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A new methodology to construct three-dimensional, temporally stationary but spatially
inhomogeneous, incompressible turbulence is presented. The method combines use
of the data-driven spectral proper orthogonal decomposition (SPOD) to identify
and isolate large-scale coherent motions of the flow, together with a physics-based
enrichment algorithm using spatiotemporally localized Gabor modes that capture the
inertial subrange turbulence. This fusion of data-driven and physics-based methods
enables a statistically correct reconstruction of broadband turbulent flows using fewer
modes than would be required using SPOD alone. To demonstrate the approach,
we consider the problem of reconstructing wake turbulence on a plane downstream
of a dragging actuator disk impinged by homogeneous isotropic turbulence. The
reconstructed flow has single- and two-point correlations that are consistent with the
reference high-resolution simulation data and could be used to generate statistically
consistent inflow boundary conditions for subsequent simulations.

Key words: shear layer turbulence

1. Introduction

The ready availability of simulation and experimental data has led to a surge
in interest in data-driven model reduction within the fluid mechanics community.
Among their many potential uses, one of the common applications of these methods
is to obtain a low-order reconstruction of the flow data. Methods such as proper
orthogonal decomposition (POD) (Sirovich 1987) and dynamic mode decomposition
(DMD) (Schmid 2010) seek to accomplish this by identifying modes representing the
dominant organized motions within the flow. The most broadly used form of POD
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generates spatially coherent modes that optimally capture the average flow energy
measured in a spatial norm, while DMD generates temporally coherent modes, each
associated with a single complex frequency, that correspond to the eigenvectors of
the best-fit linear operator that advances the flow state from one time instant to the
next.
Recently, Towne, Schmidt & Colonius (2018) showed that a variant of POD

(Lumley 1970), often called spectral proper orthogonal decomposition (SPOD),
combines many of the advantages of both POD and DMD for statistically stationary
flows: it produces modes that evolve coherently in space and time (i.e. literal coherent
structures) and optimally captures the two-point space–time correlations and the flow
energy in a space–time norm.
Despite their optimality, the most energetic SPOD modes typically capture a modest

fraction of the total flow energy in broadband turbulent flows, and many modes may
be required to accurately reconstruct the flow or its statistics. For example, Towne
et al. (2015) and Schmidt et al. (2018) found that the leading SPOD mode at each
frequency captures only approximately 10%–20% of the flow energy in a turbulent
jet, and that more than fifty modes are required at each frequency to capture 95% of
the energy. Similar observations have been made for other turbulent flows, including
wakes, especially at high frequencies (Sanjose et al. 2019; Symon, Sipp & McKeon
2019)
In this paper, we propose to use Gabor modes to enrich the low-order SPOD

flow reconstruction in order to recover truncated portions of the flow. Gabor
modes are compact support wavepackets, with each mode carrying its own real
valued wavevector, k, a real valued spatial location, x, and complex valued velocity
vector, û. As shown by Ghate & Lele (2017) and Ghate (2018), representation of
subfilter-scale turbulence using Gabor modes has three distinct advantages: (a) the
modes are equivalent to a POD basis for quasi-homogeneous or locally homogeneous
turbulence, and such a discrete modal representation can be obtained using a very
small number of unique modes, (b) temporal evolution of the modes can be derived
as a WKB-asymptotic approximation to subfilter-scale Navier–Stokes equations, and is
equivalent to solving an ordinary differential equation (ODE) for each mode travelling
in a Lagrangian frame of motion, and (c) the transform from modal/wavespace to
physical space can be performed efficiently using non-uniform fast Fourier transforms
(NUFFTs). Critically, the Gabor modes used to enrich the SPOD reconstruction are
a function only of the retained SPOD modes, and therefore do not increase the order
of the reconstruction.
In summary, the method proposed herein enables flow field reconstruction

using fewer SPOD modes. We emphasize that the approach can be applied to
reconstruct incompressible, inhomogeneous, temporally stationary turbulence in
arbitrary three-dimensional domains; however, the present application addresses the
problem of reconstruction on a two-dimensional plane, due to its wider appeal in
applications that require inflow generation, ranging from scale-resolving simulations
in aerospace engineering (Deck 2005; Brès et al. 2018), to meso-microscale coupling
problems in geophysics and wind energy (Muñoz-Esparza et al. 2014).

2. Problem set-up

The problem being considered is that of interaction between broadband isotropic
turbulence and a dragging actuator disk. This set-up was originally studied by Ghate
et al. (2018) and is shown in figure 1. The fixed thrust coefficient dragging actuator
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Wake turbulence consists of Kelvin-Helmholtz wavepackets along
with entrained and distorted isotropic turbulence

(contours show instantaneous fluctuations of axial velocity)
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FIGURE 1. Problem configuration. Inflow homogeneous isotropic turbulence is generated
using a concurrent forced HIT simulation with the desired integral length scale and
dissipation rate.

disk corresponds to the model of Calaf, Meneveau & Meyers (2010), and the Case 10
HIT inflow from Ghate et al. (2018), which corresponds to an integral length scale
of roughly 25% of the actuator-disk diameter, is the focus of this paper. The problem
is formulated in a periodic domain (enabling the use of a 2/3rd de-aliased Fourier
discretization) with the inflow generated via a forcing fringe region (Nordström,
Nordin & Henningson 1999) that uses a concurrent simulation of forced homogeneous
isotropic turbulence. The simulation is performed in the infinite Reynolds number
limit (⌫ ! 0) with subgrid closure provided by the Sigma model (Nicoud et al. 2011).
The analysis and modelling presented in the remainder of this paper focuses on data
extracted on a single transverse ((y–z)-plane) located 6.66D units downstream of the
actuator disk.

3. Modal representation of wake turbulence

The present work addresses the reconstruction problem for spatially inhomogeneous
but temporally stationary turbulence by proposing a reconstruction of the turbulent
flow field on an arbitrary (y–z)-plane as

u( y, z, t)=U( y, z)+ uSPOD( y, z, t)+ uGab( y, z, t), (3.1)

where U is the mean velocity (not the focus of present work), while uSPOD and uGab

are portions of the velocity field that are represented using SPOD and Gabor modes,
respectively.

3.1. Spectral proper orthogonal decomposition

The flow field sampled on the (y–z)-plane located 6.66D downstream from the actuator
disk is first decomposed into an ordered set of orthogonal SPOD modes in polar
coordinates (r–✓ ):

û(r,m, f )=
1

NTM✓

NTX

n=0

M✓X

j=0

u(r, ✓j, tn)ei(m✓j+2pftn/T) =

JX

j=1

aj(m, f ) j(r,m, f ), (3.2)

where  j(r,m, f ) is the SPOD mode shape (in r) corresponding to the mth azimuthal
wavenumber at a discrete frequency, f . The total number of modes, J, at each
frequency–wavenumber pair is controlled by the number of realizations used to
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FIGURE 2. Modal energies and shapes for SPOD of wake turbulence taken at a transverse
plane located 6.66D downstream for the drag disk.

compute the SPOD modes, with each realization defined over a finite sampling
interval, T = 5.12D/U1 discretized uniformly using NT sampling points (time steps).
We take J = 117 and M✓ = 768 (to avoid aliasing) in what follows; our numerical
experiments with different choices of J and T showed that the most energetic
wavepackets associated with the Kelvin–Helmholtz instability were adequately
captured using this sampling. The modes are sorted according to their modal energy,
�j(m, f ) = ha?

j
(m, f )aj(m, f )i, which defines the contribution of each mode to the

total kinetic energy of the flow. The modal energies and mode shapes are shown in
figure 2 up to a Strouhal number of 25. The Strouhal number corresponding to the
Nyquist frequency of the temporal sampling is approximately 50; the upper half of
the frequency range is excluded for the present analysis to avoid spurious artefacts
associated with numerical/discretization error and spatial de-aliasing.
Figure 2(a), which shows the modal energies as a function of Strouhal number,

suggests that a truncated representation consisting of the first 10 leading modes
(and all values of m) is only likely to produce accurate second-order correlations
for St < 1. Furthermore, at the axial downstream location being considered (6.66D),
we do not observe any dominant tone (frequency) in the primary varicose mode
(m = 0). Figure 2(b) suggests that there is substantially more energy in the m = 1
mode compared to the m = 0 mode, especially at low Strouhal numbers (St < 1).
It is also interesting to see that high wavenumbers do contain a substantial amount
of energy, as shown in figure 2(b); the energy decays only as a power law, as a
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SPOD–Gabor mode reconstruction

function of the azimuthal wavenumber, m (see figure 2b). The mode shapes shown
in figure 2(c) suggest that the bulk of the energy in the low-order modes (small m
and j) at lower frequencies corresponds to the shear layer turbulence. The azimuthal
homogeneity embedded by the Fourier representation in ✓ is very efficient at isolating
the shear layer/inflectional turbulence from the free stream, including scales entrained
and subsequently distorted by the mean shear in the wake. Finally, an important
consequence of finiteness of the data available to compute this modal representation
is the uncertainty associated with higher-order modes, since the overall representation
only converges as p

nsamples (Welch 1967), where nsamples can only be increased by
running longer simulations. As such, while higher-order (in both m and j) modes
do contain non-negligible amounts of energy, in order to estimate them, we need to
run very long simulations on very-high-resolution numerical grids. In contrast, the
lower-order modes at low Strouhal numbers can be obtained using few nsamples using
a sufficiently accurate coarse grid simulation with a good subgrid-scale closure.

3.2. Truncated SPOD

A truncated/filtered representation corresponds to the following expansion:

utrunc( y, z, t)=I ( y,z)
(r,✓)

(
X

| f |<fmax

X

|m|<mmax

X

j<jmax

aj(m, f ) j(m, f , r)e�i(m✓+ft)

)
, (3.3)

where aj(m, f ) can be computed using the appropriate orthogonality relations (Towne
et al. 2018), and I (r,✓)!( y,z) is the interpolation operator. We will take velocity
uSPOD( y, z, t) in (3.1) to be the truncated SPOD expansion, utrunc( y, z, t).
The truncated description being considered in the remainder of the paper uses

fmax = 1.4 (Strouhal number), mmax = 30 (azimuthal wavenumbers) and jmax = 15
(leading modes); however, we note that all arguments presented here apply for
arbitrary choices of truncation parameters as long as the large-scale coherent motions,
in this case related to the Kelvin–Helmholtz instability, are captured by the truncated
SPOD expansion.
We can define a residual field, ures as

ures( y, z, t)= u( y, z, t)� utrunc( y, z, t), (3.4)

where u is the instantaneous (fluctuating) component in the independent sample. Due
to the orthogonality properties of the SPOD representation, it is easy to show that the
total domain-averaged Reynolds stresses are given as the following superposition:

huiuji= hu
trunc

i
u
trunc

j
i+ hu

res

i
u
res

j
i. (3.5)

Figure 3 shows an example of such a representation using an arbitrary sample from
the simulation that was not used to compute the modes,  j(m, f ). It is important to
note that the truncated representation can be evaluated on a 32 ⇥ 36 ⇥ 36 Cartesian
grid in ( y–z–t) space without any aliasing, as opposed to a 180 ⇥ 180 ⇥ 512 grid
needed for the full fluctuating field. These results indicate that the expansion given
in (3.3) serves as an excellent surrogate to isolate large-scale, space–time coherent
flow features in the y–z–t domain being considered. Figure 3 clearly suggests that
the residual scales are primarily fine-scale features that also appear to display quasi-
homogeneity – i.e. spatial homogeneity at length scales corresponding to the filtering
length scale implied by the SPOD truncation. The profile of the residual single-point
correlations (figure 6) further indicates that these small scales are devoid of major
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u(y, z)/U∞ √(y, z)/U∞ w(y, z)/U∞

Reference LES

Truncated SPOD

Residual scales

-0.25

-0.20

-0.15

-0.10

-0.05

0

0.05

-0.10

-0.15

-0.20

0.25 (a)

(b)

(c)

-
1 

<
 z/

D
 <

1

-1 < y/D <1

FIGURE 3. Decomposition of instantaneous flow (evaluated on a 180 ⇥ 180 grid) into a
truncated SPOD representation (evaluated on a 36 ⇥ 36 grid) and the resulting residual
fields (evaluated on a 180 ⇥ 180 grid) at an arbitrary sampling time. The velocity
components in the Cartesian frame are obtained using an SPOD expansion truncated at
mmax = 30, jmax = 15 and fmax = 1.4.

radial inhomogeneity, and hence can be interpreted as the scales corresponding to the
distorted free stream turbulence.

4. Gabor mode enrichment

4.1. Stationary Gabor modes

In the present application, the temporal evolution equations (see (2.16)–(2.22)
in Ghate & Lele (2017)) for each Gabor mode can be simplified substantially
by neglecting the inter-scale sweeping in the planar directions (y and z) since
(Uy + u

SPOD

y
)/(Ux + u

SPOD

x
), (Uz + u

SPOD

z
)/(Ux + u

SPOD

x
) ⌧ 1. The planar reconstruction

region (y–z) is decomposed into 18⇥18 quasi-homogeneous regions, each seeded with
80 Gabor modes. Under these assumptions, each Gabor mode is simply assumed to be
advected in the streamwise direction according to the local streamwise time-averaged
velocity (Taylor’s hypothesis); hence we refer to these modes as stationary Gabor
modes. The energy exchange between the mean and SPOD scales and Gabor modes
is captured via the straining/distortion effect. The temporal evolution of each Gabor
mode located at ( y, z) carrying a complex valued velocity, û, and a real valued
wavevector, k, from time step N to N + 1 separated by �t can be summarized by the
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following four-step procedure (see Ghate & Lele 2017 for further details):

ûi
?
= exp(ikxUx( y, z)�t)ûi

N
,

û
??
i
=

"
�ij +�t

  
2kN

i
k
N

m

kN
p
kN
p

� �im

!
@Um

@xj
( y, z, t)� ⌫t(k)(k

N

p
k
N

p
)�ij

!#
ûj

?
,

k
N+1
i

=


�ij � �t

@Uj

@xi
( y, z, t)

�
k
N

j
,

û
N+1
i

=

"
k
N+1
i k

N+1
j

kN+1
m

kN+1
m

� �ij

#
û

??
j
,

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(4.1)

where Um( y, z, t) = Um + u
SPOD

m
( y, z, t). In (4.1), the first stage corresponds to

advection of enriched turbulence in the direction normal to the sampling inflow
plane (y–z) by the time-averaged velocity. The second and third steps represent the
straining of enriching small scales by the larger SPOD (and mean) scales and the
modification of the wavevector is a forward Euler approximation to the Eikonal
equation. Finally, the projection implied in the fourth step is primarily used to
discretely impose the divergence-free constraint; since the second and third steps are
forward Euler approximations to the governing ODEs (see Ghate & Lele 2017), they
inherently possess a spurious divergence (O(�2

t
)), which can be removed at virtually

no additional computational cost. The time step is chosen based on the smallest scale
enriched (kmax) and the advective velocity Ux. The choice of kmax is rather arbitrary,
and based on the Nyquist criterion of the physical space numerical grid on which the
enriched fields are rendered.
To initialize the Gabor modes in each quasi-homogeneous region, we begin by

randomly sampling isotropic modes over log-spaced wavenumber shells with a
prescribed energy spectrum (see (2.26a) in Ghate & Lele (2017)) parameterized using
a dissipation rate, ", and a length scale measure, Liso; both parameters vary only
radially in the present application. The dissipation rate is modelled as

"(r)= "1 � hu
SPOD

i
u
SPOD

j
i
@hUii

@xj
, (4.2)

where "1 is the dissipation rate of the turbulent co-flow (ambient/free stream), which
is typically known or can be computed using a RANS model or an SGS model. The
length scale measure is computed as

Liso(r)= cL⌧ (r)[hUi(r)], (4.3)

where the constant cL = 1/0.816 ensures that Liso(r ! 1) corresponds to the integral
length scale of the isotropic co-flow. The integral time scale, ⌧ , is computed as the
integral time scale of the large-scale axial velocity, uSPOD

x
. Figure 4 shows the profiles

of the two model inputs as computed using the SPOD data. These isotropic modes are
then distorted using the local mean velocity profile in accordance to rapid distortion
theory through a wavenumber-dependent time scale (Mann 1994; Ghate & Lele 2017),
which results in anisotropic, small-scale turbulence that is consistent with the mean
velocity gradients in the quasi-homogeneous regions. An example description of this
procedure is shown in Ghate & Lele (2017) in the context of sheared boundary layer
turbulence.
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FIGURE 4. Model inputs used to generate stationary Gabor modes. Dissipation
is normalized as "(r)/"(r ! 1) and the length scale measure is normalized as
Liso(r)/Liso(r ! 1).

Once initialized, the dynamics represented by (4.1) account for the following
physical processes: (a) rapid time-scale energy transfer from the large SPOD scales
into the enriched small scales that occurs due to large-scale strain, (b) consistent
temporal decorrelation of small scales, since this occurs primarily due to large scales
sweeping enriched scales, (c) effect of pressure as a Lagrange multiplier to impose
the divergence-free constraint (ensured by the Eikonal equation for k), and (d) decay
of the intense small-scale Burgers vortices generated by the non-local (in scale space)
interactions of the straining term by representing the local interactions (in scale space)
due to the nonlinear relaxation as a spectral viscosity obtained using a renormalization
group (RNG) model (Canuto & Dubovikov 1996).
Finally, it is important to emphasize the computational efficiency of the enrichment

algorithm. The overall computational cost can be decomposed into two steps:
(a) temporal evolution of Gabor modes and (b) rendering (transform into physical
space). Log-spaced sampling of Gabor modes results in substantial compression in
representing small-scale turbulence (>95% in three dimensions and >20% in two
dimensions) and the time advancement for each mode is an entirely local operation
as detailed in (4.1).
The rendering step which is required to obtain the enriched velocity field on a

numerical mesh requires a NUFFT; in the present application the cost of each two-
dimensional transform is equivalent to approximately 5–6 uniform two-dimensional
FFTs. Further details of the algorithm are provided in Ghate (2018).
While the application discussed in this paper focuses on planar reconstruction of

wake turbulence, the use of Gabor modes for enrichment is more broadly applicable
to a variety of three-dimensional complex flows, including wall-bounded turbulence.
The algorithm requires some representation of domain/geometry-influenced large
scales, either via a coarse large eddy simulation (LES) (Quon, Ghate & Lele 2018)
or other data-driven techniques such as deep neural networks (Srinivasan et al. 2019),
which explicitly influence the small-scale dynamics modelled by the Gabor mode
representation of the flow. The choice of SPOD basis used in the present work to
represent temporally stationary large-scale flow physics is particularly convenient due
to its orthogonality properties and spectrally sharp time-filtering of the truncated
expansion.

4.2. Enrichment
Figure 5 shows an instantaneous snapshot of the inflow field taken at the same time
as the one shown in figure 3. A qualitative comparison of the Gabor-mode-induced
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using Gabor
modes
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FIGURE 5. Instantaneous snapshot of enriched flow fields. Sample time is comparable
with that in the representative snapshots shown in figure 3.

fields with the residual fields suggests good overall agreement. Perhaps the one
striking differentiating feature is the somewhat higher azimuthal imprinting in the
Gabor-mode-induced instantaneous fields compared to the instantaneous residual fields
(see figure 3). While the small scales induced by the Gabor modes are indeed coupled
with the truncated SPOD fields, due to the localized straining (stage 2 in (4.1)), the
overall azimuthal symmetry is a consequence of the model inputs, which only vary
radially.
In order to facilitate more quantitative comparisons of the enriched field with the

true full fields, several statistical measures are shown in figure 6 through figure 8.
Figure 6 shows the single-point correlations computed for the Gabor-mode-induced
and residual fields, time- and ensemble-averaged. While the number of ensembles
used for the residual fields is not sufficiently large to fully converge the statistics, the
primary purpose of this figure is to demonstrate that an 18 ⇥ 18 grid of Cartesian
quasi-homogeneous regions on the (y–z)-plane is sufficient to obtain the expected
azimuthal symmetry in statistics. Fewer quasi-homogeneous regions would result in
reduced spatial localization for the induced flow fields.
Assuming azimuthal symmetry, single-point correlations as a function of radial

location are shown in figure 7. While the truncated SPOD expansion significantly
underpredicts the correlations, the Gabor-mode-enriched field shows excellent
statistical agreement with the original field. Through the bulk of the shear layer,
the physical anisotropy (huxuri) is well captured by the Gabor modes; the slight
underprediction of the turbulent kinetic energy at the shear layer centreline is notable.
Upon closer inspection of the model inputs, we can explain this deficiency in terms
of the estimated dissipation rate in (4.2). This definition predicts "(r= 0)= "(r! 1),
which appears to be a substantial underprediction. In this model, the core turbulence
entrained by the shear layer is not neglected. Since E(k) / "2/3, any underprediction
of the dissipation rate results in underprediction of variances.
The one-dimensional power spectra in frequency (Strouhal number) and azimuthal

wavenumber (m) are shown for the velocity components in figures 8 and 9 at two
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(a): Gabor mode induced stresses
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FIGURE 6. Time- and ensemble-averaged contours of single-point small-scale second-order
correlations. (a) Covariances obtained for the Gabor-mode-enriched velocities (fields shown
in figure 5a) and (b) covariances obtained for the residual scales (fields shown in the
bottom panel of figure 3).
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FIGURE 7. Single-point correlations for the enriched fields.

different radial locations. These spectra further corroborate the effectiveness of the
current approach. It is interesting to note from figure 9 that the enrichment using
Gabor modes leads to an increase in energy for m< 30, since it is able to generate
smaller azimuthal scales that are truncated due to filtering in time and the radial
direction in the truncated expansion. Further discussion of one-dimensional spatial
spectra in the context of subfilter-scale enrichment can be found in Ghate (2018) for
highly anisotropic near-wall turbulence.
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FIGURE 8. Temporal auto-spectra for the three velocity components extracted at two radial
locations of r/R= 1 and 1.5, where R is the radius of the wake-generating actuator disk.
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FIGURE 9. Azimuthal auto-spectra for the three velocity components extracted at two
radial locations of r/R= 1 and 1.5, where R is the radius of the wake-generating actuator
disk.

Overall, our results show that spatially inhomogeneous turbulent flows can
be effectively reconstructed by combining a few SPOD modes to capture the
energy-containing coherent modes, which capture the large-scale inhomogeneity,
enabling enrichment using Gabor modes. While, in Ghate & Lele (2017), Gabor
mode enrichment was assessed on wall-bounded turbulent flows using filtered LES
data, it is promising to note the ability of the algorithm to accurately provide
enrichment for a more conventional data-driven reduced-order modelling algorithm. A
potential step towards future improvement is to address the energy deficiency that is
seen in azimuthal and radial velocity components, near the cutoff frequency of the
truncated SPOD reconstruction (St = 1.4). This is a consequence of an inconsistency
between the geometric anisotropy implied by the resulting quasi-homogeneous regions
(parameterized by Fco) and the true Reynolds-stress anisotropy of the subfilter
scales. For the present choice of Fco = 1.4, the resulting aspect ratio of the [t, y, z]
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quasi-homogeneous regions is rather skewed (⇡[5⇥ 1⇥ 1]); this can be mitigated by
a Reynolds-stress-informed choice of Fco.

5. Conclusions

A flow reconstruction method that combines data-driven modal analysis with
physics-based turbulence enrichment is developed and tested for incompressible wake
turbulence. For the actuator-disk wake considered in this paper, the circumferential
symmetry of the shear layer is leveraged to represent the shear-layer-driven turbulence
using a compressed set of SPOD modes. The orthogonality of SPOD modes
allows us to interpret such a truncated representation as a filtering operation, which
subsequently enables generation of subfilter scales via Gabor mode enrichment. This
juxtaposition of data-driven modelling with physics-based enrichment enables efficient
representation of statistically stationary flow fields that contain both large-scale
coherent motions associated with inflectional instabilities and broadband k

�5/3

turbulence. Hence, the coupled formulation is more broadly applicable to a variety of
statistically stationary turbulent flows including wall-bounded turbulence. We further
emphasize that once the SPOD mode shapes are determined using data, an arbitrarily
large number of random ensembles of statistically equivalent flow realizations can be
generated via randomizing the phase of the complex valued amplitudes, aj(m, f ), in
(3.3). Each of these random realizations can be further enriched on-the-fly with smaller
scales using randomly sampled Gabor modes, which provide a consistent extrapolation
of the spectral content present in the SPOD representation. This procedure could be
useful for generating ensembles of statistically equivalent inflow conditions containing
both inhomogeneous large-scale and homogeneous small-scale motions.
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