viscosity u, then a swimmer in an unbounded
liquid crystal instead performs prograde swimming, self-propulsion in
the same direction as the direction of wave propagation (U < 0).

In this section we show that as the distance to a nearby wall de-
creases, there is an increasing contribution to the swimming velocity in
the direction opposite to the direction of the prescribed swimmer wave-
form. Thus, in a fluid with a large rotational viscosity, a swimmer will
swim in the same direction as the waveform far from the wall, but slow
down, reverse direction, and then swim faster and faster as the distance
to the wall decreases.

For completeness we provide a brief outline of the calculation of the
swimming speed to second-order in amplitude; the derivation of these
steps and the fine details can be found in Ref. [55].
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4.1. Nondimensionalization

We treat x, y, and t as dimensionless variables by measuring length
in units of ¢~! and time in units of w~!. Dimensionless viscosities are
defined by HY =/ pe 1y =/ p and y* = y/u. The swimmer shape in
dimensionless form is given by

Y = esin(x — 1), (14)

where ¢ = aq, and in this section we assume £ < 1.
The Frank elasticity of the liquid crystal leads to a relaxation time,
defined as = = u/(K3¢%). For small-molecule liquid crystals, typical val-
ues are u ~ 1072 Pas and K5 ~ 107!! N; hence, on the length scale of
typical flagellar wavelengths, for which g~ 1 um~!, the relaxation time
is 7~ 1 ms. Comparing the typical viscous stress in Eq. (8) with the typi-
cal elastic stress in Eq. (6), we define the Ericksen number [61], Er = wr,
or
Er = i .
K;q?

15)

The beat frequencies and wavenumbers of cilia and flagella vary
widely [66,67], and for experiments on bacteria in liquid crystals the
Ericksen number can range from Er ~ 10! [40,63] to Er~ 10! [42]. Fi-
nally, the ratio of Frank constants is denoted by K, = K, /K3, and we
define U* = U/c (with ¢ = w/q the wavespeed), and Q* = Q/(we?/q%),
the dimensionless volumetric flux.

4.2. First order in amplitude

It is convenient to enforce fluid incompressibility by introducing the
stream function yw(x, y), which is related to the velocity via v = V+ty =
(w,. —w,). Expanding the stream-function as y = ey + £2y® + ... and
the director angle as 6 = e + £26@ + ..., the governing equations to
first order in ¢ are

5

4u
4. (1) 1 232 (1)
Viyt + _2+14; 6X0yu/ +

1
Q + 4})Er

X {(1 + D030+ [K,(1+ D+1 - 4]070760D +K,(1 - A)a‘y‘e“)} =0, (16)

ny 1440 0y, 1-42 a 1 29(1 2901
0,0 + Loty + = ayl,/()—Ery*(axe(>+1<,ay9<>)=o. an

These equations are solved by sums of complex exponentials () =
R[pD] and 0 = R[GD], where

6 6
g = Z cje’JyH(x_t), 6 = Z djerfy+i("_t). (18)
= j=

The characteristic decay rates r; are found by inserting (18) into (16) and
(17), leading to a cubic equation for m = r, Azm® + Aym* + Aym + Ag =
0, where !

Ay = K [y (=14 )% +4+2u3],
Ay = Ag+ 4y A+ 2K, [r (-1 + 4%) =4 — dpt — 23],

A= KA+ A7+ 2@+ )] +2(4 + 4uf +2u3)
+ 74 [1— 4% = 2iBr 2 + 24} + 13)].
Ag = =2(2+ p5) +r*[-(1 + A + 2Er 2 + u3)). (19)

The relationship between the coefficients ¢; and d; is determined by the
governing equations for the stream function and the angle field, result-

ing in

Ery*[l FA-(1— /1)r12.]
djzc/- o . (20)
2(1—1<,rj—1Ery*)

1 Correcting here a typographical error in Ref. [55] in which a spurious factor
of m appeared in front of the equation defining A;.
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Fig. 2. Swimming speed for a swimmer near a wall (relative to the Newtonian
swimming speed far from the wall), in the limit of small amplitude ag < 1. For
the nematic plot, K, = K, /K; =12, A=0.6, and u,/u = u,/pu = 1. Both liquid
crystalline phases have y/u = 50, Er = 0.1, and strong parallel anchoring is en-
forced both on the body of the swimmer and on the solid boundary. Horizontal
black lines indicate the unconfined swimming speeds from [55].

The rest of the coefficients are determined by the boundary conditions,
which to second order in the angle field are written as

~0,6 + w(e—axY)(y 0, @

Y

0,0+ =0, 2)
where w =W /(gK,) and @ = W /(gK,) are dimensionless anchoring
strengths on the swimmer and wall, respectively. The swimming speed
has no contribution at first order: with U = eU® + £2U® + ..., taking
& — —e amounts to a simple phase shift of the waveform, thus demand-
ing that UM = 0. We must therefore proceed to second order in the am-
plitude ¢ in order to find the leading order contribution to the swimming
speed.

4.3. Second order in amplitude

Although the small-amplitude swimming speed U, is a second-order
quantity in &, it is possible to write it as an integral over quadratic com-
binations of first-order quantities:

qd
Uy =—(Y0,0" )00 — /O [r*(1 = g+ Q@+ u3)yf]dy, 23)

where @ = 2[y*(1 — ))* +2(2+ 4;)]™', and the operation (-) indicates
that an average of the bracketed quantity is to be performed over one
swimmer wavelength in x. Note that while here we have obtained this
expression by simply solving the equations, in general this can also be
accomplished via the reciprocal theorem [68]. The first-order quantities
fand g are given by

k, 4y
= (0600200 ) + —L (VoW -0y, 24
4 Er( >y 2+/A’2k< W) .
k
= (yv(D (1) (1, 2 Mg M
g= (v voDy - 240,600 )—m(aye 0,0, (25)

with k; = [K,(1+ A1) +1-2]/2+ 1) and k, = K, — 1. The results are
plotted in Fig. 2. When qd is large, we recover the results of
Refs. [53,55] for swimming in an infinite fluid. As gd — 0, the depen-
dence on liquid crystalline parameters is overwhelmed by the diverging
Newtonian component; in the Newtonian limit, we recover the speed
found by Reynolds [3], given in Eq. (2).

Notably, for rheological parameters that lead to negative U in an un-
bounded fluid (in particular, large y/u), the swimming speed does not
diverge to negative infinity, but instead reverses and passes through pos-
itive swimming speeds on its way to positive infinity. The nature of the
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blow-up as qd — 0 is described exactly by Eq. (2) — terms depending on
liquid crystalline properties remain (1) for all gd, whereas Newtonian
terms blow up proportional to (gd)~2. The volumetric flux Q* of fluid
pumped by the swimmer also decays to zero as gd — 0.

5. Small-wavenumber (lubrication) expansion

Since the expressions for the swimming speed near a wall for a low-
amplitude swimmer are too unwieldy to display, we turn to the lubri-
cation approximation to try to get more insight into the problem in the
limit when 6 = ¢d is small but a/d can take any value less than one. We
work in the limit in which the anchoring strength is so strong that the
director is always parallel to the swimmer surface, which is achieved in
practice for w = O(10) or above. This problem has been treated for swim-
ming in a Newtonian fluid [4,59,69], and in an isotropic viscoelastic
fluid [6]. The lubrication approach has also been applied to the spread-
ing of liquid crystal droplets; see e.g. [70] and references therein.

Because we use a different choice for nondimensionalization than
in Section 4, we define new dimensionless variables, measuring length
along x by the wavelength, and length along y by the gap between the
swimmer and the wall: X = ¢gx, § = y/d, u = cii, v = §c0, and 7 = wt. The
choices for the relative scaling of the velocity components u and v are the
usual ones in lubrication theory, dictated by incompressibility. Balance
of viscous forces with pressure gradients suggests j = gd’p/(uc). Also,
the strong anchoring condition forces the director angle 6 to equal the
slope of the swimmer at the swimmer surface. Since this slope is small
in the lubrication limit, we define 6 = 50, where 0 is expected to be of
order unity.

Next, we write the governing equations in the dimensionless vari-
ables. Many of the terms drop out to leading order in 6. For example,
the Frank free energy density is dominated by the splay contribution
when 6§« 1,

Ki 5% (00’
Fr——=|=], 26

5 (%) 0
leading to a greatly simplified molecular field h. Similarly, the stresses
have only a few terms at leading order in é:

r_5K102§<0(5) 1—,1> d_yc@ﬁ( 0]

22 g \=1—-1 0O T d 9y

o = 2+u3/2 '
d2 2 952

2+ k)2 o)

27
Balancing moments and forces leads to the lubrication equations for a
nematic,

— i K 20
. ) 8)
2 0y y* K3 Eroj?
0p W\ o 1— 4K 938
S (14 2)2E 1o AT00 29)
ox 2 dyz 2Er K3 6y3
9p
——= =0, 30
5 (30)
dii | 0D
—+ —==0. 31
X + ay @D
The no-slip boundary conditions on the fluid are
(@ 5)‘ =00, (32)
y=%1
. I P P
@O sen = (0.~ % cosz =), (33)

where U is the unknown dimensionless swimming speed. The strong-
anchoring boundary conditions on the director field are

(x,1)=0, (34)

(% Lsing—9) =2 %—
H(x,gsm(x—t))— dcos(x 7). (35)
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Fig. 3. Dimensionless power consumption in the lubrication limit versus swim-
ming speed, for K, = K5, 4 = u,, A =0.75, strong parallel anchoring on all sur-
faces and y =1 (gold), y = 25 (green), and y = 100 (red). The blue line corre-
sponds to the Newtonian case. Note that the value of the Ericksen number is not
given, as the Ericksen number disappears from the dynamics in Egs. (36)-(37).
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Eliminating the angle field via the torque-balance Eq. (28) leads to

9, %
ey ALY 36
65c+ﬁ())72 30
where

Hy oyl = )2
pors 2 Ao 37

Note that the Ericksen number disappears completely from the dynam-
ics in the lubrication limit. Furthermore, since the Egs. (36) and (30) are
identical to the lubrication equations for isotropic Stokes flow with di-
mensionless pressure j replaced by j/g, the flow field and swimming
velocity are the same as in the isotropic case. For completeness, we in-
clude the derivation of the flow field and swimming velocity in Appendix
B.

Solving the equations yields the dimensional swimming speed which
was found by Katz [4], given in Eq. (4). The time-averaged volumetric
flux, a hallmark of unconfined swimming in a liquid crystal, also van-
ishes in the lab frame. Therefore, we find that for a nematic liquid crystal
with strong planar anchoring conditions, the swimming speed and flux
are the same as in the isotropic Newtonian case.

However, the power consumed by the swimmer is not the same as
in a Newtonian fluid. The power dissipated in the fluid can be written
as

P=o:E+ L, (38)
14

with the convention A : B = A;; B;;. Expanding in powers of § and using
the equations of motion to simplify gives the leading-order contribution,

a2
P= (1 + ;%) [1 + %]PO, (39)

where PO (du/ dy)? is the isotropic Newtonian power density. Writing
= /o dx /)—, dy P, and noting that

2 )
Py = / ds / APy = ——2%0" (40)

V1-a(1+ 2&2)

where G =a/d, we plot the ratio of nondimensionalized speed and
nondimensionalized power for several liquid crystal parameters in
Fig. 3. In the presence of the liquid crystal, the swimmer must inject
more power per unit wavelength into the fluid to swim at the same
speed, consistent with earlier results for a swimmer in an unbounded
liquid crystal [53].
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6. An immersed boundary method for flowing nematic liquid
crystals

To compute the dynamics of the flowing liquid crystal and its cou-
pling to the swimmer and boundaries we develop an adaptation of the
classical immersed boundary method [71], which has been applied to
similar swimming problems in viscoelastic fluids [7,72-76]. In order to
include anchoring conditions of arbitrary strength we include an extra
volumetric torque in the molecular field, writing

h=V%0+ h), (41)

h'() = / w(X(s)) sin (H(X(s)) — 0)6(x — X(s)) ds, (42)
0Q

where the boundary surface (both swimmer and wall), denoted by 09, is
parameterized by X(s) = (X (s), Y (s)) with s the arc-length, w(X) the di-
mensionless anchoring strength, and ¢ = tan™!(Y,/X,) the tangent angle
(the preferred director angle for the assumed planar anchoring condi-
tions). The elastic force density on the fluid is modified to include the
anchoring contributions, resulting in

£,0)=V (6" +06% = -V Vo - %V(sz) + (V20 + h®)V - R(9)
+R() - V(V20 + h®) + V1 h%(0), (43)

with R defined in Eq. (A.2), and V! = %0, — §0,. Finally, the director
field evolution equation is modified to

cos 20

9,+v-ve+%(uy—ux)=,1( (uy +0,) = sin20u, )

2 a
+ o Er(v 6+ h’(0)). 44

In the immersed boundary method the delta function is replaced by a
discrete delta function with finite but compact support, and is chosen to
ensure moment balance conditions that attempt to remove the depen-
dence on grid location. Here we use the original discrete delta function
from Ref. [77] with a four-point footprint in each dimension:

5y(%) = ﬁmdﬁ(ﬁ)d&é), 4s)
where

(3—2r+m> 0<|rl <1,
(s-2r-V=T+120=37) 1<l <2, (46)

|r| > 2.

dp(r) =

S wl— o=

Spreading operators which carry information from the body onto the
fluid, and vice versa, are then defined as

SIFX)] = / FX)ép(x — X, (s)) ds, “47
Q

(S ] = / f(x)5,(x - X,)dV, (48)
Q

where the subscript ‘n’ indicates that the surface X, over which the in-
tegral is performed may differ from the surface X on which the func-
tion F is defined. For a given geometry (in practice, at the beginning
of each timestep), we create sparse matrices representing the spreading
operation, and we also form the sparse operator .S;(S;)*. Spreading is
achieved using sparse matrix-vector multiplication for the duration of
the timestep. Precomputing in this way makes the computational cost
of spreading information to and from the surface negligible relative to
other aspects of the time-stepping algorithm, which we presently de-
scribe.

The Leslie-Ericksen equations are advanced using semi-implicit
time-stepping with a similar technique to that discussed in Ref. [78],
discretizing in time as follows, where superscripts indicate the timestep,
eg. vVi=v(t=t,:

—Vp"+1 +V.o' ( n+l, 9"+1)+f (9n+1 9n+l) Sn[F(Xn+l)] (49)
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vyl =0, (50

0n+l + &(u;ﬂ _ Un+l) _ At h(0n+l) =0" + AIN(V"+1,§"+1), 51)

2 x y'Er
X = X"+ A v, (52)
where we have defined

N(v.0) = ,1(“’5220 (uy + v,) — sin 20 ux> —v-ve, (53)

_ V§n+lv29n+l +V. R(én+l)h(9n+l)
+R(G") - Vh(9") + ViR (0", (54

£ (0n+l,én+l) -
e ;

h(9n+1) — V29n+l + LU(X"+1)SZ [¢(X"+l) _ (SZ)*en-H] (55)

The quantities ¥*! =2v" —v"~! and §"*! = 26" — §"~! are extrapola-
tions to time r,,; from information at previous time-steps. We have
included in Eq. (49) a surface force density F(X) associated with the
boundary material properties, to be described below. This force is com-
puted at the advance time 7, , but is spread onto the surrounding fluid
at the previous surface location (the semi-implicit approximation). The
inclusion of a second surface is straight-forward in this approach.

It is convenient to define an auxiliary pressure p+ and velocity field
v. with the properties that p=—ErV?p, and v=v, — Vp,, for then
—Vp +ErV2v = ErV2?v,, which removes the pressure from the momen-
tum balance equation [79,80]. Using V - v = 0 we find that V2, =V-v,,
and v = (I - V(V?)~!V.)v,. Eq. (49)-(52) may then be written as a large
linear system,

n+l1
<£u*v* ﬁuﬁ) (;Z+l> — A(X"+1)+B, (56)

where (with care in distinguishing the auxiliary velocity field v- from
the true velocity field v),

v V:+1 — EUU(I _ V(Vz)_IV')V:_H =V. O'U(Vn+];én+1), (57)

Uy Uy

L

EU*ggnJrl = _ygntl (V20n+1) +V- R(§n+l)(v29n+l _ WSZ(SZ)*0n+1)

+ R(§n+1) . V(V29"+] _ wSZ(S;,')*G"“ ), (58)

Loy VI = L4, (1= V(Y)Y )it = %(u;“ —umth, (59)
At ‘

£699n+1 — 0n+l _ y’_Er(VZHnJrl _ WSZ(SZ)*O"JA), (60)

and

_S}rlt [F(X”H )] —wV-R(é”“)S; [¢(Xn+l )] _wR(gnJrl ) Avj S;ll [¢(Xn+l)]
A — ( )

T Silpx )

61)

0
b= <9" + AN (v gt ))‘ 62)

The fluid domain is taken to be periodic with dimensions L, X L,,
and we define the grid (x5 y) = (Ghy, khy) with j=0,1,2,..., N, — 1,
k=0,1,2,....N, — 1, and (h,, hy) = (L,/N,, Ly/Ny). Time is discretized
uniformly with step-size At, and we define 7, = nAt. The immersed body
is discretized by specifying its location at equally-spaced parameter-
ization coordinates s,, € [0, 27), with m=0,1,..., M — 1. Typical val-
ues for the simulations to come are (L,, L)) = (27,4x), (N, N, M) =
(32,64,64), and At = 10~*. Resolution studies show slow convergence of
averaged quantities and the swimming speed; the immersed boundary
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method is known to be delicate in the context of complex fluids, and we
direct the reader to recent work on new modifications for improvement
in Refs. [81,82].

We confine our attention to periodic boundary conditions, and a
pseudo-spectral method [83] is used to solve the Leslie-Ericksen sys-
tem, Eq. (56). With periodic boundary conditions imposed the velocity
field is defined only up to a constant mean velocity which we denote by
v,. Writing the velocity field instead as v + v, where v is the mean-free
part of the velocity which satisfies the equations of motion above, we
close the system by demanding that the net force in a periodic domain
is zero. A marker-and-cell (MAC) method implementation showed no
significant differences in either performance or in the results of the sim-
ulations. The system recast in a vorticity-stream function formulation
also showed no appreciable differences in the results, but the approach
taken here can be more easily extended to three-dimensions.

Instead of forming the matrix on the left-hand side of (56), the lin-
ear system is solved (for a given X"*!) using the generalized minimum
residual (GMRES) method. For a preconditioner we solve the same sys-
tem as above but replacing §"*! with 0, and constructing a sparse linear
operator which is rapidly inverted at each iteration of GMRES. This pre-
conditioner is only formed one time only and then used for all future
simulations on the same domain. Using preconditioning, depending on
the situation, the number of iterations required in a standard compu-
tation may be reduced from hundreds of iterations to fewer than 10.
Preconditioning is critically important since the flow field must be deter-
mined for each step of a Newton iteration for determining the immersed
body location.

At ¢ = 0 we select the initial director field ¢° as its equilibrium state
absent fluid flow, as found by relaxing the system to a static configura-
tion with the velocity field set to zero. With this initial director field we
solve for the instantaneous initial velocity vield, v°. For the first time
step we simply take as first extrapolations ¥! = v¥ and §' = 6°.

6.1. Newton iteration for X"+!

Following Ref. [78], the body position is updated by interpolation of
the velocity field (assuming a no-slip boundary condition) via a back-
ward Euler approximation,

Xn+1 =X"4+ AI(SZ)* [vn+1 (A(Xn+1>)] , (63)

where A(X) is on the right hand side of Eq. (56), and which depends on
a surface force density F(X) and the anchoring angle ¢(X). Equivalently,
we wish to find the roots of the following nonlinear system:

G(X) =X - X" — Al(SH* [v"* (AX))| =0, (64)

which we find using Newton-Raphson iteration. Given an initial guess
X, subsequent iterates X; are updated as

Xpi1 = X + 06X, (65)

where J6X = -G(X,), (66)

and J = [0G/0X](X,). Fortunately, v"*! is linear in A(X"*!), so we have
neatly that

J6X = 6X — Ar(S!)* v (J 46X )] (67)

where J, = [0A/0X](X,). With the inclusion of complex surface forces
(e.g. elastic forces) and anchoring conditions, however, the analytical
description of the Jacobian J, is not a simple task, and numerical dif-
ferentiation is slow. Instead we use the following approximation:

J6X ~ %(A(Xk +66X) — A(X,)), (68)

where we set e = 107 [84]. Now Eq. (66) is solved by GMRES iteration,
usually taking only a few iterative steps to converge even without a
preconditioner.
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Fig. 4. Director fields (left panels) and velocity fields in the lab frame (center panels) at small Ericksen number, with zero anchoring strength, for both small (top
panels) and large (bottom panels) rotational viscosity. Only part of the periodic computational domain (with dimensions (L,, L,) = (27, 4x)) is shown. The swimming
speed (right panels) is considerably increased at large rotational viscosity and the flow is bound to a region local to the swimmer. Arrows there indicate the direction
of swimming; the direction of wave propagation is to the right. The results are consistent with the analytical results derived in Ref. [55].

6.2. Tethering to ghost points for bodies with specified shape or gait

A standard approach in the immersed boundary framework is to con-
nect surface material points to target ghost points Z(t) using “springs”
with stiffness k. In the event that the surface position is prescribed, we
define the force density

F(Xn+l) — _k(XnJrl _ Zn+l)’ (69)

where Z"! = Z(t,., ) is specified. The preferred molecular direction on
the surface is computed on the target surface ¢p(X"+!) = ¢(Z(z, +1)), and
the right hand side of Eq. (56) simplifies with A(X"*!) = 0 and

). (70)

<—S; [F@+h)] — wv - R@™+)s? [¢(Z"+;)lt—
0" + AtN (971, 6m+1) + 7B

At each timestep, a constant velocity is added to the target shape Z which

is selected to ensure zero net force in the periodic domain.

In the present work we will be interested in a surface deformation
associated with a swimming body of infinite length, which combines a
prescribed undulatory gait and the resulting rigid body motion from the
constraint of zero net force (a neutrally buoyant swimmer; see [64]).
Writing the prescribed gait as Z(t), the surface moves with speed X, =
Z, + U, where U is the unknown swimming speed, and the tethering
forces at time ¢, ; are approximated as

F(Xn-H) — _k(Xn+1 _ Zn+1 _ AI‘U"H).

wR(§n+l) .V S;ll [¢(Zn+l)]
Spl@h]

@

In the nonlinear system of equations G(X) = 0 shown in Section 6.1 we
now include the unknown swimming velocity U"*! and the constraint
of zero net force, fOL F(X"*1)ds = 0. We require the tethering force to
overcome the viscous drag on the surface, and based on inspection of
Eq. (A.5) we set k = 10* Er in the simulations to come.

7. Large-amplitude swimming

We are now in a position to investigate swimming in a liquid crystal
for large amplitude undulations, and in the presence of boundaries. We

begin by returning to a setting with no confining boundaries to probe
the following question. Does the unexpected transition from retrograde
to prograde locomotion in an infinite fluid with large rotational viscosity
and strong anchoring described in Ref. [55], which is based the small-
amplitude asymptotic theory discussed in Section 4, persist at large am-
plitude? Or is it merely a mathematical oddity which appears at vanish-
ingly small wave amplitude?

We consider the director and velocity fields generated by the motion
of a swimmer of amplitude a = 1 at small Ericksen number (Er = 0.01),
and we set K; = K3 and y; = u, = p and A = 0.75 for the duration of the
paper. Fig. 4 shows the director and velocity fields for zero anchoring
strength and for both small and large rotational viscosity y. The veloc-
ity field shown is that seen in the lab frame. The periodic computational
domain has dimensions (L,, L,) = (27, 4r), and only part of the physical
domain is shown. In both cases the swimmer moves to the left (U> 0),
opposite the direction of the traveling wave, and the swimming speed is
significantly increased at large rotational viscosity, in agreement with
theory developed in Ref. [55] where a local maximum in swimming
speed was found for roughly this parameter set. Contributing to the in-
creased swimming speed at large rotational viscosity, we see that the
director field is significantly disturbed by the body motion, even with
no anchoring strength, and the associated forcing results in a recircu-
lating zone between wavecrests. The flow field in this case is tightly
confined to the region local to the swimmer.

Fig. 5 addresses the same situation but with strong anchoring, w =
10. The strong anchoring condition causes a significant disturbance in
the director field in both cases, and an increase in the swimming speed
in the case of small rotational viscosity. It is at large rotational viscos-
ity that we find the answer to the question posed at the beginning of
this section: indeed, the transition to prograde motion, swimming in the
same direction as wave passage (U< 0) is observed at large wave am-
plitude. The associated fluid flow is also striking, appearing as a plug
flow, nearly uniform across the entire swimming body, and as in the
case of zero anchoring strength, is primarily bound to a region near
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Fig. 5. Director fields (left panels) and velocity fields in the lab frame (center panels) at small Ericksen number, now with strong anchoring strength, for both small
and large rotational viscosity. We verify at large swimming amplitude the reversal of swimming direction at large rotational viscosity predicted for small amplitude
waves in Ref. [55], and find a plug-like flow in the direction of wave propagation in that regime.
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Fig. 6. Swimming in a wide channel but much nearer to one of the walls, at small Ericksen number, Er = 0.01, large rotational viscosity, y/u = 100, and strong
tangential anchoring conditions on both surfaces, w = @ = 10. The periodic computational domain has vertical length 4z. The panels on the left show the director
and velocity fields for d = = (top) and d = 2z /3 (bottom). Prograde swimming (to the right) when the wall is distant diminishes in speed as the wall is drawn closer
to the swimmer, and eventually gives way to retrograde swimming (swimming to the left) when the wall is closer than a critical distance, consistent with the theory
developed in the previous sections.
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Fig. 7. Swimming in a channel at small Ericksen number, Er =

o 0.01, and strong anchoring, w = @ = 10, at small and large rota-
A G G g i s G . s e G 5 tional viscosities. The director and velocity fields are overlaid
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Fig. 8. The dimensionless swimming speed U/c versus the dimensionless channel width gd for small amplitude (ag = 0.15, left panel), medium amplitude (ag = 0.50,
center panel), and large amplitude (ag = 0.8, right panel) undulations. Material parameters are K; = K3, y; /u = p,/u =1,y/u =5, Er = 1, and 4 = 0.75. Dashed lines
indicate: (black) the Katz result, Eq. (B.13) and (green) the Reynolds result, Eq. (2); solid lines indicate the unconfined swimming speed in a Newtonian fluid for the
appropriate amplitude [85]. While three values of the anchoring strength (w = @ =0, w = w = 1, and w = w = 10) were used, the differences in results were smaller
than the size of the plot markers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to the body only. Dynamics at Er = 1, not included here, also confirm
the small amplitude theoretical results in Ref. [55]. Namely, the im-
portance of anchoring strength is greatly diminished in determining the
swimming speed, particularly at large rotational viscosity.

We now explore the effects of swimming in a wide channel but
much nearer to a single wall. Numerically this is achieved by intro-
ducing a line of immovable target ghost springs. Fig. 6 shows the di-
rector and velocity fields, and swimming speeds at amplitude « = 1 and
small Ericksen number, large rotational viscosity, and strong anchoring,
(Er,y/u, w) = (0.01, 100, 10). The wall has the same strong tangential an-
choring condition as the body, w = 10. The fields are shown for the cases
d = r (top) and d = 2z /3 (bottom). The prograde motion for free-space
swimming remains when a distant wall is introduced, but when the wall
is brought sufficiently close the motion reverts to retrograde motion, or
swimming to the left, with a recirculating flow inside each wavecrest.
The swimming speed appears to go through zero smoothly as a function
of the distance to the wall, as theoretically predicted.

The symmetrized version of the geometry, closer to the theory devel-
oped in early sections, has walls above and below the swimmer, equally
distant from its centerline. Fig. 7 shows the flow fields and director fields

overlaid, for small and large rotational viscosity, and strong anchoring
(w = w = 10). Overlaying the two fields shows that the fluid velocity
is almost perfectly aligned with the local director orientation, in stark
contrast to the flow seen on the bottom of Fig. 5, where in the pro-
grade motion the flow is nearly orthogonal to the director field close to
the body. The recirculation zones are again prevalent, as seen near the
wall in Fig. 6, and the dominant effect of the nearby walls in this case
again remove the swimming direction reversal found in the study with-
out walls: even at large rotational viscosity, in a channel the swimming
speed is not far from that found for small rotational viscosity.

To further examine the robustness of our analytical results from
Section 5 to large amplitude motion, we study swimming in a symmetric
channel with variable stroke amplitude a and distance to the wall, d. In
this section, we depart from the value Er = 0.01 used elsewhere in our
numerical results, observing that if the Ericksen number is too small,
however, the Egs. (28)—(31) decouple, and it is harder to be sure that
the numerics are validating our analysis. We therefore settle on Er = 1,
which is close to what has been used in experiments. This value addi-
tionally preserves some effect of the anchoring strength on the swim-
ming speed, so that we can verify that the role of anchoring strength
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on swimming speed vanishes as d decreases. The results are shown in
Fig. 8. While the Katz result (B.13) holds for a/d~ 1, the speed quickly
decreases to the unconfined speed, described in the small-amplitude case
in Ref. [55]. However, the rate of decay for a/d~1 is identical to the
(a/d)™? factor observed by Katz, and the range of validity seems to ex-
tend to roughly (a/d)? = 0.5. Varying the material parameters confirms
our analytical result that deep in the lubrication regime the liquid crys-
talline effects are swamped by mass conservation and the no-slip con-
dition, which together imply that the swimming speed converges to the
wave speed as d — a. The numerical results also demonstrate that an-
choring strength becomes unimportant in this regime (so long as the
conditions on both swimmer and wall are tangential), which extends
the results of Section 5.

Performing this calculation also gives us a glimpse at the speed of
a finite-amplitude Taylor swimmer in an unbounded nematic solution,
which is given by the limit a/d — 0 for fixed a. Interestingly, despite
previous findings that for the parameters used here a small-amplitude
swimmer in a nematic swims faster than its Newtonian counterpart by a
factor of roughly two [55], for larger amplitudes this trend is reversed.
We can see this by comparing Fig. 8 to results from the literature on
the Taylor swimmer in a Newtonian fluid beating with large-amplitude
waves [85], which is given by horizontal black lines near a/d = 0.
For the amplitudes used in Fig. 8, the Newtonian swimming speed
is faster for a = 0.5 and a = 0.8 than the swimming speed in a liquid
crystal.

8. Conclusion

This work extends previous studies of flagellated swimmers in un-
confined liquid crystals and confined isotropic fluids to include both
anisotropic and boundary effects. Our analytic results, based on asymp-
totic analysis in the stroke amplitude and channel width, suggest that
the liquid-crystalline material properties have a diminishing effect on
the swimming speed and volumetric flux as the width of the channel
decreases, so long as the anchoring conditions on both surfaces are tan-
gential. An extension of the model would include different anchoring
conditions, such as homeotropic anchoring on one surface, and we sus-
pect this would lead to very different results. In this setting the Ericksen—
Leslie equations may break down and a Landau-de Gennes Q-tensor
model would be more appropriate to study [39,86]. However, while
the swimming speed is not dependent on liquid crystal parameters, the
pressure, flux, and power consumption are strongly dependent on the
rotational and anisotropic bulk viscosities. In our work we only consid-
ered the case of the swimmer moving parallel to the walls, and did not
consider the torques which may tend to turn a swimmer [87-89]. The
question of whether swimmers tend to be attracted or repelled to walls
in a liquid crystal solution is probably best approached using squirm-
ers [15,90] rather than Taylor’s swimming sheet.

We also explored large amplitude swimming, made possible by the
development of an immersed boundary method for nematic liquid crys-
tals. We confirmed that the unexpected transition from retrograde to
prograde locomotion at large rotational viscosity persists at large wave
amplitude and is not an artifact of the small amplitude assumption. We
also captured the return to retrograde motion in these cases when a
nearby wall or channel is introduced. Interestingly, whereas in previous
works swimmers with prescribed stroke at small amplitude have been
shown to be faster than their Newtonian counterparts, for increasing
amplitude this situation reverses, such that a swimmer is always loco-
moting at a slower speed and at greater power consumption than if it
were locomoting in an isotropic, Newtonian fluid. Narrowing the chan-
nel also demonstrates an interesting connection between confinement
and anchoring conditions.
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Appendix A. Single constant approximation in two dimensions

In two dimensions the transverse part of the molecular field is given
by h = An', with nt = (- sin 6, cos ). In the single constant approxima-
tion K, = K5, we have h = V?4. The elastic stress is given by the bulk
and anchoring contributions,

— 208 250 PSP 2
c¢+0'= [—exxx - 6'yyy —0,0,(Xy +§%)| + V'OR(O), (A.1)
where
R(9) = %{A sin20 (XX — §§) + (1 — Acos 20)Xy — (1 + Acos 29))‘7?{}. (A2)
The total elastic force on the fluid is then
£,00)=V - (c°+0°) = V> V0 - %V(|v0|2) +(V20)V - R(0)
+R(9) - V(V?9), (A3)
where V* = (9,,—0,) and
V- R(0) = A[cos 20R& — §9) + sin 20R§ + §R)] - V0. (A4)

The second term in Eq. (A.3) may be absorbed into the pressure.
The viscous stress may be written in the form

6°(v;0) = (u, — v,) (AXVOR& + BEOO)&F + §%) + C00)99)  (AS5)

+u, (ATD@R% + BEDO)EF + §%) + CD(0)9F), (A.6)

where we have used V- v =u, +v, = 0. The coefficient functions of 6
are viscosity dependent and are given by (with yf =u/u, y; = /U,
and y* = y/u),

ACOg) = % sin (20) (4} cos(20) + pf + ). (A7)
ALDg) = %(4 +2(u} + 15) cos(26) + ] cos(46) + uf +2u3). (A.8)
BZ9 @) = —}1 (w3 cos(40) — i — 2(u5 +2)), (A.9)
BUDg) = %u}‘ sin(40), (A.10)
c0g) = —% sin(20) (u} cos(20) — u} — u3). (A.11)
COUD@) = =2 (4 = 2(s; +113) cos(20) + 4} cos(d0) + u} +23).  (A12)

The viscous stress is symmetric, as expected. Finally, dotting the direc-
tor field evolution equation (Eq. (10)) with n! we find an evolution
equation for the director field orientation angle,

cos 20
2

0,+V-V0+%(uy—vx)=ﬂ( (uy+ux)—sin20ux)+LV29.

y* Er
(A.13)

Appendix B. Details of the lubrication calculation for swimming
speed

Here we calculate the flow field and swimming velocity for a swim-
mer near a wall in a nematic liquid crystal, using the lubrication ap-
proximations of Section 5. The liquid crystalline factors play a limited
role and the calculation follows the same steps as in the isotropic case;
we follow the approach of Pak and Lauga [59]. The lubrication approx-
imation implies that the pressure p is independent of 7. p = p(%,7). With
this assumption, the x-component of the velocity may be found in terms
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dz

=g

(@ + di)

Fig. B.1. Incompressibility of the liquid crystal implies there is no net flow into
or out of the slice.

of the pressure gradient from Eq. (36) and the no-slip boundary condi-
tions (32)—(33):

0pJO% . o 5
A+ /a0 OO oD
where ¥ = asin(x — 1) and @ = a/d. The complete %- and 7- dependence
of i is still unknown because we don’t yet know how j depends on %
and 7.

We can determine dj/d% up to an unknown time-dependent constant
by appealing to the conservation of volume of fluid. The net flow out of
a slice of small thickness dx must vanish, as shown in Fig. B.1:

=

1 1

/ (X + dx)dy — / w(x)dy+v-ndZ =0, (B.2)
Y (%+d%) Y(%)

where i is the outward-pointing normal (Fig. B.1). Since v-fd¢ =

—i(%,Y)dx via the no-slip boundary conditions, we can rewrite (B.2) in

differential form

1
4 / a(x)dy — o(7) = 0, ®3)
dx Jy
or,
1
/ a(®)dy + asin(x - ) = 0. ®.4)
Y

where Q(7) is to be determined. Using Eq. (B.1) for &(%), performing the
integral in (B.4), and solving for dj/ox yields

10 _120-0) 0-2
Box  (1-7)3 (1-7p
The only difference between this expression and the corresponding ex-
pression in the isotropic problem [59] is the factor of p [Eq. (37)], which
contains all the dependence on the liquid crystalline material parame-
ters. We can get an equation involving Q and U only by integrating the
pressure gradient over a period in %, and noting that the pressure must
be periodic. Thus,

(B.5)

1215(1 = Q) + 61,(T - 2) =0, .6
where
2r ~
= dx  _ 2r
= /0 [—YP2 (1-ay/? (B.7)
2r - v
_ dx  2z(2+a%)
b= /o [I-FP  Q-a)y? (B.8)

Note that the prefactor involving the liquid crystalline parameters has
dropped out, and the relation (B.6) is the same as in the isotropic
case [59].

To get another equation involving g and U, we demand that the force
on the swimmer vanish. It is simpler and equivalent to demand that the
force on the wall at y = 1 vanishes,

2z
/ o,,(§=1Ddx =0. (B.9)
0
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According to the lubrication scaling, the stress to leading order is given

. dii

5= (1+,4*/2)a—‘f (B.10)

Integrating the stress leads to
@0 -6)I, +6(1 — Q)I, =0, (B.11)
where
2r ~
dx 2z

I, = _— = B.12

! /0 -7 Q- ®-12)

Since the liquid-crystalline factors in f have again dropped out, solv-
ing Egs. (B.6) and (B.11) yields O = U, and the isotropic swimming
speed [4]:

3a%
28+ 1
Denoting the time average over a period by angle brackets, the average
flux entrained by the swimmer is given by ( fyl ady) =(0)y=10.
Now that we have solved for Q and U, we can find the flow field.
The flow field is a quadratic polynomial in j:

U= (B.13)

-"{6(1-nY -T[4+7 +72-3y(1+7)|}

i = — . B.14

i T 17 (B.14)

Likewise we can find the angle field by integrating Eq. (28):

N i -1 aY o 2 ~ S - o

=ao—— —F -1 -V|Y(Q-25+Y

0= G- o= D254 )
+ﬁ(—1+y+y1?—1?2]}, (B.15)

where

* K3 1-1
a= K—lEr 5 (B.16)
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