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This paper is concerned with the forecasting of probability density functions. Density
functions are nonnegative and have a constrained integral, and thus do not constitute a
vector space. The implementation of established functional time series forecasting meth-
ods for such nonlinear data is therefore problematic. Two new methods are developed
and compared to two existing methods. The comparison is based on the densities derived

from cross-sectional and intraday returns. For such data, one of our new approaches is
shown to dominate the existing methods, while the other is comparable to one of the

existing approaches.
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1. Introduction

There are many problems in which the prediction of
future probability densities functions is useful; for exam-
ple, the prediction of densities of income, fertility, mortal-
ity, and densities of several types of returns on financial
assets. Motivated by the need to forecast cross-sectional
and intraday returns, we propose two new methods of
predicting densities, and compare them to two existing
methods.

The importance of density forecasting in finance has
long been recognized, and is stated aptly by Crnkovic and
Drachman (1997, p. 47) as follows: “At the heart of market
risk measurement is the forecast of the probability density
functions (PDFs) of the relevant market variables ... a fore-
cast of a PDF is the central input into any decision model
for asset allocation and/or hedging ... therefore, the quality
of risk management will be considered synonymous with
the quality of PDF forecasts”. Also, as was pointed out
by Ross (2017), forecasting the density of financial returns
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allows us to recover the pricing kernel, the market risk
premium and the probability of a catastrophe, and to
construct model-free tests of the efficient market hypoth-
esis. The recovery theorem of Ross (2017) enables one to
determine the market’s forecast of returns. In financial
risk management, there is more interest in the density of
the future returns, as better density forecasts can produce
better risk forecasts in terms of the value-at-risk (VaR)
or conditional-value-at-risk (CVaR) forecast. Lee, Xi, and
Zhang (2014) proposed a multiplicative decomposition
of the financial returns in order to improve the den-
sity forecasts of financial returns and show that the risk
forecasts produced from the density forecast using the
decomposition and maximum entropy are superior to the
approaches used more broadly, especially in extreme tail
events of a large loss. This paper enriches the set of tools
that can be used for forecasting the densities that are
relevant in financial applications. Examples of the most
commonly studied densities are shown in Fig. 1.

While density functions, or alternative characteriza-
tions of their underlying distributions, may be thought of
as elements of a Hilbert space, they do not constitute a
linear subspace. If the densities are treated as elements of
12, the predicted curves will be elements of L2, but will not
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Fig. 1. Densities of cross-sectional monthly returns.

necessarily be densities. This is why the usual methods of
prediction, which are based on Hilbert space formalism
and go back to the work of Kolmogorov and Wiener, are
not applicable directly. A natural way of dealing with such
constraints is to peel them away by means of an invertible
transformation that maps densities onto a linear space.
Invertibility is key, as it allows one to perform analyses
in the transformed space, then visualize and interpret the
results in terms of densities by means of the inverse map.
We propose two approaches that fall into this general
paradigm: one based on compositional data analysis, the
other on a suitable transformation of densities studied
by Petersen and Miiller (2016). Recent prediction methods
for unconstrained curves are explained by Kokoszka and
Reimherr (2017, Chapter 8), see also Hyndman and Ullah
(2007) and Shang and Hyndman (2011). The forecasting
of functional time series with constraints that differ from
those considered here has been considered by Canale and
Vantini (2016), for example.

Probability density functions have been studied from
many angles within the broad framework of functional
data analysis. Jones and Rice (1992) use kernel density
estimation for the nonparametric estimation of density
functions, and display a large functional dataset based on
functional principal component (FPC) analysis. Kneip and
Utikal (2001) use kernel density estimation to obtain an-
nual income densities, and study the temporal evolution
of income density functions in the United Kingdom from
1968 to 1988. Nerini and Ghattas (2007) consider regres-
sion trees where the responses are density functions, and
use functional principal component analysis to interpret
the main mode of variation in each terminal node. van
der Linde (2008) proposes a Bayesian functional principal
component analysis and applies it to a simulated dataset
consisting of nonparametric density estimates. Delicado
(2011) considers a compositional data analysis (CoDa)
to analyze density functions and implement dimension-
reduction techniques on the constrained compositional
data space. Srivastava, Klassen, Joshi, and Jermyn (2011)
consider a time-warping function in registration, where
square root transformations of densities reside in the
Hilbert space.

The paper is organized as follows. Section 2 describes
the approaches that we study, with a focus on the two
new approaches (Sections 2.1 and 2.2). Section 3 is ded-
icated to the comparison of the methods, with its last
subsection summarizing the findings of this research.

2. Forecasting approaches

This section describes the forecasting approaches that
we consider in this paper. The approaches based on com-
positional data analysis (Section 2.1) and the log quan-
tile transformation (Section 2.2) are new. The approach
introduced in Section 2.3 was proposed by Horta and
Ziegelmann (2018) for forecasting the densities of intra-
day returns. The three approaches above observe the den-
sities f;, t = 1,2, ..., n, and we want to forecast future
densities fyn, h > 1. The parametric approach presented
in Section 2.4, based on fitting skewed t-distributions,
was proposed by Wang (2012) in the context of predict-
ing monthly cross-sectional returns. It uses past returns
rather than past densities as inputs.

2.1. Compositional data analysis

Density functions, which are nonnegative functions
that integrate to one, share some features with composi-
tional data (Aitchison, 1986; Pawlowsky-Glahn, Egozcue,
& Tolosana-Delgado, 2015). Compositional data are de-
fined as a random vector of K nonnegative components,
D =[d4, ..., dg], the sum of which is a specified constant,
typically set equal to 1 (portion), 100 (percentage) or 10°
(parts per million). Thus, sample space of compositional
data is the simplex

K
sk = {D:(d1,...,d,<)T, de > 0, de=c},
k=1

where c is a fixed constant, and T denotes the transpose.
The simplex sample space is a K — 1 dimensional subset
of the Euclidean space R¥.

Compositional data arise in many scientific fields, such
as geology (geochemical elements), economics (income/
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expenditure distribution), medicine (body composition),
food industry (food composition), chemistry (chemical
composition), agriculture (nutrient balance bionomics),
environmental sciences (soil contamination), ecology
(abundance of different species), and demography (life-
table death counts). For example, Scealy, de Caritat, Grun-
sky, Tsagris, and Welsh (2015) study the concentration of
chemical elements in sediment and rock samples, while
(Scealy & Welsch, 2014) analyze households’ total weekly
expenditure on food and housing costs. In the field of
demography, Boucher, Canudas-Romo, Oeppen, and Vau-
pel (2017) treat the age-specific life-table death count
(dk) as compositional data and use a principal component
approach to forecast life-table death counts.

The method that we propose consists of the following
steps.

1. Compute the geometric mean function

on(1) —exp[ Zln[ft ] (1)

and set
fe(u )/an(ll)
fft u)/on(u

The geometric mean standardizes the ranges, so
that no range dominates the weighting. The stan-
dardization in Eq. (2) ensures that fst u)du = 1,
a condition that is imposed commonly in composi-
tional data analysis.

2. Apply the centered log-ratio transformation given
by

Bi(u) = In (5‘(“)) , 3)
8t

where g; is the geometric mean given by

g = exp {/ ln[s[(u)]du} .

The log-ratio transformation in Eq. (3) removes the
constraints on f;.
3. Apply FPC analysis to the transformed data {8;(u),
., Bn(u)}, i.e., compute the Karhunen-Loéve ex-
pansions

Zﬂt (belu

where qAbl(y),...,di(u) are the first L estimated
FPCs, and B¢ 1, ..., B, are their scores.

We determine L by the explained variance crite-
rion:

L n
L = argming., {Z):Z/Zig > 8} ,
=1 =1

where A, is the sample variance of the Bf_g, t =
1,2,...,n. In our implementation, we use § =
85% (see e.g. Horvath & Kokoszka, 2012, p. 41).

(2)

se(u) =

L

Z Brdelu (4)

4. Forecast the L FPC scores. This can be done in
many ways. We use an exponential smoothing fore-
casting method. Alternatively, a univariate ARIMA
method or a multivariate time series forecasting
method (Aue, Norinho, & Hormann, 2015) can be
used. A
Obtain the h-step-ahead forecast Sph ¢ of the £th
principal component score. We utilize an auto-
matic algorithm developed by Hyndman and Khan-
dakar (2008) to determine the optimal exponential
smoothing model based on the corrected Akaike in-
formation criterion (AIC) of Hurvich and Tsai (1993).
Conditioning on the estimated principal compo-
nents and the observed data, the forecast of 8, n(u)
is given by

Brshin(u Zﬁnmn (bl (5)

5. Transform back to the compositional data; i.e., take
the inverse centered log-ratio transformation given

by
explBn+hn(u)]
[ explBnnn(u)ldu’

where ,3n+h|n(u) denotes the forecasts in Eq. (5).
6. Finally, we add back the geometric means, to obtain
the forecasts of the density function

§n+h|n(u)an(u)
f §n+h\n(u)an(u)du '

where «a,(u) is the geometric mean function given
in Eq. (1).

The functions 8; in Eq. (3) are given by
_l n
) = i)~ 3 i)~ [ K

The middle term on the right-hand side does not depend
on t, and so has no impact on predictions. The third term
is a normalizing constant that depends on t, and could
potentially either improve the predictions or make them
worse. Following the advice of a referee, we explored
how a modification without this standardization would
perform. This is equivalent to working with g(u) =
In(fy(1)), and using fyshn(u) = exp Puinn(u) instead of
steps 5 and 6. We will refer to this approach as CoDa (no
standardization), and to the approach described in steps
1-6 as CoDa (standardization).

A related approach can be found in a recent paper
by Hron, Menafoglio, Templ, Hriizova, and Filzmoser
(2016), where the compositional data approach of
Delicado (2011) was extended to define a version of
functional principal component analysis on samples of
densities. A related theoretical development is presented
by Egozcue, Diaz-Barrero, and Pawlowsky-Glahn (2006).
The method of Hron et al. (2016) cannot be applied to
the densities we study, at least not without some fairly
substantial modifications. Their setup is to begin with
the collection of densities on an interval [a, b], for which

§n+h\n(u) =

fn+h\n(u) =
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the log density is square integrable. This key requirement
means that the density must be positive on [a, b] for their
methodology to work. The support of return densities
(i.e., the collection of grid points for which the estimated
density is strictly positive) is different for each month or
day, even within the same data set, and therefore the
method of Hron et al. (2016) cannot be applied directly
without first adjusting the estimates to be strictly positive
on a common interval.

2.2. Log quantile density transformation

Our approach is based on the ideas of Petersen and
Miiller (2016). The general paradigm is as follows. We
transform the densities f;, t < n, to the space L* using
a suitable transformation v, and set Y; = (f;). There
are several prediction methods that are known to work
well for functions in the “unrestricted” Hilbert space L.
Applying one of these methods, we obtain the predicted
curves Yy,.n,1 < h < H. We then apply the igverse
transformation and obtain the predicted densities f; 1, =
¥~ (Ye4n). The key difficulty in this approach is that we
must ensure that ¥~ '(Y,;;) is a density. In the context
of functional principal components analysis, Petersen and
Miiller (2016) considered two specific transformations:
the log hazard transformation and the log quantile density
(LQD) transformation. We explain in Appendix B why the
log hazard transformation is not suitable for our pur-
pose, and focus on the LQD transformation. The main
theoretical novelty of our transformation approach rela-
tive to that of Petersen and Miiller (2016) is to define
a modified LQD transformation that allows for densities
with different supports to be transformed to functions
on a common domain and analyzed jointly. Petersen and
Miiller (2016) studied the theoretical properties of FPCA
after LQD transformation. The method has since been ap-
plied successfully in the context of functional regression
models, where densities appear as predictors (Petersen,
Chen, & Miiller, 2019), as well as in a distributional re-
gression framework in an engineering application (Chen,
Bao, Li, & Spencer Jr, 2019). This paper is the first to
demonstrate the utility of this approach for forecasting
distributional time series. In particular, we are the first
to provide algorithms for computing the modified LQD
transformation and its inverse.

The density is only one of many characterizations of a
distribution. Each representation has its own interpreta-
tion and properties, and we will demonstrate how these
can be used to obtain a functional representation of the
distribution that is free of nonlinear constraints. Let F;
and Q; be the cumulative distribution function (cdf) and
quantile functions corresponding to f;, respectively, i.e.

Fi(x) = /X fr(w)du, —oo < x < 00,

Qi(s) = F'(s)=inf{y € (0,1): F(y) > s}, se(0,1).

Each of the three functions, f;, F; and Q;, uniquely char-
acterizes the same distribution, and can be used as a
functional data object. However, they are all subject to
nonlinear constraints that make the application of typi-
cally linear functional data methods inadequate, namely

that ff > 0, [ fix)dx = 1,0 < F(x) < 1,F, = 0
and Q/ > 0, where ' denotes a first-order derivative.
Of these three, Q; is the least constrained, and it is easy
to see that the so-called quantile density (Jones, 1992;
Parzen, 1979; Tukey, 1965) q; = Q/ is only constrained
to be nonnegative. Thus, all constraints can be removed
completely by computing the log quantile density (LQD)

Yi(s) = log(qe(s)) = —log(fr 0 Q:(s)), s € [0, 1].
The last equality follows because

_ 1 _ 1

T FoF\(s)  fioQds)

However, the transformation from f; to its LQD is not
invertible, since for any constant c, the quantile density of
ft(-—c), the density shifted f; by c, is also gq;. Petersen and
Miiller (2016) assumed that the densities had a common
known support 7, and developed a modification of the
inverse transformation so that densities with support 7
could be mapped back and forth.

In our application, the densities do not always have
the same support, so we are forced to deal with the
non-invertibility issue in a different way. Although the
supports differ in our data set, most have most of their
mass concentrated around zero, and have bounded sup-
port with endpoints

rim =inf{r > 0:f(r) =0},
r; =sup{r <0:fi(r)=0}.

q:(s) = Q/(s) = (F71)(s) (6)

(7)

Thus, in what follows, we assume that 0 € supp(f;), which
is the case for all densities that we consider. This will
facilitate a modified definition of the log quantile density
transformation that is indeed invertible, and thus suitable
for our purposes. While the assumption 0 € supp(f;) is
natural for the data sets that we consider, this may be
adapted to any sample of density functions for which the
intersection of their supports contains a known point.

Definition A.1 in Appendix A defines a class D of densi-
ties for which the steps described in the remainder of this
section are justified. This section provides an algorithmic
description. We first present two algorithms that show
how the forward (density to L?) and backward (L% to
density) transformations are executed. In fact, our trans-
formations act between the space of densities and the
product space L2[0, 1] x (0, 1), as is stated in the following
definition.

Definition 2.1. For a density f € D, with D as in
Definition A.1, let F and Q be the cdf and corresponding
quantile function, and define

Y(s) := —log{f(Q(s))}, se<[0,1]. (8)

The modified log quantile density transformation is the map

WD — [*[0,1] x (0,1), given by ¥ (f)= (Y, F(0)).
9)

Note that this definition includes the possibility that
Y(0) and/or Y(1) is/are infinite. Proposition A.1 ensures
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that Y e %[0, 1] and that the transformation v is in-
vertible. As was mentioned above, this definition can be
generalized slightly under the assumption that there is a
known point xy which lies in the support of all densities
ft. In this case, one would set ¥(f) (Y, F(x0)). An
even more flexible alternative would be to choose a fixed
percentile level s € (0, 1) and define ¥ (f) = (Y, Q(so)),
which would not require any overlap of the supports of
the f;. However, for the sake of simplicity and to con-
form with the motivating data examples, we consider the
specific form in Eq. (9).

Let f € D be a density whose values are known on a
discrete grid r~ =Xy <x; <--- <x, =r", wherex; =0
for some j. In what follows, ¢ will represent the value F(0),
s; will represent grid points on [0, 1], and Y(s;) is given by
Eq. (8).

Algorithm 1 Forward transformation

Input: Data pairs (x;, f(x/)),1=0,...,L

Output: Data pairs (s;, Y(s;)),!=0,...,Land ¢
Fori=1,...,L:
1. Compute F(x;) fxlf Ydx,l =1, ..., L by numer-

ical integration of thle pairs (x;, f (x,))
2. Define s; = F(x;) so that Q(s;) = x,.
3. Compute Y(s;) = — In(f(x)).
4. Find j such that x; = 0 and set ¢ = F(x;) = F(0).

For the inverse transformation, one begins with a func-
tion g (corresponding to the output Y of Algorithm 1) that
is continuous on (0, 1). Available are discrete observations
(s1, g(s1)), where 0 =sg <57 < --- < s = 1is a grid. We
also have a value c € (0, 1) that specifies the value of the
cdf at zero for the target density f. We assume thats; = ¢
for some j # 0 and L, Thus, g is the predicted function,
and c corresponds to Fyypjn(0).

Algorithm 2 Backward transformation

Input: Data pairs (s, g(s;)), [=0,...,Land ¢

Output: Data pairs (x;, f(x))), [=0,...,L
Forl=1,...,L:

1. Find j such that s; = c.

2. Compute Q(s;) f’exp shds, | = 1,...,L by
numerical 1ntegrat10n of the pairs (s, exp{g( D).

3. Define x; = Q(s;) so that F(x;) = s;.

4. Compute f(x;) = exp {—g(s))}

Multiple LQD functions and/or densities can be com-
puted using the above algorithms, and it is often desir-
able for these to be computed on a common grid. As
an optional post-processing step to either algorithm, one
can use linear interpolation to impute onto a common,
equi-spaced grid of values.

With the above two algorithms, the full prediction
procedure can be summarized in the following steps.

1. Transform the densities f; into (Y, ¢;), as in Algo-
rithm1,t=1,2,...,n .
2. Compute the predictions (Yy.p, Corn), h > 1.

3. Transform each pair ( ths Cngn) into the predicted
density fn+mn. as in Algorithm 2.

We predict Y,y € D by first obtaining a mean
estimate /ty(s) and covariance estimate C,, from which
we obtain eigenfunction estimates ?; and predicted FPC
scores §n+h|n. The predicted value of the future LQD is then

p

Yoinn(s) = fiy(s) + Y Eninjdi(s),

j=1
which would at least be continuous on (0, 1), even if it
diverges at the boundary. We use a scalar time series
model to predict ¢, = Fpy4(0) using the time series of
values ¢; = F;(0), leading to a value Cpipn. The prediction
of the future density f,,. is then given by

o PPN .
Joxon =¥ (Yashin, Coghin)s

where ! is the inverse transformation described in
Algorithm 2.

2.3. Dynamic functional principal component regression

This method is based on the dynamic functional prin-
cipal components (DFPCs) introduced by Bathia, Yao, and
Ziegelmann (2010), which should not be confused with
the spectral domain DFPCs developed by Hormann, Kidz-
inski, and Hallin (2015). The method is implemented ex-
actly as described by Horta and Ziegelmann (2018), using
their R software. We refer to their paper for its justifica-
tion. It proceeds in the following steps.

1. Compute the kernel

- 1 G
Kl v =0 > I —Fw)]
t,s=1 k=1

X [s( 7v)](ft+k ffs+k f)

and its d orthonormal eigenfunctions wl(-), cees
Y4(+), corresponding to nonzero eigenvalues.
2. Approximate the densities f;, t = 1,2, ...,n, by

d

feu) = Flu) + Z

iy = f [f(w) — Fu)] dy(u)du
T

3. Fit a vector autoregressive (VAR) model with the
order selected by the AIC to the vectors

ﬁ[ = [ﬁ[]! s ﬁta]—r )

and compute the predicted vectors #j,p.
4. Compute the predictions

Z n+hﬂ/f]

[SWY

fn+h\n =

5. Since the predicted functions in the previous step
do not have to be nonnegative and do not have to
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integrate to one, set ff, (u) = max [0, Fosn(w)]
and
+
. W)
Frenin(u) = =5 .
e S e (W)du

2.4. Skewed t distribution

As was noted above, this method has been used only
in the context of the prediction of densities of cross-
sectional returns. We follow exactly the approach of Wang
(2012, Chapter 5), who also kindly provided the R code.
Earlier work on modeling the cross-section of returns in-
cludes that by Lillo and Mantegna (2000) and Cont (2001).
In particular, Cont (2001) emphasized that a parametric
model must have at least four parameters in order to suc-
cessfully reproduce the empirical properties: a location
parameter, a scale parameter, a parameter that captures
the decay in the tails, and an asymmetry parameter that
allows the left and right tails to have different behaviors.

The skewed t distribution has been studied exten-
sively. For example, Jones and Faddy (2003) proposed a
tractable form and the associated likelihood inference.
Azzalini and Capitanio (2003) constructed a skewed t dis-
tribution from a skewed normal distribution, while Fer-
nandez and Steel (1998) presented a general method for
transforming any symmetric and unimodal distribution
to a skewed distribution. Although these two methods
are equivalent, we follow Fernindez and Steel’s (1998)
method for constructing a skewed t distribution and fit
it to the cross-sectional and intraday returns. The density
function of this skewed t distribution is

f(u|l“l’?U7 v? )“)
v+1
reg 2 ) @—p?(1+2)\ 2
SO D (1+ L, )

ifu<ax;

v+1
r —_021-0\ "2
(T=2)(1+2) s 2 ) (1 + (uﬂigl(ﬂix;v ’

ifu> .

(10)

where —o0 < u < oo is the location parameter, o > 0
is the scale parameter, —1 < A < 1 is the skewness
parameter, and v > 0 is degrees of freedom.

We estimate the four parameters by maximizing the
logarithm of the log likelihood

In(t) = nC(v, 2) ~ *2 23“@+LFW¥5¥%

(11)

uj>p

u+1 11+ 4)
— In At SRS
2n( )

Ui<p
where
rst 1. (1=A)(1+x
o ny = 1 CEY) +7m( X1 +2)
VUnU F VA

The prediction method is summarized as follows.

1. For each t = 1,2,...,n, maximize the log likeli-
hood in Eq. (11) to obtain the MLEs [, &¢, vy, At

2. Transform the estimated parameters to obtain an
approximately stationary vector-valued time series

0 = [61,62,063,60ua]", t=2,....1

where

~ 6t2
O =fir, 6p=1In ) s
Ot q
O3 =1In (i) , Oy = 5\[,
Cr—1

and where ¢; is the cdf of the standard t distri-
bution with D, degrees of freedom evaluated at 2;
¢ = F;,(2). (The introduction of ¢; smooths out the
jumps in the values of 7;.)

3. Fit a VAR model to the 6;, t < n, with the order
selected via the AIC. Compute the forecasts 6,
h>1. R

4. Using the components of 6., compute the pre-
dicted parameters [tnthjn, Onthins Vnthins Anthin and
the predicted densities

fornn(u) =f <U|ﬁn+h|n, Grtrhins Vnthins )»n+mn) .

3. Comparison of the four prediction methods
3.1. Data sets

We consider four financial data sets, two consisting of
cross-sectional returns and two of five-minute intraday
returns. Both are amongst the most extensively studied
forms of financial data, with hundreds of contributions to
date; see Harvey, Liu, and Zhu (2016) for a recent review
of cross-sectional returns and Renault (2017) for intraday
returns.

3.1.1. Dow Jones cross-sectional returns

The Dow Jones Industrial Average (DJIA) is a stock
market index that shows how 30 large publicly-owned
companies based in the United States have traded during
a standard NYSE trading session. We consider monthly
cross-sectional returns from April 2004 to December
2017. The data were obtained from the CRSP database
(Center for Research in Security Prices). We thus have
a sample of log-price observations, denoted by (gj., j =
1,...,30), for each montht = 1,...,n — 1. We define
the jth return in month t as

rj)fc ={jt+1 — qjt, ji=12,...,30,

where rj’f[ is the log return for the jth company at the close
of month t.

We can then estimate the density f; for each month
t from these data, as is explained in Section 3.2. Fig. 2
presents three density functions for three representative
months that have mostly negative, mostly positive and
close to zero returns, respectively.
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Fig. 2. Kernel density estimates with a Gaussian kernel and bandwidth
selected by Silverman'’s rule of thumb for the monthly Dow-Jones index
from April 2004 to December 2017. The solid black line shows a density
function of one representative month that has mostly negative returns;
the red dashed line shows a density function of one representative
month that has mostly positive returns; the blue dash-dotted line
shows a density function of one representative month that has returns
close to zero.

3.1.2. S&P 500 cross-sectional returns

The Standard & Poor’s 500 (SPX) index is an American
stock market index based on the market capitalizations of
500 large companies with common stocks listed on the
NYSE or NASDAQ. We consider monthly cross-sectional
returns from April 2004 to December 2017. These data
were obtained from the CRSP database.

3.1.3. Bovespa intraday returns

These data, which cover 305 trading days from
September 1, 2009, to November 6, 2010, were made
available by Capse Investimentos. This is exactly the data
set that was used by Horta and Ziegelmann (2018). The
tick-by-tick series is sampled at 5-minute intervals, such
that we have a sample (p;;,i = 1,...,m; + 1) for each
dayt =1,...,n, where m;+ 1 is the number of log-price
observations within day t. We define the ith 5-minute
return on day t as

Tit *= Pi+1,t — Dit» i=1,...,m. (12)

For each day t, the 5-minute returns in Eq. (12) are dis-
tributed according to some density f;, which we estimate
as is explained in Section 3.2. Examples of such densities
are given in Fig. 3.

3.1.4. XLK intraday returns

These intraday returns are constructed in the same
way as the Bovespa returns but the underlying asset is
XLK, the Technology Select Sector SPDR Fund. The time
period is exactly the same as for the Bovespa data.

— 09/02/2010
--- 29/10/2009
--- 30/10/2009

Density

T T T
-0.02 -0.01 0.00 0.01 0.02 0.03 0.04

Grid point

Fig. 3. Three density estimates, obtained in the same way as the
estimates in Fig. 2, for the Bovespa intraday return. These densities
are leptokurtic and are generally centered around zero.

3.2. Density estimation

The true densities are not observable. We work with
densities which are outputs of kernel estimators:

1 - U—ri;
fitwy = 1<( ) (=1 ..
' ntht; he

where K(x) is a kernel and h; is a bandwidth. We consider
two commonly-used kernels, Gaussian and Epanechnikov,
given by

K(u) = (\/27[)

K(u):%(l —u?),

We select the bandwidths using Silverman’s rule of thumb
(ROT), which leads to

he =1.06 x 6, x n; '/,

he =234 %6, xn, ',

1
exp /2, (Gaussian kernel)

|x|< 1.  (Epanechnikov kernel)

(Gaussian kernel)
(Epanechnikov kernel)

where 6; denotes the sample standard deviation of the
returns ri;, i = 1,...,n.. We also consider the direct
plug-in (DPI) method of Sheather and Jones (1991) for
bandwidth selection. R

We compare the predicted future density f,1nn With
its estimate f,,, obtained using the above methods. Sec-
tion 3.3 explains the measures of the discrepancy that we
use.

3.3. Measures of forecast accuracy

We measure the difference between the forecast den-
sity and the estimated future density by considering the
discrete version of the Kullback-Leibler divergence (KLD;
see Kullback & Leibler, 1951), the square root of the
Jensen-Shannon divergence (JSD; see Shannon, 1948),
and the mean L,-norms with p = 1,2, co. The KLD is
designed to measure the loss of information when we
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choose an approximation. For two probability density
functions, denoted by g;(u) and g;(u), the discrete version
of the KLD is given by

KLD = Dy (g: Il &) + Dxo (& I &)

N
=Y &(u)- [Ing(w) — Ing(u)]
i=1

N
+ Y &) - [Ing(w) — Ing(w)],
i=1

which is symmetric and nonnegative.
An alternative is given by the JSD, defined as

1 1 N
JSD = D (8 Il 80 + 5D (& 11 &) (13)

where §; measures a common quantity between g; and g;.
We consider the simple mean and the geometric mean,
given by & = 3 (g + &) or & = v/g:&. The JSD is locally
proportional to the Fisher information metric, and is sim-
ilar to the Hellinger metric, in the sense that it induces
the same affine connection on a statistical manifold, and
is equal to half the so-called Jeffreys divergence. We make
the JSD a metric between any two probability densities by
taking its square root (see e.g. Fuglede & Topsge, 2004).

Let &(x) be the difference between g:(x) and g.(x);
then, the L;-norm, L,-norm and L,,-norm are

ny N

IR 3) B!

t=1 i=1

€l =

|é|oc =

where n; denotes the forecasting period.
3.4. Tables of forecast accuracy measures

We use the expanding window approach, which is
fairly standard for comparisons of this type (see e.g. Zivot
& Wang, 2006, Chapter 9). Parameter estimates and their
forecasts are computed over an expanding window, with
the start point being at the beginning of the sample and
the end point starting at the end of the first sample, which
is of a reasonable length, and moving forward one step at
a time until it reaches the end of the sample. This gives
one fewer forecasts than end points.

For the Dow Jones and S&P 500 data, which cover
the same period of time, we proceed as follows. We
use the first 110 density estimates, from April 2004 to
May 2013, to produce a one-step-ahead forecast of the
June 2013 density, which we treat as an unknown fu-
ture density. Next, using an expanding-window approach,
we re-estimate the parameters in the density forecasting
methods using the first 111 estimated densities, from
April 2004 to June 2013, and compute the one-step-ahead
forecast of the density with monthly index 112. We it-
erate this process by increasing the sample size by one

month at a time until we reach the end of the data period
in December, 2017. This process produces 55 one-step-
ahead forecasts, which we compare to the actual density
estimates. Note that we do not observe true densities
in practice, but can construct density estimates from the
available data.

Table 1 compares the density estimation accuracies
of the four methods for the Dow-Jones cross-sectional
returns. Of the two kernel functions, it is generally advan-
tageous to use the Epanechnikov kernel function because
of the superiority of its estimation accuracy over that
of the Gaussian kernel function. Of the two bandwidth
selection methods, it is better to use the rule-of-thumb
because of its superior estimation accuracy and high com-
putational speed relative to the plug-in method. The CoDa
method performs the best as measured by the Kullback-
Leibler divergence and the Jensen-Shannon divergence
with the geometric mean, while the log quantile density
transformation method performs the best as measured by
the Jensen-Shannon divergence with the simple mean,
Li-norm, Ly-norm and L..-norm. The difference in accu-
racy between the CoDa methods with and without stan-
dardization is small, though the CoDa method without
standardization has a slight edge.

Table 2 compares the density estimation accuracies
of the four methods for the S&P 500 cross-sectional re-
turns. Of the two kernel functions, it is better to use
the Epanechnikov kernel function because of its superior
estimation accuracy relative to the Gaussian kernel func-
tion. Of the two bandwidth selection methods, it is better
to use the rule-of-thumb because of its superior estima-
tion accuracy and fast computational speed relative to
the plug-in method. As measured by the Jenson-Shannon
divergence with a simple mean, the log quantile density
transformation method generally performs the best, while
the CoDa method performs the best as measured by the
remaining criteria. The difference in accuracy between the
CoDa methods with and without standardization is small.

Regarding the Bovespa and XLK data, we start with
the first 203 densities from September 1, 2009, to June
30, 2010. We then increase the sample size by one day
at a time until we reach the end of the data period on
November 26, 2010. This process produces 102 one-step-
ahead forecasts, which we compare to the actual density
estimates.

Table 3 compares the density estimation accuracies of
the four methods for the Bovespa intraday returns. Of
the two kernel functions, it is generally better to use the
Epanechnikov kernel function because of its superior esti-
mation accuracy relative to the Gaussian kernel function.
Of the two bandwidth selection methods, it is better to
use the rule-of-thumb because of its superior estimation
accuracy and fast computational speed relative to the
plug-in method. The log quantile density transformation
method generally performs the best as measured by the
Jensen-Shannon divergence with a simple mean, while
the CoDa method generally performs the best as mea-
sured by the Kullback-Leibler divergence. The difference
in accuracy between the CoDa methods with and without
standardization is small.

Table 4 compares the density estimation accuracies of
the four methods for the XLK intraday returns. Of the
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Table 1
Forecast accuracies of the four methods, Dow-Jones cross-sectional returns.
Parameter JSD norm
selection Density forecast method KLD Simple Geometric Lq L, Lo
Gaussian kernel
ROT Horta-Ziegelmann 1.3070 3.5986 9.4038 1039.36 46.96 3.87
LQDT 1.0421 3.0129 6.9443 948.77 45.83 3.65
CoDa (standardization) 0.6658 3.2359 5.1780 953.42 46.67 3.66
CoDa (no standardization) 0.6510 3.1785 5.0572 943.62 46.19 3.62
Skewed-t 1.3590 5.2532 10.4784 1324.97 64.40 5.19
DPI Horta-Ziegelman 1.4751 4.0955 10.6577 1144.32 53.76 4.84
LQDT 1.2569 3.4896 6.7053 1043.12 52.36 4.40
CoDa (standardization) 0.8225 3.8350 6.4700 1055.21 54.02 4.46
CoDa (no standardization) 0.8088 3.7884 6.3581 1049.78 53.74 4.43
Skewed-t 1.5841 5.6072 12.0493 1369.45 67.97 573
Epanechnikov kernel
ROT Horta-Ziegelmann 1.4725 2.2652 8.3987 756.94 29.23 1.79
LQDT 1.1833 2.0165 7.0648 720.00 29.02 1.77
CoDa (standardization) 0.6998 2.3528 5.5992 740.74 30.51 191
CoDa (no standardization) 0.7004 2.3397 5.5767 740.22 30.47 1.90
Skewed-t 1.5595 5.4505 11.5386 1423.94 65.65 5.38
DPI Horta-Ziegelman 1.7475 2.5834 9.8658 835.16 33.79 2.27
LQDT 1.1197 2.1370 6.7053 757.23 32.64 2.17
CoDa (standardization) 0.7495 2.7820 6.0593 844.10 37.33 2.57
CoDa (no standardization) 0.7476 2.7679 6.0312 845.94 37.41 2.59
Skewed-t 1.6668 5.2563 11.7497 1367.93 63.80 5.15
Note: The smallest error for each choice of kernel function, bandwidth selection method and evaluation criterion is highlighted in bold.
Table 2
Forecast accuracies of the four methods, S&P 500 cross-sectional returns.
Parameter JSD norm
selection Density forecast method KLD Simple Geometric Ly L, Loo
Gaussian kernel
ROT Horta-Ziegelmann 0.5315 1.9986 3.1032 222.62 17.00 2.33
LQDT 0.4252 1.8165 25232 213.10 17.22 2.31
CoDa (standardization) 0.3156 1.7994 2.3023 208.71 16.61 2.19
CoDa (no standardization) 0.3233 1.8465 2.3550 211.29 16.81 2.21
Skewed-t 0.5560 3.0961 3.6383 286.04 23.54 3.26
DPI Horta-Ziegelman 0.6525 2.3241 3.8281 242.33 19.30 2.82
LQDT 0.5292 2.0994 3.1572 230.07 19.33 2.75
CoDa (standardization) 0.4152 2.2679 3.1047 232.78 19.22 2.66
CoDa (no standardization) 0.4149 2.2681 3.1010 232.52 19.18 2.65
Skewed-t 0.6365 3.2910 4.0951 290.11 24.18 3.40
Epanechnikov kernel
ROT Horta-Ziegelmann 0.6080 1.7090 3.1196 197.00 13.10 1.50
LQDT 0.4065 1.5867 22334 190.29 13.26 1.48
CoDa (standardization) 0.2939 1.5933 2.1443 188.15 13.09 144
CoDa (no standardization) 0.2925 1.5916 2.1278 188.14 13.10 1.45
Skewed-t 0.6496 3.5922 4.1716 323.77 25.88 3.74
DPI Horta-Ziegelman 0.5920 1.8191 3.0113 209.05 15.53 1.97
LQDT 0.4423 1.6529 2.4081 199.37 15.52 1.93
CoDa (standardization) 0.3289 1.7698 24310 199.87 15.35 1.86
CoDa (no standardization) 0.3250 1.7493 2.3986 198.84 15.27 1.85
Skewed-t 0.5921 2.9930 3.5924 281.16 23.04 3.17

two kernel functions, it is better to use the Epanech-
nikov kernel function because of its superior estimation
accuracy relative to the Gaussian kernel function. Of the
two bandwidth selection methods, it is better to use the
rule of thumb because of its superior estimation accu-
racy and high computational speed relative to the plug-in
method. When the kernel function is the Epanechnikov
kernel, the log quantile density transformation method

generally performs the best. However, when the kernel
function is the Gaussian kernel, the skewed-t distribution
produces the smallest Kullback-Leibler divergence and
Jensen-Shannon divergence with the geometric mean,
while the log quantile density transformation method
produces the smallest errors as measured by the Jensen-
Shannon divergence with the simple mean and almost all
of the distance metrics.
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Table 3
Forecast accuracies of the four methods, Bovespa intraday returns.
Parameter JSD norm
selection Density forecast method KLD Simple Geometric Ly Ly Loo
Gaussian kernel
ROT Horta-Ziegelmann 0.4009 1.9098 6.1713 16993.19 977.07 116.99
LQDT 0.4258 1.6634 6.0687 16313.87 979.59 116.70
CoDa (standardization) 0.2271 1.7360 3.70 16351.17 988.20 117.39
CoDa (no standardization) 0.2278 1.7448 3.7038 16391.76 989.64 117.47
Skewed-t 0.2750 1.9909 3.9774 19261.90 1186.31 147.91
DPI Horta-Ziegelmann 0.4888 1.9968 7.5246 18896.40 1164.28 156.96
LQDT 0.5947 2.0552 8.6969 18405.96 1170.16 155.07
CoDa (standardization) 0.3279 2.2459 5.5030 18790.69 1208.02 159.40
CoDa (no standardization) 0.3257 2.2425 5.45 18820.87 1212.29 160.58
Skewed-t 0.3656 2.2396 5.3992 20360.42 1293.39 171.70
Epanechnikov kernel
ROT Horta-Ziegelmann 0.6486 1.7364 8.7790 15791.96 759.33 66.98
LQDT 0.4695 1.5042 6.3631 15224.69 762.86 66.59
CoDa (standardization) 0.3979 2.1160 6.8356 15961.10 802.75 68.89
CoDa (no standardization) 0.3940 2.1265 6.7361 16003.43 804.04 68.63
Skewed-t 0.5136 4.4523 6.4589 34469.29 2070.45 252.45
DPI Horta-Ziegelmann 0.7665 24774 12.4275 17035.77 904.35 93.21
LQDT 0.6004 1.6917 8.2761 17203.12 909.11 93.02
CoDa (standardization) 0.4968 2.4988 8.5900 17754.95 971.08 97.27
CoDa (no standardization) 0.4949 2.5266 8.5308 17866.92 976.65 97.73
Skewed-t 0.4744 3.0147 6.0645 26348.37 1610.32 200.54
Table 4
Forecast accuracies of the four methods, XLK intraday returns.
Parameter JSD norm
selection Density forecast method KLD Simple Geometric Ly L, Lo
Gaussian kernel
ROT Horta-Ziegelman 0.2831 1.5095 4.2809 11257.47 680.30 83.59
LQDT 0.3831 1.3411 5.2559 10891.16 682.67 83.18
CoDa (standardization) 0.3231 2.6076 49518 14689.67 877.64 107.51
CoDa (no standardization) 0.3579 2.8919 5.2173 15053.57 907.20 113.52
Skewed-t 0.2666 1.7418 3.8736 13701.89 882.55 115.80
DPI Horta-Ziegelman 0.3571 1.7629 5.4100 12348.01 777.02 113.04
LQDT 0.4790 1.5513 6.6771 11821.43 771.23 103.77
CoDa (standardization) 0.4489 3.5761 6.7166 17335.82 1094.71 161.35
CoDa (no standardization) 0.4541 3.4848 6.5883 16403.03 1036.22 154.35
Skewed-t 0.3239 1.8855 4.7631 14099.58 920.55 125.05
Epanechnikov kernel
ROT Horta-Ziegelman 0.5824 1.5024 7.6044 10933.73 550.49 51.10
LQDT 0.3909 1.2324 5.1780 10195.88 536.08 49.40
CoDa (standardization) 1.0400 7.6509 14.2193 24178.29 1406.33 222.95
CoDa (no standardization) 1.0427 7.6440 14.2826 24174.29 1408.00 199.82
Skewed-t 0.4823 3.9036 5.9900 24524.30 1540.05 195.18
DPI Horta-Ziegelman 0.5614 1.5377 7.4848 11373.07 611.13 63.45
LQDT 0.4337 1.2728 5.7667 10706.14 593.15 60.24
CoDa (standardization) 1.0997 8.1558 15.1706 25875.30 1647.52 318.18
CoDa (no standardization) 1.0829 7.7589 15.5553 25432.32 1520.35 222.01
Skewed-t 0.4483 2.8957 5.5946 19887.16 1256.74 161.24

3.5. Model confidence set

The model confidence set procedure proposed by
Hansen, Lunde, and Nason (2011) consists of a sequence
of tests that permit the construction of a set of “superior”
models for which the null hypothesis of equal predictive
ability (EPA) is not rejected at a specified confidence level.
The EPA test statistic can be evaluated for any arbitrary
loss function. The model confidence set (MCS) procedure

is a sequential testing procedure that eliminates the worst
model at each step until the hypothesis of equal predictive
ability is accepted for all of the models that belong to a
set of superior models. The selection of the worst model is
determined by an elimination rule that is consistent with
the test statistic. This paper uses the T.x test statistic,
which is a default statistic in the R package MCS and per-
formed well in the study by Shang and Haberman (2018).
With the bandwidth being selected by the rule-of-thumb
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and for both kernel functions, we use the MCS procedure
to select a set of superior models for the four data sets.
For each of the five error criteria, Table 5 indicates the
superior set of models with daggers, 1.

Table 5 can be summarized as follows. With four data
sets, two different kernel functions and six forecast er-
ror criteria, there are 48 cases. The numbers of cases in
which each specific method is superior are as follows: (1)
LQDT: 24; (2) CoDa (no standardization): 14; (3) CoDa
(standardization): 13; (4) dynamic FPCR: 5; (5) skewed-
t: 2. Differentiating between the two types of densities,
we see that the LQDT and CoDa methods are both recom-
mended for the monthly cross-sectional returns. For the
daily intraday returns, the LQDT is recommended.

3.6. Conclusions

We have compared the performances of five methods
using four raw data sets, from which eight data sets
consisting of densities have been constructed. These eight
data sets cannot lead to a complete picture, but they
already show a fairly clear pattern. With the exception
of a focus on the densities of returns in finance, the data
sets have not been selected using any specific criteria, and
we have not experimented with any other data sets, so
the results presented in Section 3.4 are not a selection of
“favorable” results. We used six forecast quality criteria,
meaning that each of the five methods is compared in
8 x 6 = 48 scenarios.

The predictions are almost always better when we use
ROT rather than DPI, so our summary of the results in
Section 3.4 focuses on the criteria computed for the band-
width selected by ROT. The LQDT method is the best in 25
of these scenarios, while one of the two CoDa methods
is the best in 17 scenarios. The CoDa (no standardiza-
tion) works a little better. The performance of the Horta-
Ziegelmann method is practically the same as the CoDa
methods; it is either the best or the second best in 50%
of cases. For some data, the skewed-t method performs
well according to the KLD criterion. In many cases, the
differences between the measures of forecast accuracy are
small. However, a pattern that has emerged suggests that
the LQDT method, which has been developed both theo-
retically and numerically in this paper, should be used as
the first choice for the purpose of the prediction of cross-
sectional and intraday returns. This is confirmed further
by the MCS analysis in Section 3.5, where we noted that
the LQDT and CoDa methods are both recommended for
the monthly cross-sectional returns.

The rankings of the methods may be different for other
time series of densities, e.g. those arising in population
or medical research. It is hoped that the algorithmic de-
scriptions and background presented in this paper will
allow researchers in fields other than finance to assess the
usefulness of these forecast methods.
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Appendix A. Theoretical justification of the LQDT
method of Section 2.2

This section defines the class of densities for which the
transformations defined in Section 2.2 are well defined,
and shows that the inverse transformation produces a
density.

Definition A.1. Let D be the space of densities with support
(r,r*), —oco < r~ < 0 < rt < oo, such that f is
continuous on [r~, r*] for all f € D, and either f(r) > 0 on
[r=, rT] or there exist constants ¢;, y; > O and r; € (r=, 1)
such that

co(r — ) < f(r)
ot —r)y2 < f(r)

c(r—r ), r~ <r<r,
ar™ =, rn<r<rt.

Proposition A.1. Suppose that f € D. Then, Y defined by
Eq. (8) is in %[0, 1]. Furthermore, let ¢ € (0, 1) and let g be
a continuous function on (0, 1). Then Qg (s) = |’ efWdu
is continuous and increasing on (0, 1), it has a well-defined

inverse F; . = fg, and the inverse log quantile density
transformation given by
feor):=v (g, o)r) (A1)

exp {_g o Fg,c(r)} )
= —00 < Qgc(O) <r< Qg,c(l) < 00,
0, otherwise,

is well-defined and satisfies Fé,c(r) = fg.c(r) =0, F; (0) =
c,and % foc(r)dr =1.

Proof. Clearly, Y e [2[0, 1] if f is strictly positive in its
support [r~, r*]. Otherwise, for small € > 0,

€ Q(e)
/ Y2(s)ds = f o FIfrdr (= Q(s)
0 r

Q) ,
<q / [log(co) + yo log(r — )]
r

x (r—r-ydr (w=—log(r—r7))

o0
s f llog(co) — yowP
—log(Q(e)—r7)

x e" vy, < oo,

A similar argument shows that f:ﬁf Y2(s)ds < oo.

Next, take g, ¢, Qg,c, Fg.c, and f ¢ as in the statement
of the proposition, so that f; . > 0 is clear. As Qg (c) =0,
we also have Fg ((0) = c. The limits

Qg,c(o) = gl_r)l‘(l) Qg,C(S)v Qg,c(l) = }l_r)l‘% Qg,c(s)

are well-defined, since Qg is increasing, where we may
have Qq (0) = —o0, Qg (1) = oo, or both. Taking the
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Table 5

MCS procedure using the Tp.x test applied to the error criteria in the validation set.

Data Kernel Density forecast method

JSD norm
KLD Simple Geometric Ly L, Lo

DJI Gaussian Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

Epanechnikov Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

S&P 500 Gaussian Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

Epanechnikov Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

Bovespa Gaussian Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

Epanechnikov Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

XLK Gaussian Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

Epanechnikov Horta-Ziegelman

LQDT

CoDa (standardization)
CoDa (no standardization)
Skewed-t

—+ =+ — —F

Note: The model(s) that are selected to belong to the superior set of models in each case are indicated by 1.

change of variables s = F; .(u), we have u = Qg ((s) and
du = e8)ds, so that for Qg ((0) < 1 < Qg.(1),

/ fec(u)du :/ exp {—g o Fy (u)} du
—0o0 Qg.c(o)

Fg,c(r)
= [ e ¢80 ds = F, (1),
0

ie., Fg/’c(r) = fg.c(r). Plugging in r = Qg (1) proves that
fg.c is indeed a density with support (Qg (0), Qg c(1)).

Lastly, we verify that this is truly the inverse. For a
density f € D with cdf F, quantile function Q, and ¢ = Q/,
set (g,c) = ¥(f), so Q(c) = 0 and g(s) = —log(f o Q(s))
is continuous on (0, 1). Then, as q(-) = 1/(f o Q(-)) by Eq.
(6),

o

Qe.c(s) = /S e*du = /S exp {—log(f o Q(u))} du
= [ atwau =
As aresult, F; . = F and, for r € (r=, r*) = (Q(0), Q(1)),

fg,c(r) = exp {_g o Fg.c(r)}
= exp {log(f o Q o F(r))} = f(r),

ey loy(f)=f.
In the other direction, if g is continuous on (0, 1) and

ce(0,1)set for = ¥ ~1(g, c) to be the inverse-mapped
density with cdf F, - and quantile function Qg = F; /. The

log quantile density transformation of f; ¢ is (Y, Fg ((0)) =
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Y (fe,c), where
Y(s) = —log(fg,c © Qg.c($))

= —log (eXp {_g oFgco Qgc(s)}) =g(s)
and F, ((0) =c,ie. y oy~ (g,c)=(g,c). ™

Appendix B. Log hazard transformation

This section shows that the log hazard transforma-
tion in Eq. (B.1) maps densities into the space L?> under
weak assumptions, but the inverse transformation does
not necessarily transform the predicted L? curves into
densities. Define

fi(r) .
Vi) = p(r = { '8 {—1 - th} + 1A > 0.
0, if fi(r)=0.

(B.1)

The following conditions are sufficient to ensure Y, €
[*(—00, 00), and are not too strong. Recall that we assume
that f; is continuous and that Eq. (7) holds. Suppose that

filr) = co(r —r7 ), 17 <1 <10,

alrf =" <fin <l —r)2, rn<r<rt,

for some ¢j, y; > O and rj € (r;, ;7). Then, for small r—r;,
1—F(r)

Y:(r)| = log (W) < —log(fi(r))

<log(cy ') — yolog(r — ;).

Since [; log®(s)ds < oo, for small ,

T te T te 2
f Y2(s)ds < / [log(co) + yo log(s — ;)] ds
e e

< Q.

Similarly, for r;” —r small, 1 — F(r) > ¢1(y1 + )7 —
ry = ¢ (r — )1, so that

Y(r)| = log (—1 f(;t)(r))

< log(ca/c}) + (2 — v log(r;t — 1),

n
and fr?r_e Y2(s)ds < oco. Thus, Y; € [}(—o00, 00).

Suppose that g is a continuous function with supp(g)
= [a, b]. In our prediction context, g = Y,,p. Set

Ag(x) = /x eWdy, x e (a,b)

and

¥ (g)x) = exp {g(x) — A,(x)}

and denote f(x) = ¥ ~!(g)(x). Then, f > 0 and

b Ag(b)
f fx)dx = / e Vdw =1— e ),
a 0

Thus, for f to be a density, we would need Ag(b) = oo,
which could be understood as a limit as x 1 b; i.e., we

would need

X
lim / M dy = oo. (B2)
xtb Jq

However, Eq. (B.2) is not necessarily true in general; for
example, if limy, g(y) = g(b) < oo. Eq. (B.2) holds if

g(y) =log { J(,ﬂ,’()y)} for some density h.

An additional issue is that Y; necessarily diverges at r;
and r;", which are random and differ for each t, making
Y; an ill-behaved stochastic process.
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