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a b s t r a c t 

Boundaries can have a significant impact on the physics of microorganism locomotion. Here we examine the effects of confinement by a rigid boundary or symmetric

channel on undulatory locomotion in an anisotropic fluid, treated as a nematic liquid crystal. The competition between hydrodynamics, fluid elasticity, and anchoring

conditions results in a complex locomotion problem with unique transport properties. We examine this problem analytically using a well-known mathematical model,

an infinite swimming sheet with small wave amplitude, and numerically for large amplitude waves using a modification of the immersed boundary method. For a

prescribed stroke and strong planar anchoring in the narrow channel, we demonstrate that the swimming speed approaches its Newtonian value, though the power

required to maintain the swimmer’s speed depends on the properties of the liquid crystal. We also show that an unusual prograde swimming (in the direction of

transverse wave propagation) theorized to exist at small wave amplitude persists at large amplitude, and that the presence of a sufficiently close boundary returns

the swimming behavior to the more standard retrograde motion (opposite the direction of the traveling wave).
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. Introduction

The theory of swimming microorganisms is of importance to inter-

isciplinary topics spanning microbiology, medicine, and applied math-

matics [1] . With the exception of marine microorganisms, locomotion

argely occurs in confinement, and hydrodynamic forces induce long-

ange interactions between a shape-changing body and flexible or in-

exible solid boundaries. The original works on an infinite waving sheet

the Taylor swimmer [2] ) locomoting near an inflexible solid bound-

ry in a Newtonian fluid showed that the presence of the wall tends to

ncrease the swimming speed for a prescribed swimming stroke [3,4] .

hese works studied two complementary limits: the small-amplitude ap-

roximation in which the swimmer amplitude is small compared to the

wimmer wavelength [3] , and the lubrication approximation in which

he swimmer wavelength is long relative to the distance to the wall [4] .

xtensions of these studies have included the effects of confinement in

sotropic complex fluids [5–7] , on flagellar shapes [8] , in large ampli-

ude simulations [9,10] , on helical waves [11,12] , and with wall elas-

icity [7,13,14] . More generally, the behavior of finite-sized active par-

icles near flat surfaces has seen considerable attention in both Newto-

ian [15–19] and non-Newtonian fluids [20,21] . Dynamics in confine-

ent with more complex geometries (including funnels and gears) have

esulted in particularly interesting trajectories [22–35] . For recent re-

iews of the field see Refs. [36–38] . In all of the works above the fluid

as been assumed to be isotropic. In this article we study a Taylor swim-

er near a surface in an anisotropic complex fluid. 
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A typical model for anisotropic fluids is a liquid crystal, which has

rientational order but not positional order [39] . Recent experimental

nvestigations have shown that self-propelled bacteria in a nematic liq-

id crystal swim along the molecular director field [40–42] . This princi-

al behavior has been exploited to extract mechanical work in the trans-

ort of passive colloids [43,44] , and shown to result in anomalous super-

iffusion [45] and bacterial entrapment in topological defects [46] . In

ddition, this choice of medium is prompted by the commonalities be-

ween liquid crystals and several environments populated by bacteria,

uch as extracellular DNA suspensions [47] and flocks confined to very

hin films, where recent experiments have revealed the existence of ne-

atic order for dense populations [48] . Other biological environments

hich contain long biopolymers also show signs of liquid crystalline

rder, including various types of mucus [49–52] . 

Our previous work on locomotion in hexatic [53,54] and ne-

atic [55] liquid crystals revealed novel properties which suggest that

he extension to confined spaces may be of interest in both biological

nd technological applications. In the absence of confinement, tuning

he material parameters of the liquid crystal was found to either en-

ance or reduce the swimming speed, even changing the direction of

wimming for a given swimmer waveform. In particular, for certain sets

f fluid properties the swimmer’s waveform can remain stationary in the

ab frame even though it is continuously passing a traveling wave along

ts body. In addition, this work suggests that an unconfined swimmer al-

ays induces a global volumetric flux in the fluid, which is so far unique

o anisotropic fluids and suggests novel mechanisms for pumping which
ctober 2019
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Fig. 1. Geometry of the confined locomotion problem in two-dimensions. An 

infinite sheet passes a traveling transverse wave of amplitude a , wavenumber 

q , and wavespeed 𝑐 = 𝜔 ∕ 𝑞 along its body. The sheet is centered in a channel of 
width 2 d , so that when 𝑎 = 0 the distance between the swimmer and the wall 
is d . The director field is locally represented as 𝐧 = ( cos 𝜃, sin 𝜃) , and the tangent 
angle on the surface of the sheet is 𝜙. 
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𝝈 1 2  
ay find application in microfluidics [56–58] . This led to the design of

 theoretical swimmer which instead of deforming its body via a travel-

ng wave interacts with the liquid crystal instead via a traveling wave of

referred anchoring angle [55] . We therefore seek to understand how

hese effects may change when the system is placed under confinement.

The organization of the paper is as follows. In Section 2 , we de-

ne our model for the Taylor swimmer and reprise the basic scaling

or the small-amplitude and lubrication limits for swimming in a con-

ned Newtonian liquid. We then introduce the equations of nematohy-

rodynamics to be solved in Section 3 . The small-amplitude expansion

s described and analyzed in Section 4 , followed by analysis of the lu-

rication approximation in Section 5 . In both the small-amplitude and

ong-wavelength limits, we find that the swimming speed approaches

he isotropic Newtonian speed as the swimmer approaches the wall. We

resent a numerical method in Section 6 , and compute solutions to the

ull nonlinear equations in Section 7 in order to examine large wave am-

litudes and large director deformations arising from competing bound-

ry conditions on both the swimmer body and the channel wall. Some

losing remarks are given in Section 8 . 

. Swimming in a confined Newtonian fluid 

We begin by reviewing how a swimming microorganism in a Newto-

ian fluid at zero Reynolds number behaves in an unconfined fluid, and

lso how it behaves in a narrow channel. We consider a Taylor swim-

er [2] , or an infinite filament in two dimensions with a traveling wave

f deformation, confined between two walls which are each at a distance

 from the mid-line of the swimmer ( Fig. 1 ). Initially, we consider the

imit d →∞, so that the walls have no impact on the swimmer. Taylor
olved this problem by expanding the Stokes equations and the no-slip

oundary condition on the body of the swimmer in the small amplitude

f the traveling wave. Given a traveling wave amplitude a , frequency

 , and wavenumber q , the governing approximation is 𝜀 = 𝑎𝑞 ≪ 1 . Per-
urbation theory then is used to derive the leading-order contribution to

he swimming speed, 

 Taylor = 

1 
2 

𝜀 2 𝑐, (1)

here c is the wave speed ( 𝑐 = 𝜔 ∕ 𝑞). Here, the swimmer travels opposite
he direction of the traveling wave (retrograde motion), as is typical for

ndulatory swimmers such as mammalian spermatozoa. 

When d is finite, there are three length scales in the problem: d, a ,

nd q . As long as a < d , we may still usefully consider the case of small 𝜀 .

mploying similar methods as Taylor, Reynolds [3] found the swimming

peed at leading order in the confined case to be 

 Reynolds = 

1 
2 

𝜀 2 𝑐 

( 

sinh 2 ( 𝑞𝑑) + 𝑞 2 𝑑 2 

sinh 2 ( 𝑞𝑑) − 𝑞 2 𝑑 2 

) 

. (2)
ote that for fixed a the swimming speed diverges for small qd as 

 Reynolds ∼
3 𝑐𝑎 2 

𝑑 2 
. (3)

owever, the divergence is cut off when d ≈ a , since the calculation be-
omes invalid at 𝑑 = 𝑎 as the swimmer in this case is in physical contact

ith the wall. 

An alternative scheme for perturbative expansion was employed

y Katz [4] (see also [59] ), who used lubrication theory with the as-

umption of a long wavelength relative to the distance to the wall, or

= 𝑞𝑑 ≪ 1 , and found the swimming speed to be 

 Katz = 

3 𝑐 
2 + ( 𝑑∕ 𝑎 ) 2 

(4)

o leading order in 𝛿. The small wavenumber limit of U Reynolds agrees

ith the small amplitude limit of U Katz . 

. Governing equations for a nematic liquid crystal 

We here present the governing equations for a nematic liquid crystal,

long with reduced expressions for the two-dimensional system, rele-

ant boundary conditions, and nondimensionalization. Our conventions

or the field equations follow those of Landau and Lifshitz [60] , spe-

ialized to two dimensions [55] , where the velocity field is written as

 = ( 𝑢, 𝑣 ) and director field as 𝐧 = ( cos 𝜃, sin 𝜃) . The elastic energy density
or deformations of the director is the Frank energy, 

 = 

𝐾 1 
2 
( 𝛁 ⋅ 𝐧 ) 2 + 

𝐾 2 
2 
( 𝐧 ⋅ 𝛁 × 𝐧 ) 2 + 

𝐾 3 
2 

[ 𝐧 × ( 𝛁 × 𝐧 ) ] 2 , (5)

here K 1 is the splay elastic constant, K 2 is the twist elastic constant,

nd K 3 is the bend elastic constant [60,61] , and the two-dimensional

ematic is assumed to be twist-free. The total free energy in the fluid

per unit length) is 𝐸 𝑓 = ∫ d 𝑥 d 𝑦 . 
Equilibrium configurations of the director field are found by mini-

izing E f subject to |𝐧 | = 1 . The stress corresponding to the elastic free
nergy  is 

r 
𝑖𝑘 
= −Π𝑘𝑙 𝜕 𝑖 𝑛 𝑙 − 

𝜆

2 
(
𝑛 𝑖 ℎ 𝑘 + 𝑛 𝑘 ℎ 𝑖 

)
+ 

1 
2 
(
𝑛 𝑖 ℎ 𝑘 − 𝑛 𝑘 ℎ 𝑖 

)
, (6)

here Π𝑘𝑖 = 𝜕 ∕ 𝜕 ( 𝜕 𝑘 𝑛 𝑖 ) , 𝐡 = 𝐇 − 𝐧 ( 𝐧 ⋅𝐇 ) is the transverse part of the
olecular field, 𝐇 = − 𝛿𝐸 𝑓 ∕ 𝛿𝐧 , and repeated indices imply summa-
ion [39,60] . At equilibrium, 𝐡 = 𝟎 . Balancing torques on the directors
mplies the balance of elastic forces, − 𝜕 𝑖 𝑝 eq + 𝜕 𝑗 𝜎

r 
𝑖𝑗 
= 0 , as long as the

ressure is equal to 𝑝 eq = −  [39] . The parameter 𝜆 is not a dissipa-

ive coefficient, but is related to the degree of order and the tempera-

ure of the sample. Rod-like molecules tend to have 𝜆 > 0, and disc-like

olecules tend to have 𝜆 < 0. The parameter 𝜆 is sometimes known as the

tumbling parameter ” since in simple shear flow the director tends to ro-

ate if 𝜆 < 1, and align with the principal direction of shear if 𝜆≥ 1 [61] .

he tumbling parameter varies between 𝜆 = 0 . 6 –0.9 [62] in disodium
romoglycate (DSCG), a lyotropic chromonic liquid crystal used in ex-

eriments on swimming microorganisms in liquid crystals [40,42,63] . 

Meanwhile, the director field has a preferential angle on the bound-

ries of the swimmer and the channel wall due to anchoring conditions.

e will study the case of tangential anchoring, which is the case ob-

erved for the boundaries of microorganisms in DSCG [63] , by including

n additional energy density 

 𝑎 = − 𝑊 ∫
2 𝜋

0 
cos [ 2( 𝜃 − 𝜙) ] d ł − 𝑊̄ ∫

2 𝜋

0 
cos ( 2 𝜃) d ł𝑤 , (7)

here 𝜙 is the (time-dependent) tangent angle of the boundaries (the

angent angle is zero for a flat wall), W and 𝑊̄ are anchoring strengths,

nd d ł and d ł w are infinitesimal line elements along the swimmer and

he wall, respectively. 

The fluid’s viscous stress response to deformation is approximated

y incorporating terms linear in the strain rate that preserve 𝐧 →
 𝐧 symmetry. In an incompressible nematic, the deviatoric viscous
tress [60,61] is 

d = 2 𝜇𝖤 + 2 𝜇 𝐧𝐧 ( 𝐧 ⋅ 𝖤 ⋅ 𝐧 ) + 𝜇 ( 𝐧 𝖤 ⋅ 𝐧 + 𝐧 ⋅ 𝖤 𝐧 ) , (8)
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1 Correcting here a typographical error in Ref. [55] in which a spurious factor 

of m appeared in front of the equation defining A . 
ith 𝖤 = 

[
𝛁 𝐯 + ( 𝛁 𝐯 ) T 

]
∕2 the symmetric rate-of-strain tensor. The shear

iscosity of an isotropic phase is 𝜇, and 𝜇1 and 𝜇2 are viscosities arising

rom the anisotropy. The coefficients 𝜇1 and 𝜇2 can be negative, but

he physical requirement that the power dissipation be positive yields

ounds of 𝜇 > 0, 𝜇2 > −2 𝜇, and 𝜇1 + 𝜇2 > −3 𝜇∕2 . A particular case of
nterest is the parameter set 𝐾 1 = 𝐾 3 , 𝜇1 = 𝜇2 = 0 , and 𝜆 = 0 , which is
he limit of a hexatic liquid crystal [53] . 

The Cauchy momentum equation in the limit of small Reynolds num-

er (the limit relevant to microorganism locomotion [64] ) results in in-

tantaneous force balance, 

∇ 𝑝 + ∇ ⋅
(
𝝈
d + 𝝈

r ) = 𝟎 , (9)

nd mass conservation is satisfied by demanding that the velocity field

s divergence free, ∇ ⋅ 𝐯 = 0 . Torque balance is expressed by 

 𝑡 𝐧 + 𝐯 ⋅ 𝛁 𝐧 − 

1 
2 
( 𝛁 × 𝐯 ) × 𝐧 = 𝜆( 𝐈 − 𝐧𝐧 ) ⋅ 𝖤 ⋅ 𝐧 + 

1 
𝛾
𝐡 , (10)

here 𝛾 is a rotational or twist viscosity and nn is a dyadic prod-

ct [60,61] . In DSCG, 𝛾/ 𝜇 ranges from roughly 5 to 50 [65] . The viscous

orque arising from the rotation of the director relative to the local fluid

otation balances with that from the viscous torque through 𝖤 and elas-
ic torque through − 𝐡 . The equations of motion in the two-dimensional
ystem of interest are presented in Appendix A . For the duration we will

ork in the rest frame of the swimmer. 

The no-slip velocity boundary condition is applied on the swimmer

urface and the solid boundary. The swimming body is modeled as an

nfinite sheet undergoing a prescribed transverse sinusoidal undulation

f the form 

 ( 𝑥, 𝑡 ) = 𝑎 sin ( 𝑞𝑥 − 𝜔𝑡 ) , (11)

easured in the frame moving with the swimmer. We will focus only on

ransverse waves. The boundary conditions on the fluid flow are then 

 ( 𝑥, 𝑌 ( 𝑥, 𝑡 )) = 

(
0 , 𝜕𝑌 

𝜕𝑡 
( 𝑥, 𝑡 ) 

)
, (12)

 ( 𝑥, ± 𝑑) = ( 𝑈, 0) , (13)

here − 𝑈 is the (signed) swimming speed which must be determined.

he system is closed by demanding that the swimming body remains

orce-free at all times. 

. Small-amplitude expansion 

We begin by exploiting the assumption of small wave amplitude, 𝜀 =
𝑞 ≪ 1 to perform a semi-analytical calculation of the swimming speed.

or now we also assume that the swimmer is sufficiently well separated

rom the wall, a ≪ d . The passage of transverse waves in a Newtonian

uid results in retrograde swimming, where the swimming body moves

n the direction opposite that of the traveling wave (here, then, with

 > 0) [2] . Among the unusual behaviors theorized for motion in a liquid

rystal, we showed in Ref. [55] that if the rotational viscosity 𝛾 is large

ompared to the shear viscosity 𝜇, then a swimmer in an unbounded

iquid crystal instead performs prograde swimming, self-propulsion in

he same direction as the direction of wave propagation ( U < 0). 

In this section we show that as the distance to a nearby wall de-

reases, there is an increasing contribution to the swimming velocity in

he direction opposite to the direction of the prescribed swimmer wave-

orm. Thus, in a fluid with a large rotational viscosity, a swimmer will

wim in the same direction as the waveform far from the wall, but slow

own, reverse direction, and then swim faster and faster as the distance

o the wall decreases. 

For completeness we provide a brief outline of the calculation of the

wimming speed to second-order in amplitude; the derivation of these

teps and the fine details can be found in Ref. [55] . 
.1. Nondimensionalization 

We treat x, y , and t as dimensionless variables by measuring length

n units of 𝑞 −1 and time in units of 𝜔 
−1 . Dimensionless viscosities are

efined by 𝜇∗ 
1 = 𝜇1 ∕ 𝜇, 𝜇∗ 

2 = 𝜇2 ∕ 𝜇 and 𝛾∗ = 𝛾∕ 𝜇. The swimmer shape in
imensionless form is given by 

 = 𝜀 sin ( 𝑥 − 𝑡 ) , (14)

here 𝜀 = 𝑎𝑞, and in this section we assume 𝜀 ≪ 1. 

The Frank elasticity of the liquid crystal leads to a relaxation time,

efined as 𝜏 = 𝜇∕( 𝐾 3 𝑞 
2 ) . For small-molecule liquid crystals, typical val-

es are 𝜇 ≈ 10 −2 Pa s and 𝐾 3 ≈ 10 −11 N; hence, on the length scale of
ypical flagellar wavelengths, for which q ≈1 μm 

−1 , the relaxation time

s 𝜏 ≈1 ms. Comparing the typical viscous stress in Eq. (8) with the typi-
al elastic stress in Eq. (6) , we define the Ericksen number [61] , Er = 𝜔𝜏,

r 

r = 

𝜇𝜔 

𝐾 3 𝑞 
2 . (15) 

he beat frequencies and wavenumbers of cilia and flagella vary

idely [66,67] , and for experiments on bacteria in liquid crystals the

ricksen number can range from Er ≈ 10 −1 [40,63] to Er ≈10 1 [42] . Fi-
ally, the ratio of Frank constants is denoted by 𝐾 𝑟 = 𝐾 1 ∕ 𝐾 3 , and we

efine 𝑈 
∗ = 𝑈∕ 𝑐 (with 𝑐 = 𝜔 ∕ 𝑞 the wavespeed), and 𝑄 

∗ = 𝑄 ∕( 𝜔𝜀 2 ∕ 𝑞 2 ) ,
he dimensionless volumetric flux. 

.2. First order in amplitude 

It is convenient to enforce fluid incompressibility by introducing the

tream function 𝜓( x, y ), which is related to the velocity via 𝐯 = ∇ 
⟂𝜓 =

 𝜓 𝑦 , − 𝜓 𝑥 ) . Expanding the stream-function as 𝜓 = 𝜀𝜓 
(1) + 𝜀 2 𝜓 

(2) + … and

he director angle as 𝜃 = 𝜀𝜃(1) + 𝜀 2 𝜃(2) + … , the governing equations to

rst order in 𝜀 are 

∇ 
4 𝜓 

(1) + 

4 𝜇∗ 
1 

2 + 𝜇∗ 
2 

𝜕 2 
𝑥 
𝜕 2 

𝑦 
𝜓 

(1) + 

1 
(2 + 𝜇∗ 

2 ) Er 

×
{ 

(1 + 𝜆) 𝜕 4 
𝑥 
𝜃(1) + 

[
𝐾 𝑟 (1 + 𝜆) + 1 − 𝜆

]
𝜕 2 

𝑥 
𝜕 2 

𝑦 
𝜃(1) +𝐾 𝑟 (1 − 𝜆) 𝜕 4 

𝑦 
𝜃(1) 

} 

= 0 , (16) 

 𝑡 𝜃
(1) + 

1 + 𝜆

2 
𝜕 2 

𝑥 
𝜓 

(1) + 

1 − 𝜆

2 
𝜕 2 

𝑦 
𝜓 

(1) − 

1 
Er 𝛾∗ 

(
𝜕 2 

𝑥 
𝜃(1) + 𝐾 𝑟 𝜕 

2 
𝑦 
𝜃(1) 

)
= 0 . (17)

hese equations are solved by sums of complex exponentials 𝜓 
(1) =

 [ ̃𝜓 
(1) ] and 𝜃(1) = ℜ [ ̃𝜃(1) ] , where 

̃ (1) = 

6 ∑
𝑗=1 

𝑐 𝑗 𝑒 
𝑟 𝑗 𝑦 +i( 𝑥 − 𝑡 ) , 𝜃(1) = 

6 ∑
𝑗=1 

𝑑 𝑗 𝑒 
𝑟 𝑗 𝑦 +i( 𝑥 − 𝑡 ) . (18)

he characteristic decay rates r j are found by inserting (18) into (16) and

17) , leading to a cubic equation for 𝑚 = 𝑟 2 
𝑗 
, 𝐴 3 𝑚 

2 + 𝐴 2 𝑚 
2 + 𝐴 1 𝑚 + 𝐴 0 =

 , where 1 

 3 = 𝐾 𝑟 

[
𝛾∗ ( −1 + 𝜆) 2 + 4 + 2 𝜇∗ 

2 
]
, 

 2 = 𝐴 0 + 4 𝛾∗ 𝜆 + 2 𝐾 𝑟 

[
𝛾∗ 
(
−1 + 𝜆2 

)
− 4 − 4 𝜇∗ 

1 − 2 𝜇∗ 
2 
]
, 

 1 = 𝐾 𝑟 

[
𝛾∗ (1 + 𝜆) 2 + 2(2 + 𝜇∗ 

2 ) 
]
+ 2 

(
4 + 4 𝜇∗ 

1 + 2 𝜇∗ 
2 
)

+ 𝛾∗ 
[
1 − 𝜆2 − 2i Er (2 + 2 𝜇∗ 

1 + 𝜇∗ 
2 ) 
]
, 

 0 = −2 
(
2 + 𝜇∗ 

2 
)
+ 𝛾∗ 

[
−(1 + 𝜆) 2 + 2i Er (2 + 𝜇∗ 

2 ) 
]
. (19) 

he relationship between the coefficients c j and d j is determined by the

overning equations for the stream function and the angle field, result-

ng in 

 𝑗 = 𝑐 𝑗 

Er 𝛾∗ 
[
1 + 𝜆 − (1 − 𝜆) 𝑟 2 

𝑗 

]
2 
(
1 − 𝐾 𝑟 𝑟 

2 
𝑗 
− i Er 𝛾∗ 

) . (20)
1 
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Fig. 2. Swimming speed for a swimmer near a wall (relative to the Newtonian 

swimming speed far from the wall), in the limit of small amplitude aq ≪ 1. For 

the nematic plot, 𝐾 𝑟 = 𝐾 1 ∕ 𝐾 3 = 1 . 2 , 𝜆 = 0 . 6 , and 𝜇1 ∕ 𝜇 = 𝜇2 ∕ 𝜇 = 1 . Both liquid 
crystalline phases have 𝛾∕ 𝜇 = 50 , Er = 0 . 1 , and strong parallel anchoring is en- 
forced both on the body of the swimmer and on the solid boundary. Horizontal 

black lines indicate the unconfined swimming speeds from [55] . 
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he rest of the coefficients are determined by the boundary conditions,

hich to second order in the angle field are written as 

 𝜕 𝑦 𝜃 + 𝑤 ( 𝜃 − 𝜕 𝑥 𝑌 ) 
|||𝑦 = 𝑌 ( 𝑥,𝑡 ) 

= 0 , (21)

 𝜕 𝑦 𝜃 + 𝑤̄ 𝜃
|||𝑦 =± 𝑞𝑑 

= 0 , (22)

here 𝑤 = 𝑊 ∕( 𝑞𝐾 1 ) and 𝑤̄ = 𝑊̄ ∕( 𝑞𝐾 1 ) are dimensionless anchoring
trengths on the swimmer and wall, respectively. The swimming speed

as no contribution at first order: with 𝑈 = 𝜀𝑈 
(1) + 𝜀 2 𝑈 

(2) + … , taking

 → − 𝜀 amounts to a simple phase shift of the waveform, thus demand-

ng that 𝑈 
(1) = 0 . We must therefore proceed to second order in the am-

litude 𝜀 in order to find the leading order contribution to the swimming

peed. 

.3. Second order in amplitude 

Although the small-amplitude swimming speed U sa is a second-order

uantity in 𝜀 , it is possible to write it as an integral over quadratic com-

inations of first-order quantities: 

 sa = − 

⟨
𝑌 𝜕 𝑦 𝑣 

(1) 
𝑥 

⟩|𝑦 =0 − 𝛼 ∫
𝑞𝑑 

0 

[
𝛾∗ (1 − 𝜆) 𝑔 + (2 + 𝜇∗ 

2 ) 𝑦𝑓 
]
d 𝑦, (23)

here 𝛼 = 2[ 𝛾∗ (1 − 𝜆) 2 + 2(2 + 𝜇∗ 
2 )] 

−1 , and the operation ⟨ · ⟩ indicates
hat an average of the bracketed quantity is to be performed over one

wimmer wavelength in x . Note that while here we have obtained this

xpression by simply solving the equations, in general this can also be

ccomplished via the reciprocal theorem [68] . The first-order quantities

 and g are given by 

 = 

𝑘 1 
Er 

⟨ 
𝜕 𝑥 𝜃

(1) 𝜕 2 
𝑦 
𝜃(1) 

⟩ 
+ 

4 𝜇∗ 
1 

2 + 𝜇∗ 
2 

⟨
𝛁 𝜃(1) ⋅ 𝜕 𝑦 𝐯 (1) 

⟩
, (24)

 = 

⟨
𝐯 (1) ⋅ 𝛁 𝜃(1) 

⟩
− 2 𝜆

⟨
𝜕 𝑥 𝜃

(1) 𝑣 (1) 
𝑥 

⟩
− 

𝑘 2 
𝛾∗ Er 

⟨
𝜕 𝑦 𝜃

(1) 𝜕 𝑥 𝜃
(1) ⟩, (25)

ith 𝑘 1 = [ 𝐾 𝑟 (1 + 𝜆) + 1 − 𝜆]∕ (2 + 𝜇∗ 
2 ) and 𝑘 2 = 𝐾 𝑟 − 1 . The results are

lotted in Fig. 2 . When qd is large, we recover the results of

efs. [53,55] for swimming in an infinite fluid. As qd →0, the depen-

ence on liquid crystalline parameters is overwhelmed by the diverging

ewtonian component; in the Newtonian limit, we recover the speed

ound by Reynolds [3] , given in Eq. (2) . 

Notably, for rheological parameters that lead to negative U in an un-

ounded fluid (in particular, large 𝛾/ 𝜇), the swimming speed does not

iverge to negative infinity, but instead reverses and passes through pos-

tive swimming speeds on its way to positive infinity. The nature of the
low-up as qd →0 is described exactly by Eq. (2) – terms depending on

iquid crystalline properties remain  (1) for all qd , whereas Newtonian
erms blow up proportional to ( 𝑞𝑑) −2 . The volumetric flux Q 

∗ of fluid

umped by the swimmer also decays to zero as qd →0. 

. Small-wavenumber (lubrication) expansion 

Since the expressions for the swimming speed near a wall for a low-

mplitude swimmer are too unwieldy to display, we turn to the lubri-

ation approximation to try to get more insight into the problem in the

imit when 𝛿 = 𝑞𝑑 is small but a / d can take any value less than one. We

ork in the limit in which the anchoring strength is so strong that the

irector is always parallel to the swimmer surface, which is achieved in

ractice for 𝑤 =  (10) or above. This problem has been treated for swim-

ing in a Newtonian fluid [4,59,69] , and in an isotropic viscoelastic

uid [6] . The lubrication approach has also been applied to the spread-

ng of liquid crystal droplets; see e.g. [70] and references therein. 

Because we use a different choice for nondimensionalization than

n Section 4 , we define new dimensionless variables, measuring length

long x by the wavelength, and length along y by the gap between the

wimmer and the wall: 𝑥̃ = 𝑞𝑥, 𝑦̃ = 𝑦 ∕ 𝑑, 𝑢 = 𝑐 ̃𝑢 , 𝑣 = 𝛿𝑐 ̃𝑣 , and ̃𝑡 = 𝜔𝑡 . The

hoices for the relative scaling of the velocity components u and v are the

sual ones in lubrication theory, dictated by incompressibility. Balance

f viscous forces with pressure gradients suggests 𝑝̃ = 𝑞𝑑 2 𝑝 ∕( 𝜇𝑐) . Also,
he strong anchoring condition forces the director angle 𝜃 to equal the

lope of the swimmer at the swimmer surface. Since this slope is small

n the lubrication limit, we define 𝜃 = 𝛿𝜃, where 𝜃 is expected to be of

rder unity. 

Next, we write the governing equations in the dimensionless vari-

bles. Many of the terms drop out to leading order in 𝛿. For example,

he Frank free energy density is dominated by the splay contribution

hen 𝛿 ≪ 1, 

 ≈
𝐾 1 
2 

𝛿2 

𝑑 2 

( 

𝜕 ̃𝜃

𝜕 ̃𝑦 

) 2 
, (26)

eading to a greatly simplified molecular field h . Similarly, the stresses

ave only a few terms at leading order in 𝛿: 

r = 

𝛿

𝑑 2 
𝐾 1 
2 

𝜕 2 ̃𝜃

𝜕 ̃𝑦 2 

(  ( 𝛿) 1 − 𝜆

−1 − 𝜆  ( 𝛿) 

) 

, 𝝈d = 

𝜇𝑐 

𝑑 

𝜕 ̃𝑢 

𝜕 ̃𝑦 

(  ( 𝛿) 2 + 𝜇∗ 
2 ∕2 

2 + 𝜇∗ 
2 ∕2  ( 𝛿) 

) 

. 

(27) 

alancing moments and forces leads to the lubrication equations for a

ematic, 

1 − 𝜆

2 
𝜕 ̃𝑢 

𝜕 ̃𝑦 
− 

1 
𝛾∗ 

𝐾 1 
𝐾 3 

1 
Er 

𝜕 2 ̃𝜃

𝜕 ̃𝑦 2 
= 0 , (28)

 

𝜕 ̃𝑝 

𝜕 ̃𝑥 
+ 

( 

1 + 

𝜇∗ 
2 
2 

) 

𝜕 2 𝑢̃ 

𝜕 ̃𝑦 2 
+ 

1 − 𝜆

2 Er 
𝐾 1 
𝐾 3 

𝜕 3 ̃𝜃

𝜕 ̃𝑦 3 
= 0 , (29)

 

𝜕 ̃𝑝 

𝜕 ̃𝑦 
= 0 , (30)

𝜕 ̃𝑢 

𝜕 ̃𝑥 
+ 

𝜕 ̃𝑣 

𝜕 ̃𝑦 
= 0 . (31)

The no-slip boundary conditions on the fluid are 

 ̃𝑢 , ̃𝑣 ) |||𝑦̃ =±1 = ( ̃𝑈 , 0) , (32)

 ̃𝑢 , ̃𝑣 ) |||𝑦̃ =( 𝑎 ∕ 𝑑) sin ( ̃𝑥 − ̃𝑡 ) = 

(
0 , − 

𝑎 

𝑑 
cos ( ̃𝑥 − ̃𝑡 ) 

)
, (33)

here 𝑈̃ is the unknown dimensionless swimming speed. The strong-

nchoring boundary conditions on the director field are 

̃( ̃𝑥 , 1) = 0 , (34)

̃
(
𝑥̃ , 

𝑎 sin ( ̃𝑥 − ̃𝑡 ) 
)
= 

𝑎 cos ( ̃𝑥 − ̃𝑡 ) . (35)

𝑑 𝑑 
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Fig. 3. Dimensionless power consumption in the lubrication limit versus swim- 

ming speed, for 𝐾 1 = 𝐾 3 , 𝜇 = 𝜇2 , 𝜆 = 0 . 75 , strong parallel anchoring on all sur- 
faces and 𝛾 = 1 (gold), 𝛾 = 25 (green), and 𝛾 = 100 (red). The blue line corre- 
sponds to the Newtonian case. Note that the value of the Ericksen number is not 

given, as the Ericksen number disappears from the dynamics in Eqs. (36) –(37) . 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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liminating the angle field via the torque-balance Eq. (28) leads to 

 

𝜕 ̃𝑝 

𝜕 ̃𝑥 
+ 𝛽

𝜕 2 𝑢̃ 

𝜕 ̃𝑦 2 
= 0 , (36)

here 

= 1 + 

𝜇∗ 
2 
2 

+ 

𝛾∗ (1 − 𝜆) 2 

4 
. (37)

ote that the Ericksen number disappears completely from the dynam-

cs in the lubrication limit. Furthermore, since the Eqs. (36) and (30) are

dentical to the lubrication equations for isotropic Stokes flow with di-

ensionless pressure 𝑝̃ replaced by 𝑝̃ ∕ 𝛽, the flow field and swimming

elocity are the same as in the isotropic case. For completeness, we in-

lude the derivation of the flow field and swimming velocity in Appendix

 . 

Solving the equations yields the dimensional swimming speed which

as found by Katz [4] , given in Eq. (4) . The time-averaged volumetric

ux, a hallmark of unconfined swimming in a liquid crystal, also van-

shes in the lab frame. Therefore, we find that for a nematic liquid crystal

ith strong planar anchoring conditions, the swimming speed and flux

re the same as in the isotropic Newtonian case. 

However, the power consumed by the swimmer is not the same as

n a Newtonian fluid. The power dissipated in the fluid can be written

s 

 = 𝝈
𝑑 ∶ 𝖤 + 

1 
𝛾
|𝐡 |2 , (38)

ith the convention 𝐀 ∶ 𝐁 = 𝐴 𝑖𝑗 𝐵 𝑖𝑗 . Expanding in powers of 𝛿 and using

he equations of motion to simplify gives the leading-order contribution,

 = 

( 

1 + 

𝜇2 
2 𝜇

) [ 
1 + 

𝛾(1 − 𝜆) 2 

4 𝜇

] 
 0 , (39)

here  0 = ( 𝜕 𝑢 ∕ 𝜕 𝑦 ) 2 is the isotropic Newtonian power density. Writing
 = ∫ 2 𝜋

0 d ̃𝑥 ∫ 1 
𝑌 
d ̃𝑦  , and noting that 

 0 = ∫
2 𝜋

0 
d ̃𝑥 ∫

1 

𝑌 

d ̃𝑦  0 = 

12 𝜋𝑎̃ 2 √
1 − 𝑎̃ 2 (1 + 2 ̃𝑎 2 ) 

, (40)

here 𝑎̃ = 𝑎 ∕ 𝑑, we plot the ratio of nondimensionalized speed and

ondimensionalized power for several liquid crystal parameters in

ig. 3 . In the presence of the liquid crystal, the swimmer must inject

ore power per unit wavelength into the fluid to swim at the same

peed, consistent with earlier results for a swimmer in an unbounded

iquid crystal [53] . 
. An immersed boundary method for flowing nematic liquid 

rystals 

To compute the dynamics of the flowing liquid crystal and its cou-

ling to the swimmer and boundaries we develop an adaptation of the

lassical immersed boundary method [71] , which has been applied to

imilar swimming problems in viscoelastic fluids [7,72–76] . In order to

nclude anchoring conditions of arbitrary strength we include an extra

olumetric torque in the molecular field, writing 

 = ∇ 
2 𝜃 + ℎ 𝑎 ( 𝜃) , (41)

 
𝑎 ( 𝜃) = ∫𝜕Ω

𝑤 ( 𝐗 ( 𝑠 )) sin ( 𝜙( 𝐗 ( 𝑠 ) ) − 𝜃) 𝛿( 𝐱 − 𝐗 ( 𝑠 )) 𝑑𝑠, (42)

here the boundary surface (both swimmer and wall), denoted by 𝜕Ω, is
arameterized by 𝐗 ( 𝑠 ) = ( 𝑋( 𝑠 ) , 𝑌 ( 𝑠 )) with s the arc-length, w ( X ) the di-

ensionless anchoring strength, and 𝜙 = tan −1 ( 𝑌 𝑠 ∕ 𝑋 𝑠 ) the tangent angle
the preferred director angle for the assumed planar anchoring condi-

ions). The elastic force density on the fluid is modified to include the

nchoring contributions, resulting in 

 𝑒 ( 𝜃) = ∇ ⋅ ( 𝝈𝑟 + 𝝈
𝑎 ) = −∇ 

2 𝜃 ∇ 𝜃 − 

1 
2 
∇( |∇ 𝜃|2 ) + (∇ 

2 𝜃 + ℎ 𝑎 )∇ ⋅ 𝐑 ( 𝜃) 

+ 𝐑 ( 𝜃) ⋅ ∇(∇ 
2 𝜃 + ℎ 𝑎 ) + ∇ 

⟂ℎ 𝑎 ( 𝜃) , (43) 

ith R defined in Eq. (A.2) , and ∇ 
⟂ = 𝐱̂ 𝜕 𝑦 − ̂𝐲 𝜕 𝑥 . Finally, the director

eld evolution equation is modified to 

𝑡 + 𝐯 ⋅ ∇ 𝜃 + 

1 
2 
( 𝑢 𝑦 − 𝑣 𝑥 ) = 𝜆

( cos 2 𝜃
2 

( 𝑢 𝑦 + 𝑣 𝑥 ) − sin 2 𝜃 𝑢 𝑥 

)
+ 

1 
𝛾∗ Er 

(
∇ 
2 𝜃 + ℎ 𝑎 ( 𝜃) 

)
. (44) 

n the immersed boundary method the delta function is replaced by a

iscrete delta function with finite but compact support, and is chosen to

nsure moment balance conditions that attempt to remove the depen-

ence on grid location. Here we use the original discrete delta function

rom Ref. [77] with a four-point footprint in each dimension: 

ℎ ( 𝐱) = 

1 
Δ𝑥 Δ𝑦 

𝑑 ℎ 

(
𝑥 

Δ𝑥 

)
𝑑 ℎ 

( 

𝑦 

Δ𝑦 

) 

, (45)

here 

 ℎ ( 𝑟 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 
8 

(
3 − 2 𝑟 + 

√
1 + 4 𝑟 − 4 𝑟 2 

)
0 ≤ |𝑟 | < 1 , 

1 
8 

(
5 − 2 𝑟 − 

√
−7 + 12 𝑟 − 4 𝑟 2 

)
1 ≤ |𝑟 | < 2 , 

0 |𝑟 | ≥ 2 . 

(46)

preading operators which carry information from the body onto the

uid, and vice versa, are then defined as 

 
ℎ 
𝑛 
[ 𝐅 ( 𝐗 )] = ∫𝜕Ω

𝐅 ( 𝐗 ) 𝛿ℎ ( 𝐱 − 𝐗 𝑛 ( 𝑠 )) 𝑑𝑠, (47)

 𝑆 
𝑛 
ℎ 
) ∗ [ 𝐟 ( 𝐱)] = ∫Ω 𝐟 ( 𝐱) 𝛿ℎ ( 𝐱 − 𝐗 𝑛 ) 𝑑𝑉 , (48)

here the subscript ‘n’ indicates that the surface X n over which the in-

egral is performed may differ from the surface X on which the func-

ion F is defined. For a given geometry (in practice, at the beginning

f each timestep), we create sparse matrices representing the spreading

peration, and we also form the sparse operator 𝑆 
𝑛 
ℎ 
( 𝑆 

𝑛 
ℎ 
) ∗ . Spreading is

chieved using sparse matrix-vector multiplication for the duration of

he timestep. Precomputing in this way makes the computational cost

f spreading information to and from the surface negligible relative to

ther aspects of the time-stepping algorithm, which we presently de-

cribe. 

The Leslie–Ericksen equations are advanced using semi-implicit

ime-stepping with a similar technique to that discussed in Ref. [78] ,

iscretizing in time as follows, where superscripts indicate the timestep,

.g. 𝐯 𝑛 = 𝐯 ( 𝑡 = 𝑡 𝑛 ) : 

∇ 𝑝 𝑛 +1 + ∇ ⋅ 𝝈𝑣 
(
𝐯 𝑛 +1 ; ̃𝜃𝑛 +1 ) + 𝐟 𝑒 

(
𝜃𝑛 +1 ; ̃𝜃𝑛 +1 ) = − 𝑆 

𝑛 
[
𝐅 ( 𝐗 

𝑛 +1 ) 
]
, (49)
ℎ 
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p

 ⋅ 𝐯 𝑛 +1 = 0 , (50)

𝑛 +1 + 

Δ𝑡 

2 

(
𝑢 𝑛 +1 

𝑦 
− 𝑣 𝑛 +1 

𝑥 

)
− 

Δ𝑡 

𝛾 ′ Er 
ℎ 
(
𝜃𝑛 +1 ) = 𝜃𝑛 + Δ𝑡 𝑁 

(
𝐯̃ 𝑛 +1 , ̃𝜃𝑛 +1 ), (51)

 
𝑛 +1 = 𝐗 

𝑛 + Δ𝑡 ( 𝑆 
𝑛 
ℎ 
) ∗ 
[
𝐯 𝑛 +1 

]
, (52)

here we have defined 

( 𝐯 , 𝜃) = 𝜆

( cos 2 𝜃
2 

( 𝑢 𝑦 + 𝑣 𝑥 ) − sin 2 𝜃 𝑢 𝑥 

)
− 𝐯 ⋅ ∇ 𝜃, (53)

 𝑒 

(
𝜃𝑛 +1 ; ̃𝜃𝑛 +1 ) = − ∇ ̃𝜃𝑛 +1 ∇ 

2 𝜃𝑛 +1 + ∇ ⋅ 𝐑 ( ̃𝜃𝑛 +1 ) ℎ ( 𝜃𝑛 +1 ) 

+ 𝐑 

(
𝜃𝑛 +1 ) ⋅ ∇ ℎ 

(
𝜃𝑛 +1 ) + ∇ 

⟂ℎ 𝑎 
(
𝜃𝑛 +1 ), (54)

 ( 𝜃𝑛 +1 ) = ∇ 
2 𝜃𝑛 +1 + 𝑤 ( 𝐗 

𝑛 +1 ) 𝑆 
𝑛 
ℎ 

[
𝜙( 𝐗 

𝑛 +1 ) − ( 𝑆 
𝑛 
ℎ 
) ∗ 𝜃𝑛 +1 ]. (55)

he quantities 𝐯̃ 𝑛 +1 = 2 𝐯 𝑛 − 𝐯 𝑛 −1 and 𝜃𝑛 +1 = 2 𝜃𝑛 − 𝜃𝑛 −1 are extrapola-

ions to time 𝑡 𝑛 +1 from information at previous time-steps. We have

ncluded in Eq. (49) a surface force density F ( X ) associated with the

oundary material properties, to be described below. This force is com-

uted at the advance time 𝑡 𝑛 +1 , but is spread onto the surrounding fluid

t the previous surface location (the semi-implicit approximation). The

nclusion of a second surface is straight-forward in this approach. 

It is convenient to define an auxiliary pressure p ∗ and velocity field

 ∗ with the properties that 𝑝 = − Er ∇ 
2 𝑝 ∗ and 𝐯 = 𝐯 ∗ − ∇ 𝑝 ∗ , for then

∇ 𝑝 + Er ∇ 
2 𝐯 = Er ∇ 

2 𝐯 ∗ , which removes the pressure from the momen-

um balance equation [79,80] . Using ∇ ⋅ 𝐯 = 0 we find that ∇ 
2 𝑝 ∗ = ∇ ⋅ 𝐯 ∗ ,

nd 𝐯 = ( 𝐈 − ∇(∇ 
2 ) −1 ∇ ⋅) 𝐯 ∗ . Eq. (49) –(52) may then be written as a large

inear system, 
  𝑣 ∗ 𝑣 ∗ 

 𝑣 ∗ 𝜃 𝜃𝑣 ∗ 
 𝜃𝜃

) ( 

𝐯 𝑛 +1 ∗ 
𝜃𝑛 +1 

) 

= 𝐀 ( 𝐗 
𝑛 +1 ) + 𝐁 , (56)

here (with care in distinguishing the auxiliary velocity field v ∗ from

he true velocity field v ), 

 𝑣 ∗ 𝑣 ∗ 
𝐯 𝑛 +1 ∗ =  𝑣𝑣 

(
𝐈 − ∇(∇ 

2 ) −1 ∇ ⋅
)
𝐯 𝑛 +1 ∗ = ∇ ⋅ 𝝈𝑣 

(
𝐯 𝑛 +1 ; ̃𝜃𝑛 +1 ), (57)

 𝑣 ∗ 𝜃
𝜃𝑛 +1 = −∇ ̃𝜃𝑛 +1 (∇ 

2 𝜃𝑛 +1 ) + ∇ ⋅ 𝐑 

(
𝜃𝑛 +1 )(∇ 

2 𝜃𝑛 +1 − 𝑤𝑆 
𝑛 
ℎ 
( 𝑆 

𝑛 
ℎ 
) ∗ 𝜃𝑛 +1 )

+ 𝐑 ( ̃𝜃𝑛 +1 ) ⋅ ∇ 

(
∇ 
2 𝜃𝑛 +1 − 𝑤𝑆 

𝑛 
ℎ 
( 𝑆 

𝑛 
ℎ 
) ∗ 𝜃𝑛 +1 ), (58)

 𝜃𝑣 ∗ 
𝐯 𝑛 +1 ∗ =  𝜃𝑣 

(
𝐈 − ∇(∇ 

2 ) −1 ∇ ⋅
)
𝐯 𝑛 +1 ∗ = 

Δ𝑡 

2 
( 𝑢 𝑛 +1 

𝑦 
− 𝑣 𝑛 +1 

𝑥 
) , (59)

 𝜃𝜃𝜃𝑛 +1 = 𝜃𝑛 +1 − 

Δ𝑡 

𝛾 ′ Er 
(
∇ 
2 𝜃𝑛 +1 − 𝑤𝑆 

𝑛 
ℎ 
( 𝑆 

𝑛 
ℎ 
) ∗ 𝜃𝑛 +1 ), (60)

nd 

 ( 𝐗 𝑛 +1 ) = 
( − 𝑆 𝑛 

ℎ 

[
𝐅 ( 𝐗 𝑛 +1 ) 

]
− 𝑤 ∇ ⋅𝐑 

(
𝜃𝑛 +1 )𝑆 𝑛 

ℎ 

[
𝜙
(
𝐗 𝑛 +1 

)]
− 𝑤 𝐑 

(
𝜃𝑛 +1 )⋅∇ 𝑆 𝑛 

ℎ 

[
𝜙( 𝐗 𝑛 +1 ) 

]
𝑤 Δ𝑡 

𝛾 ′ Er 
𝑆 𝑛 

ℎ 

[
𝜙( 𝐗 𝑛 +1 ) 

] ) 

, 

(61)

 = 

( 

𝟎 
𝜃𝑛 + Δ𝑡𝑁 

(
𝐯̃ 𝑛 +1 , ̃𝜃𝑛 +1 )) 

. (62)

The fluid domain is taken to be periodic with dimensions L x × L y ,
nd we define the grid ( 𝑥 𝑗 , 𝑦 𝑘 ) = ( 𝑗ℎ 𝑥 , 𝑘ℎ 𝑦 ) with 𝑗 = 0 , 1 , 2 , … , 𝑁 𝑥 − 1 ,
 = 0 , 1 , 2 , … , 𝑁 𝑦 − 1 , and ( ℎ 𝑥 , ℎ 𝑦 ) = ( 𝐿 𝑥 ∕ 𝑁 𝑥 , 𝐿 𝑦 ∕ 𝑁 𝑦 ) . Time is discretized
niformly with step-size Δt , and we define 𝑡 𝑛 = 𝑛 Δ𝑡 . The immersed body

s discretized by specifying its location at equally-spaced parameter-

zation coordinates s m ∈ [0, 2 𝜋), with 𝑚 = 0 , 1 , … , 𝑀 − 1 . Typical val-
es for the simulations to come are ( 𝐿 𝑥 , 𝐿 𝑦 ) = (2 𝜋, 4 𝜋) , ( 𝑁 𝑥 , 𝑁 𝑦 , 𝑀) =
32 , 64 , 64) , and Δ𝑡 = 10 −4 . Resolution studies show slow convergence of

veraged quantities and the swimming speed; the immersed boundary
ethod is known to be delicate in the context of complex fluids, and we

irect the reader to recent work on new modifications for improvement

n Refs. [81,82] . 

We confine our attention to periodic boundary conditions, and a

seudo-spectral method [83] is used to solve the Leslie–Ericksen sys-

em, Eq. (56) . With periodic boundary conditions imposed the velocity

eld is defined only up to a constant mean velocity which we denote by

 c . Writing the velocity field instead as 𝐯 + 𝐯 𝐜 , where v is the mean-free
art of the velocity which satisfies the equations of motion above, we

lose the system by demanding that the net force in a periodic domain

s zero. A marker-and-cell (MAC) method implementation showed no

ignificant differences in either performance or in the results of the sim-

lations. The system recast in a vorticity-stream function formulation

lso showed no appreciable differences in the results, but the approach

aken here can be more easily extended to three-dimensions. 

Instead of forming the matrix on the left-hand side of (56) , the lin-

ar system is solved (for a given 𝐗 
𝑛 +1 ) using the generalized minimum

esidual (GMRES) method. For a preconditioner we solve the same sys-

em as above but replacing 𝜃𝑛 +1 with 0, and constructing a sparse linear

perator which is rapidly inverted at each iteration of GMRES. This pre-

onditioner is only formed one time only and then used for all future

imulations on the same domain. Using preconditioning, depending on

he situation, the number of iterations required in a standard compu-

ation may be reduced from hundreds of iterations to fewer than 10.

reconditioning is critically important since the flow field must be deter-

ined for each step of a Newton iteration for determining the immersed

ody location. 

At 𝑡 = 0 we select the initial director field 𝜃0 as its equilibrium state

bsent fluid flow, as found by relaxing the system to a static configura-

ion with the velocity field set to zero. With this initial director field we

olve for the instantaneous initial velocity vield, v 0 . For the first time

tep we simply take as first extrapolations 𝐯̃ 1 = 𝐯 0 and 𝜃1 = 𝜃0 . 

.1. Newton iteration for 𝐗 
𝑛 +1 

Following Ref. [78] , the body position is updated by interpolation of

he velocity field (assuming a no-slip boundary condition) via a back-

ard Euler approximation, 

 
𝑛 +1 = 𝐗 

𝑛 + Δ𝑡 ( 𝑆 
𝑛 
ℎ 
) ∗ 
[
𝐯 𝑛 +1 

(
𝐀 ( 𝐗 

𝑛 +1 ) 
)]

, (63)

here A ( X ) is on the right hand side of Eq. (56) , and which depends on

 surface force density F(X) and the anchoring angle 𝜙( X ). Equivalently,

e wish to find the roots of the following nonlinear system: 

 ( 𝐗 ) = 𝐗 − 𝐗 
𝑛 − Δ𝑡 ( 𝑆 

𝑛 
ℎ 
) ∗ 
[
𝐯 𝑛 +1 ( 𝐀 ( 𝐗 ) ) 

]
= 𝟎 , (64)

hich we find using Newton–Raphson iteration. Given an initial guess

 0 , subsequent iterates X k are updated as 

 𝑘 +1 = 𝐗 𝑘 + 𝛿𝐗 , (65)

here 𝐉 𝛿𝐗 = − 𝐆 ( 𝐗 𝑘 ) , (66)

nd 𝐉 = [ 𝜕 𝐆 ∕ 𝜕 𝐗 ]( 𝐗 𝑘 ) . Fortunately, 𝐯 𝑛 +1 is linear in 𝐀 ( 𝐗 
𝑛 +1 ) , so we have

eatly that 

 𝛿𝐗 = 𝛿𝐗 − Δ𝑡 ( 𝑆 
𝑛 
ℎ 
) ∗ 
[
𝐯 𝑛 +1 

(
𝐉 𝐴 𝛿𝐗 

)]
, (67)

here 𝐉 𝐴 = [ 𝜕 𝐀 ∕ 𝜕 𝐗 ]( 𝐗 𝑘 ) . With the inclusion of complex surface forces
e.g. elastic forces) and anchoring conditions, however, the analytical

escription of the Jacobian J A is not a simple task, and numerical dif-

erentiation is slow. Instead we use the following approximation: 

 𝐴 𝛿𝐗 ≈ 1 
𝜀 

(
𝐀 ( 𝐗 𝑘 + 𝜀𝛿𝐗 ) − 𝐀 ( 𝐗 𝑘 ) 

)
, (68)

here we set 𝜀 = 10 −6 [84] . Now Eq. (66) is solved by GMRES iteration,

sually taking only a few iterative steps to converge even without a

reconditioner. 
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Fig. 4. Director fields (left panels) and velocity fields in the lab frame (center panels) at small Ericksen number, with zero anchoring strength, for both small (top 

panels) and large (bottom panels) rotational viscosity. Only part of the periodic computational domain (with dimensions ( 𝐿 𝑥 , 𝐿 𝑦 ) = (2 𝜋, 4 𝜋) ) is shown. The swimming 
speed (right panels) is considerably increased at large rotational viscosity and the flow is bound to a region local to the swimmer. Arrows there indicate the direction 

of swimming; the direction of wave propagation is to the right. The results are consistent with the analytical results derived in Ref. [55] . 
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.2. Tethering to ghost points for bodies with specified shape or gait 

A standard approach in the immersed boundary framework is to con-

ect surface material points to target ghost points Z ( t ) using “springs ”

ith stiffness k . In the event that the surface position is prescribed, we

efine the force density 

 ( 𝐗 
𝑛 +1 ) = − 𝑘 ( 𝐗 

𝑛 +1 − 𝐙 
𝑛 +1 ) , (69)

here 𝐙 
𝑛 +1 = 𝐙 ( 𝑡 𝑛 +1 ) is specified. The preferred molecular direction on

he surface is computed on the target surface 𝜙( 𝐗 
𝑛 +1 ) = 𝜙( 𝐙 ( 𝑡 𝑛 +1 )) , and

he right hand side of Eq. (56) simplifies with 𝐀 ( 𝐗 
𝑛 +1 ) = 𝟎 and 

 = 

( − 𝑆 𝑛 
ℎ 

[
𝐅 ( 𝐙 𝑛 +1 ) 

]
− 𝑤 ∇ ⋅ 𝐑 ( ̃𝜃𝑛 +1 ) 𝑆 𝑛 

ℎ 

[
𝜙( 𝐙 𝑛 +1 ) 

]
− 𝑤 𝐑 ( ̃𝜃𝑛 +1 ) ⋅ ∇ 𝑆 𝑛 

ℎ 

[
𝜙( 𝐙 𝑛 +1 ) 

]
𝜃𝑛 + Δ𝑡𝑁 

(
𝐯̃ 𝑛 +1 , ̃𝜃𝑛 +1 ) + 𝑤 Δ𝑡 

𝛾 ′ Er 
𝑆 𝑛 

ℎ 

[
𝜙( 𝐙 𝑛 +1 ) 

] ) 

. (70)

t each timestep, a constant velocity is added to the target shape Z which

s selected to ensure zero net force in the periodic domain. 

In the present work we will be interested in a surface deformation

ssociated with a swimming body of infinite length, which combines a

rescribed undulatory gait and the resulting rigid body motion from the

onstraint of zero net force (a neutrally buoyant swimmer; see [64] ).

riting the prescribed gait as Z ( t ), the surface moves with speed 𝐗 𝑡 =
 𝑡 + 𝐔 , where U is the unknown swimming speed, and the tethering

orces at time 𝑡 𝑛 +1 are approximated as 

 ( 𝐗 
𝑛 +1 ) = − 𝑘 ( 𝐗 

𝑛 +1 − 𝐙 
𝑛 +1 − Δ𝑡 𝐔 

𝑛 +1 ) . (71)

n the nonlinear system of equations 𝐆 ( 𝐗 ) = 𝟎 shown in Section 6.1 we
ow include the unknown swimming velocity 𝐔 

𝑛 +1 and the constraint

f zero net force, ∫ 𝐿 

0 𝐅 ( 𝐗 
𝑛 +1 ) 𝑑𝑠 = 𝟎 . We require the tethering force to

vercome the viscous drag on the surface, and based on inspection of

q. (A.5) we set 𝑘 = 10 4 Er in the simulations to come. 

. Large-amplitude swimming 

We are now in a position to investigate swimming in a liquid crystal

or large amplitude undulations, and in the presence of boundaries. We
egin by returning to a setting with no confining boundaries to probe

he following question. Does the unexpected transition from retrograde

o prograde locomotion in an infinite fluid with large rotational viscosity

nd strong anchoring described in Ref. [55] , which is based the small-

mplitude asymptotic theory discussed in Section 4 , persist at large am-

litude? Or is it merely a mathematical oddity which appears at vanish-

ngly small wave amplitude? 

We consider the director and velocity fields generated by the motion

f a swimmer of amplitude 𝑎 = 1 at small Ericksen number ( Er = 0 . 01 ),
nd we set 𝐾 1 = 𝐾 3 and 𝜇1 = 𝜇2 = 𝜇 and 𝜆 = 0 . 75 for the duration of the
aper. Fig. 4 shows the director and velocity fields for zero anchoring

trength and for both small and large rotational viscosity 𝛾. The veloc-

ty field shown is that seen in the lab frame. The periodic computational

omain has dimensions ( 𝐿 𝑥 , 𝐿 𝑦 ) = (2 𝜋, 4 𝜋) , and only part of the physical
omain is shown. In both cases the swimmer moves to the left ( U > 0),

pposite the direction of the traveling wave, and the swimming speed is

ignificantly increased at large rotational viscosity, in agreement with

heory developed in Ref. [55] where a local maximum in swimming

peed was found for roughly this parameter set. Contributing to the in-

reased swimming speed at large rotational viscosity, we see that the

irector field is significantly disturbed by the body motion, even with

o anchoring strength, and the associated forcing results in a recircu-

ating zone between wavecrests. The flow field in this case is tightly

onfined to the region local to the swimmer. 

Fig. 5 addresses the same situation but with strong anchoring, 𝑤 =
0 . The strong anchoring condition causes a significant disturbance in
he director field in both cases, and an increase in the swimming speed

n the case of small rotational viscosity. It is at large rotational viscos-

ty that we find the answer to the question posed at the beginning of

his section: indeed, the transition to prograde motion, swimming in the

ame direction as wave passage ( U < 0) is observed at large wave am-

litude. The associated fluid flow is also striking, appearing as a plug

ow, nearly uniform across the entire swimming body, and as in the

ase of zero anchoring strength, is primarily bound to a region near
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Fig. 5. Director fields (left panels) and velocity fields in the lab frame (center panels) at small Ericksen number, now with strong anchoring strength, for both small 

and large rotational viscosity. We verify at large swimming amplitude the reversal of swimming direction at large rotational viscosity predicted for small amplitude 

waves in Ref. [55] , and find a plug-like flow in the direction of wave propagation in that regime. 

Fig. 6. Swimming in a wide channel but much nearer to one of the walls, at small Ericksen number, Er = 0 . 01 , large rotational viscosity, 𝛾∕ 𝜇 = 100 , and strong 
tangential anchoring conditions on both surfaces, 𝑤 = 𝑤̄ = 10 . The periodic computational domain has vertical length 4 𝜋. The panels on the left show the director 

and velocity fields for 𝑑 = 𝜋 (top) and 𝑑 = 2 𝜋∕3 (bottom). Prograde swimming (to the right) when the wall is distant diminishes in speed as the wall is drawn closer 
to the swimmer, and eventually gives way to retrograde swimming (swimming to the left) when the wall is closer than a critical distance, consistent with the theory 

developed in the previous sections. 
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Fig. 7. Swimming in a channel at small Ericksen number, Er = 
0 . 01 , and strong anchoring, 𝑤 = 𝑤̄ = 10 , at small and large rota- 
tional viscosities. The director and velocity fields are overlaid 

(left panels), showing that the velocity is everywhere nearly 

aligned with the local director field, in stark contrast to the 

flow seen on the bottom of Fig. 5 , where in the prograde mo- 

tion the flow is roughly orthogonal to the director field. The 

right panels show the swimming speed as a function of time. 

With sufficient proximity to the channel walls the details of the 

liquid crystal become unimportant, and transport is similar to 

swimming in a confined Newtonian fluid. 

Fig. 8. The dimensionless swimming speed U / c versus the dimensionless channel width qd for small amplitude ( 𝑎𝑞 = 0 . 15 , left panel), medium amplitude ( 𝑎𝑞 = 0 . 50 , 
center panel), and large amplitude ( 𝑎𝑞 = 0 . 8 , right panel) undulations. Material parameters are 𝐾 1 = 𝐾 3 , 𝜇1 ∕ 𝜇 = 𝜇2 ∕ 𝜇 = 1 , 𝛾∕ 𝜇 = 5 , Er = 1 , and 𝜆 = 0 . 75 . Dashed lines 
indicate: (black) the Katz result, Eq. (B.13) and (green) the Reynolds result, Eq. (2) ; solid lines indicate the unconfined swimming speed in a Newtonian fluid for the 

appropriate amplitude [85] . While three values of the anchoring strength ( 𝑤 = 𝑤̄ = 0 , 𝑤 = 𝑤̄ = 1 , and 𝑤 = 𝑤̄ = 10 ) were used, the differences in results were smaller 
than the size of the plot markers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o the body only. Dynamics at Er = 1 , not included here, also confirm
he small amplitude theoretical results in Ref. [55] . Namely, the im-

ortance of anchoring strength is greatly diminished in determining the

wimming speed, particularly at large rotational viscosity. 

We now explore the effects of swimming in a wide channel but

uch nearer to a single wall. Numerically this is achieved by intro-

ucing a line of immovable target ghost springs. Fig. 6 shows the di-

ector and velocity fields, and swimming speeds at amplitude 𝑎 = 1 and
mall Ericksen number, large rotational viscosity, and strong anchoring,

 Er , 𝛾∕ 𝜇, 𝑤 ) = (0 . 01 , 100 , 10) . The wall has the same strong tangential an-
horing condition as the body, 𝑤̄ = 10 . The fields are shown for the cases
 = 𝜋 (top) and 𝑑 = 2 𝜋∕3 (bottom). The prograde motion for free-space
wimming remains when a distant wall is introduced, but when the wall

s brought sufficiently close the motion reverts to retrograde motion, or

wimming to the left, with a recirculating flow inside each wavecrest.

he swimming speed appears to go through zero smoothly as a function

f the distance to the wall, as theoretically predicted. 

The symmetrized version of the geometry, closer to the theory devel-

ped in early sections, has walls above and below the swimmer, equally

istant from its centerline. Fig. 7 shows the flow fields and director fields
verlaid, for small and large rotational viscosity, and strong anchoring

 𝑤 = 𝑤̄ = 10) . Overlaying the two fields shows that the fluid velocity
s almost perfectly aligned with the local director orientation, in stark

ontrast to the flow seen on the bottom of Fig. 5 , where in the pro-

rade motion the flow is nearly orthogonal to the director field close to

he body. The recirculation zones are again prevalent, as seen near the

all in Fig. 6 , and the dominant effect of the nearby walls in this case

gain remove the swimming direction reversal found in the study with-

ut walls: even at large rotational viscosity, in a channel the swimming

peed is not far from that found for small rotational viscosity. 

To further examine the robustness of our analytical results from

ection 5 to large amplitude motion, we study swimming in a symmetric

hannel with variable stroke amplitude a and distance to the wall, d . In

his section, we depart from the value Er = 0 . 01 used elsewhere in our
umerical results, observing that if the Ericksen number is too small,

owever, the Eqs. (28) –(31) decouple, and it is harder to be sure that

he numerics are validating our analysis. We therefore settle on Er = 1 ,
hich is close to what has been used in experiments. This value addi-

ionally preserves some effect of the anchoring strength on the swim-

ing speed, so that we can verify that the role of anchoring strength
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n swimming speed vanishes as d decreases. The results are shown in

ig. 8 . While the Katz result (B.13) holds for a / d ≈1, the speed quickly
ecreases to the unconfined speed, described in the small-amplitude case

n Ref. [55] . However, the rate of decay for a / d ≈1 is identical to the
 𝑎 ∕ 𝑑) −2 factor observed by Katz, and the range of validity seems to ex-
end to roughly ( 𝑎 ∕ 𝑑) −2 = 0 . 5 . Varying the material parameters confirms
ur analytical result that deep in the lubrication regime the liquid crys-

alline effects are swamped by mass conservation and the no-slip con-

ition, which together imply that the swimming speed converges to the

ave speed as d → a . The numerical results also demonstrate that an-

horing strength becomes unimportant in this regime (so long as the

onditions on both swimmer and wall are tangential), which extends

he results of Section 5 . 

Performing this calculation also gives us a glimpse at the speed of

 finite-amplitude Taylor swimmer in an unbounded nematic solution,

hich is given by the limit a / d →0 for fixed a . Interestingly, despite

revious findings that for the parameters used here a small-amplitude

wimmer in a nematic swims faster than its Newtonian counterpart by a

actor of roughly two [55] , for larger amplitudes this trend is reversed.

e can see this by comparing Fig. 8 to results from the literature on

he Taylor swimmer in a Newtonian fluid beating with large-amplitude

aves [85] , which is given by horizontal black lines near 𝑎 ∕ 𝑑 = 0 .
or the amplitudes used in Fig. 8 , the Newtonian swimming speed

s faster for 𝑎 = 0 . 5 and 𝑎 = 0 . 8 than the swimming speed in a liquid
rystal. 

. Conclusion 

This work extends previous studies of flagellated swimmers in un-

onfined liquid crystals and confined isotropic fluids to include both

nisotropic and boundary effects. Our analytic results, based on asymp-

otic analysis in the stroke amplitude and channel width, suggest that

he liquid-crystalline material properties have a diminishing effect on

he swimming speed and volumetric flux as the width of the channel

ecreases, so long as the anchoring conditions on both surfaces are tan-

ential. An extension of the model would include different anchoring

onditions, such as homeotropic anchoring on one surface, and we sus-

ect this would lead to very different results. In this setting the Ericksen–

eslie equations may break down and a Landau-de Gennes Q -tensor

odel would be more appropriate to study [39,86] . However, while

he swimming speed is not dependent on liquid crystal parameters, the

ressure, flux, and power consumption are strongly dependent on the

otational and anisotropic bulk viscosities. In our work we only consid-

red the case of the swimmer moving parallel to the walls, and did not

onsider the torques which may tend to turn a swimmer [87–89] . The

uestion of whether swimmers tend to be attracted or repelled to walls

n a liquid crystal solution is probably best approached using squirm-

rs [15,90] rather than Taylor’s swimming sheet. 

We also explored large amplitude swimming, made possible by the

evelopment of an immersed boundary method for nematic liquid crys-

als. We confirmed that the unexpected transition from retrograde to

rograde locomotion at large rotational viscosity persists at large wave

mplitude and is not an artifact of the small amplitude assumption. We

lso captured the return to retrograde motion in these cases when a

earby wall or channel is introduced. Interestingly, whereas in previous

orks swimmers with prescribed stroke at small amplitude have been

hown to be faster than their Newtonian counterparts, for increasing

mplitude this situation reverses, such that a swimmer is always loco-

oting at a slower speed and at greater power consumption than if it

ere locomoting in an isotropic, Newtonian fluid. Narrowing the chan-

el also demonstrates an interesting connection between confinement

nd anchoring conditions. 
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ppendix A. Single constant approximation in two dimensions 

In two dimensions the transverse part of the molecular field is given

y 𝐡 = ℎ 𝐧 ⟂, with 𝐧 ⟂ = (− sin 𝜃, cos 𝜃) . In the single constant approxima-
ion 𝐾 1 = 𝐾 3 , we have ℎ = ∇ 

2 𝜃. The elastic stress is given by the bulk

nd anchoring contributions, 

𝑒 + 𝝈
𝑎 = 

[
− 𝜃2 

𝑥 ̂
𝐱 ̂𝐱 − 𝜃2 

𝑦 ̂
𝐲 ̂𝐲 − 𝜃𝑥 𝜃𝑦 ( ̂𝐱 ̂𝐲 + ̂𝐲 ̂𝐱 ) 

]
+ ∇ 

2 𝜃 𝐑 ( 𝜃) , (A.1)

here 

 ( 𝜃) = 

1 
2 

{ 

𝜆 sin 2 𝜃 ( ̂𝐱 ̂𝐱 − ̂𝐲 ̂𝐲 ) + ( 1 − 𝜆 cos 2 𝜃) ̂𝐱 ̂𝐲 − ( 1 + 𝜆 cos 2 𝜃) ̂𝐲 ̂𝐱 
} 

. (A.2)

he total elastic force on the fluid is then 

 𝑒 ( 𝜃) = ∇ ⋅ ( 𝝈𝑒 + 𝝈
𝑠 ) = −∇ 

2 𝜃 ∇ 𝜃 − 

1 
2 
∇ 

(|∇ 𝜃|2 ) + 

(
∇ 
2 𝜃
)
∇ ⋅ 𝐑 ( 𝜃) 

+ 𝐑 ( 𝜃) ⋅ ∇ 

(
∇ 
2 𝜃
)
, (A.3) 

here ∇ 
⟂ = ( 𝜕 𝑦 , − 𝜕 𝑥 ) and 

 ⋅ 𝐑 ( 𝜃) = 𝜆
[
cos 2 𝜃( ̂𝐱 ̂𝐱 − ̂𝐲 ̂𝐲 ) + sin 2 𝜃( ̂𝐱 ̂𝐲 + ̂𝐲 ̂𝐱 ) 

]
⋅ ∇ 𝜃. (A.4)

he second term in Eq. (A.3) may be absorbed into the pressure. 

The viscous stress may be written in the form 

𝑣 ( 𝐯 ; 𝜃) = ( 𝑢 𝑦 − 𝑣 𝑥 ) 
(
𝐴 
(2 , 0) ( 𝜃) ̂𝐱 ̂𝐱 + 𝐵 

(2 , 0) ( 𝜃) ( ̂𝐱 ̂𝐲 + ̂𝐲 ̂𝐱 ) + 𝐶 
(2 , 0) ( 𝜃) ̂𝐲 ̂𝐲 

)
(A.5)

 𝑢 𝑥 
(
𝐴 
(1 , 1) ( 𝜃) ̂𝐱 ̂𝐱 + 𝐵 

(1 , 1) ( 𝜃) ( ̂𝐱 ̂𝐲 + ̂𝐲 ̂𝐱 ) + 𝐶 
(1 , 1) ( 𝜃) ̂𝐲 ̂𝐲 

)
, (A.6)

here we have used ∇ ⋅ 𝐯 = 𝑢 𝑥 + 𝑣 𝑦 = 0 . The coefficient functions of 𝜃
re viscosity dependent and are given by (with 𝜇∗ 

1 = 𝜇1 ∕ 𝜇, 𝜇∗ 
2 = 𝜇2 ∕ 𝜇,

nd 𝛾∗ = 𝛾∕ 𝜇), 

 
(2 , 0) ( 𝜃) = 

1 
2 
sin ( 2 𝜃) 

(
𝜇∗ 
1 cos (2 𝜃) + 𝜇∗ 

1 + 𝜇∗ 
2 
)
, (A.7)

 
(1 , 1) ( 𝜃) = 

1 
2 
(
4 + 2 

(
𝜇∗ 
1 + 𝜇∗ 

2 
)
cos (2 𝜃) + 𝜇∗ 

1 cos (4 𝜃) + 𝜇∗ 
1 + 2 𝜇∗ 

2 
)
, (A.8)

 
(2 , 0) ( 𝜃) = − 

1 
4 
(
𝜇∗ 
1 cos (4 𝜃) − 𝜇∗ 

1 − 2( 𝜇∗ 
2 + 2) 

)
, (A.9)

 
(1 , 1) ( 𝜃) = 

1 
2 

𝜇∗ 
1 sin (4 𝜃) , (A.10)

 
(2 , 0) ( 𝜃) = − 

1 
2 
sin (2 𝜃) 

(
𝜇∗ 
1 cos (2 𝜃) − 𝜇∗ 

1 − 𝜇∗ 
2 
)
, (A.11)

 
(1 , 1) ( 𝜃) = − 

1 
2 
(
4 − 2 

(
𝜇∗ 
1 + 𝜇∗ 

2 
)
cos (2 𝜃) + 𝜇∗ 

1 cos (4 𝜃) + 𝜇∗ 
1 + 2 𝜇∗ 

2 
)
. (A.12)

he viscous stress is symmetric, as expected. Finally, dotting the direc-

or field evolution equation ( Eq. (10) ) with n ⊥ we find an evolution

quation for the director field orientation angle, 

𝑡 + 𝐯 ⋅ ∇ 𝜃 + 

1 
2 
( 𝑢 𝑦 − 𝑣 𝑥 ) = 𝜆

( cos 2 𝜃
2 

( 𝑢 𝑦 + 𝑣 𝑥 ) − sin 2 𝜃 𝑢 𝑥 

)
+ 

1 
𝛾∗ Er 

∇ 
2 𝜃. 

(A.13) 

ppendix B. Details of the lubrication calculation for swimming 

peed 

Here we calculate the flow field and swimming velocity for a swim-

er near a wall in a nematic liquid crystal, using the lubrication ap-

roximations of Section 5 . The liquid crystalline factors play a limited

ole and the calculation follows the same steps as in the isotropic case;

e follow the approach of Pak and Lauga [59] . The lubrication approx-

mation implies that the pressure 𝑝̃ is independent of 𝑦̃ : 𝑝̃ = 𝑝̃ ( ̃𝑥 , ̃𝑡 ) . With
his assumption, the x -component of the velocity may be found in terms

https://doi.org/10.13039/501100008982
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Fig. B.1. Incompressibility of the liquid crystal implies there is no net flow into 

or out of the slice. 
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f the pressure gradient from Eq. (36) and the no-slip boundary condi-

ions (32) –(33) : 

̃ = 

𝜕 ̃𝑝 ∕ 𝜕 ̃𝑥 
2[1 + 𝛾∕(4 𝜇)] 

(
𝑦̃ − 𝑌 

)
( ̃𝑦 − 1 ) + 𝑈̃ 

𝑦̃ − 𝑌 

1 − 𝑌 
, (B.1)

here 𝑌 = 𝑎̃ sin ( 𝑥 − 𝑡 ) and 𝑎̃ = 𝑎 ∕ 𝑑. The complete 𝑥̃ - and 𝑡 - dependence
f 𝑢̃ is still unknown because we don’t yet know how 𝑝̃ depends on 𝑥̃

nd ̃𝑡 . 

We can determine 𝜕 ̃𝑝 ∕ 𝜕 ̃𝑥 up to an unknown time-dependent constant
y appealing to the conservation of volume of fluid. The net flow out of

 slice of small thickness d ̃𝑥 must vanish, as shown in Fig. B.1 : 
1 

𝑌 ( ̃𝑥 +d ̃𝑥 ) 
𝑢̃ ( ̃𝑥 + d ̃𝑥 )d ̃𝑦 − ∫

1 

𝑌 ( ̃𝑥 ) 
𝑢̃ ( ̃𝑥 )d ̃𝑦 + ̃𝐯 ⋅ 𝐧̂ d 𝓁 = 0 , (B.2)

here 𝐧̂ is the outward-pointing normal ( Fig. B.1 ). Since 𝐯̃ ⋅ 𝐧̂ d 𝓁 =
 ̃𝑣 ( ̃𝑥 , 𝑌 )d ̃𝑥 via the no-slip boundary conditions, we can rewrite (B.2) in
ifferential form 

d 
d ̃𝑥 ∫

1 

𝑌 

𝑢̃ ( ̃𝑥 )d ̃𝑦 − 𝑣̃ ( ̃𝑌 ) = 0 , (B.3)

r, 

1 

𝑌 

𝑢̃ ( ̃𝑥 )d ̃𝑦 + 𝑎̃ sin ( ̃𝑥 − ̃𝑡 ) = 𝑄 ( ̃𝑡 ) , (B.4)

here 𝑄 ( ̃𝑡 ) is to be determined. Using Eq. (B.1) for 𝑢̃ ( ̃𝑥 ) , performing the
ntegral in (B.4) , and solving for 𝜕 ̃𝑝 ∕ 𝜕 ̃𝑥 yields 

1 
𝛽

𝜕 ̃𝑝 

𝜕 ̃𝑥 
= 

12(1 − 𝑄 ) 
(1 − 𝑌 ) 3 

+ 6 𝑈̃ − 2 
(1 − 𝑌 ) 2 

. (B.5)

he only difference between this expression and the corresponding ex-

ression in the isotropic problem [59] is the factor of 𝛽 [ Eq. (37) ], which

ontains all the dependence on the liquid crystalline material parame-

ers. We can get an equation involving Q and 𝑈̃ only by integrating the

ressure gradient over a period in 𝑥̃ , and noting that the pressure must

e periodic. Thus, 

2 𝐼 3 (1 − 𝑄 ) + 6 𝐼 2 ( ̃𝑈 − 2) = 0 , (B.6)

here 

 2 = ∫
2 𝜋

0 

d ̃𝑥 
[1 − 𝑌 ] 2 

= 

2 𝜋
(1 − 𝑎̃ 2 ) 3∕2 

, (B.7)

 3 = ∫
2 𝜋

0 

d ̃𝑥 
[1 − 𝑌 ] 3 

= 

2 𝜋(2 + 𝑎̃ 2 ) 
(1 − 𝑎̃ 2 ) 5∕2 

. (B.8)

ote that the prefactor involving the liquid crystalline parameters has

ropped out, and the relation (B.6) is the same as in the isotropic

ase [59] . 

To get another equation involving q and 𝑈̃ , we demand that the force

n the swimmer vanish. It is simpler and equivalent to demand that the

orce on the wall at 𝑦̃ = 1 vanishes, 
2 𝜋

𝜎𝑥𝑦 ( ̃𝑦 = 1)d ̃𝑥 = 0 . (B.9)

0 
ccording to the lubrication scaling, the stress to leading order is given

y 

̃𝑥̃ ̃𝑦 = 

(
1 + 𝜇∗ ∕2 

) 𝜕 ̃𝑢 

𝜕 ̃𝑦 
. (B.10) 

Integrating the stress leads to 

4 ̃𝑈 − 6) 𝐼 1 + 6(1 − 𝑄 ) 𝐼 2 = 0 , (B.11)

here 

 1 = ∫
2 𝜋

0 

d ̃𝑥 
1 − 𝑌 

= 

2 𝜋
(1 − 𝑎̃ 2 ) 1∕2 

. (B.12)

ince the liquid-crystalline factors in 𝛽 have again dropped out, solv-

ng Eqs. (B.6) and (B.11) yields 𝑄 = 𝑈̃ , and the isotropic swimming

peed [4] : 

̃
 = 

3 ̃𝑎 2 

2 ̃𝑎 2 + 1 
. (B.13) 

enoting the time average over a period by angle brackets, the average

ux entrained by the swimmer is given by ⟨∫ 1 
𝑌 

𝑢̃ d ̃𝑦 ⟩ = ⟨𝑄 ⟩ = 𝑈̃ . 

Now that we have solved for Q and 𝑈̃ , we can find the flow field.

he flow field is a quadratic polynomial in 𝑦̃ : 

̃ = 

( 𝑦 − 𝑌 ) 
{
6(1 − 𝑦 ) ̃𝑌 − 𝑈̃ 

[
4 + 𝑌 + 𝑌 2 − 3 𝑦 (1 + 𝑌 ) 

]}
( ̃𝑌 − 1) 3 

. (B.14) 

ikewise we can find the angle field by integrating Eq. (28) : 

̃ = 𝛼
𝑦̃ − 1 

( ̃𝑌 − 1) 3 
{ 

𝜕 ̃𝑌 

𝜕 ̃𝑥 
( ̃𝑌 − 1) 2 + ( 𝑦 − 𝑌 ) 

[
𝑌 (1 − 2 ̃𝑦 + 𝑌 ) 

+ ̃𝑈 (−1 + 𝑦̃ + 𝑦̃ ̃𝑌 − 𝑌 2 
]} 

, (B.15) 

here 

= 𝛾∗ 
𝐾 3 
𝐾 1 

Er 1 − 𝜆

2 
. (B.16) 
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