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ABSTRACT

In the contention-resolution problem, multiple players contend for
access to a shared resource. Contention resolution is used in wire-
less networks, where messages must be transmitted on a shared
communication channel. When two or more messages are trans-
mitted at the same time, a collision occurs, and none of the trans-
missions succeed. Much of the theoretical work on contention
resolution has focused on efficiently resolving collisions in order
to obtain throughput guarantees.

However, in modern-day networks, not all traffic is treated
equally. Instead, messages are often handled according to a no-
tion of priority. While throughput remains an important metric, it
fails to capture this increasingly-common scenario of traffic priori-
tization.

Motivated by this concern, we design a contention-resolution
algorithm where messages have delivery deadlines. Unit-length
messages dynamically arrive over time, each with a corresponding
delivery deadline that demarcates a window of time wherein the
message must be transmitted successfully. We consider inputs that
have a feasible schedule, even if message sizes increase by a constant
factor. In this setting, we provide an algorithm which guarantees
that each message succeeds by its deadline with high probability in
its window size.
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1 INTRODUCTION

In the abstract contention-resolution problem, there are multiple
players contending for exclusive (but temporary) access to a shared
resource [46, 72]. Typically the shared resource is modeled as a
communication channel.! Players arrive over time with the goal of
successfully transmitting one message on the channel. The com-
munication medium is formalized as a multiple access channel.
Time consists of a sequence of synchronized slots. In each slot, a
player may transmit a message, but the transmission succeeds only
if no other players transmit during the same slot. If two or more
players transmit a message in the same slot, then a collision occurs
and all transmissions during that slot fail.

In this paper, we present a contention-resolution algorithm for
the setting where players have deadlines by which they must deliver
their messages. Delivering messages with deadlines is a natural
problem that has been considered in different contexts [44, 73, 74].
For instance, real-time communication protocols such as Wire-
lessHART [43], RT-Link [2], and Glossy [40] are used in industrial
systems and must ensure that a message from the sensor is de-
livered within a certain time in order for it to be useful. More
generally, deadlines capture a notion of priority and, in turn, ad-
dress starvation and fairness, which are important to user experi-
ence [55, 58, 71].

The classic contention-resolution algorithm is randomized ex-
ponential backoff [72]. For example, IEEE 802.11 (WiFi) networks
make use of binary exponential backoff to transmit packets on a
wireless channel [1]. It has been known for many years that ex-
ponential backoff does not guarantee an optimal makespan (see
e.g., [13, 14, 91]), and there has been extensive theoretical work
on developing asymptotically-optimal algorithms [8, 16, 45, 52].
However, none of these algorithms are designed to meet real-time
constraints on packet delivery.

! Although randomized backoff is usually thought of as applying to wired [72] or
wireless networks [64, 89], it has other applications, including shared memory [10,
54], lock acquisition [81], email retransmission [19, 37], and congestion control (e.g.,
TCP) [57, 75].



Randomized Backoff: We briefly describe exponential backoff in
order to further motivate deadlines. When a player p has a packet
to send on the channel, the player keeps attempting broadcasts
until it has a successful transmission. Whenever a broadcast by
p fails (due to a collision), then p waits for a random amount of
time, proportional to how long it has been in the system and then
attempts another broadcast.

Even without deadlines, backoff algorithms have the drawback
that they can enable starvation, potentially shutting out a player
for a long amount of time. A newly-arrived player may get to send
its message quickly, ahead of players that arrived previously but
suffered through failed transmission attempts and ratcheted down
their broadcast probabilities. Message deadlines can be used as
a mechanism to both avoid starvation and to specify any timing
constraints that the messages might have.

1.1 Model and Problem

We model contention resolution with deadlines as follows. An in-
stance consists of a set of n jobs that arrive over time. Each job j
has a release time r}, a deadline dj, and a unit-length message to
send. (When there is ambiguity, we refer to this message as a data
message.) The goal of each job j is to broadcast its data message
on the channel during a slot falling in the time interval [r;, d;],
which we refer to as j’s window. We use w; = dj —r; to denote
the window size. Job j is activated at its release time r;, and the
job may only interact with the channel during its window.

Each job has limited a priori knowledge. Jobs do not have distinct
IDs, nor do they have access to a global clock. Thus, when a job j is
activated, it does not know the value r;. Job j only knows that the
deadline will arrive w; slots later. The only communication between
jobs is via the multiple access channel. To facilitate coordination,
jobs may transmit additional messages, called control messages,
which are distinct from data messages that they are required to
send.

The algorithms in this paper make use of collision detection;
players listening on the channel can distinguish between silence
and noise. This means that, to any player listening in a slot, the
channel provides trinary feedback: the slot is either silent, con-
tains a successful broadcast, or is noisy. In the case of a successful
transmission, any player listening on the channel can receive the
message content. This is consistent with some prior results on
contention resolution [18, 84, 85]

To enable high-probability results, we assume through the bulk
of the paper that problem instances are y-slack feasible, by which
we mean that it would be feasible to broadcast all messages by their
deadlines while only using a constant y fraction of the available
channel bandwidth. Said differently, even if we multiply the length
of each message by a constant 1/y, it should be feasible to broadcast
each message by its deadline.

1.2 Results

We show how to solve contention resolution on a multiple-access
channel when messages have arrival times and deadlines. Our pro-
tocol guarantees that for constant slack-feasible instances, each job
Jj successfully broadcasts its message with high probability in its

window size, that is, with probability at least 1 — l/poly(Wj).2 We
find it surprising that these guarantees are possible for a constant
slack y. To simplify the presentation, we do not attempt to optimize
the constants herein; it is an intriguing open problem to optimize y
further.

Outline: We begin by analyzing the algorithm uNIFORM, which
we think is the most natural algorithm for contention resolution
with deadlines—each job broadcasts once (or ©(1) times) in a ran-
domly chosen slot in its window. We show that UNIFORM is far
from delivering the promised performance guarantees to jobs with
deadlines. The good news about UNIFORM is that for sufficiently
slack-feasible instances, with high probability in n, ©(n) of the n
messages get broadcast successfully. The bad news is that UNIFORM
is not a fair strategy because it permits starvation: some jobs can
have broadcast probabilities that are polynomially small in n. We
explore the implications of UNIFORM in Section 2.

In contrast, we want each job to have a large success probability—
the failure probability of a job should be polynomially small in its
window size. To derive a better algorithm, we begin by focusing on
the special case where the windows are power-of-2-aligned, i.e.,
all the jobs’ windows have a size that is a power of 2 and all the
windows of size 2 arrive at a time that is a multiple of 2¢.

Our basic strategy, called ALIGNED, for the power-of-2-aligned
windows is to isolate jobs that share the same exact window, allow-
ing them to coordinate collectively. Jobs in a window can quickly
estimate the number of other contending jobs, and choose broadcast
probabilities accordingly. However, windows of different sizes may
interfere with each other. Thus, we mandate a simple rule: always
defer to smaller windows. The contending jobs in some window of
size w suspend their activity as long as there are any jobs in smaller
windows concurrently trying to complete. In Section 3, we discuss
how jobs measure contention, choose when to suspend their activ-
ity, and run their transmission protocol when they are active. Then
we show that this procedure guarantees that each job completes
its broadcast in its specified window with high probability (in the
window size).

We show how to extend this approach to the general case where
windows are not power-of-2-aligned and there is no global clock on
which to synchronize. In this case, our PUNCTUAL protocol chooses
a coordinator for each window that is responsible for synchroniz-
ing and allowing the jobs to simulate ALIGNED. At first glance, this
approach seems circular, in that choosing a coordinator is no easier
than successfully broadcasting a message. Selecting the coordinator
leads to several algorithmic challenges. One of the ideas of punc-
TUAL is to separate two cases: either there are a large number of jobs
and one should quickly select a coordinator and simulate ALIGNED,
or there are not too many jobs and there is no need to run ALIGNED
at all. One insight is that when contention is high, there are a lot
of jobs, and hence one can quickly select a coordinator using low
transmission probabilities without being likely to collide with other
messages. We describe the PUNCTUAL protocol in Section 4.

“Notice that the probability of success necessarily depends on the window size, not
the total number of jobs n, since most of those n jobs may be outside the relevant
window and have no effect on the job in question.



2 GIVING INTUITION: CONTENTION AND
WHY THE NATURAL ALGORITHM FAILS

In this section, we define the contention in a slot to be the sum of
the broadcast probabilities of all of the jobs in the slot. We explain
that in order for a slot to have a constant probability of successful
transmission, the contention in the slot must be constant. We ana-
lyze the natural algorithm, UNIFORM, where each job broadcasts in
one (or ©(1)) slots of its window and prove that UNIFORM success-
fully delivers ©(n) messages with high probability. We demonstrate
that unIFORM fails as a credible protocol for two reasons. First,
many jobs have super-constant contention for every slot in their
window, and thus have a low probability of successfully broadcast-
ing. Second, we want each job to succeed with high probability, and
©O(1) broadcast attempts is too little to achieve these guarantees.

Despite its flaws, UNIFORM succeeds in one important way: in
developing intuition. In particular, UNIFORM serves as an example
of what can go badly wrong, and it highlights the difficulties that
our better algorithms must contend with.

2.1 Contention

Let pj(t) denote the probability that job j attempts to broadcast in
slot t. We define the contention C(t) in slot t to be C(t) = 3j p;(t),
where the sum is taken over all jobs in the system at time ¢.

We employ the following well-known inequalities [84].

LEMMA 1 ([84]). Forany0 < x < 1, e X/(17%) < 1 _x <7,

For any fixed slot ¢, let p,,.(t) denote the probability that some
message is successful in slot t. We state the following results relating
C(t) and p,,.(t); these have appeared in similar forms in [15, 28, 84].
In our algorithms for contention resolution with deadlines, no
job ever sends in a slot with probability greater than 1/2, which
simplifies this relationship.

LemMA 2. Ifpi(t) < 1/2 for all i, then for any fixed slot t, the
following holds:
C(t) 2C(t)
22C(0) < paclt) < )

CoOROLLARY 3. Ifp;(t) < 1/2 for alli, then the following holds.
o IfC(t) = O(1), then p,,(t) = ©(1).
o IfC(t) < 1, then p(t) = O(C(t)).
o IfC(t) = Q(1), then p,,.(t) = 0(279(C(1D),

2.2 Analysis of Uniform: What Happens When
You Broadcast Uniformly

This section analyzes the natural algorithm uNIFORM. We start with
a desirable guarantee made by UNIFORM:

LEMMA 4. When UNIFORM is run on a constant y-slack feasible
instance fory < 1/6, a constant fraction of the messages broadcast
successfully with high probability.

Proor. For starters, consider the case where job windows are
power-of-2 aligned. That is, each window size w is a power of 2
and arrives at a time that is a multiple of w. Since each job makes
a broadcast attempt independently, we can choose the order in
which jobs flip coins to decide upon their broadcast slots. Given
this, we consider a “revealing” process where we start considering

the smallest job window, and then proceed with job windows of in-
creasing size (breaking ties arbitrarily). Therefore, a job’s broadcast
slot can be temporarily clear—that is, no job revealed so far has
a collision—with a collision coming only later in the process. We
refer to the broadcast as temporarily successful.

Each time that a new job j randomly selects a slot to send in,
the probability that j’s broadcast collides with a broadcast attempt
by a previously revealed job k that has already been assigned that
slot is at most y for a y-feasible instance. In addition, if job j’s
broadcast attempt does result in a collision, it can ruin at most two
transmissions. Job j’s broadcast can collide with a broadcast from
some previously revealed job k that was temporarily successful.
Alternately, j could have chosen to broadcast in a slot that already
contained a collision; in this case, j only ruins its own broadcast.

Define the indicator random variables X, . . ., X;,, where

=

_ ] 0if j chooses a slot that is temporarily clear,
1if j chooses a slot that already has a broadcast attempt.

The number of successful broadcasts is at least n — 2 ), ;1:1 Xj. By
a standard Chernoff bound, and since y < 1/2, the number of suc-
cessful broadcasts is ©(n), with probability at least 1 — exp (—©(n)).

We now turn to the case when job windows are arbitrary rather
than power-of-2 aligned. As before, we assign slots from smallest
to largest. Now it is no longer the case that if the instance is y-slack
feasible, then this probability of a collision is at most y. A weaker
claim still holds, however—that the probability of a collision is at
most 3y. To see this, consider placing the next window W in the
revealing process. Window W can overlap with previously-placed
windows that: (1) are completely contained within W, (2) overlap
either the starting or ending point of W. Given that we consider
windows montonically increasing in size, the length of the interval
spanned by windows in (1) and (2) is at most 3W. Since the instance
is y-slack feasible, at most 3y W slots contain a broadcast from the
previously revealed jobs. Therefore, the probability of a collision is
at most 3y. Given this, and the assumption that y < 1/6, the lemma
holds. O

In contrast to Lemma 4 above, we now show that UNIFORM
possesses the following unpleasant property: it is not the case that
each message has (at least) a constant probability of transmitting—
in fact, some messages are overwhelmingly likely to fail.

The problem with UNIFORM is that messages do not get a fair
shot at accessing the channel. Indeed, some messages have almost
no chance at successfully transmitting. Ironically, the high-priority
messages—those that have small window sizes and therefore must
be executed soon—are most at risk of starving.

LEMMA 5. UNIFORM is not a fair strategy. That is, for everyy,
there exist y-slack-feasible instances such that certain jobs have a
probability of O(1/n®W) of broadcasting successfully.

Proor. Consider the y-slack-feasible instance where all n jobs
arrive at the beginning of slot 1, and each job j has window size
wj = j/y for j > 1. Given that jobs execute UNIFORM, C(1) is order
the harmonic number, H(n) ~ In(n). Indeed, for 1 < ¢t < nl=9,
for any constant 0 < § < 1, C(t) > dIn(n) — O(1). By Lemma 2,
the probability that any of the first Q(n!~9) jobs have a successful
broadcast is O(In n/n!~9). o



In summary, offering a strong guarantee of success for all pack-
ets is certainly out of reach for uNIFORM. Transmitting once per
window, if you do it randomly, is bad, since there is too much con-
tention. If we want high-probability bounds, we must transmit more
than a constant number of times per window which generates even
more contention, and many more jobs would starve as a result.

The bottom line is that UNIFORM is a great algorithm for devel-
oping intuition, but a dead-end as a way to achieve our desired
performance guarantees. In subsequent sections, we provide non-
trivial algorithms that do succeed in guaranteeing that each job
transmits its message with high probability in its window size.

3 SPECIAL CASE: HANDLING ALIGNED
WINDOWS

In this section, we give an algorithm, ALIGNED, designed for the
special case where all windows are power-of-2-aligned; recall that
this means that each window size w is a power of 2 and arrives at a
time which is a multiple of w. This temporary assumption enables
us to zoom in on a crucial subroutine of our general algorithm,
PUNCTUAL, which we finish presenting in Section 4.

Our algorithm uses a form of pecking-order scheduling [11, 12],
which prioritizes jobs based on window size. That is, jobs in larger
windows should generally yield to jobs in smaller windows. If there
were a centralized scheduler that could perform pecking-order
scheduling globally, then at least for instances where all job dead-
lines are different, it is not hard to see that the centralized scheduler
could give one slot to each job. In fact, such a schedule would sim-
ply be earliest-deadline first, which is optimal for scheduling jobs
with deadlines. If multiple jobs have the same window, but the cen-
tralized scheduler cannot schedule at the granularity of individual
jobs, the problem becomes a bit more complex—we need a con-
tention resolution protocol among jobs having the same window.
Nevertheless, developing such an algorithm is not too hard.

A challenge is that we do not have a centralized scheduler that
can perform pecking-order scheduling globally. Instead, the jobs
need to coordinate in a distributed manner. When a job arrives, it
has a dilemma: the job does not know a priori whether most other
jobs currently in the system are larger or smaller than it. If most of
the jobs it is contending with have smaller windows, then it should
defer to them; otherwise, then it should transmit more aggressively.

Here we make use of the synchronization implicit to aligned, lam-
inar windows. (In Section 4, we remove this assumption and tackle
the new challenges that arise.) Specifically, the window boundaries
themselves trigger transitions between jobs with different windows,
allowing jobs to coordinate their pecking order. Job class € refers
to a set of jobs with the same window W whose size is w = 20 We
call each timestep that marks the beginning of a window of job
class ¢ a critical time for that job class.

Algorithm for Power-of-2-Aligned Windows

The main idea of the algorithm is as follows. At any time, only the
jobs in one job class, say job class ¢, are actively participating and
attempting to transmit on the channel. We call this job class the
active job class, and we say that all jobs in this class are active jobs.
All jobs in other job classes simply listen and wait their turn; they
do not actively participate. When a critical time is reached for any

smaller job classes, the smallest such job class becomes the active
one, and the algorithm for job class ¢ is suspended. Eventually, the
smaller job classes complete their jobs, thus yielding control back
to job class ¢, and those larger jobs continue their algorithm where
they left off.

We first outline the algorithm for a single job class £. In each
timestep that this job class is active, i.e., in an active step, all jobs
in the class perform the next transmit/listen step of the algorithm:

(1) Estimation: Use Ty = ©(poly(£)) active steps to estimate the
number of jobs in job class € currently in the system. Let np
denote this estimate.

(2) Broadcast: Use ©(n, + poly(€)) active steps to broadcast the
messages for jobs in job class £.

(3) Truncation: If there are any remaining jobs in this class, they
give up and implicitly yield control back to the larger job
classes. We shall show that, with high probability (in 2¢, the
window size), all jobs in the class complete.

Observe that the total number of active steps used by this algorithm
is Tp+©(ng+poly(£)), which depends on the estimate of the number
of jobs in the class.

When a job in class £ enters the system at its release time, the job
is considered live. The job remains live until either (1) the above
algorithm has taken enough steps to run to completion, or (2) the
end of the job’s window is reached, whichever happens first. If the
end of the job’s window is reached first, we say that the algorithm
is truncated. Only live jobs run the algorithm.

Jobs run this algorithm in active steps, i.e., when their job class
is active. But all jobs also need to agree on which job class is active
at any particular time. To do so, all jobs passively simulate any
lower-level protocols by waiting the appropriate number of steps
and listening on the channel. That is, suppose a job class £ becomes
active at time ¢ (¢ is critical for £). Then all live jobs (the only live
jobs are in the larger windows) also begin to simulate the algorithm
for job class €. At each step, all jobs simulate the next step for the
smallest class whose algorithm has not yet completed. By listening
on the channel, the live jobs all see the result n; of the estimation
protocol for class ¢ and therefore know how long the simulation
should last.

Figure 1 gives an example schedule of active steps, which consists
of windows of three sizes (small, medium, and large). As shown
here, the first small, medium, and large window each need 4, 7, and
7 active steps to complete their algorithms. These active steps are
scheduled as early as possible, with priority given to the smallest
window. That is, the first 4 steps are active for the first small window.
The next 5 steps are active for the medium window; this is not
enough steps to complete the algorithm, but when the second small
window begins, it becomes active. After 2 active slots for the second
small window, the medium window can resume and finish.

Given that smaller windows/classes always have priority, it is
possible that some (large) class may not be able to schedule all of its
active slots before the end of its window and be truncated. To argue
that the algorithm works well, it is important that truncations be
unlikely. Informally, this is true because with sufficient slackness
(small enough y), Tp + O(ng + poly({)) < 2%, Thus, some time
remains in the window during which larger classes can complete
their protocols.
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Figure 1: An example of pecking-order scheduling for aligned windows. Time is displayed horizontally, and each row cor-
responds to windows of a single size. The yellow squares indicate active timesteps during which the estimation procedure
is performed, and the blue circles indicate active timesteps during which data messages may be transmitted. The first large
window is thus active for a total of 7 timesteps. Notice that these active steps need not be contiguous, as lower windows have
higher priority. The number of blue circles is proportional to the estimate on the number of jobs in the window, so in this
example the estimate in the first window in the bottom row is roughly half as large as the estimate in the third window in

that row.

Details for a Single Job Class

There are two details yet unspecified for a job class: (1) how to
estimate the number of jobs in the window, and (2) what algorithm
to use to broadcast data messages. Throughout, there are constant
parameters to the algorithm that affect failure probability. To reduce
the proliferation of variables, we use A in multiple places to indicate
a parameter that affects the failure probability. Each occurrence of
A could in principle be tuned to a different value, but we use the
single parameter for simplicity.

Size-estimation protocol. We first describe a simple estimation
protocol for job class £. This protocol uses Ty = A£? timesteps.

e The protocol is divided into ¢ phases, 1,2,3,...,¢. Each
phase consists of A¢ steps.

e During each step of the ith phase, each job in the job class
transmits a control message with probability 1/2.

e Throughout the process, jobs listen to the channel and count
the number of successful transmissions.

o After completing all phases, let j be the phase with the most
successful transmissions. Then the estimate is ny = 7 - 2,
for some constant 7 > 1 to be specified later.

Note the factor of 7 in the estimate. This is to ensure that the esti-
mate is likely to be an overestimate rather than an underestimate,
which simplifies the analysis of the broadcast algorithm.

For concreteness, if the algorithm is truncated during or before
the estimation component, we resolve the estimate to 0.

Broadcast. We now describe the broadcast protocol for jobs in
class ¢, assuming we have already found an estimate ny. (Observe
that n is always a power of 2.) Since only jobs in class € are taking
steps, and we have an estimate on the number of jobs, we can
treat this as a batch problem. This yields a relatively simple backon
protocol:

o The algorithm is divided into log, ny + ¢ phases numbered
0,1,...,logyng + £ — 1. For i < log, ng, the length of the
ith phase is Ang/2! timesteps. Each of the final £ phases has
length A¢ timesteps.

o Consider a phase with length AX. This phase is divided fur-
ther into A subphases, each of length X. During each sub-
phase, each job in the job class chooses a random timeslot

in which to transmit its data message. If the transmission is
successful, the job terminates its algorithm.

The main idea behind the analysis is the following. If the number
of live jobs remaining is smaller than the phase length X, then a
constant fraction of the jobs are likely to complete in that phase. In
particular, the failure probability is exponentially small in X. But
we want the failure probability to be polynomially small in the
job’s window size (exponentially small in €), which means that we
cannot rely on successes whenever X < {. The extra ¢ phases of
length A¢ at the end enable us to prove a high-probability result
throughout.

Now that the algorithm is defined, we can state the number of
active steps required. The constants here are not important except
insomuch as they exist. Specifically, the number of active steps
needed can be determined directly from the class € and the estimate.

LEMMA 6. Consider a job class {, and let np be the result of the
estimation procedure. Then the total number of active steps needed to
complete the algorithm for this job class is 2A(£% + np — 1).

PRroOF. The estimation algorithm trivially uses A£? steps. The
broadcast algorithm has phases of length Ang, Ang/2, ..., A2 fol-
lowed by ¢ phases of length Af each. The total length of the broad-

cast algorithm is thus )L(le.g:'ff 2L+ £2) = M(2np — 2 + £7). O

Jamming. It turns out the algorithm we have described can also
handle a sort of stochastic “jamming” wherein an adversary can
selectively prevent successes in some rounds. We believe that this
is an interesting property of the approach presented, and so for the
purpose of this section only, we will consider performance with
respect to this stochastic noise.

Specifically, assume there is an adversary that can look at slots
and decide to create noise in that slot, e.g., if a message is broadcast.
(Here the adversary can even look at the contents of the message
itself.) If the adversary decides to jam, the jamming succeeds with
some constant probability pjam. We allow the adversary to choose
whether to jam as it is conceivable that selectively jamming actually
makes the algorithm perform worse. For example, the adversary
could conceivably skew the estimate n, by jamming only some of
the phases during the estimation protocol.



Analysis of Aligned Algorithm

The analysis involves several components. First, we argue that all
jobs agree on the schedule of active slots, which is important to
ensure that different job classes do not interfere with each other.
Given that, the remainder of the analysis focuses on the algorithm
for individual job classes. The second component of the analysis
is proving that the size estimation is accurate to within a constant
factor. Third, we argue that algorithms are unlikely to be trun-
cated. Finally, we argue that the during the broadcast phase of the
algorithm, all jobs are likely to successfully transmit their data
messages.

LeEMMA 7. For every time slot t, every live job j agrees on which
job class is active at time t.

Proor. The proof is by induction over time. Consider every job
class €. The claim is more precisely that at time ¢, all live jobs in
classes ¢’ > € (1) know exactly how many active steps class ¢ has
taken, and (2) have seen the same results of £’s possibly ongoing size
estimation protocol. It follows that if the estimation has completed
for ¢, then all larger job classes also know exactly how many more
active steps ¢ needs before finishing.

Now consider what happens at time ¢ + 1. If ¢ + 1 marks the
end of a window for some job class ¢, then all job classes £/ > ¢
observe the window boundary and agree that £’s execution is now
truncated. If ¢ + 1 is critical (the start of a window) for some job
class ¢, then all job classes ¢’ > £ observe the window boundary
and agree that £ is on the first step of its protocol. It is now just a
matter of taking or simulating the next active step. Let £y be the
smallest job class that has not completed its algorithm. Then all
live jobs are in classes > £y, and they all agree that £y should take
one active step. O

We next turn our attention to the size estimation algorithm. We
focus on proving the following lemma, which says that the estimate
is likely to be within a constant factor of the true number of jobs
in the class.

LEMMA 8. Let fi,, denote the number of jobs with a particular
window of size w = 2¢, assume that Pjam < 1/2. There exists a
sufficiently large constant T (a parameter in the algorithm) such that
if the size-estimation protocol for the window completes, then with
probability at least 1 — 1/w?@ the estimate n,, satisfies 2fiyy < Ny <

2f,,.

Before proving the lemma, it helps to recall the size estimation
algorithm. The estimation procedure is divided into ¢ phases. In
the ith phase, each job transmits in each slot independently with
probability 1/2!. To prove the lemma, we first prove two bounds
on individual phases. The first says that if 21 ~ f,,, then there are
likely to be many successful transmissions during the phase. The
second says that if 2! % #i,,, then there are not likely to be many
successful transmissions.

LEMMA 9. Let iy, > 1 denote the number of jobs with a particular
window of sizew = 2¢, and assume that pjam < 1/2. Consider thei-th
phase of the size estimation algorithm, assume that the phase is not
truncated, and suppose that 21 < fi,, < 2L, Then with probability
at least 1 — 1/w®@) | the number of successful transmissions during
the phase is at least AL/ 16.

Proor. First consider what happens without jamming and let
us calculate the probability of a successful transmission in each
slot in the phase. Recall that each job transmits with probability
1/2E. The probability that exactly one job transmits is 7, (1/2%)(1 —
1/28)w=1 > 2i=1(1 /20y (1 — 1/20)% 71 > 1/(2e).

With jamming, the probability of a successful transmission in
each slot may be reduced by half, to at least 1/(4e).

We can now take a Chernoff bound over all slots to get the
number of successful transmissions. The expected number is at
least A£/4e, so with probability at least 1 — 1/ wO@)  the number of
successes is at least A£/16. O

LEMMA 10. Let fiy, denote the number of jobs with a particular
window of size w = 2¢. Consider the i-th phase of the size estimation
algorithm and suppose that either fi,, < 217> orn), > 21>, Then with
probability at least 1-1/ wO@) | the number of successful transmissions
during the phase is strictly less than A(/16.

PRrROOF. Asin Lemma 9, we look at the probability of a successful
transmission in each slot. If n, < 2/™%, then the probability that at
least one job chooses to transmit (which upper bounds success) is
at 2075 /21 < 1/32.1f n}, > 21**, then the probability of a success-
ful transmission is Ay (1/20)(1 = 1721 < Ay (1 = 1/20) 0 <
ﬂw(l/e)ﬁw/zl =r/e" for r = fi,, /2. Assuming r > 2°, this value is
at most 1/32. The expected number of successful transmissions is
thus at most A£/32. To conclude, we can apply a Chernoff bound
across all slots to get that with probability at most 1 —1/ wO@) | the
number of successes is less than A£/16. |

We are now ready to complete the proof of Lemma 8.

PROOF OF LEMMA 8. Lemma 9 states that for phase i with 2171 <
fiy, < 2%, the number of successes is likely to be at least A£/16.
Lemma 10 states that for phases with 2t > 32f,, or 2! < fi,,/32, the
number of success is likely to be smaller than A¢/16. If neither bound
fails, the maximum must fall in a phase j that satisfies 7,,/32 <
2/ < 32fi,,. Choose 7 = 64, giving estimate n,, = 2/, to complete
the proof. O

Thus far, we have shown that the size estimation works well.
For the remainder of the paper, we assume that 7 is fixed to sat-
isfy Lemma 8 and omit the assumption from subsequent lemma
statements.

We next turn to scheduling the active steps. Our goal is to prove
that the algorithms are unlikely to be truncated. That is, we wish to
show that for particular job class ¢, all nested windows do not have
too many active slots in aggregate, and thus enough unclaimed
slots remain to complete £’s algorithm.

LemMa 11. Consider a particular window W with size w = 2¢. Let
Ny denote the total number of jobs whose windows are nested inside
W, including those jobs with window exactly W. Let wy denote the
smallest window size. For sufficiently large A, with probability at least
1- 1/w®(’1), the sum of all estimates is at most 202Ny + 2w/ wo.

Proor. Note that if the size estimation is truncated, then the
estimate is 0. Since we want an upper bound here, the worst case is
to assume that all estimates complete.



We divide the windows into two groups: those that are larger
than /w, and those that are smaller than v/w. Let Ng and N denote
the number of jobs in each group, respectively. We have N + Ng =
Ny . Let N and N denote the sums of the estimates produced for
windows in each group.

We can bound Np by simply taking the union bound across all
windows and applying Lemma 8. The important point is that for
any w > \w, wO@ = 9 ‘and hence the high probability results
are sufficient. We thus have that Ng < r2Nj.

Next consider the small windows. Some small windows have
successful estimates that fall below the threshold in Lemma 8. Their
total sums to at most 72Ns. The remainder of the proof focuses on
bounding the contribution of failures. In particular, showing that
with probability at least 1 —1/w®), the sum of all estimate failures
is at most 2w/wy.

Consider all the windows of one particular size w < y/w, and let
k = w/w. It suffices to show that the total of failed estimates for
these windows is at most w/w. Then summing across all sizes then
yields a total of at most Z;":log(w(]) w/(26) < 2w/wy. Our goal is
thus simply to show that it is unlikely for there to be more than
k/w? failures for this size. By construction, any estimate is at most
w, so the total k/w? failed estimates is at most k/w as desired.

It remains to bound the number of failures for windows of size w.

Observe that for sufficiently large A, the probability of a failure in
Lemma 8 is at most 1/(2w?). Thus, the expected number of failures
is at most k/(2w?). Because k > y/w and each window’s failure is
independent, we can apply a Chernoff bound to conclude that with
probability at most 1 — 1 JwP@) | the total number of failures is at
most k/w? as desired, completing the last step of the proof. O

We next argue that active steps can be scheduled.

LEMMA 12. For all A, there exists a sufficiently small y such that
the following holds. Suppose that the instance is y slack feasible.
Consider any window W of size w. Then with probability at least
1-1/w®P) the algorithm for this window runs to completion, i.e., it
is not truncated.

Proor. Note that being y slack feasible implies that every job
window has size at least wp > 1/y. Let Ny denote the total number
of jobs with window W or nested windows, and let Ny, be the sum
of all estimates for these windows.

Our goal is to bound the total number of active slots desired by
W and all nested windows. As long as the total is smaller than w,
then all of W’s active slots can be scheduled. (For this proof, we do
not care if a smaller window’s algorithm gets truncated — all that
matters is how much it can get in the way of W.)

By Lemma 6, the total number of active steps for W and all nested

log w 2 .
£=log(1/y) £° + 2ANyy. We simply need to

upper bound each term by say w/2. By Lemma 11, the second term
is appropriately bounded, with probability at least 1 — 1/ wO@) as
long as (1) y < 1/(16A7?), giving 212Ny < 2r2(yw) < w/(81),
and (2) 1/y > 164, giving 2w/wo < w/(81). The summation term
is deterministic, and it solves to at most cw for some constant that
depends on the smallest value of ¢; there exists a small enough y to
drive ¢ down to 1/(4A). |

windows is at most 24 ),

Given that the active steps can be scheduled, the last component
of the proof is to show that the data messages are successfully
transmitted.

LEMMA 13. Consider a window W of sizew = 20 let A, denote
the number of jobs in the window, and let n,, denote the result of
the estimation procedure for the job class. Suppose that pjam < 1/2,
Nw = 2f4y, and that the broadcast algorithm for W is not truncated.
Then with probability at least 1 — 1/wO) | all jobs with window W
succeed in broadcasting their data messages.

ProoF. Recall that the algorithm consists of phases of length
Ay, Any /2, . .., A2 followed by ¢ phases of length A¢. For the de-
creasing phases, we shall only leverage those with long-enough
lengths Anyy, Any, /2, ..., AL, ignoring the smaller phases. We shall
argue that (1) during these decreasing phases, the number of jobs is
likely to be reduced to at most €/2, and (2) if the final phases begin
with at most £/2 jobs, then they are likely to all finish.

For the decreasing phases (down to length A¢), the proof'is by
induction over phases. Let X; = n,,/2!. The inductive claim is that
at the start of phase i, the number of live jobs is at most X;/2 with
probability at least 1 — 1/ w®@) The claim holds initially as 7,, <
nw/2 = Xo/2. Now we prove the inductive step. Each subphase
has length Xj, and each job chooses one random slot in which to
transmit. Because the number of jobs is bounded, the probability
of a collision for the job is at most 1/2. Assuming no collision, the
probability of being jammed is at most 1/2. So the job successfully
transmits it data message with probability at least 1/4. Repeating A
subphases means that the probability of the job failing to transmit is
at most (3/4)*. Thus, by a Chernoff bound, the probability that more
than X; /4 = X;+1/2 jobs fail is at most 1 —1/e®AX1) > 1—1/wOA),
where the inequality follows because X; = Q(log w).

For the equal phases, the proof is easier. In each subphase, each
job fails with probability at most 3/4 as before. So the probability
that the job fails in all A¢ subphases is at most (3/4)M = 1/wOW),
Taking a union bound across all jobs completes the proof. O

Finally, we combine all the components to attain the main theo-
rem.

THEOREM 14. For all A, there exists a sufficiently small y such
that the following holds. Consider a y slack-feasible instance, let j be
any job and let w be its window size. Then with probability at least
1—1/wo@ job j successfully transmits its data message.

PRroOF. By Lemma 12, the job class is likely to complete its algo-
rithm with probability at least 1 -1/ wo@), By Lemma 8, n,, > 2114,
with probability at least 1 — 1/w®@). Thus, the assumptions of
Lemma 13 are likely to hold, and we conclude that with proba-
bility at least 1 — 1 /wP@) that the data message is successfully
transmitted. O

4 PUNCTUAL BACKOFF: HANDLING
GENERAL WINDOWS

In this section, we fulfill the promise that we made in the introduc-
tion. Now supplied with the necessary tools, we set out to solve our
original problem: contention resolution with deadlines. We give
an algorithm, PUNCTUAL, which, true to its name, guarantees the



following. For any instances with sufficient slack, each job success-
fully broadcasts within its window, with high probability in the
job’s window size.

Trimming down windows. We begin by giving the impetus for
considering the aligned-window special case from Section 3. For
this, we need terminology. If W is an arbitrary window, we say that
trimmed(W) is a largest aligned window that is contained in W if
there is more than one largest window, choose arbitrarily. Notice
that [trimmed(W)| > |W|/4. If ] is a set of jobs, then trimmed(J)
is the set of jobs in which the window W associated with each job
is replaced with trimmed(W).
We employ an analog to Lemma 6 in [12]:

LemMA 15 ([11, 12]). Consider any 4y-slack feasible set of jobs ],
where 1/y is an integer. Then, trimmed(]J) is y-slack feasible.

With enough slack feasibility, a global scheduler can convert any
scheduling instance to one that is power-of-2 aligned, and then use
pecking-order scheduling on that instance as described in Section 3.
In addition, if all jobs had access to a global clock—that is, all jobs
agreed on the index of the current slot—then each job could trim its
own window without any help. Then, the algorithm from Section 3
could be used. However, a global clock is not available here. (For
work addressing the power of a global clock, see [38, 69].)

The contention dilemma again. We still face the same dilemma
as in Section 3. That is, when a job enters the system, it must learn
whether its window is smaller or larger than those of other jobs
in the system. A job with a smaller window should aggressively
attempt to seize the channel, while a job with a larger window
should remain silent so that other jobs can succeed.

The aligned solution from Section 3 only worked because there
existed critical times. Each critical time for a job class triggered an
estimation protocol, giving all jobs in the system the same estimate
of the number of jobs in that class. These estimation protocols
resolved the dilemma.

But now we no longer have these critical times. Now that job
arrival times and window sizes are arbitrary, it may feel that we
are starting all over from scratch.

Choosing a leader. We want to resolve the situation by somehow
choosing a leader to broadcast a global time to everyone in the
system. In particular, if job j is elected leader, then for the rest of
its window, it broadcasts (its own version of) a global time in every
other time slot. Then j broadcasts its own message at the end of its
window and terminates. At this point, the system is leaderless and
the jobs must collectively identify a new leader.

Whenever the system is running with a leader j, there is a shared
global time. Therefore, for any job that has an earlier deadline than
the leader, there are critical times which can be used for running
estimation protocols.

How can a job help elect a leader? How can it do so without
blocking jobs from other job classes?

Why the contention dilemma is an obstacle to choosing a
leader. Now the contention problem once again shows its ugly
head.

When job j arrives, it first listens to determine whether there is
already a leader in the system that it can look to. If not, j needs to
participate in a leader-election protocol for its job class.

We seem have a Catch-22. The job class needs to broadcast on
the channel to run its protocol. But if the probability that a job
J makes a broadcast attempt is Q(1/wj), then it contributes too
much contention, and jobs from smaller size classes get starved;
see Section 2.2. On the other hand, if the probability that job j
makes a broadcast attempt is 0(1/wj), then there is a super-constant
probability that j never broadcasts during its entire window.

To summarize, a leader must be elected so that both small-
window and large-window jobs get their fair shot at the channel.
But in order to run a leader-election protocol, the jobs also need to
get their fair shot at the channel to run the protocol.

A slingshot solution. But the Catch-22 has a catch. Occasionally
there are job classes that do not need a leader in order to broad-
cast successfully, while not causing too much damage with their
libertarian ways.

To exploit this catch, jobs must be able to recognize when a leader
is not required. The idea is to essentially have two size-estimation
protocols. The first one is implicit in the leader election itself, and the
second one occurs after leader election. This idea is not nonsensical.

The first size-estimation protocol is rough and helps to determine
when a job does not need a leader. By this coarse estimation, either a
leader is identified, or the protocol estimates that there is a relatively
small number of jobs in the job class and a leader is superfluous.

Job j’s behavior is like a slingshot; first it pulls back, and then it
decides whether or not to release.

Rounds and slots. To implement this slingshot mechanism, we
isolate the activity of the jobs that are in different parts of the
protocol. To this end, we group time slots into rounds. Specifically,
each round consists of four time slots: (i) a timekeeper slot, where
leaders broadcast, (ii) an aligned slot, where the batch protocols
run, and two slots for the slingshot protocol: (iii) a leader-election
slot, where leaderless jobs broadcast when trying to elect a leader,
and (iv) an anarchist slot, where jobs broadcast when they have
given up trying to identify a leader.

How do jobs agree on which time slots are used for which pur-
poses? In this case, we add six synchronization slots to each round:
the first two slots of a round are synch slots used to broadcast start
messages (and may consist of collisions); after these two synch slots,
we alternate empty guard slots with the four useful slots described
above.

This synchronization scheme ensures that the only time that a
job observes two collisions or messages in a row is during the first
two start slots of a round. Thus, when a job enters the system, it
waits until it hears two consecutive slots with messages or collisions.
If after 10 slots, this does not occur, then the job can itself broadcast
start messages and begin a new round.

In total, this synchronization mechanism takes only O(1) time,
and uses up a constant fraction of the available window.

From this point on, we assume that jobs have synchronized their
rounds, and we describe the protocol in terms of how they behave
in the different types of slots.



How to use the slingshot. When a job j arrives, it first does two
preliminaries: it establishes its round synchronization, and it rounds
down its window size to the nearest power of 2. (This decreases
the slack by at most a factor of 2.)

Next, it listens for a single slot in the timekeeper slot to see if
there is a leader. If there is no leader, or if the leader has an earlier
deadline than the deadline of job j, then it moves on to run the
slingshot protocol. Otherwise, it happily moves to the aligned slot,
trims its window based on the leader’s time announcements, and
runs the batch protocol from Section 3 using the aligned windows
indicated by the leader’s timestamps.

If a job j moves to the slingshot protocol, then it transmits with
a (low) probability of 1/(wjpolylog(wj)), repeatedly, in the leader-
election slot with the goal of claiming leadership; when it does
not broadcast, it listens for other claimants. This is the pullback
stage of the slingshot algorithm. If job j becomes the leader, then
it takes over the job of being the timekeeper/leader, broadcasting
the round number (and its own deadline) in every timekeeper slot.
Even if there is an existing leader, j necessarily has a later deadline
(or it would not have started the leader-election process in the first
place), and so the old leader steps aside for j.

If a leader emerges (whether j or someone else) with a deadline
after that of j, then job j can move directly to the aligned slots,
trims its window based on the leader’s time announcements, and
runs ALIGNED.

Otherwise, if no leader emerges after a polylog(w;) number of
steps of the pullback stage, then j checks the current leader again,
listening in the next timekeeper slot. If the current leader has a
deadline after 1/2 of j’s deadline, then that is good enough: j rounds
down its window by a factor of 2 (so now its deadline is before the
current leaders), and again job j moves to the aligned slots, trims
its window based on the leader’s time announcements, and runs
ALIGNED.

Finally, if no leader emerges after a polylog(w;) number of steps
of the pullback stage and/or the current leader’s deadline is too
early, then j releases the slingshot, moving to the anarchist slot and
substantially increasing its sending probability to @ (log(w;)/wj)
for the remainder of its window. This is the release stage where
the slingshot fires.

We will show that if there are O(w;/ log? wj) jobs in the job
class, then these will have a small effect on the contention in the
anarchist slot, even when they are aggressive about trying to ac-
cess the channel (in the release stage). Alternatively, if there are
Q(wj/log> w;) jobs in the job class, then the protocol identifies a
leader in O(polylog(wj)) steps, and so stays away from the anar-
chist slot.

Proof of the General Algorithm

The bulk of this analysis focuses on anarchists — we already know
that those jobs that follow a leader have a high probability of suc-
cess.

LEMMA 16. For any constant ¢ > 0, there exists a sufficiently small
y such that: if the instance is y slack feasible, then the contention in
every leader-election slot is at most €.

3This is such a low probability that if it kept competing to be the leader for the entire
window, j would most likely not transmit even once.

PuncTuat for job j:

e When job j enters the system, it first rounds its
deadline dj down to the closest power of 2 and
checks whether the slots are already synchronized
into rounds. To do so, it waits until it hears two con-
secutive slots with messages or collisions. If after
10 slots, this does not occur, the j runs SYNCHRO-
NI1ZE. From this point on, j always broadcasts start
messages in the first two slots of every round.

e Job j listens on the timekeeper slot. If j hears a
leader with a deadline > d;, then it runs FOLLOW-
THE-LEADER,; if not it runs SLINGSHOT.

SYNCHRONIZE for job j:

e Job j broadcasts two start messages. Regardless of
whether these two start messages collide, now the
system is synchronized into rounds.

SLINGSHOT for job j:

e Repeat Alog’ (w;) slots or until a leader is elected.

— In each leader-election slot, with probability

1/(wj log? (wj)), transmit “T am the leader with
deadline d;”

— If j successfully transmits, it becomes the leader.

— If j hears a j” successfully transmit in the leader-
election slot, and dj» > dj, then j’ becomes the
leader and j runs FOLLOW-THE-LEADER.

— If j hears a j’ successfully transmit and become a
leader, but dj» < dj, then j still continues running
SLINGSHOT.

e If after these Mog7(wj~) steps, j still has no leader,
then it listens again in the timekeeper slot and if
there is a leader with deadline at least d;/2, then job
Jjrounds its deadline down to d;/2 and runs FOLLOW-
THE-LEADER. Otherwise, for the rest of its window
or until it succeeds, job j transmits its data message
in each anarchy slot with probability Alog(wj)/w;.

FOLLOW-THE-LEADER for j:
e Job j learns of the current leader and the global
time in the timekeeper slots.
e Job j trims its window according to the global time
and executes ALIGNED in the aligned slots.

BECOME-LEADER for j:

e In every timekeeper slot of the window, j sends
“I am the leader”, the value of d;, and the current
time.

In the last timekeeper slot of j’s window, j broad-
casts its data message along with the current time
and a message “I am abdicating”

If j is deposed, then, in the next timekeeper slot,
the old leader broadcasts its data message along
with the global time, and then the new leader takes
control of the timekeeper slots.

Figure 2: Pseudocode for PUNCTUAL.




Proor. First consider the contention from each job j in the sys-
tem whose window size w; € [2¢,26*1). There are at most @(23)
such jobs in the system at any one time. In the pullback phase of
SLINGSHOT, each such job broadcasts with probability ©(1 /(£32%)),
and thus these jobs contribute O(1/£3) to the contention. Therefore,
the total contribution to the contention of jobs in any slot of the
pullback phase of SLINGSHOT is O (2;";1 5’3) =0(1). o

Consider any particular job j. We say that leader election is
successful for job j if one of the following two cases applies: (1)
when job j arrives, there is already a leader with deadline later than
J’s deadline, or (2) job j successfully transmits a message during
the leader-election component of sLINGSHOT. Observe that if case
(2) occurs, then the resulting leader has deadline at least as late as
J’s deadline.

LemMA 17. Consider any set S of jobs having window size w. Sup-
pose |S| = w/ log3 w. If the instance is y slack feasible for sufficiently
small constant y, then with probability at least 1 — 1/wOP) at least
one job in S has a successful leader election.

Proor. Consider any j € S. If there is already a leader with a
later deadline, then j’s leader election is successful. Assume for the
remainder that no such leader exists when j arrives.

We say that job j has a successful leader election at time ¢ if (1) j
transmits at time ¢, and (2) there is no other transmission at time ¢.
By Lemma 16 with ¢ = 1/2, (2) holds with probability at least 1/2.
And trivially (1) holds with probability 1/wlog® w because that’s
the transmission probability. Let X;; be an indicator that job j has
a success at time t. We thus have that Pr[X;; = 1] > 1/(2w log® w).
Let X = 3 jes Xt X¢j denote the total number of successes from S.
Observe that E[X] > Alog w/2 as each job is summed over Alog’ w
timesteps. Thus, by a Chernoff bound, with probability at least
1—1/w®W at least one job in S has a success. O

We are now ready to bound the number of anarchists having a
particular window size.

LeEMMA 18. Consider any window size w and any time interval
[t,t + w]. Suppose that the instance is y slack feasible for sufficiently
small constant y. With probability at least 1 — 1/wOW), the number
of distinct jobs with window size w that are anarchists at any time
during [t,t + w] is at most 4w/ log® w.

ProoF. We consider four separate time intervals of length w/2:
[t = w,it —w/2], [t —w/2,t], [t,t + w/2], and [t + w/2, w]. Observe
that only the jobs released during one of these intervals can be
anarchists during the time [¢, t + w].

Consider any one of those intervals I. Suppose at least w/ log> w
jobs with window w are released during interval I. Our goal is to
bound the number of jobs released during I that can be anarchists.
Let S be a set of the w/log> w jobs with earliest release time in
this interval (ties can be broken arbitrarily). By Lemma 17, at least
one job in S has a successful leader election with high probability.
Because the deadlines of these jobs are far enough away, all other
jobs released later in I follow that leader. Thus, with high probability,
at most wlog® w jobs released during I are anarchists. In the case
that fewer jobs are released, this claim is vacuous. Summing across
all four intervals completes the proof. O

The preceding lemma bounds the number of anarchists of a
particular size. What we want is to be able to argue that anarchists
have a good probability of success, i.e., that there are enough slots
during their windows that have low contention. This is captured
by the following lemma.

LEmMMa 19. Letw = 2¢ be a window size, consider any time interval
I = [t,t + w] and suppose that the instance is y slack feasible for suf-
ficiently small constant y. Then with probability at least 1 — 1/weA),
there exist at least w/2 anarchy slots in I that have contention at most
1/2.

Proor. By Lemma 18, we know that with high probability in w,
there are not many anarchists with window sizes at least say y'w
at any point during the interval. Their total contention in each slot
is thus at most 372, (4 - 21/i3)(i/2%) = 42 DIl 1/i2 < 8A/¢.
As long as ¢ is large enough (i.e., for small enough y), this resolves
to at most 1/4 contention per slot.

It remains to bound the contention of anarchists with small
windows. This proof follows the same structure as Lemma 11. Let
wg denote the smallest window size and let 2/, for lg(wg) < j < £/2
be a small window size. Divide I into subintervals of size 2/. Our
goal is to count the total contention generated by jobs with window
2/ The total is the number of anarchists multiplied by the number
of slots in the subinterval and the probability of transmitting in
a slot. In any interval with few anarchists, the total contention is
thus at most O((2//j%)(2/)(Aj/2)) = O(A2//%). Summing across
all low-anarchy subintervals, the total from jobs of window 2/
is at most O(A [I| /j2). In any interval with too many anarchists,
the total contention is at most O((y2/)(27)(Aj/2/)) = O(Aj2;). The
question is how many of these many-anarchist subintervals there
can be. With sufficiently large A, the probability of any subinterval
having too many anarchists is at most 1/j3 by Lemma 18. Thus, by a
Chernoff bound across at least \/w subintervals, the total contention
from intervals with too many anarchists is at most O(4 |I| /j%) with
high probability in w. Finally, summing across all j for sufficiently
large wy gives a total contention of at most |I| /8. It follows that at
most |I| /2 slots can have contention at least 1/4 from small-window
jobs. Adding the contention from large-window jobs gives a total
contention of at most 1/2 in at least half the slots. ]

CoRroOLLARY 20. Consider any y slack feasible instance for suffi-
ciently small constanty, and let j be any job that becomes an anarchist.
Then with probability at least 1— l/wf)u)
its data message.

, job j successfully transmits

ProoF. By Lemma 19, at least half the anarchy slots during j’s
window have contention at most 1/2. Thus, with high probabil-
ity, at least half the slots have no other message transmission. In
each of those otherwise silent slots, j transmits with probability
Alog(wj)/wj. The probability that j never transmits in an otherwise
silent slot is thus at most (1—Alog(w;j)/w;)*/ < 1/e®Alogwy)

5 RELATED WORK

Here we discuss some closely related work on backoff protocols
and message transmission with deadlines/priorities.

The contention-resolution problem has been extensively studied
from many different angles. Many prior works address a setting



where all devices/packets start at the same time—sometimes re-
ferred to as the static case—each with a message to send on the
multiple-access channel. When the goal is to minimize the time
until the first message is transmitted, several results are known [69,
76, 88]. A more general case is where k out of n devices need to
succeed [8, 51].

A well-studied performance metric in the literature is makespan,
which provides a measure of the time until all packets succeed [13,
14, 20, 28, 38, 47-49, 53, 53, 69, 72, 80, 87]. Binary exponential back-
off and other natural variants where window sizes monotonically
increase do not achieve the asymptotically optimal makespan [13].
However, a non-monotone algorithm called sawtooth is asymptot-
ically optimal [8, 45, 52]. For packets with heterogeneous sizes, the
performance of windowed algorithms has been studied in [14].

In modern wireless networks, several aspects make the contention-
resolution problem challenging. With small devices, the on-board
power supply is limited, and energy efficiency is addressed in sev-
eral results [17, 29, 59]. Malicious interference, typically referred to
as jamming, is treated in [3-5, 9, 17, 79, 82-85], while the impact
on performance due to signal-propagation effects is investigated in
in [41]. The impact of using multiple channels is considered in [42].

A natural extension is to consider when packets can arrive over
time, perhaps in a worst-case fashion. In this setting, many re-
sults on contention resolution consider a statistical queuing-theory
model with a focus on what packet-arrival rates are stable (see [47-
49, 53, 53, 80]). In contrast, worst-case performance on a multiple-
access channel is examined in the context adversarial queuing the-
ory [6, 13, 34, 35]. A related notion is that of saturated throughput,
this is, roughly, the maximum throughput when each player always
has a packet to be sent [20, 87].

There are also several results related to contention resolution that
address dynamic access to a shared resource. In [22], online packet
arrivals are examined under a queuing model where performance is
measured according to notions of queue-size competitiveness. In [7],
the worst-case online arrivals of clients (rather than packets), each
with data to upload, is considered. Finally, a problem of dynamic
mutual exclusion, where subsets of processes must contend for
access to a critical section at arbitrary times, is analyzed in [23].

The performance of adaptive algorithms—where packets employ
channel feedback—and the power of randomized versus determin-
istic approaches has been investigated in several works. In [68], the
authors present a deterministic, non-adaptive contention-resolution
algorithm when players have access to a global clock. In [38], both
adaptive and non-adaptive algorithms are considered without a
global clock. Additionally, deterministic contention-resolution al-
gorithms (which are non-adaptive) are considered in [63, 70]

The closely-related wake-up problem addresses how long it takes
for a collection of devices to receive a wake-up transmission [31-
33, 36, 60]. Finally, several works make use of a procedure for
estimating the system size in order to speed up the performance of
backoff algorithms [17, 21, 26, 27, 50].

While messages with deadlines have not been considered in the
context of backoff, it is a natural question that crops up in many dif-
ferent domains. Many industrial and cyberphysical systems require
real-time constraints on message deliveries for the proper operation
of the system and real-time network protocols take these constraints
into consideration [2, 40, 43]. Most of the algorithms designed in

this context use centrally planned communication schedules that
guarantee that no deadlines can be missed [25, 44, 73, 74, 86].

Message prioritization is also tied to traffic prioritization in the
context of quality of service (QoS), which refers to a broad mea-
surement of service performance, subsuming several aspects, such
as delay, jitter, packet drop rate, availability, and transmission de-
lay [24, 65, 67]. The prioritization of network traffic is a common
ingredient in methods for providing QoS [56]. For example, prece-
dence can be given to time-sensitive applications, such as voice-
over-IP and multimedia streaming, where low-latency transport of
data is required. Additionally, in systems where capacity is scarce,
prioritization allows for the allotment of this resource to critical
traffic during times of network congestion. We note that the catego-
rization and methodology for assigning priority to different types
of network traffic is a related but separate problem from the one
treated here [61, 62, 90]. Various mechanisms for assigning priority
exist, such as differentiated services in IPv4 [78], traffic classes in
IPv6 [39], and enhancements to WiFi [30, 66, 77].
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