

RESEARCH ARTICLE

Unregulated Sphingolipid Biosynthesis in Gene-Edited *Arabidopsis* *ORM* Mutants Results in Nonviable Seeds with Strongly Reduced Oil Content

Ariadna Gonzalez-Solis^{1†}, Gongshe Han^{2†}, Lu Gan^{1†}, Yunfeng Liu^{1†}, Jonathan E. Markham¹, Rebecca E. Cahoon¹, Teresa M. Dunn^{*2}, and Edgar B. Cahoon^{*1}

¹Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA

² Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814 USA

[†]These authors contributed equally to this work

*Corresponding Authors: ecahoon2@unl.edu and teresa.dunn-giroux@usuhs.edu

Short title: ORM-Mediated Sphingolipid Biosynthesis

One-sentence summary: Removing the regulation of sphingolipid biosynthesis by completely knocking out Orosomucoid-like protein (ORM) genes results in ceramide hyperaccumulation and nonviable seeds with strongly reduced oil content.

The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Edgar B. Cahoon (ecahoon2@unl.edu) and Teresa M. Dunn (teresa.dunn-giroux@usuhs.edu).

ABSTRACT

Orosomucoid-like proteins (ORMs) interact with serine palmitoyltransferase (SPT) to negatively regulate sphingolipid biosynthesis, a reversible process critical for balancing the intracellular sphingolipid levels needed for growth and programmed cell death. Here we show that ORM1 and ORM2 are essential for lifecycle completion in *Arabidopsis thaliana*. Seeds from *orm1*^{−/−} *orm2*^{−/−} mutants (generated by crossing CRISPR/Cas9 knockout mutants for each gene) accumulated high levels of ceramide, pointing to

unregulated sphingolipid biosynthesis. *orm1*^{-/-} *orm2*^{-/-} seeds were nonviable, displayed aberrant embryo development, and had >80% reduced oil content vs. wild-type seeds. This phenotype was mimicked in *Arabidopsis* seeds expressing the SPT subunit LCB1 lacking its first transmembrane domain, which is critical for ORM-mediated regulation of SPT. We identified a mutant for ORM1 lacking one amino acid (Met51) near its second transmembrane domain that retained its membrane topology. Expressing this allele in the *orm2* background yielded plants that did not advance beyond the seedling stage, hyperaccumulated ceramides, and showed altered organellar structures and increased senescence and pathogenesis-related gene expression. These seedlings also showed upregulated expression of genes for sphingolipid catabolic enzymes, pointing to additional mechanisms for maintaining sphingolipid homeostasis. ORM1 lacking Met51 had strongly impaired interactions with LCB1 in yeast (*Saccharomyces cerevisiae*) model), providing structural clues about regulatory interactions between ORM and SPT.

1 INTRODUCTION

2 Sphingolipids are essential, abundant endomembrane and plasma membrane lipids that
3 contribute to membrane function, vesicular trafficking, and the mediation of cellular
4 processes in eukaryotes (Coursol *et al.*, 2003; Liang *et al.*, 2003; Chen *et al.*, 2006;
5 Markham *et al.*, 2011). The unique and defining structural feature of sphingolipids is the
6 long-chain base (LCB) or sphingoid base. The simplest LCB, sphinganine (d18:0),
7 derives from the condensation of serine and palmitoyl-CoA catalyzed by serine
8 palmitoyltransferase (SPT) and subsequent reduction of the 3-ketosphinganine product.
9 LCBs can be further modified by hydroxylation, desaturation, and phosphorylation to
10 yield a range of structural variants (Markham *et al.*, 2006; Chen, *et al.*, 2009). Free
11 LCBs and their phosphorylated forms typically occur in low concentrations in eukaryotic
12 cells. LCBs exert signaling functions such as modulating cell proliferation and apoptosis
13 in mammalian cells and serve as a trigger of programmed cell death (PCD) and
14 associated pathogen defense responses in plant cells (Alden *et al.*, 2011; Zheng *et al.*,
15 2018; Huby *et al.*, 2019). The majority of LCBs occur in ceramides. These N-acylated
16 LCBs are synthesized by ceramide synthase-mediated condensation of an LCB and a
17 fatty acyl-CoA. Ceramide synthases have defined substrate specificities that result in
18 ceramides with distinct pairings of structurally diverse LCBs and fatty acids (Markham *et*
19 *al.*, 2011; Ternes *et al.*, 2011; Luttgeharm, *et al.*, 2015a, Chen, *et al.*, 2015). In
20 mammalian cells, ceramides function as regulators of apoptotic processes;

21 perturbations in their levels are associated with inflammation, obesity, diabetes and
22 cancer. In plants, ceramide accumulation has been shown to initiate PCD (Liang *et al.*,
23 2003; Bi *et al.*, 2014; Dadsena *et al.*, 2019). Ceramides provide the hydrophobic
24 backbone for more complex sphingolipids, including glucosylceramides (GlcCer) and
25 glycosylinositolphosphoceramides (GIPCs), the principal glycosphingolipids of plant
26 cells.

27 SPT activity is highly regulated in eukaryotes to modulate the requirement of
28 sphingolipids for growth and membrane function while limiting the accumulation of LCBs
29 and ceramides until needed to trigger specific cellular functions, such as PCD-mediated
30 pathogen defense in plants (Peer *et al.*, 2010). SPT is composed of the subunits LCB1
31 and LCB2 and the accessory protein known as small subunit of SPT (ssSPT) or TSC3
32 in yeast (*Saccharomyces cerevisiae*) (Gable *et al.*, 2000; Kimberlin *et al.*, 2013). SPT is
33 primarily regulated by post-translational mechanisms in order to rapidly respond to
34 perturbations in intracellular sphingolipid concentrations. ORMs or orosomucoid-like
35 proteins (or ORMDL in mammals) are now recognized as non-catalytic proteins that
36 negatively regulate SPT (Breslow *et al.*, 2010; Han *et al.*, 2010). In *Arabidopsis*
37 (*Arabidopsis thaliana*), two *ORM* genes, *ORM1* (At1g01230) and *ORM2* (At5g42000),
38 were previously identified (Kimberlin *et al.*, 2016). In *Saccharomyces cerevisiae*, *Orm1p*
39 and *Orm2p* suppress SPT activity in response to elevated sphingolipid levels through a
40 physical interaction that requires the first transmembrane domain of LCB1 (Han *et al.*,
41 2019). Sphingolipid-responsive regulation of the ORM-SPT interaction in *S. cerevisiae*
42 is mediated by phosphorylation/dephosphorylation of an N-terminal domain of the
43 ORMs (Breslow *et al.*, 2010). This domain is absent from ORM/ORMDL of multicellular
44 eukaryotes, suggesting that an alternative mechanism regulates the ORM-SPT
45 interaction, such as a recently demonstrated mechanism of direct binding of a ceramide
46 molecule to mammalian ORMDL and yeast ORM to confer negative SPT regulation
47 (Davis *et al.*, 2019). In addition, ORMDL expression levels vary with sphingolipid
48 availability in mammalian cells (Gupta *et al.*, 2015).

49 *S. cerevisiae* cells are viable after knockout of the two *ORM* genes, but they
50 accumulate increased amounts of LCBs and ceramides and are sensitive to
51 tunicamycin, an inducer of ER stress (Breslow *et al.*, 2010). However, a full

52 understanding of the biochemical and physiological functions of ORM or ORMDL
53 proteins in multi-cellular eukaryotes is only beginning to emerge. A recent report
54 showed that ORMDL proteins are critical for nerve myelination and for suppressing the
55 accumulation of toxic sphingolipid biosynthetic intermediates in mice (Clarke *et al.*,
56 2019). Downregulation of *ORM2* using an artificial miRNA in an *Arabidopsis* *ORM1* T-
57 DNA mutant yielded fertile plants with increased accumulation of LCBs and ceramides
58 and early senescence (Li *et al.*, 2016). In addition, RNAi-induced suppression of
59 *Arabidopsis* *ORM1* and *ORM2* resulted in plants with a normal appearance but with
60 increased sensitivity to the ceramide synthase inhibitor fumonisin B1 and increased
61 LOH2 ceramide synthase activity (Kimberlin *et al.*, 2016). Beyond *Arabidopsis*, RNAi of
62 *ORM* genes in rice (*Oryza sativa*) was linked to reduced pollen viability (Chueasiri *et al.*,
63 2014). However, the lack of complete *ORM* knockout mutants in *Arabidopsis* or other
64 plants has precluded assessment of SPT regulation in the absence of *ORM* proteins.

65 In the current study, to advance our understanding of *ORM*-mediated
66 sphingolipid biosynthesis, we generated *orm1* *orm2* double mutants using
67 CRISPR/Cas9. Loss of SPT regulation resulted in nonviable seeds with low oil content
68 that accumulated high levels of ceramides. We mimicked this phenotype by removing
69 the first transmembrane domain of LCB1, which is known to interact with *ORM* for SPT
70 regulation (Han *et al.*, 2019). These studies also uncovered a single amino acid-deletion
71 mutant of *ORM1* that had severely altered membrane and organellar structures and that
72 also hyperaccumulated ceramides. Using a yeast model, we showed that the deleted
73 amino acid, which occurs in a position preceding the second membrane-spanning
74 domain of *ORM*, strongly reduced the *ORM*-LCB1 interaction. This finding provides
75 important information about the structural features of *ORM* and *ORMDL* proteins that
76 are associated with their regulatory interaction with the LCB1 subunit of SPT.

77

78 **RESULTS**

79 **ORMs are Essential for Plant Development**

80 We designed two single guide RNAs (sgRNAs) to target regions in the coding
81 sequence of each of the two *Arabidopsis* *ORM* genes (Figure 1A). We introduced these
82 constructs into *Arabidopsis* via *Agrobacterium tumefaciens*-mediated transformation to

83 generate CRISPR/Cas9-induced knockouts of the *ORM1* and *ORM2* genes. We
84 screened T₁ and T₂ transformants by restriction enzyme digestion of the PCR amplicons
85 encompassing the *ORM1* and *ORM2* target sites to obtain homozygous lines with
86 mutations in each gene. These lines were also verified by PCR to lack Cas9
87 transgenes. These homozygous single mutants were visually indistinguishable from
88 wild-type plants under optimal growth conditions (Figure 1B). The population of mutants
89 obtained contained nucleotide deletions resulting in frameshifts and premature stop
90 codons, as determined by PCR-restriction enzyme digestion and sequencing
91 (Supplemental Figure 1). To obtain double knockout mutants, we crossed the *orm1*^{−/−}
92 and *orm2*^{−/−} single mutants. No progeny with homozygous knockout mutations in both
93 genes were obtained after analyzing 155 plants from the F₂ generation and 60 plants
94 from the F₃ generation. To gain more insight into the basis for the apparent lethality
95 associated with the double mutant, we performed viability staining on pollen from plants
96 genotyped as *orm1*^{+/−} *orm2*^{+/−} (Supplemental Figure 2A). Nearly all of the pollen from
97 these mutants was viable, similar to pollen from wild-type plants (Figure 1C and 1D),
98 rather than 25% non-viability that would be expected for pollen lethality in this mutant.

99 Instead, a population of seeds from these plants had dark-colored seed coats
100 and were severely wrinkled. This phenotype was observed for ~7% of seeds collected
101 from the F₂ *orm1*^{+/−} *orm2*^{+/−} plants of *orm1*^{−/−} and *orm2*^{−/−} crosses, which is consistent
102 with the expected 6.25% Mendelian ratio for the occurrence of homozygous double
103 mutants. The remaining seeds were visually indistinguishable from wild-type seeds
104 (Figure 1E and 1F). Of the seeds in these two populations, dark, wrinkled seeds did not
105 germinate, whereas seeds with normal appearance showed no impairment in
106 germination on solid sucrose-containing medium (Figure 1G and 1H) and soil. Strikingly,
107 free ceramide concentrations in pooled abnormal seeds were ~40-fold higher than those
108 in wild-type seeds and ~8-fold higher than in the normal appearing seed segregants
109 from *orm1*^{+/−} *orm2*^{+/−} plants (Figure 1I). We also observed a similar seed phenotype in
110 *Atlcb1*^{+/−} plants expressing a version of the LCB1 subunit of SPT lacking its first
111 transmembrane domain (LCB1ΔTMD1) that is required for SPT-ORM regulatory
112 interactions (Han *et al.*, 2019). In these experiments, the segregating seeds from

113 *Atlcb1*^{+/−} plants expressing *LCB1ΔTMD1* included a population of shrunken, nonviable
114 seeds with a 14-fold increase in ceramide levels relative to wild-type seeds (Figure 2).

115 We examined seeds from the *orm1*^{−/−} and *orm2*^{−/−} crosses and *LCB1ΔTMD1* in
116 more detail to understand the basis for the loss of viability. The weight of mature
117 nonviable, abnormal seeds was 80 to 90% lower than that of normal seed segregants
118 from these lines (Figure 3E). Embryos dissected from the abnormal seeds had variable
119 appearance ranging from cell clusters with undifferentiated appearance to embryo-like
120 structures that were up to one-third the size of those from normal seeds (Figure 3 A-D).
121 Underlying this phenotype, oil content of the abnormal seeds, as measured by the fatty
122 acid content of purified triacylglycerols (TAG), was 85 to 90% lower than that of normal
123 seed segregants (Figure 3F).

124 The most striking difference in fatty acid composition of TAG from the abnormal
125 seeds was a reduction in the overall content of C20 and C22 very long-chain fatty acids
126 derived from ER-localized elongation reactions. Notably, the fatty acids 20:2, 20:3, and
127 22:1 were not detectable in TAG from the abnormal seeds (Figure 3G).

128 Overall, these results indicate that ORMs are essential for the completion of a full
129 lifecycle in *Arabidopsis*. Lethality due to the absence of ORM proteins is associated with
130 the recovery of nonviable seeds with undeveloped embryos that accumulate excessive
131 ceramide concentrations and have strongly reduced TAG levels. This was phenocopied
132 in plants with deregulated SPT activity due to the loss of the transmembrane domain of
133 LCB1 that abolishes ORM regulation of SPT (Han *et al.*, 2019). The identification of
134 nearly the same phenotype in ORM-null mutants and LCB1-ΔTMD1 lines also indicated
135 that the loss of seed viability is associated with the role of ORM proteins in sphingolipid
136 metabolism, rather than other reported functions of ORM in *Arabidopsis* (Yang *et al.*,
137 2019).

138 The availability of progeny from *orm1*^{−/−} and *orm2*^{−/−} crosses also allowed us to
139 assess the contributions of each ORM gene to the viability and growth of *Arabidopsis*
140 plants. In addition to our inability to obtain homozygous double mutants for these genes,
141 we observed that *orm1*^{−/−} *orm2*^{+/−} mutants were strongly dwarfed, with yellow leaves and
142 senesced prior to flowering (Figure 4A). By contrast, *orm1*^{+/−} *orm2*^{−/−} mutants had a
143 distinct bushy phenotype, with increased leaf number compared to wild-type plants and

144 delayed flowering time (Figure 4B and 4C). Overall, these results revealed stronger
145 growth phenotypes for the homozygous *ORM1* knockout in the *orm2^{+/−}* background
146 compared to the homozygous *ORM2* knockout in the *orm1^{+/−}* background.

147

148 **The *orm1^{met/met} orm2^{−/−}* Mutant does not Survive Beyond the Seedling Stage**

149 Screening of gene-edited lines also revealed a mutant with an in-frame deletion
150 of a single codon that resulted in a deletion of the methionine residue at amino acid 51
151 relative to the wild-type *ORM1* (Figure 5B). This line also carried nucleotide deletions in
152 *ORM2* that led to a frameshift and premature stop codon (Supplemental Figures 1 and
153 2B). Seedlings with the genotype *orm1^{met/met} orm2^{+/−}* showed a phenotype like wild type
154 and the single mutants under normal growth conditions (Figure 5A).

155 However, we could only recover plants of the genotype *orm1^{met/met} orm2^{−/−}* in
156 solid medium supplemented with sucrose. The resulting seedlings were severely
157 dwarfed and had a proliferation of small, deformed chlorotic leaves. These plants
158 persisted in a visually viable state for 20-25 days after planting but did not progress
159 beyond the seedling stage, indicating that the *orm1^{met/met} orm2^{−/−}* mutation is seedling
160 lethal (Figure 5A and 5C-5F). Complementation of this mutant with the *Arabidopsis*
161 *ORM1* cDNA under the control of its native promoter was sufficient to rescue the
162 seedling lethality and recover fertile plants, although many of the independent
163 complemented mutant lines were smaller than wild-type plants, which is similar to the
164 phenotype of *orm1^{+/−} orm2^{−/−}* plants, as described above (Supplemental Figure 3).

165 **The *orm1^{met/met} orm2^{−/−}* Mutant Hyperaccumulates Selected Sphingolipids**

166 Based on the finding that downregulating *ORM* expression triggers sphingolipid
167 accumulation (Breslow *et al.*, 2010; Kimberlin *et al.*, 2016; Li *et al.*, 2016), we conducted
168 extensive sphingolipidomic profiling of our gene-edited mutants from seedlings grown
169 on sucrose medium at 12-15 days after planting. The *orm1^{met/met} orm2^{−/−}* mutant
170 accumulated 3.7-fold more sphingolipids than wild-type seedlings (Figure 6A). No
171 significant differences in the levels of free long-chain bases (LCB), ceramides with non-
172 hydroxylated fatty acids (Cer), or other sphingolipid classes were detected in the

173 *orm1*^{-/-}, *orm2*^{-/-}, or *orm1*^{met/met} *orm2*^{+/+} mutants compared to wild-type plants (Figure
174 6B-6E and 6G-6I). In strong contrast, *orm1*^{met/met} *orm2*^{-/-} seedlings showed heightened
175 accumulation of LCB (5-fold), Cer (90-fold) and ceramides with hydroxylated fatty acids
176 (hCer; 12-fold) compared to wild-type seedlings of similar age (Figure 6B-6D;
177 Supplemental Figure 4).

178 Although no changes were detected in GlcCer concentrations, the levels of
179 glucosylceramides (GlcCer) containing non-hydroxylated fatty acids (nhGlcCer), not
180 typically found in abundance in *Arabidopsis*, were 13-fold higher in *orm1*^{met/met} *orm2*^{-/-}
181 seedlings versus wild-type seedlings (Figure 6E, 6G; Supplemental Figures 5 and 6).
182 Glycosylinositolphosphoceramide (GIPC) levels increased by 48% in the *orm1*^{met/met}
183 *orm2*^{-/-} mutant compared to wild-type seedlings (Figure 6F; Supplemental Figure 7).
184 The LCB composition of the single mutants and *orm1*^{met/met} *orm2*^{+/+} did not change
185 significantly compared to wild type (Figure 7A and 7B). However, in *orm1*^{met/met} *orm2*^{-/-},
186 the levels of free and phosphorylated forms of d18:0 were the most strongly increased,
187 with lesser increases in the amounts of t18:0 and t18:1 free and phosphorylated species
188 (Figure 7A and 7B).

189 Cer profiles of the single mutants were similar to those of the wild type (Figure
190 7C-7E). By contrast, the *orm1*^{met/met} *orm2*^{+/+} mutant had increased amounts of Cer with
191 C16 fatty acids relative to wild type and single mutant plants (Figure 7F). This
192 phenotype was more accentuated in *orm1*^{met/met} *orm2*^{-/-} seedlings, which primarily
193 accumulated Cer species with C16 fatty acids linked to the dihydroxy LCB d18:0 and
194 d18:1 (Figure 7G). Increased amounts of Cer with C22, C24 and C26 fatty acids as well
195 as atypical C18 and C20 fatty acid-containing species were also detected in *orm1*^{met/met}
196 *orm2*^{-/-} seedlings relative to wild-type plants and mutants of either *ORM* gene (Figure
197 7G). Overall, the primary change in the composition of all sphingolipid classes,
198 especially Cer, hCer and nhGlcCer, in the *orm1*^{met/met} *orm2*^{-/-} seedlings was the
199 change in the total and/or relative amounts of those containing C16 fatty acids bound to
200 dihydroxy LCB, which are derived from the LOH2 ceramide synthase (Figure 7G;
201 Supplemental Figures 4 and 6) (Markham *et al.*, 2011; Ternes *et al.*, 2011; Luttgehart
202 *et al.*, 2015a). The *orm1*^{met/met} *orm2*^{-/-} plants also contained aberrant forms of hCer and

203 GIPCs with currently undefined structures based on LC-MS ionization as well as Cer
204 with the LCB deoxy-sphinganine (DoxSA), which is derived from the condensation of
205 alanine, rather than serine, to palmitoyl-CoA by SPT (Figure 6I). In addition, the
206 concentration of inositolphosphorylceramides (IPCs), the precursors of GIPCs,
207 increased nearly 12-fold in small *orm1^{met/met} orm2^{-/-}* seedlings vs. the wild type (Figure
208 6H).

209 Overall, these findings are consistent with the notion that SPT regulation by the
210 *orm1^{met}*-encoded polypeptide is deficient and that the flux of excess LCB occurs
211 through the LOH2 ceramide synthase to produce Cer backbones with C16 fatty acids
212 and dihydroxy LCB, a portion of which are channeled to GIPCs but accumulate as IPC
213 intermediates.

214

215 **The Integrity of Cellular Component is Compromised in the *orm1^{met/met} orm2^{-/-}* Mutant**

216 Given that sphingolipids are abundant endomembrane and plasma membrane
217 components that contribute to vesicular trafficking, we used transmission electron
218 microscopy (TEM) to evaluate the subcellular phenotypes associated with enhanced
219 sphingolipid accumulation in 10-day-old *orm1^{met/met} orm2^{-/-}* seedlings relative to wild-
220 type seedlings of the same age. Mesophyll cells from wild-type seedlings showed large
221 vacuoles with turgor pressure pushing organelles to the periphery (Figure 8A).
222 Chloroplasts of wild-type cells had the typical oval shape and well-defined thylakoid
223 membranes (Figure 8A and 8B). By contrast, the *orm1^{met/met} orm2^{-/-}* mutant cells
224 displayed a lack of vacuolar turgor (Figure 8D). In addition, chloroplasts of *orm1^{met/met}*
225 *orm2^{-/-}* cells were round and showed marked disintegration of thylakoids and highly
226 abundant osmiophilic structures that resemble plastoglobuli (Figure 8C-8F).

227 Notably, increased vesicle numbers were observed around the ER network in
228 *orm1^{met/met} orm2^{-/-}* cells (Figure 8F). Furthermore, electrodense material and double
229 membrane vesicles consistent with autophagosomes were detected inside the vacuoles
230 of these cells. Moreover, entire chloroplasts were engulfed and appeared to be in the

232 process of degradation (Figure 8G and 8H). Despite these large defects, Golgi stacks
233 were detectable in *orm1^{met/met} orm2^{-/-}* cells (Figure 8I).

234 **Genes for Ceramide Synthases, LCB Kinase, and LCB Phosphate Lyase are**
235 **Upregulated in the *orm1^{met/met} orm2^{-/-}* Mutant**

236 Given the increased concentrations of most sphingolipid classes in *orm1^{met/met} orm2^{-/-}*, we examined the expression of genes in 12-day-old seedlings for key
237 sphingolipid biosynthetic and catabolic enzymes, including the SPT-associated
238 polypeptides LCB1 and ssSPTa, ceramide synthases (LOH1, LOH2, and LOH3),
239 sphingosine kinases (SPHK1 and SPHK2), and the LCB catabolic enzyme LCB-
240 phosphate lyase (or DPL1). No significant differences were detected in the expression
241 of genes for LCB1, ssSPTa, or LOH1 in any mutant analyzed (Supplemental Figure 8A-
242 8C). However, consistent with the increased amounts of ceramides in *orm1^{met/met} orm2^{-/-}*,
243 the ceramide synthase gene LOH2 showed a ~2.5-fold increase in expression
244 and the ceramide synthase gene LOH3 showed a ~2-fold increase in *orm1^{met/met} orm2^{-/-}*
245 plants compared to wild type and the other mutants examined (Figure 9A and
246 9B). Most notably, the expression of the key sphingolipid catabolism-associated genes
247 SPHK2 and DPL1 increased by ~6 to 7-fold respectively, in *orm1^{met/met} orm2^{-/-}* plants
248 relative to the wild type and other *ORM* mutants (Figure 9C and 9D). This result is
249 consistent with the notion that the induction of LCB catabolism is one route (in addition
250 to ceramide biosynthesis) for the mitigation of unregulated LCB production in the
251 *orm1^{met/met} orm2^{-/-}* mutant.

253 **Defense and Senescence Genes are Upregulated in the *orm1^{met/met} orm2^{-/-}* Mutant**

255 The accumulation of ceramides has been linked to the activation of signaling pathways
256 that lead to PCD (Liang *et al.*, 2003; Bi *et al.*, 2014). To examine whether the high
257 amounts of ceramides in *orm1^{met/met} orm2^{-/-}* activate PCD, we performed qPCR of
258 marker genes using RNA extracted from 12-day-old seedlings. The expression of the
259 pathogenesis-related genes (*PR-2*, *PRXC*, *FMO*, *PR3*) was significantly higher in
260 *orm1^{met/met} orm2^{-/-}* compared to wild type and the other mutants (Figure 9E-9G,

261 Supplemental Figure 8E). A similar expression pattern was also observed for the
262 senescence-related gene *SAG13* (Figure 9H).

263

264 **ORM1^{Δmet} Fails to Interact with LCB1 to Suppress SPT Activity**

265 Our results clearly show that ORM1 lacking Met51 is strongly impaired in repressing
266 SPT activity. This amino acid is located in the ER luminal domain immediately adjacent
267 to the second transmembrane domain of ORM1 (Supplemental Figure 9). We
268 hypothesized that, without this amino acid, the conformation of the second
269 transmembrane domain of ORM1 is altered such that the interaction with LCB1 for the
270 repression of SPT activity is disrupted. To better understand this regulatory mechanism,
271 we stably expressed the Arabidopsis ORM1^{Δmet} mutant protein in a *S. cerevisiae* mutant
272 background in which AtLCB1, AtLCB2, and AtssSPTa replaced the corresponding yeast
273 SPT-associated polypeptides, as confirmed by immunoblotting (Figure 10A). We
274 assessed *in vivo* SPT activity by measuring the DoxSA produced when expressing
275 AtLCB1^{C144W} (Figure 10B). Deoxy-LCBs cannot be phosphorylated/degraded and are
276 used as a readout for *in situ* SPT activity (Gable et al., 2010; Kimberlin et al. 2016).
277 When expressed in this yeast background, wild-type Arabidopsis ORM1 was able to
278 suppress DoxSA production, which is consistent with its function as a negative regulator
279 of SPT activity. By contrast, DoxSA concentrations in ORM1^{Δmet}-expressing cells were
280 similar to those in vector control cells lacking ORM1, which is consistent with a lack of
281 repressed SPT activity.

282 ORMs interact with the first transmembrane domain of LCB1 to repress SPT
283 activity in *S. cerevisiae* (Han et al., 2019), although the structural components of ORM
284 associated with this interaction have not been defined. To test whether ORM1^{Δmet}
285 physically interacts with AtLCB1, as does wild-type ORM1, we performed co-
286 immunoprecipitation of FLAG-tagged AtLCB1 with solubilized microsomes from yeast
287 cells expressing Myc-AtLCB2a, HA-ssSPTa and HA-ORM1 or HA-ORM1^{Δmet}. Pull-
288 downs of AtLCB1 resulted in co-immunoprecipitation of AtLCB2a and AtORM1, but not
289 ELO3, an ER protein that does not interact with SPT. By contrast, only trace amounts of
290 HA-ORM1^{Δmet} were detected in the AtLCB1 pull-downs (Figure 10C).

291 This finding indicates that Met51 is critical for the ORM-LCB1 physical interaction
292 to regulate SPT activity. To determine whether the impaired ORM-LCB1 interaction is
293 due to gross or subtle alterations in the secondary structure of ORM induced by the
294 Met51 deletion, we compared the membrane topology of ORM1 and $ORM1^{met}$. We
295 inserted glycosylation cassettes into the two predicted ER luminal loops (at amino acids
296 46 and 121) and into the cytosolic loop between the second and third transmembrane
297 domains (at amino acid 82) and expressed the proteins in *S. cerevisiae* along with
298 reconstituted Arabidopsis SPT. The analysis showed that the cassettes in the predicted
299 luminal domains were glycosylated while the cassette in the predicted cytosolic domain
300 was not (Figure 10D). Thus, we conclude that ORM1 with the Met51 deletion retains the
301 topology of wild-type ORM1.

302

303 **DISCUSSION**

304 Our findings identified the essential role of sphingolipid biosynthetic regulation at
305 the level of SPT for seed viability, which was previously unclear due to the lack of
306 complete knockout mutants for *ORM* genes in plants. We showed that $orm1^{-/-} orm2^{-/-}$
307 seeds have impaired embryo development accompanied by hyperaccumulation of the
308 cytotoxic sphingolipid biosynthetic intermediates ceramides. Strongly enhanced
309 ceramide accumulation was also observed in the *S. cerevisiae* $orm1\Delta/orm2\Delta$ mutant
310 (Breslow *et al.*, 2010; Han *et al.*, 2010) and recently in *Ormdl1/3* mutant mice (Clarke *et*
311 *al.*, 2019). We also confirmed that impaired seed viability in the mutant is due solely to
312 the function of ORMs in SPT regulation, rather than other ascribed ORM functions
313 (Yang *et al.*, 2019). This was achieved by mimicking this phenotype by removing the
314 first transmembrane domain of LCB1, which is required for ORM binding to SPT (Han *et*
315 *al.*, 2019). Furthermore, through gene editing, we recovered the $orm1^{met/met} orm2^{-/-}$
316 mutant, which expresses an ORM1 structural variant that is strongly compromised in the
317 regulation of SPT activity. This mutant provided valuable insight into cellular responses
318 to unchecked sphingolipid biosynthesis. These responses include compromised
319 organellar structures, the induction of catabolic genes to maintain sphingolipid

320 homeostasis, and clues about the structural requirements of ORM for interaction with
321 LCB1.

322 Our findings emphasize that the full significance of ORMs to plant viability can
323 only be assessed by complete knockout of the corresponding genes. By contrast,
324 *Arabidopsis* *ORM*-suppressed plants previously generated by RNAi or amiRNA
325 methods were fully viable, although the response to bacterial pathogens was altered in
326 these plants and early senescence was observed with the most extreme suppression of
327 *ORM* expression (Kimberlin *et al.*, 2016; Li *et al.*, 2016). Similar to our findings, a recent
328 report revealed the inability to recover mice lacking all three *ORMDL* genes (Clarke *et*
329 *al.*, 2019). However, we were able to more precisely determine that lethality occurs
330 during seed development rather than during gametogenesis. This finding contrasts with
331 those from previous studies of plants with strongly reduced sphingolipid biosynthetic
332 capacity due to impaired SPT activity (Dietrich *et al.*, 2008; Teng *et al.*, 2008; Kimberlin
333 *et al.*, 2013). In these mutants, pollen is defective in endomembrane formation and is
334 unable to complete maturation. Sphingolipids accumulate to exceptionally high levels in
335 *Arabidopsis* pollen relative to leaves (Luttgeharm *et al.*, 2015b; Ischebeck, 2016). As
336 such, it is likely that pollen is able to tolerate unregulated sphingolipid synthesis that
337 results from complete *ORM* knockout.

338 The mechanism underlying the loss of seed viability from unregulated SPT
339 activity in *orm1*^{-/-} *orm2*^{-/-} and *orm1*^{met/met} *orm2*^{-/-} mutants likely involves a combination
340 of the functions of sphingolipids as major structural components of the endomembrane
341 and as bioactive mediators of cellular activities such as PCD that lead to aberrant
342 embryo development. As shown in *orm1*^{met/met} *orm2*^{-/-} seedlings, strong upregulation of
343 sphingolipid biosynthesis results in large alterations in membrane and organellar
344 structures in plant cells (Figure 8). These seedlings appear to have defects in ER
345 function, as indicated by the relative reduction in the total content of very long-chain
346 fatty acids in the abnormal seeds from the progeny of *orm1*^{-/-} and *orm2*^{-/-} crosses and
347 *LCB1/TMD1* transgenic lines (Figure 3G). These fatty acids are formed by ER-localized
348 enzymes including the *FAE1*-encoded β -ketoacyl-CoA synthase. The
349 hyperaccumulation of ceramides in these seeds also likely triggers PCD in embryonic

350 cells, as indicated by the enhanced expression of PCD-related genes in *orm1*^{met/met}
351 *orm2*^{-/-} seedlings (Figure 9E-9G and Supplemental Figure 8E).

352 Among the gene-edited *ORM* variants identified in our studies was a mutant that
353 contained an in-frame deletion of Met51 combined with a homozygous knockout of
354 *ORM2* (*orm1*^{met/met} *orm2*^{-/-}). Seeds from this mutant were viable, in contrast to
355 *orm1*^{-/-} *orm2*^{-/-}; however, the plants did not advance beyond the seedling stage and had
356 strong developmental defects. Like the *orm1*^{-/-} *orm2*^{-/-} seeds, the *orm1*^{met/met} *orm2*^{-/-}
357 seedlings hyperaccumulated ceramides with C16 fatty acids. These seedlings also
358 accumulated aberrant sphingolipids including DoxSA-containing ceramides, GlcCer
359 containing non-hydroxylated fatty acids, and IPCs, all of which were nearly absent from
360 wild-type seedlings. Cells from the *orm1*^{met/met} *orm2*^{-/-} seedlings displayed gross
361 defects in membrane and organellar structures as well as apparent autophagosome-like
362 structures. The early cell death displayed by the *orm1*^{met/met} *orm2*^{-/-} seedlings can be
363 attributed to the activation of PCD pathways, as indicated by the high transcript levels of
364 pathogenesis- and senescence- related genes that have been shown to be activated by
365 the accumulation of LCB and ceramides.

366 Notably, Met51 is predicted to occur at a position that is adjacent to the second
367 transmembrane domain of ORMs but is not a conserved residue across eukaryotic
368 ORM or ORMDL proteins (Supplemental Figure 9). Using yeast mutants containing the
369 Arabidopsis SPT complex, we determined that the ORM1 Met51 mutant has greatly
370 reduced interaction with Arabidopsis LCB1, which is required for ORM-induced
371 suppression of SPT activity. Given that Met51 is not conserved in eukaryotes, it is likely
372 that LCB1 does not directly interact with this residue. Instead, the lack of this amino acid
373 likely produces a conformational change at the second transmembrane domain of ORM
374 that impedes its regulatory interaction with the first transmembrane domain of LCB1.
375 The maintenance of the topology of $ORM1^{\Delta Met51}$ in microsomal membranes was verified
376 by Endo H digestion studies using the mutant ORM1 protein carrying glycosylation
377 cassettes. To date, no residues or structural features in ORMs have been identified that
378 are associated with their interaction with the LCB1/LCB2 heterodimer of SPT. Our
379 findings point to the possible interaction of the first transmembrane domain of LCB1 with

380 the second transmembrane domain of ORM as the basis for SPT regulation. Additional
381 structural studies are required to fully elucidate these potential regulatory interactions
382 between ORM and LCB1.

383 The use of gene editing also allowed us to assess the redundancy of *ORM1* and
384 *ORM2*. Notably, single mutants and progeny from the crosses that genotype as *orm1*^{+/−}
385 *orm2*^{+/−} had an appearance similar to wild-type plants under normal conditions.
386 However, *orm1*^{−/−} *orm2*^{+/−} seedlings displayed early senescence and did not flower
387 (Figure 4A). By comparison, *orm1*^{+/−} *orm2*^{−/−} plants were fertile but were strongly
388 dwarfed and had delayed flowering compared to wild type and *orm1*^{+/−} *orm2*^{+/−} plants
389 (Figure 4B and 4C). Perhaps the stronger phenotype associated with the complete
390 *ORM1* knockout in the *ORM2* heterozygous background reflects the finding that *ORM1*
391 is more highly expressed than *ORM2* throughout the plant except in pollen (Kimberlin *et*
392 *al.*, 2016). The normal appearance of mutants genotyped as *ORM1/orm2*^{−/−} and
393 *orm1*^{−/−}/*ORM2* suggests that *ORM1* and *ORM2* are functionally redundant, despite the
394 phenotypic differences observed in *orm1*^{−/−} *orm2*^{+/−} and *orm1*^{+/−} *orm2*^{−/−} seedlings.
395 However, we did observe that *orm1*^{+/−} *orm2*^{−/−} plants have a highly bushed appearance
396 and are strongly delayed in flowering (>80 days to flowering) (Figure 4D), pointing to a
397 meristem defect (Tantikanjana *et al.* 2001). This phenotype requires further
398 investigation, but it suggests that *ORM2* contributes more strongly to meristem function
399 than *ORM1*, perhaps due to cell-type-specific differences in the expression of the *ORM*
400 genes or to a non-sphingolipid function of *ORM* proteins.

401 Our results also revealed transcriptional mechanisms for maintaining sphingolipid
402 homeostasis upon the enhanced production of long-chain bases in the *orm1*^{met/met}
403 *orm2*^{−/−} mutant. *LOH2* and *LOH3* (encoding the functionally distinct ceramide synthases
404 LCB kinases) and *DPL1* (encoding the last step in long-chain base degradation) were
405 transcriptionally upregulated in the mutant. Notably, upregulating *LOH2* expression was
406 associated with the preponderance of ceramides containing C16 fatty acids and
407 dihydroxy long-chain bases (the principal products of *LOH2* ceramide synthase activity)
408 in free ceramides and glucosylceramides, including non-hydroxylated
409 glucosylceramides, which accumulated in *orm1*^{met/met} *orm2*^{−/−} seedlings but were

410 detected at only low concentrations in wild type and *ORM1* and *ORM2* single mutants.
411 These findings are consistent with our previous report that LOH2 activity is upregulated
412 in *Arabidopsis* *ORM* RNAi plants, presumably as a pathway for reducing cytotoxicity of
413 free long-chain bases and ceramides (which are metabolized to glucosylceramides)
414 (Kimberlin *et al.*, 2016). No changes were detected in *LCB1* or *ssSPTa* transcript levels
415 in the *orm1^{met/met} orm2^{-/-}* mutant, indicating that the transcriptional regulation of genes
416 for SPT complex proteins is not a pathway for maintaining sphingolipid homeostasis in
417 response to deregulated long-chain base biosynthesis. Instead, the expression of genes
418 involved in the catabolism of LCBs increased ~six- to seven-fold (*SPHK2* and *DPL1*) in
419 this mutant, suggesting that an unknown mechanism is activated in response to
420 increased ceramide and/or LCB levels.

421 Our overall findings about the metabolic and developmental defects associated
422 with the deregulation of SPT by disrupting *ORM* genes or removing the first
423 transmembrane domain of *LCB1* are schematically summarized in Figure 11. These
424 sphingolipid-related regulatory processes identified in *Arabidopsis* are likely found in
425 other plant species due to the conservation of sphingolipid metabolic enzymes in the
426 plant kingdom. Still unanswered is how *ORM* interactions with *LCB1* are regulated in
427 response to perturbations in intracellular sphingolipid levels or abiotic and biotic
428 stresses (e.g., bacterial and fungal pathogenesis). Similar to mammalian *ORMDLs*,
429 plant *ORMs* lack the serine-rich N-terminal extension found in *S. cerevisiae* *ORMs*,
430 which is phosphorylated or dephosphorylated in response to intracellular sphingolipid
431 levels to mediate *ORM*-*LCB1* interactions (Breslow *et al.*, 2010; Han *et al.*, 2010).
432 Mammalian *ORMDLs* have recently been shown to bind ceramides directly, which
433 affects the interactions of *ORMs* with *LCB1* (Davis *et al.*, 2019). A similar regulatory
434 mechanism might occur in plants. In this regard, we previously speculated that LOH2-
435 derived ceramides or glycosphingolipids enriched in dihydroxy LCBs and C16 fatty
436 acids likely provide minimal SPT regulation relative to those containing trihydroxy LCBs
437 and very long-chain fatty acids based on the hyperaccumulation of sphingolipids found
438 in *sbh1 sbh2* mutants and *LOH2*-overexpressing plants (Chen *et al.*, 2008; Luttgeharm
439 *et al.*, 2015a). Still, how *ORMs* reversibly regulate SPT activity in response to cellular
440 sphingolipid requirements remains an outstanding question in plants.

441

442 METHODS

443

444 Plant Materials and Growth Conditions

445 *Arabidopsis thaliana* Columbia-0 (Col-0) was used as the wild-type reference in this
446 study. Arabidopsis seedlings were grown on Murashige and Skoog (MS) medium
447 supplemented with 1% sucrose and 0.8% agar (pH 5.7) with 16 h light (100 μ mol/ m² s⁻¹)
448 8 h dark conditions at 22°C. The light source for growth chamber-grown seedlings
449 was supplied by standard wide-spectrum fluorescent bulbs type F32/841/ECO 32 watt
450 (maximum intensity 480-570 nm). For Arabidopsis plants in soil, seeds were sown, and
451 after 2 days of stratification at 4°C, plants were grown at 22°C with 16 h light (100 μ mol/
452 m² s⁻¹) 8 h dark. The light source for these plants came from wide-spectrum fluorescent
453 bulbs of type F32/841/ECO 32 watt and/or F72/T12/CW/VHO 160 watt and
454 F96/T12/CW/VHO215 215 watt (maximum intensity 480-570 nm).

455

456 Generation of CRISPR/Cas9 ORM Mutants

457 For CRISPR/Cas9-mediated gene editing of *ORM1* and *ORM2*, designed target sites
458 (Figure 1A) were fused with a single guide RNA (sgRNA) and expressed under the
459 control of the U6 promoter. The egg cell-specific *EC1* promoter was used to drive Cas9
460 expression as previously reported (Wang *et al.*, 2015). In short, *Bsal* sites were
461 incorporated by PCR into the *ORM* target sequences (Primers P1-P4; Supplemental
462 Table 1). The purified PCR products were digested with *Bsal* and ligated to the *Bsal*-
463 linearized binary vector pHEE401E. The final CRISPR/Cas9 binary vector was
464 electroporated into *Agrobacterium* strain GV3101 and then transformed into *Arabidopsis*
465 Col-0 wild-type plants via the floral dip method (Clough and Bent, 1998). The seeds
466 were screened for hygromycin resistance on MS plates containing 25 mg/L hygromycin.
467 For genotyping, fragments including the target regions of *ORM1* and *ORM2* were
468 amplified by PCR from the genomic DNA of transgenic plants (primers P5-P8;
469 Supplemental Table 1). Amplicons were digested with the restriction enzyme *Bs*/I
470 (*ORM1*) and *Dra*III (*ORM2*). The specific indels were identified by DNA sequencing. To
471 analyze for non-transgenic plants, progeny of hygromycin selected and confirmed

472 homozygous (CRISPR/Cas9 mutation) T₁ plants were sown directly on soil without
473 hygromycin selection. These plants were then screened by PCR (P9+P10;
474 Supplemental Table 1) for the lack of the Cas9 gene with the presence of the CRISPR
475 mutation, in the T₂ generation. The plants lacking Cas9 but containing the CRISPR
476 mutation were kept and used for further studies as mutated but non-transgenic lines.
477

478 **Genetic Complementation of *orm1*^{met/met} *orm2*^{-/-}**

479 For genetic complementation of the mutant *orm1*^{met/met} *orm2*^{-/-}, *ORM1* cDNA was
480 synthesized with included silent mutations of the *ORM1* gRNA target sequence to
481 mitigate possible editing of the transgene. The cDNA was amplified by overlapping PCR
482 and cloned into the *Eco*RI and *Xba*I sites of binary vector pBinGlyRed3 under the
483 control of the native *ORM1* promoter 600 bp region upstream of the *ORM1* start codon
484 (primers P11-P16; Supplemental Table 1). *orm1*^{met/met} *orm2*^{+/+} plants were transformed
485 with the pBinGlyRed3-*ORM1* construct by the floral dip method (Clough and Bent,
486 1998). Transformants were selected based on DsRed fluorescence and genotyped.
487 Mutation was confirmed by sequencing.

488

489 **Generation of the *LCB1*^Δ*TMD1* Mutant**

490 *LCB1*^Δ*TMD1* was generated by deleting 63 nucleotides corresponding to the first
491 transmembrane domain of At*LCB1* (nucleotide 95-157). *LCB1*^Δ*TMD1* under the control
492 of the *LCB1* native promoter was cloned into the pBinGlyRed3 binary vector, which was
493 transformed into *Agrobacterium tumefaciens* GV3101 by electroporation. Heterozygous
494 *LCB1*/*lcb1*-KO mutants (SALK_077745) were transformed by the floral dip method
495 (Clough and Bent, 1998).

496

497 **Pollen Staining**

498 Anthers of mature plants were isolated and smeared on a glass slide. The pollen was
499 stained using Alexander staining method (Alexander, 1969) for 1 h at 25°C. Pollen
500 imaging was performed using the EVOS FL Auto Cell Imaging System.

501

502 **Sphingolipid Extraction and Analysis**

503 Sphingolipids were extracted as described in (Markham and Jaworski, 2007). Briefly, 12
504 to 15-day-old *Arabidopsis* seedlings grown on solid medium were collected from
505 independent plates for each biological replicate. The seedlings were lyophilized and 10-
506 30 mg of tissue was homogenized and extracted with isopropanol/heptane/water
507 (55:20:25 v/v/v). We used one to four mg of plant material for each biological replicate
508 for sphingolipid analysis from seeds. Internal standards for the different sphingolipid
509 classes were added. The supernatants were dried and de-esterified with methylamine in
510 ethanol/water (70:30 v/v). The lipid extract was re-suspended in THF/methanol/water
511 (5:2:5 v/v/v) containing 0.1% formic acid. The sphingolipid species were analyzed using
512 a Shimadzu Prominence ultra-performance liquid chromatography system and a 4000
513 QTRAP mass spectrometer (AB SCIEX). Data analysis and quantification were
514 performed using the software Analyst 1.5 and Multiquant 2.1 as described (Markham
515 and Jaworski, 2007; Kimberlin *et al.*, 2013; Davis *et al.*, 2020).

516

517 **Lipid Extraction Analysis**

518 To quantify the TAG content, lipids were extracted from ~1 mg of seeds using a method
519 based on that of Bligh and Dyer (Bligh and Dyer, 1959). Seeds were ground using a
520 glass rod in 13 × 100-mm glass screw cap tubes with 3 mL methanol:chloroform (2:1
521 v/v). Triheptadecanoic (17:0-TAG) was added to the seeds as an internal standard prior
522 to extraction. After 1 h incubation at 25°C, 1 mL of chloroform and 1.9 mL of water were
523 added. The solution was mixed thoroughly and centrifuged at 400•g for 10 min. The
524 lower organic phase containing total lipids was transferred to a new glass tube and
525 solvent evaporated under a N₂ stream with heating at 40°C. The sample was
526 redissolved in 1 mL of heptane and loaded onto a solid phase extraction column
527 (Supelco Supelclean LC-Si SPE column; Sigma-Aldrich) pre-equilibrated with heptane.
528 A purified TAG fraction was eluted from the column and converted to fatty acid methyl
529 esters, which were analyzed by gas chromatography as previously described (Zhu *et*
530 *al.*, 2016). TAG fatty acid content was quantified relative to 17:0 fatty acid methyl ester
531 from the internal standard.

532

533 **RNA Isolation and Quantitative RT-PCR**

534 RNA was extracted from 12 to 15-day-old Arabidopsis seedlings grown on solid MS
535 medium. Each replicate corresponds to pooled seedlings from independent plates.
536 RNA extraction was performed using an RNeasy Kit (Qiagen) according to the
537 manufacturer's protocol. The isolated RNA (1 μ g) was treated with DNase I (Invitrogen).
538 cDNA conversion was performed with a RevertAid cDNA synthesis kit (Thermo Fisher).
539 SYBR Green was used as the fluorophore in a qPCR supermix (Qiagen). *PP2AA3* and
540 *UBQUITIN* (*UBQ*) were used as internal reference genes. qPCR was performed using
541 a Bio-Rad MyiQ iCycler qPCR instrument. The thermal cycling conditions were an initial
542 step of 95°C for 10 min followed by 45 cycles at 95°C for 15 s, 60°C for 30 s and 72°C
543 for 30 s. Primers used in this study are listed in Supplemental Table 1.

544

545 **Electron Microscopy**

546 Ten-day-old wild-type and *orm1^{met/met}* *orm2^{-/-}* seedlings were used for Transmission
547 Electron Microscopy (TEM). The samples were cut and fixed with 2.5% glutaraldehyde
548 (v/v), 2.0% paraformaldehyde in 0.1 M cacodylate buffer. The samples were subjected
549 to post fixation with 1% osmium tetroxide in 0.1 M cacodylate buffer, dehydrated with
550 ethanol and acetone, and embedded with a Spurr's Embedding Kit. Ultra-thin sections
551 (100 nm) were cut and stained with uranyl acetate and lead citrate. Samples were
552 imaged on a Hitachi H7500 TEM at an accelerating voltage of 80 kV.

553

554 **Yeast Cell Growth and Expression Plasmids**

555 *Saccharomyces cerevisiae* strain TDY9113 (Mata *tsc3^Δ:NAT/cb1^Δ:KAN ura3 leu2 lys2*
556 *trp1^Δ*) lacking endogenous SPT was used for the expression of Arabidopsis SPT
557 subunits and ORM proteins as described in (Kimberlin *et al.*, 2016). For deoxy-
558 sphinganine (DoxSA) quantification, yeast strain TDY9113 expressing AtLCB1^{C144W} was
559 grown in 1.5% galactose and 0.5% glucose supplemented with 40 mM alanine.
560 Plasmids for the expression of AtLCB1-FLAG, Myc-AtLCB2a, and HA-AtssSPTa in
561 yeast were as described (Kimberlin *et al.*, 2013) and for HA-AtORM1 as described
562 (Kimberlin *et al.*, 2016). AtLCB1^{C144W} was generated by QuikChange mutagenesis
563 (Agilent Technologies) and confirmed by sequencing. The open reading frame of
564 ORM1^{met51} was amplified by PCR and inserted into pPR3-N (Dualsystems Biotech) for

565 expression with an N-terminal HA tag. LCB and DoxSA quantification were performed
566 as previously described (Kimberlin *et al.*, 2016).

567

568 **Immunoprecipitation**

569 Microsomal membrane proteins were prepared from yeast cells expressing FLAG-
570 tagged AtLCB1, Myc-tagged AtLCB2a, HA-tagged AtssSPTa, and HA-tagged AtORM1
571 or AtORM1^{met}. Microsomal membrane proteins were solubilized in 1.5% digitonin at 4°C
572 for 2.5 h and incubated with Flag-beads (Sigma-Aldrich) overnight. The bound proteins
573 were eluted in immunoprecipitation buffer (50 mM HEPES-KOH, pH 6.8, 150
574 mM potassium acetate, 2 mM magnesium acetate, 1 mM calcium chloride, and 15%
575 glycerol) containing 0.25% digitonin and 200 µg/mL FLAG peptide, resolved on a 4% to
576 12% BisTris NuPAGE gel (Invitrogen), and detected by immunoblotting with anti-HA
577 (Covance; 1:5,000 dilution), anti-Myc (Sigma-Aldrich; 1:3,000 dilution), and anti-FLAG
578 (GenScript; 1:5,000 dilution) antibodies.

579

580 **Membrane Topology Mapping of ORM1^{met}**

581 ORM or ORM1^{met⁵¹}-encoding synthetic cDNAs with an in-frame glycosylation cassette
582 (GC) inserted after codon 46, 82 or 121 were synthesized by GenScript (NJ, USA) and
583 ligated into pPR3-N for expression with an N-terminal HA tag. The HA-ORM1-GC-
584 tagged proteins were expressed (along with AtLCB1-FLAG, MYC-AtLCB2a, and HA-
585 AtssSPTa) in yeast strain TDY9113. Isolation of microsomal proteins, digestion with
586 Endo H, and immunodetection of the AtORM1 proteins were performed as previously
587 described (Kimberlin *et al.*, 2016).

588

589 **Statistical Analyses**

590 Two-tailed Student's *t* test was performed to evaluate statistically significant differences
591 compared to the control (wild-type). One-way ANOVA followed by Tukey's test was
592 used to determine the differences among the five genotypes for a given variable. The
593 values P <0.05 were considered statistically significant. The statistical analyses were
594 done using GraphPad Prism 8.3.0. T-test and ANOVA results are shown in
595 Supplemental Data Set 1.

596

597 **Accession Numbers**

598 Accession numbers for the genes studied in this work are: *ORM1* (At1G01230), *ORM2*
599 (At5g42000), *LCB1* (At4g36480), *ssSPTa* (At1g06515), *LOH1* (At3g25540), *LOH2*
600 (At3g19260), *LOH3* (At1g13580), *SPHK1* (At4g21540), *SPHK2* (At2g46090), *DPL1*
601 (At1g27980), *PP2AA3* (At1g13320), *PRXC* (At3g49120), *PR2* (At3g57260), *PR3*
602 (At3g12500), *FMO* (At1g19250), *SAG13* (At2g29350), and *UBQ* (At5g25760).

603

604 **Supplemental Data**

605

606 **Supplemental Figure 1.** Predicted Protein Sequences of ORMs in the CRISPR/Cas9
607 Mutants.

608

609 **Supplemental Figure 2.** PCR/Digestion-based Genotyping of CRISPR/Cas9 *ORM*
610 Mutants.

611

612 **Supplemental Figure 3.** Complementation of *orm1*^{met/met} *orm2*^{-/-}.

613

614 **Supplemental Figure 4.** Ceramide Compositions with Hydroxylated Fatty Acids in
615 *ORM* Mutants.

616

617 **Supplemental Figure 5.** Glucosylceramide Compositions in *ORM* Mutants.

618

619 **Supplemental Figure 6.** Composition of Glucosylceramides Containing Non-
620 Hydroxylated Fatty Acids in *ORM* Mutants.

621

622 **Supplemental Figure 7.** Glycosylinositolphosphoceramide Compositions in *ORM*
623 Mutants.

624

625 **Supplemental Figure 8.** Expression of Genes Associated with Sphingolipid
626 Biosynthetic and Catabolic Pathways and Pathogenesis.

627

628 **Supplemental Figure 9.** Amino Acid Sequence Alignment of *ORM* Proteins.

629

630 **Supplemental Table 1.** Primer Sequences Used for Cloning, RT-PCR, qPCR, and
631 Genotyping.

632 **Supplemental Data Set 1.** T-tests and ANOVA Results.

633

634 **ACKNOWLEDGEMENTS**

635 We thank Jaydeeo Kolape for technical assistance and Jules Russ for the TEM sample
636 preparation at the Microscopy Core Facility in the Center for Biotechnology at University
637 of Nebraska-Lincoln. This work was supported by a National Science Foundation grant
638 MCB 1818297 to EBC, TMD and JEM. AGS acknowledges the funding from the
639 Mexican National Council of Science and Technology (CONACyT).

640

641 **AUTHOR CONTRIBUTIONS**

642 AGS, GH, TMD and EBC designed the study; AGS, GH, LG, YL, REC and JEM
643 performed the experiments and analyzed the data along with GH, TMD, and EBC; AGS,
644 GH, TMD, and EBC wrote the manuscript.

645

646 **REFERENCES**

647 **Alden, K.P., Dhondt-Cordelier, S., McDonald, K.L., Reape, T.J., Ng, C.K., McCabe, P.F., Leaver, C.J.** (2011) Sphingolipid long chain base phosphates can regulate
648 apoptotic-like programmed cell death in plants. *Biochem. Biophys. Res. Commun.* **410**:
649 574–580.

651

652 **Alexander, M.P.** (1969) Differential staining of aborted and non aborted pollen. *Stain
653 Technol.* **44**:117-122.

654

655 **Bi, F.C., Liu, Z., Wu, J.X., Liang, H., Xi, X.L., Fang, C., Sun, T.J., Yin, J., Dai,
656 G.Y., Rong, C., Greenberg, J.T., Su, W.W., Yao, N.** (2014) Loss of ceramide kinase in
657 *Arabidopsis* impairs defenses and promotes ceramide accumulation and mitochondrial
658 H_2O_2 bursts. *Plant cell*, **26**: 3449–67.

659

660 **Bligh, E.G., Dyer, W.J.** (1959) A rapid method of total lipid extraction and purification.
661 *Can. J. Biochem Physiol* **37**: 911-917.

662 **Breslow, D.K., Collins, S.R., Bodenmiller, B., Aebersold, R., Simons,**

663 **K., Shevchenko, A., Ejsing, C.S., Weissman, J.S.** (2010) Orm family proteins mediate
664 sphingolipid homeostasis. *Nature*, **463**:1048–1053.

665

666 **Chen, M., Han, G., Dietrich, C.R., Dunn, T.M., Cahoon, E.B.** (2006) The essential
667 nature of sphingolipids in plants as revealed by the functional identification and
668 characterization of the *Arabidopsis* LCB1 subunit of serine palmitoyltransferase. *Plant*
669 *Cell*, **18**: 3576–3593.

670

671 **Chen, M., Markham, J.E., Dietrich, C.R., Jaworski, J.G., Cahoon, E.B.** (2008)
672 Sphingolipid Long-Chain Base Hydroxylation Is Important for Growth and Regulation of
673 Sphingolipid Content and Composition in *Arabidopsis*. *Plant Cell*, **20**:1862–1878.

674

675 **Chen, M., Cahoon, E.B., Saucedo-García, M., Plasencia, J., Gavilanes-Ruiz, M.**
676 (2009) Plant Sphingolipids: Structure, Synthesis and Function. In H. Wada, N. Murata,
677 eds, *Lipids in Photosynthesis: Essential and Regulatory Functions*. Springer
678 Netherlands, Dordrecht, pp 77-115.

679

680 **Chueasiri, C., Chunthong, K., Pitnjam, K., Chakhonkaen, S., Sangarwut,**
681 **N., Sangsawang, K., Suksangpanomrung, M., Michaelson, L.V., Napier,**
682 **J.A., Muangprom, A.** (2014) Rice ORMDL controls sphingolipid homeostasis affecting
683 fertility resulting from abnormal pollen development. *PLoS One* 5(9):e106386.

684

685 **Clarke BA, Majumder S, Zhu H, Lee YT, Kono M, Li C, Khanna C, Blain**
686 **H, Schwartz R, Huso VL, Byrnes C, Tuymetova G, Dunn TM, Allende ML, Proia RL.**
687 (2019) The *Ormdl* genes regulate the sphingolipid synthesis pathway to ensure proper
688 myelination and neurologic function in mice. *eLife* **8**:e51067.

689

690 **Clough, S.J., Bent, A.F.** (1998) Floral dip : a simplified method for *Agrobacterium*-
691 mediated transformation of *Arabidopsis thaliana*. *Plant J.* **16**:735-43.

692

693 **Coursol, S., Fan, L.M., Le Stunff, H., Spiegel, S., Gilroy, S., Assmann, S.M.** (2003)

694 Sphingolipid signalling in *Arabidopsis* guard cells involves heterotrimeric G proteins.',
695 *Nature*, **423**:651-4.

696

697 **Dadsena, S., Bockelmann, S., Mina, J.G.M., Hassan, D.G., Korneev, S., Razzera,**
698 **G., Jahn, H., Niekamp, P., Müller, D., Schneider, M., Tafesse, F.G., Marrink,**
699 **S.J., Melo, M.N., Holthuis, J.C.M.** (2019) Ceramides bind VDAC2 to trigger
700 mitochondrial apoptosis. *Nat. Commun.* **10**:1832.

701

702 **Davis, D.L., Gable, K., Suemitsu, J., Dunn, T.M., Wattenberg, B.W.** (2019) The
703 ORMDL/Orm–serine palmitoyltransferase (SPT) complex is directly regulated by
704 ceramide: Reconstitution of SPT regulation in isolated membranes. *J. Biol. Chem.* **294**:
705 5146–5156.

706

707 **Davis, J.A., Pares, R.B., Bernstein, T., McDowell, S.C., Brown, E., Stubrich, J.,**
708 **Rosenberg, A., Cahoon, E.B., Cahoon, R.E., Poulsen, L.R., Palmgren, M.B., López-**
709 **Marqués, R.L., Harper, J.F.** (2020) The lipid flippases ALA4 and ALA5 play critical
710 roles in cell expansion and plant growth. *Plant Physiol.* pp.01332.02019.

711

712 **Dietrich, C.R., Han, G., Chen, M., Berg, R.H., Dunn, T.M., Cahoon, E.B.** (2008) Loss-
713 of-function mutations and inducible RNAi suppression of *Arabidopsis* LCB2 genes
714 reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability.
715 *Plant J.* **54**:284-98.

716

717 **Gable, K., Slife, H., Bacikova, D., Monaghan, E., Dunn, T.M.** (2000) Tsc3p Is an 80-
718 amino acid protein associated with serine palmitoyltransferase and required for optimal
719 enzyme activity. *J. Biol. Chem.* **275**:7597–7603.

720

721 **Greenspan, P., Mayer, E.P., and Fowler, S.D.** (1985). Nile red - A selective
722 fluorescent stain for intracellular lipid droplets. *J. Cell Biol.* **100**: 965–973.

723

724 **Gupta, S.D., Gable, K., Alexaki, A., Chandris, P., Proia, R.L., Dunn, T.M., Harmon,**

725 **J.M.** (2015) Expression of the ORMDLS, modulators of serine palmitoyltransferase, is
726 regulated by sphingolipids in mammalian cells. *J. Biol. Chem.* **290**: 90–98.

727

728 **Han, G., Gupta, S.D., Gable, K., Bacikova, D., Sengupta, N., Somashekharappa,**
729 **N., Proia, R.L., Harmon, J.M., Dunn, T.M.** (2019) The ORMs interact with
730 transmembrane domain 1 of Lcb1 and regulate serine palmitoyltransferase
731 oligomerization, activity and localization. *Biochim. Biophys. Acta Mol. Cell. Biol. Lipids*
732 **1864**:245–259.

733

734 **Han, S., Lone, M.A., Schneiter, R., Chang, A.** (2010) Orm1 and Orm2 are conserved
735 endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein
736 quality control. *Proc. Natl. Acad. Sci. U.S.A.* **107**:5851-6.

737

738 **Huby, E., Napier, J.A., Baillieul, F., Michaelson, L.V., Dhondt-Cordelier, S.** (2020)
739 Sphingolipids: towards an integrated view of metabolism during the plant stress
740 response. *New Phytol.* **225**: 659-670.

741

742 **Ischebeck, T.** (2016) Lipids in pollen - They are different. *Biochim. Biophys. Acta* **1861**:
743 1315-1328.

744

745 **Kimberlin, A.N., Majumder, S., Han, G., Chen, M., Cahoon, R.E., Stone, J.M., Dunn,**
746 **T.M., Cahoon, E.B.** (2013) Arabidopsis 56-Amino Acid Serine Palmitoyltransferase-
747 Interacting Proteins Stimulate Sphingolipid Synthesis, Are Essential, and Affect
748 Mycotoxin Sensitivity. *Plant Cell.* **25**: 4627–4639.

749

750 **Kimberlin, A.N., Han, G., Luttgeharm, K.D., Chen, M., Cahoon, R.E., Stone**
751 **J.M., Markham, J.E., Dunn, T.M., Cahoon, E.B.** (2016) ORM expression alters
752 sphingolipid homeostasis and differentially affects ceramide synthase activity. *Plant*
753 *physiol.* **172**: 889–900.

754

755 **Li, J., Yin, J., Rong, C., Li, K.E., Wu, J.X., Huang, L.Q., Zeng, H.Y., Sahu, S.K., Yao**

756 **N.** (2016) Orosomucoid proteins interact with the small subunit of serine
757 palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in
758 *Arabidopsis*. *Plant cell.* **28**: 3038–3051.

759

760 **Liang, H., Yao, N., Song, J.T., Luo, S., Lu, H., Greenberg, J.T.** (2003) Ceramides
761 modulate programmed cell death in plants. *Genes Dev.* **17**:2636-41.

762

763 **Luttgeharm, K.D., Chen, M., Mehra, A., Cahoon, R.E., Markham, J.E., Cahoon, E.B.**
764 (2015a) Overexpression of *Arabidopsis* ceramide synthases differentially affects growth,
765 sphingolipid metabolism, programmed cell death, and mycotoxin Resistance.', *Plant*
766 *physiol.* **169**: 1108–17.

767

768 **Luttgeharm, K.D., Kimberlin, A.N., Cahoon, R.E., Cerny, R.L., Napier, J.A.,**
769 **Markham, J.E., Cahoon, E.B.** (2015b) Sphingolipid metabolism is strikingly different
770 between pollen and leaf in *Arabidopsis* as revealed by compositional and gene
771 expression profiling. *Phytochemistry* **115**: 121-129.

772

773 **Mao, C., Xu, R., Bielawska, A., Obeid, L.M.** (2000) Cloning of an alkaline ceramidase
774 from *Saccharomyces cerevisiae*. An enzyme with reverse (CoA-independent) ceramide
775 synthase activity. *J. Biol. Chem.* **275**:6876-84.

776

777 **Markham, J.E., Li, J., Cahoon, E.B., Jaworski, J.G.** (2006) Separation and
778 identification of major plant sphingolipid classes from leaves. *J. Biol. Chem.*
779 **281**:22684–94.

780

781 **Markham, J.E., Jaworski, J.G.** (2007) Rapid measurement of sphingolipids from
782 *Arabidopsis thaliana* by reversed-phase high-performance liquid chromatography
783 coupled to electrospray ionization tandem mass spectrometry. *Rapid Commun Mass*
784 *Spectrom* **21**: 1304-1314

785

786 **Markham, J.E., Molino, D., Gissot, L., Bellec, Y., Hématy, K., Marion, J., Belcram**

787 **K., Palauqui, J.C., Satiat-Jeunemaître, B., Faure, J.D.** (2011) Sphingolipids
788 containing very-long-chain fatty acids define a secretory pathway for specific polar
789 plasma membrane protein targeting in *Arabidopsis*. *Plant Cell* **23**:2362–2378.

790

791 **Peer, M., Stegmann, M., Mueller, M.J., Waller, F.** (2010) *Pseudomonas syringae*
792 infection triggers *de novo* synthesis of phytosphingosine from sphinganine in
793 *Arabidopsis thaliana*. *FEBS Lett.* **584**: 4053–4056.

794

795 **Tantikanjana, T., Yong, J.W.H., Letham, D.S., Griffith, M., Hussain, M., Ljung, K.,**
796 **Sandberg, G., Sundaresan, V.** (2001) Control of axillary bud initiation and shoot
797 architecture in *Arabidopsis* through the SUPERSHOOT gene. *Genes Dev.* **15**: 1577–
798 1588.

799

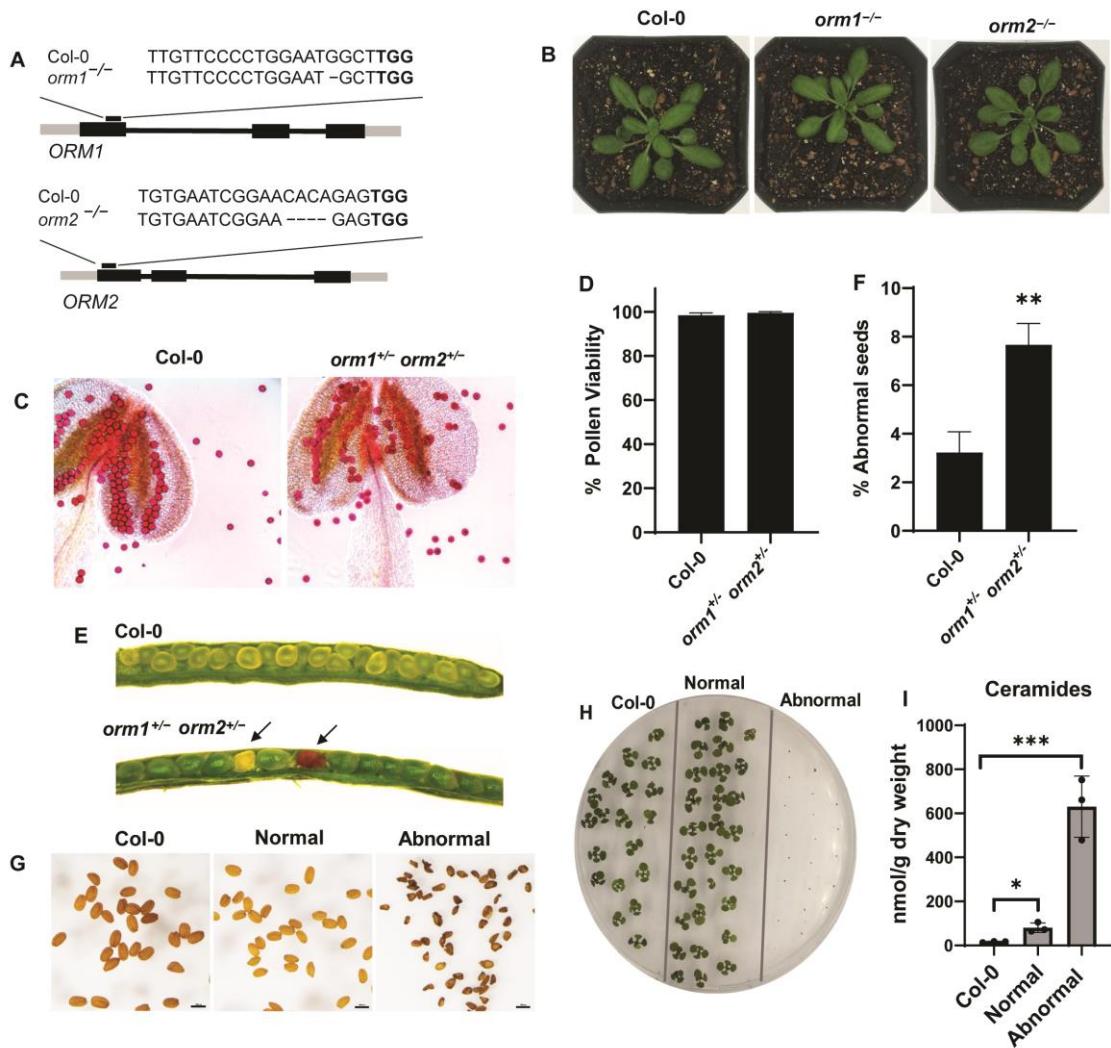
800 **Teng, C., Dong, H., Shi, L., Deng, Y., Mu, J., Zhang, J., Yang X., and Zuo, J.** (2008)
801 Serine palmitoyltransferase, a key enzyme for *de novo* synthesis of sphingolipids, is
802 essential for male gametophyte development in *Arabidopsis*. *Plant Physiol.* **146**: 1322–
803 1332.

804

805 **Ternes, P., Feussner, K., Werner, S., Lerche, J., Iven, T., Heilmann, I., Riezman,**
806 **H., Feussner, I.** (2011) Disruption of the ceramide synthase LOH1 causes spontaneous
807 cell death in *Arabidopsis thaliana*. *New Phytol.* **192**:841–854.

808

809 **Wang, Z.P., Xing, H.L., Dong, L., Zhang, H.Y., Han, C.Y., Wang, X.C., Chen, Q.J.**
810 (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates
811 homozygous mutants for multiple target genes in *Arabidopsis* in a single generation.
812 *Genome Biol.* **16**:144.


813

814 **Yang, F., Kimberlin, A.N., Elowsky, C.G., Liu, Y., Gonzalez-Solis, A., Cahoon,**
815 **E.B., Alfano, J.R.** (2019) A plant immune receptor degraded by selective autophagy.
816 *Mol. Plant.* **12**:113–123.

817

818 **Zheng, P., Wu, J.X., Sahu, S.K., Zeng, H.Y., Huang, L.Q., Liu, Z., Xiao, S., Yao, N.**
819 (2018) Loss of alkaline ceramidase inhibits autophagy in *Arabidopsis* and plays an
820 important role during environmental stress response. *Plant Cell Environ.* **41**:837-849.
821

822 **Zhu, L.H., Krens, F., Smith, M.A., Li, X., Qi, W., van Loo, E.N., Iven, T., Feussner, I.,**
823 **Nazarenus, T.J., Huai, D., Taylor, D.C., Zhou, X.R., Green, A.G., Shockley, J.,**
824 **Klasson, K.T., Mullen, R.T., Huang, B., Dyer, J.M., Cahoon, E.B.** (2016) Dedicated
825 Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial
826 Feedstock Production. *Sci Rep* **6**: 22181.

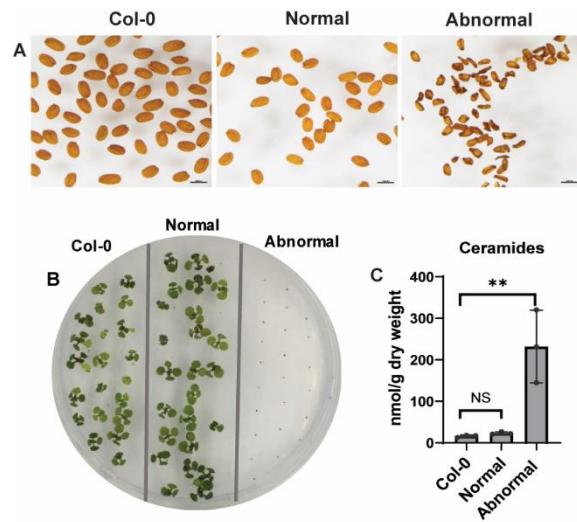
Figure 1. The ORM Double Knockout Mutant is Seed Lethal.

(A) Schematic representation of CRISPR/Cas9-induced mutations in *ORM* genes. Gene structures of *ORM1* and *ORM2*; black boxes represent exons. The CRISPR/Cas9 target site is indicated, as well as the nucleotide deletions for each gene in the single mutants.

(B) Representative images of 25-day-old wild-type Col-0, *orm1*^{−/−} and *orm2*^{−/−} plants.

(C) Representative images of pollen and anthers (treated with Alexander stain) collected from wild-type Col-0 and *orm1*^{+/−} *orm2*^{+/−} plants.

(D) Viability of pollen determined by counts of ~100 pollen grains from five randomly selected flowers from independent Col-0 and *orm1*^{+/−} *orm2*^{+/−} plants. Shown are the mean \pm SD.


(E) Developing seeds in siliques from wild-type Col-0 and *orm1*^{+/−} *orm2*^{+/−} plants. Shriveled, brown (abnormal) seeds are indicated by arrows.

(F) Percentage of shriveled and brown (abnormal) seeds in siliques determined by counts of an average of 200 developing seeds from 10 randomly selected siliques of independent wild-type Col-0 and *orm1*^{+/−} *orm2*^{+/−} plants. Shown are the mean \pm SD. Asterisks denote significant differences, as determined by two-tailed Student's *t* test with a significance of $p \leq 0.01$.

(G) Seeds from wild-type Col-0; seeds from *orm1*^{+/−} *orm2*^{+/−} were separated and classified into normal and the darker, shriveled seeds as abnormal. Bars=1 mm.

(H) Phenotypes of 10-day-old seedlings from wild-type Col-0 seeds, normal and abnormal seeds from *orm1*^{+/−} *orm2*^{+/−}. Abnormal seeds did not germinate.

(I) Ceramide content in seeds from wild-type Col-0, normal and abnormal seeds from *orm1*^{+/−} *orm2*^{+/−}. Shown are the mean \pm SD, $n=3$. Asterisks indicate significant differences based on one-way ANOVA followed by Tukey's multiple comparisons test, with a significance of (*) $P \leq 0.05$ and (***) $P \leq 0.001$.

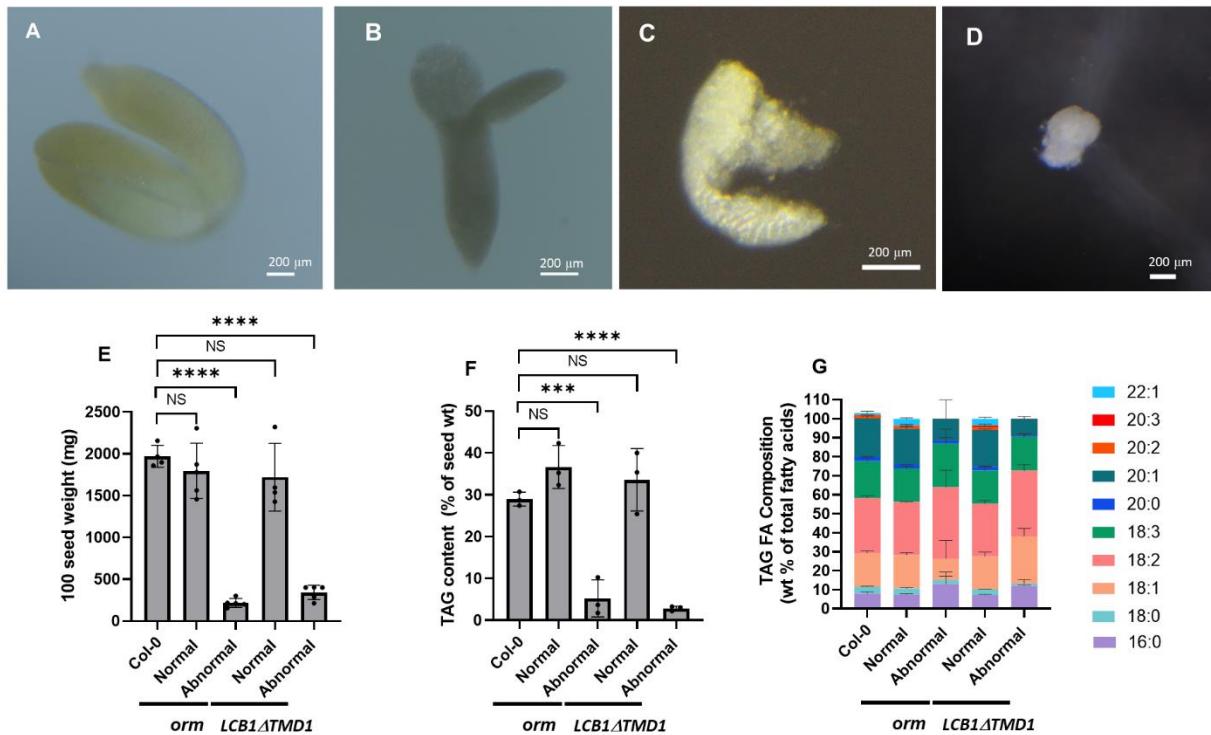
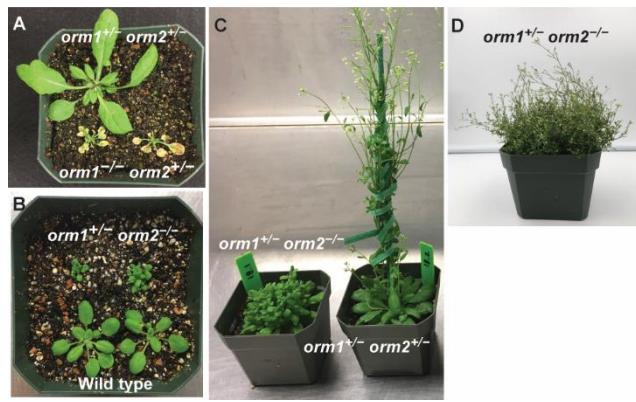


Figure 2. *Atlcb1*^{+/−} Plants Expressing *LCB1ΔTMD1* Phenocopy the ORM Double Knockout Mutant.

(A) Seeds from wild-type Col-0; seeds from *Atlcb1*^{+/−} plants expressing *LCB1ΔTMD1* were separated and classified into normal and abnormal darker and shriveled seeds. Bars=1 mm.

(B) Phenotypes of 10-day-old seedlings from wild-type Col-0 seeds, normal and abnormal seeds from *Atlcb1*^{+/−} expressing *LCB1ΔTMD1*. Abnormal seeds did not germinate.

(C) Ceramide content in seeds from wild-type Col-0, normal and abnormal seeds from *LCB1ΔTMD1*. Shown are the mean \pm SD, n=3. Asterisks indicate significant difference based on one-way ANOVA followed by Tukey's multiple comparisons test, (**) P \leq 0.01. NS, not significant.

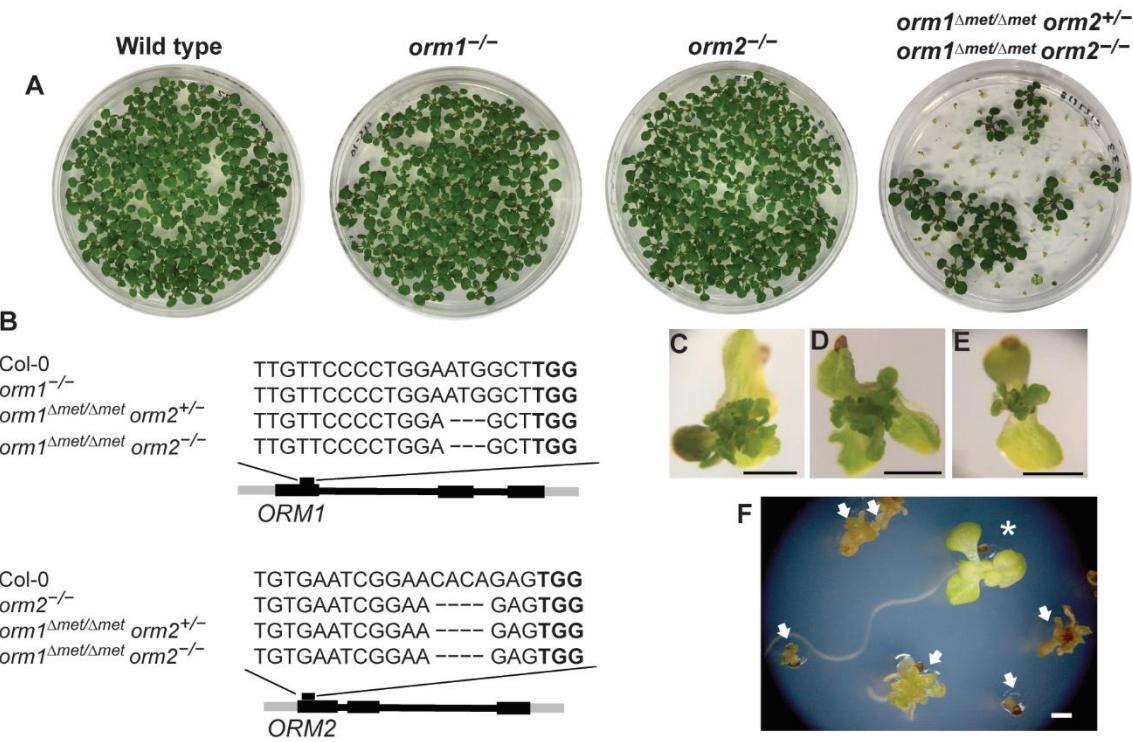

Figure 3. Abnormal Seeds from *ORM* and *LCB1 Δ TMD1* Mutant Plants Have Altered Embryo Morphology and Reduced Triacylglycerol Concentrations.

Morphology of embryos from (A) wild-type seeds and (B-D) abnormal seeds from *orm1 $^{+/-}$ orm2 $^{+/-}$* plants showing that the embryo is not fully developed. Embryos were dissected from mature seeds. Bars=200 μ M.

(E) 100 seed weight. Values are the mean \pm SD of seeds harvested from 4 independent plants. Asterisks indicate significant difference based on one-way ANOVA followed by Tukey's multiple comparisons test, with a significance of (****) $P\leq 0.0001$. NS, not significant.

(F) Triacylglycerol (TAG) content in seeds from wild-type Col-0 and normal and abnormal seeds from *orm1 $^{+/-}$ orm2 $^{+/-}$* and *Atlcb1 $^{+/-}$* expressing *LCB1 Δ TMD1*. Values are the mean \pm SD of three independent lipid extractions. Asterisks indicate significant difference based on one-way ANOVA followed by Tukey's multiple comparisons test with a significance of (***) $P\leq 0.001$ and (****) $P\leq 0.0001$. NS, not significant.

(G) Composition of TAG as weight percent of fatty acid in seeds from wild-type Col-0 and normal and abnormal seeds from *orm1 $^{+/-}$ orm2 $^{+/-}$* and *Atlcb1 $^{+/-}$* expressing *LCB1 Δ TMD1*. Values are the mean \pm SD of three independent samples.


Figure 4. *orm1*^{-/-} *orm2*^{+/-} and *orm1*^{+/-} *orm2*^{-/-} Plants Have Distinct Growth Phenotypes.

(A) Representative image of 35-day-old *orm1*^{+/-} *orm2*^{+/-} and *orm1*^{-/-} *orm2*^{+/-} plants. The *orm1*^{-/-} *orm2*^{+/-} plants showed reduced size and yellow regions corresponding to cell death.

(B) Representative image of 18-day-old wild-type Col-0 and *orm1*^{+/-} *orm2*^{-/-} plants. Mutants showed reduced size, abnormal leaf shape, and a bushy phenotype.

(C) Representative image of 50-day-old *orm1*^{+/-} *orm2*^{-/-} and *orm1*^{+/-} *orm2*^{+/-} plants. The *orm1*^{+/-} *orm2*^{-/-} plants showed a bushy phenotype and delayed flowering.

(D) Representative image of 80-day-old *orm1*^{+/-} *orm2*^{-/-} plant.

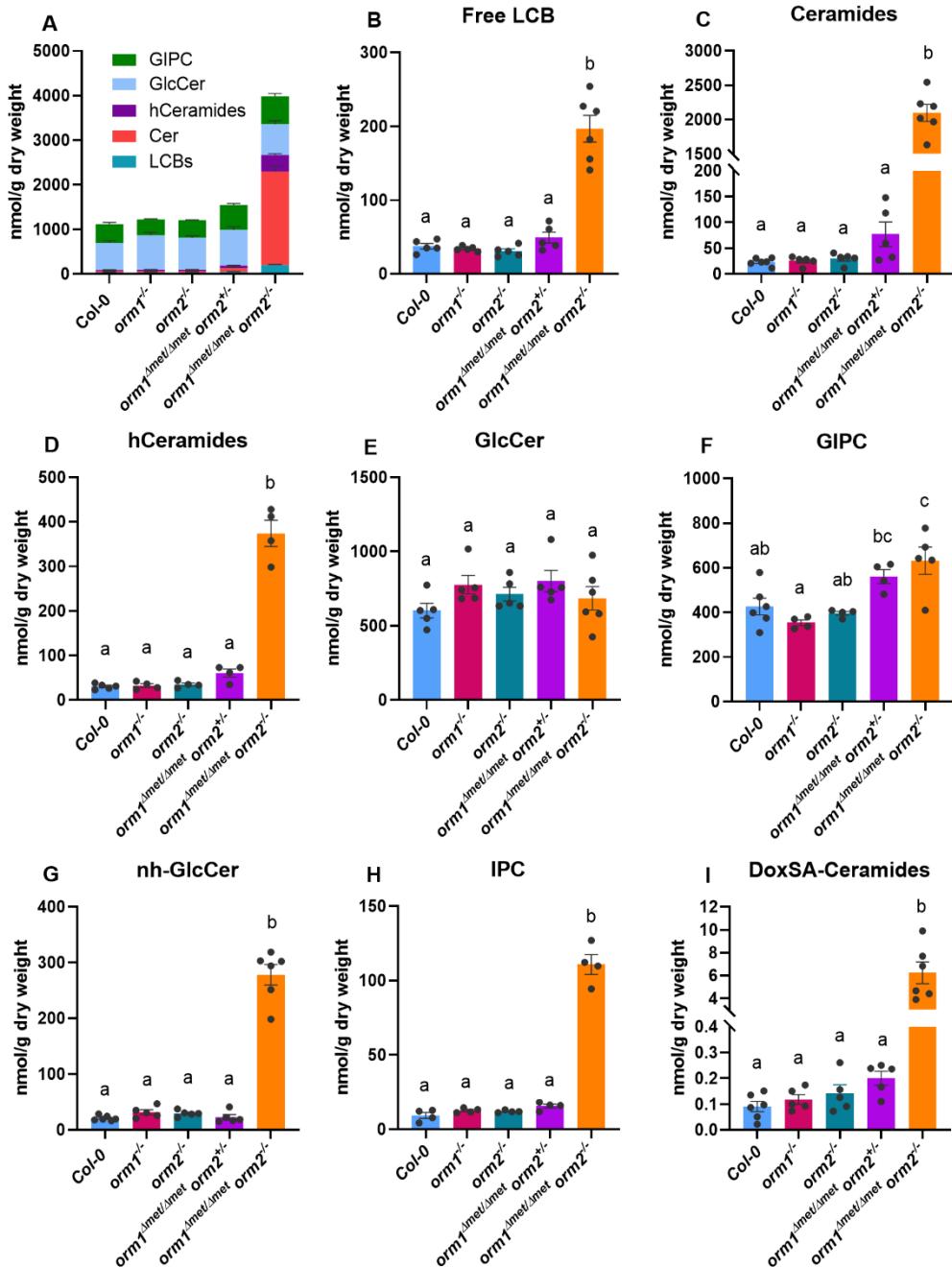
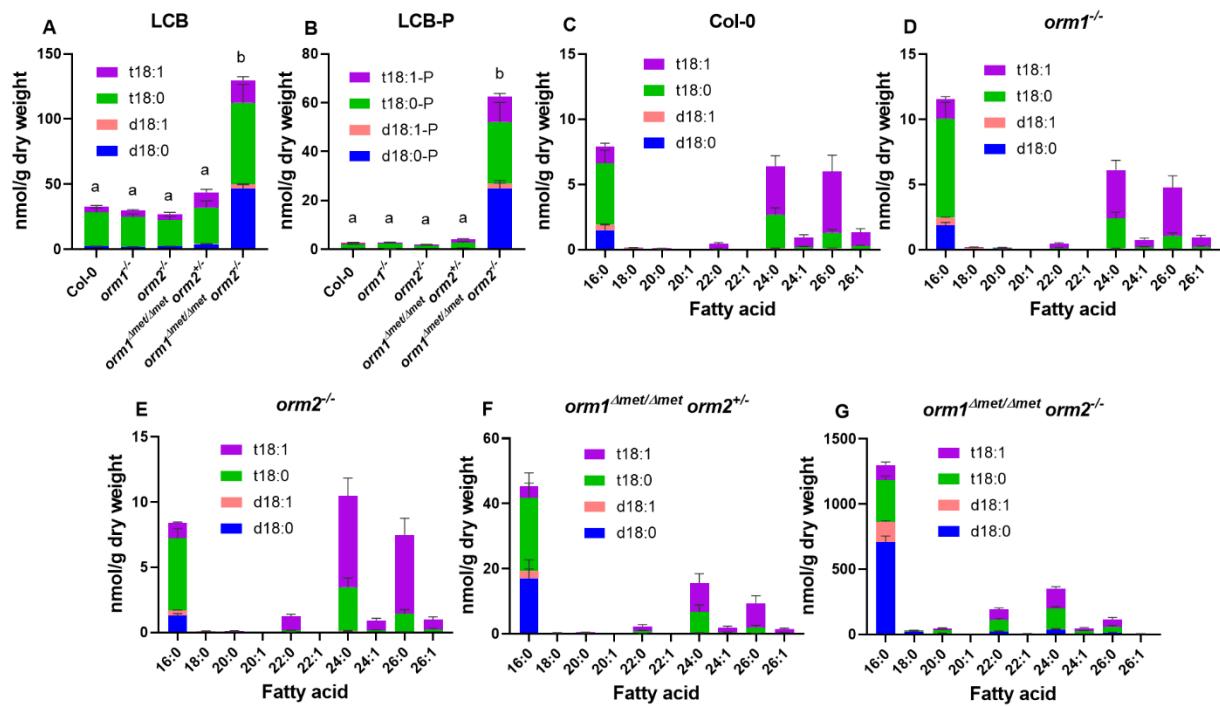
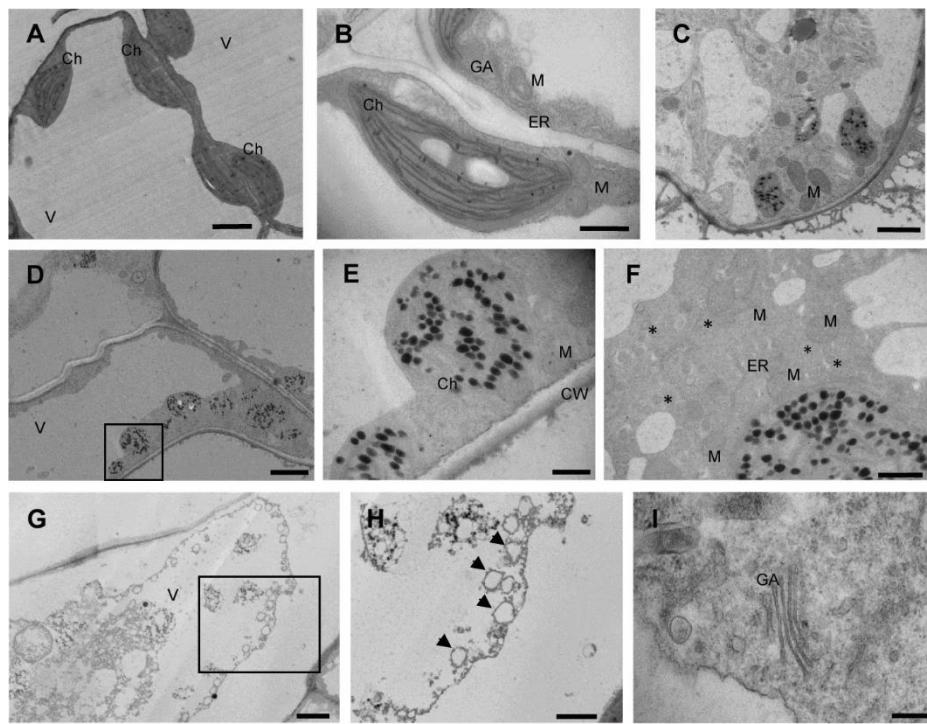


Figure 5. *orm1*^{Δmet/Δmet} *orm2*^{+/−} Plants Exhibit Developmental Defects and Do Not Progress Beyond the Seedling Stage.

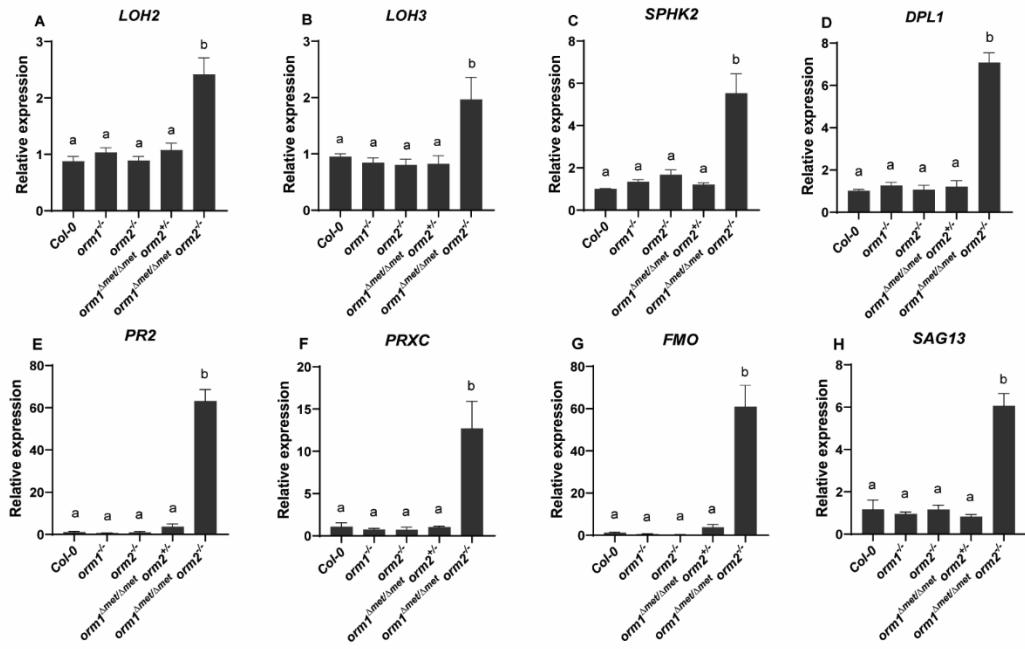
(A) Representative images of 12-day-old wild-type Col-0, *orm1*^{-/-}, *orm2*^{-/-}, *orm1*^{Δmet/Δmet} *orm2*^{+/−} and *orm1*^{Δmet/Δmet} *orm2*^{−/−} seedlings. Seedlings with the same phenotype as wild type correspond to *orm1*^{Δmet/Δmet} *orm2*^{+/−}; small seedlings showing developmental defects correspond to *orm1*^{Δmet/Δmet} *orm2*^{−/−}; enlarged images are shown in (C-E). Bars=1 mm.


(B) CRISPR/Cas9-induced mutations in *ORM1* and *ORM2*. Structures of the *ORM* genes; black boxes represent exons. The position of the CRISPR target site is marked, as well as the nucleotide deletions in each mutant.

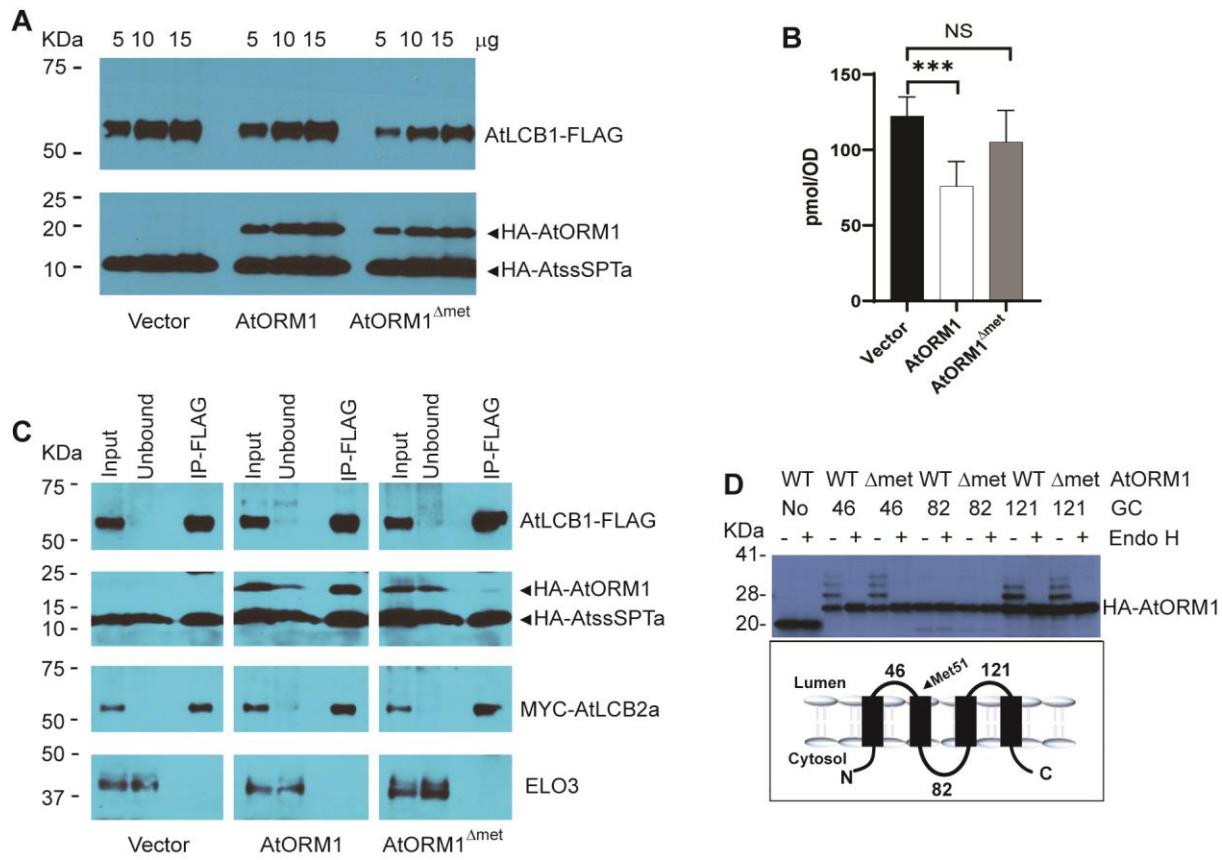
(F) Phenotypes of 18-day-old seedlings; arrows indicate *orm1*^{Δmet/Δmet} *orm2*^{−/−} and asterisk indicates *orm1*^{Δmet/Δmet} *orm2*^{+/−}. Bar= 1 mm.


Figure 6. Selected Sphingolipid Classes Highly Accumulate in the *orm1*^{Δmet/Δmet} *orm2*^{-/-} Mutant.

(A) Total sphingolipid content in wild-type, *orm1*^{-/-}, *orm2*^{-/-}, *orm1*^{Δmet/Δmet} *orm2*^{+/+} and *orm1*^{Δmet/Δmet} *orm2*^{-/-}. Content of the following sphingolipid classes in the mutants: **(B)** free LCBs, **(C)** ceramides with non hydroxylated fatty acids (Ceramides), **(D)** ceramides with hydroxylated fatty acids (hCeramides), **(E)** glucosylceramides (GlcCer), and **(F)** glycosylinositolphosphoceramides (GIPCs). Content of atypical sphingolipids **(G)** glucosylceramides with non-hydroxylated FA (nhGlcCer) and **(H)** inositol phosphorylceramides (IPCs). **(I)** Content of atypical deoxy-LCB m18:0 in ceramides. Normally, SPT condenses Serine with palmitoyl-CoA to form d18:0. However, the unusual condensation of Alanine gives rise to a deoxy-LCB, deoxy-sphinganine (DoxSA) m18:0. Measurements are the average of four to six replicates consisting of pooled 12 to 15-day-old seedlings grown on different plates. Bars represent standard error of the mean. Different letters indicate significant difference based on one-way ANOVA followed by Tukey's multiple comparisons test ($P \leq 0.05$).


Figure 7. Free Long-Chain Base and Ceramide Compositions and Concentrations are Strongly Affected in the *orm1^{Δmet/Δmet}* *orm2^{+/−}* Mutant.

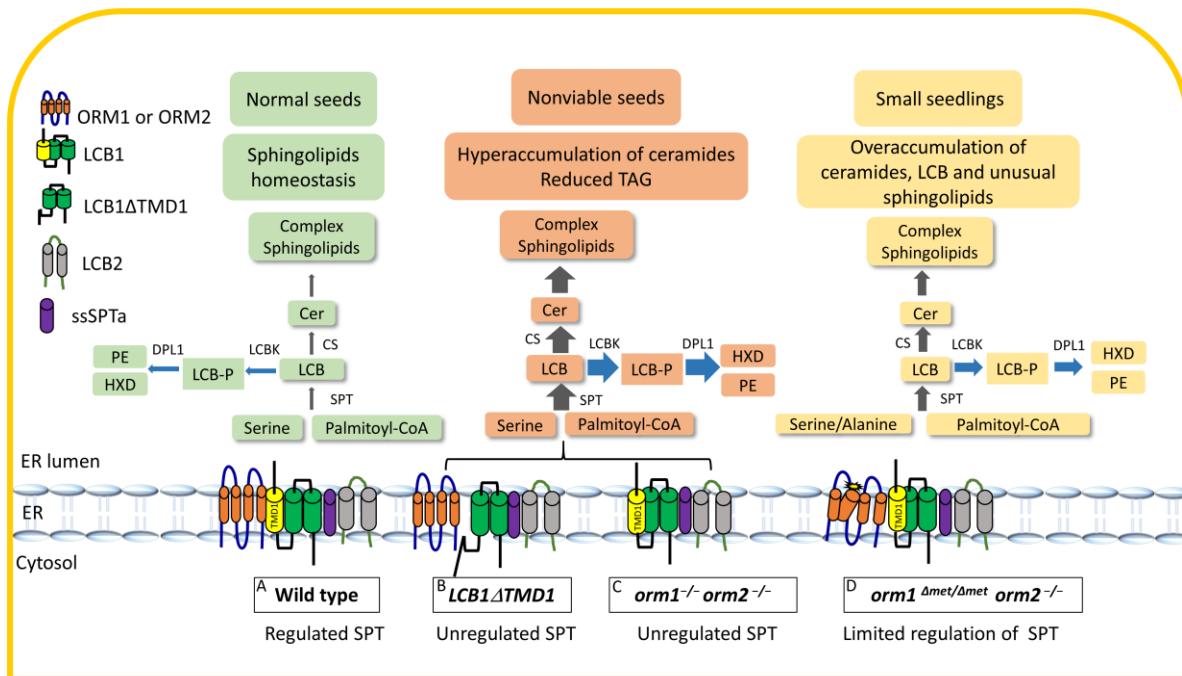
(A) Free long-chain base (LCB) composition (d18:0, d18:1, t18:0, t18:1) and **(B)** free LCB-phosphate (LCB-P) in wild-type, *orm1*^{-/-}, *orm2*^{-/-}, *orm1*^{Δmet/Δmet} *orm2*^{+/+} and *orm1*^{Δmet/Δmet} *orm2*^{-/-}. Bars show averages of four to six replicates consisting of 12 to 15-day-old pooled seedlings grown on different plates. Error bars represent the standard error of the mean. Different letters indicate significant difference, for each LCB, based on one-way ANOVA followed by Tukey's multiple comparisons test (P≤0.05). Ceramide molecular species compositions representing the exact pairings of LCB and fatty acid for **(C)** wild type, **(D)** *orm1*^{-/-}, **(E)** *orm2*^{-/-}, **(F)** *orm1*^{Δmet/Δmet} *orm2*^{+/+} and **(G)** *orm1*^{Δmet/Δmet} *orm2*^{-/-} plants. Measurements for all panels are the average of four to six replicates consisting of 12 to 15-day-old pooled seedlings grown on different plates. Bars represent standard error of the mean.


Figure 8. Subcellular Features are Strongly Altered in the *orm1^{Δmet/Δmet} orm2^{-/-}* Mutant.

Representative TEM images of (A and B) wild-type seedlings and (C-I) *orm1^{Δmet/Δmet} orm2^{-/-}*. Longitudinal sections of leaves from ten-day-old seedlings were prepared for TEM analysis. Boxes represent sections enlarged in (E) and (H). GA, Golgi apparatus; Ch, Chloroplast; CW, cell wall; ER, endoplasmic reticulum; M, mitochondrion; V, vacuole. Asterisks indicate vesicles and arrows autophagosomes. Bars= 200 nm in (I), 800 nm in (E) and (F), 1 μ m in (B), 2 μ m in (A) and (C), 4 μ m in (D) and (G).

Figure 9. Expression of Genes Associated with Sphingolipid Homeostasis, Plant Defense Responses, and Senescence are Upregulated in the *orm1*^{Δmet/Δmet} *orm2*^{-/-} Mutant.

Wild-type, *orm1*^{-/-}, *orm2*^{-/-} *orm1*^{Δmet/Δmet} *orm2*^{-/-} and *orm1*^{Δmet/Δmet} *orm2*^{-/-} seedlings (12-day-old plants) were used to examine gene expression by qPCR to monitor genes encoding enzymes in sphingolipid biosynthetic and catabolic pathways: (A) ceramide synthase gene *LOH2*, (B) ceramide synthase gene *LOH3*, (C) sphingosine kinase 2 gene *SPHK2* and (D) LCB phosphate lyase gene *DPL1*; and selected pathogenesis- and senescence-related genes: (E) β -1,3-glucanase gene *PR2*, (F) class III peroxidase gene *PRXC*, (G) flavin monooxygenase gene *FMO* and (H) senescence-related 13 gene *SAG13*. *PP2AA3* transcript levels were used as a control for the sphingolipid genes and *UBIQUITIN* for the pathogenesis and senescence-related genes. Specific primers used for this analysis are shown in Supplemental Table 1. Gene expression levels are normalized to those in wild-type seedlings. Values are the mean \pm SD (n=6-12). Different letters indicate significant difference based on one-way ANOVA followed by Tukey's multiple comparisons test (P \leq 0.05).


Figure 10. AtORM1^{Δmet} Fails to Regulate SPT Activity and Does Not Interact with LCB1.

(A) AtORM1^{Δmet} was stably expressed in *Saccharomyces cerevisiae* with the native SPT complex replaced by the Arabidopsis SPT complex (see Methods). AtLCB1-FLAG, MYC-AtLCB2a, HA-AtssSPTa without or with HA-AtORM1 or HA-AtORM1^{Δmet} were expressed in yeast strain *lcb1 tsc3*. 5, 10 and 15 µg of microsomal proteins were loaded and analyzed by SDS-PAGE (4-12%, Invitrogen) and detected with Anti-LCB1 (1:3000) and anti-HA antibodies (Covance).

(B) DoxSA levels were determined from cells expressing AtLCB1^{C144W} and AtLCB2a, HA-AtssSPTa along with vector, HA-AtORM1 wild-type, or HA-AtORM1^{Δmet}. Shown are the mean ± SD of doxSA levels from six independent colonies for each strain. Asterisks denote significant differences, as determined by two-tailed Student's *t* test with a significance of *p* ≤ 0.001; NS, not significant, *n*=6.

(C) Co-immunoprecipitation of FLAG-tagged AtLCB1 in yeast expressing AtLCB1-FLAG, MYC-AtLCB2a, HA-AtssSPTa, and either HA-AtORM1 or HA-AtORM1^{Δmet}. Solubilized yeast microsomes were incubated with anti-FLAG beads and protein was eluted with FLAG peptide. Solubilized microsomes (Input), unbound and bound (IP-FLAG) were analyzed by immunoblotting. ELO3, an integral ER membrane protein, was used as a negative control.

(D) Topology mapping of AtORM1^{Δmet51}. Glycosylated cassettes (GC) were inserted after the indicated amino acids, and the GC-tagged proteins were expressed in yeast. Increased mobility following treatment of microsomes with endoglycosidase H (EndoH) revealed that the GCs at residues 46 and 121 are glycosylated and therefore reside in the lumen of the endoplasmic reticulum. However, the GC at residue 82 is not glycosylated, indicating that residue 82 is located in the cytosol. AtORM1^{Δmet51} retains the topology of wild-type ORM1.

Figure 11. Model of ORM-Mediated Sphingolipid Biosynthesis in Wild-type Plants and *ORM* and *LCB1* Mutants.

ORM proteins and LCB1 are integral ER-membrane proteins with multiple transmembrane domains (TMDs). The ORM proteins contain four TMDs, with both termini located in the cytosol, while LCB1 has three TMDs, with its N-terminus located in the ER-Lumen and C-terminus located in the cytosol. LCB1, along with LCB2 and ssSPTa, comprise serine palmitoyltransferase (SPT), which catalyzes the first step in sphingolipid biosynthesis. TMD1 of LCB1 is required for ORM binding to SPT (A). Expression of LCB1 without its first transmembrane domain (B) or the complete knockout of *ORM1* and 2 (C) results in the loss of SPT regulation. This is characterized by strongly enhanced accumulation of ceramides and selected complex sphingolipids and the loss of seed viability marked by a strong reduction in TAG content. The lack of MET51 before the second transmembrane domain (TMD2) of ORM1 it thought to causes a conformational change that dramatically decreases its interaction with LCB1 for SPT regulation (D). CS, ceramide synthase; LCB, long chain bases; LCB-P, long chain bases-phosphate; CER, ceramide; LCBK, long chain base kinase; DPL1, LCB phosphate lyase; PE, phosphoethanolamine; HXD, hexadecanal. Black arrows indicate *de novo* sphingolipid biosynthesis and blue arrows indicate catabolic reactions.

Unregulated Sphingolipid Biosynthesis in Gene-Edited *Arabidopsis* ORM Mutants Results in Nonviable Seeds with Strongly Reduced Oil Content

Ariadna Gonzalez Solis, Gongshe Han, Lu Gan, Yunfeng Liu, Jonathan E. Markham, Rebecca E. Cahoon, Teresa M. Dunn and Edgar B. Cahoon
Plant Cell; originally published online June 11, 2020;
DOI 10.1105/tpc.20.00015

This information is current as of July 19, 2020

Supplemental Data	/content/suppl/2020/06/11/tpc.20.00015.DC1.html
Permissions	https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
eTOCs	Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts	Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information	Subscription Information for <i>The Plant Cell</i> and <i>Plant Physiology</i> is available at: http://www.aspb.org/publications/subscriptions.cfm