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ABSTRACT

Data rich environments rely on operator collaboration to manage
workload changes. This work explores the relationship between
operators’ visual attention and collaborative performance during
these workload changes. Percent gaze overlap and percent recur-
rence were calculated over time for best and worst performing
pairs of participants who experienced low and high workload in
an unmanned aerial vehicle command and control testbed. It was
found that the best performing pairs had higher values for both
metrics after workload changed. These results suggest successful
collaborative performance is dependent on both continuous high
levels of synchronized visual attention and coordinated sequences
of visual attention. This work has the potential to inform the design
of real-time technology.
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1 INTRODUCTION

Dynamic and data-rich domains rely on multiple operators to coor-
dinate to complete multiple tasks. Operators may have difficulty
working together to manage these tasks, especially when their de-
mands, i.e. workload, change (e.g. unmanned aerial vehicle (UAV)
command and control; [Williams 2006]). Of interest is identifying
whether quantitative measures can be used to assess collaboration
in real-time. Eye tracking technology is a promising means to do so
given: (a) the majority of the information in these complex domains
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include various visual displays and (b) visual attention has been
informative on aspects of the operator, like cognitive load [Coral
2016] and task completion process (e.g., [Chierichetti et al. 2012]).
However, more work is needed to understand whether eye tracking
measures can capture aspects related to successful collaboration.

For this study, we assessed how well two collaborative visual at-
tention measures—percent gaze overlap and percent recurrence—are
indicators of performance. The novelty of this work is calculating
these two measures to shed light on how visual attention changes
over time. This study had 10 pairs of participants complete scenarios
in a UAV command and control testbed at two different workload
levels. We compared the performance and calculated visual atten-
tion metrics between the best and worst performing pairs. This
work adds to the limited knowledgebase on examining eye tracking
metrics over time with pairs. It has the potential to inform how
eye tracking can be used in real-time to indicate when workload
changes are affecting collaboration.

2 BACKGROUND

Studying the visual attention of multiple people in a shared en-
vironment has been completed in various contexts [Bockler et al.
2012; Brennan et al. 2008; D’Angelo and Begel 2017; Tien et al.
2012]. Research has shown that visual attention is influenced by
the presence of another individual, but the impact depends on the
context. For example, one commonly used metric to characterize
pairs’ visual attention is percent gaze overlap, which quantifies the
amount of time multiple observers are concurrently viewing the
same area [Pietinen et al. 2010]. Increases in percent gaze overlap
have been shown with improved performance [Devlin et al. 2019;
Gergle and Clark 2011; Hajari et al. 2016], but this is not always
the case (e.g. joint visual search; [Brennan et al. 2008; Villamor and
Rodrigo 2018]).

As a result, other measures may be more informative about
collaboration success. For example, cross-recurrence quantitative
analysis (CRQA) is growing in popularity in applied eye tracking
research as it can detect temporal patterns. CRQA has been defined
as, “the quantification of the patterns of co-visitation taking place”
[Coco and Dale 2014]. CRQA analyzes two time series of separate
entities in a dynamic system to quantify how the two entities visit
states over time and the relation of those visits to one another
[Marwan et al. 2007]. In the context of eye tracking, these states are
areas of interest (AOIs). CRQA analysis includes several metrics,
but the most common consists of calculating percent recurrence, i.e.,
how often two separate time series are visiting the same states in
the same order over time.

For example, if two participants are collaborating, two time se-
ries in the system may consist of the scanpaths generated by each
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Table 1: Hypothetical scanpath of two participants viewing
a display with four AOIs

5 s Time Window
1s 2s 3s 4s 5s

Participant 1 1 3 4 2 1
Participant 2 3 4 2 3 1
Participant 2’ (1s lag) 3 4 2 3

Match between1&2? No No No No Yes
Match between 1&2’? n/a Yes Yes Yes No

participant. Scanpaths are based on the order in which AOIs are
visited and percent recurrence is calculated by taking the number of
instances when the AQOIs across the two time series match divided
by the total number of time periods considered. Table 1 provides
an example of two participants’ theoretical scanpaths (i.e., time
series) over a 5 s window, assuming a sampling rate of 1 s. The
pair has 20% recurrence because there is one match out of five.
Percent recurrence, however, is typically calculated using different
lag times [Coco and Dale 2014]. Using the same example, if we shift
participant 2’s scanpath by 1 s, (i.e., one time period to the right),
and compare this scanpath (called participant 2°) to participant 1’s
scanpath. Here there is 75% recurrence (3 out of 4 matches). This
example analysis shows two collaborators may have coordinated
scan patterns differently than perfect synchronization, which per-
cent gaze overlap would not capture. Previous research has shown
that depending on the context, large [Dale et al. 2011; Hajari et al.
2016; Richardson and Dale 2005] and small [Coco et al. 2018] per-
cent recurrence are associated with better performance outcomes.
There has been limited work examining the relationship between
pair’s visual attention and performance when workload changes.
The aforementioned metrics have the potential to capture how vi-
sual attention changes over time across pairs of collaborators. This
research builds on previous work that examined whether shared
visual attention affected the collaboration strategies of successful
and unsuccessful pairs managing a workload change [Devlin et al.
2019]. The chosen application for this work is UAV command and
control, as the Department of Defense looks to rely on quantitative
measures to better understand the collaboration process [Resick
et al. 2010] and to inform technology design to facilitate collabo-
ration in real-time [Fiore and Wiltshire 2016; Fussell et al. 2000;
Winnefeld and Kendall 2013]. Eye tracking has been specifically
referred to potentially assist in this goal [Sibley et al. 2015].

3 METHOD
3.1 Participants

Ten pairs of undergraduate students (20 students total) from Clem-
son University were recruited for the study (M = 21.3 years, SE =
.24 years). The experiment lasted 75-90 minutes and participants
were compensated $10/hour for their time.

3.2 Experimental Setup

The testbed was developed using Unity and based on the interfaces
the U.S. Air Force uses to train for multi-UAV missions [Feitshans
et al. 2008];Figure 1). Pairs were collocated, but each participant
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viewed separate monitors (28 inches, 2560x1440 screen resolution)
and used separate mice to input responses. Although participants
could view each other’s screen, they likely did not as: (a) they were
asked to focus on their own screen to ensure eye tracking data
was properly collected and (b) the simulation was networked so
the pair could see inputs from each other in real-time (e.g., when
participant 1 rerouted a UAV, participant 2 could see his/her route
choice in real-time). Pairs could communicate verbally, but this data
is outside the scope of this study (see [Devlin and Riggs 2018] for
more details). Two desktop mounted FOVIO eye trackers with a
sampling rate of 60 Hz were used to collect point of gaze data, with
one eye tracker placed below each monitor. Participants sat 66-71
cm from the monitor and the average degree of error for this eye
tracker is 0.78° (SD = 0.59°; [EyeTracking, Inc. 2011]).

Video Feed panel

Figure 1: The experimental setup with the testbed shown on
two networked computers. This is the same setup as [Devlin
et al. 2019].

3.3 Tasks

Each pair was responsible for completing a primary task and three
secondary tasks for up to 16 UAVs. Although all tasks were the
pair’s responsibility, only one participant from each pair had to
complete each task. The primary task was the target detection task
where pairs monitored UAV video feeds and indicated whether a
target—i.e., a semi-transparent cube—was present. The secondary
tasks included a rerouting task (avoiding the no-fly zone), fuel leak
task (maintaining UAV health), and chat message task (responding
to chat messages). These tasks and their structure emulate the
multitasking, dynamic, and interdependent environment of UAV
command and control [Feitshans et al. 2008; Sibley et al. 2015].

3.4 Workload

Workload was manipulated by varying the number of UAVs the pair
needed to manage for the primary task. There were two workload
conditions: low and high. For the low workload condition, the
pair was responsible for 3-5 UAVs at all times and for the high
workload condition they were responsible for 13-16 UAVs at all
times. Pairs always completed the low workload condition before
the high workload condition given the Department of Defense’s aim
to increase overall task load in command and control environments.
Each condition was its own UAV testbed scenario.

3.5 Procedure

Participants of each pair read and signed the consent form and were
then briefed about the study’s goals and expectations. Participants
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then independently completed a five-minute training session where
they had to demonstrate they could achieve 70% accuracy for all
tasks. The pairs were then informed on how the simulation was
networked and were then provided three minutes to discuss any-
thing they deemed necessary. Afterwards, pairs completed the low
workload condition, were provided a short break, and then com-
pleted the high workload condition. Each scenario was 15 minutes
in length. After, participants completed a debriefing questionnaire
and were compensated for their time.

3.6 Experimental Design

The primary independent variables in this study were pair perfor-
mance (best performing vs. worst performing). The best performing
pairs were the top three highest scoring pairs and the worst per-
forming pairs were the bottom three scoring pairs, where the score
was the combined point total from the low and high workload sce-
nario. Dependent variables included percent gaze overlap on the
Video Feed panel (Figure 1) and maximum percent recurrence for
each minute of both scenarios.

4 RESULTS

The gaze data were screened to meet data quality requirements as
outlined in ISO/TS 15007-2:2014, which states that at most 15% data
loss is acceptable for good quality data. Following this guideline,
no participants were excluded from the study and the mean data
loss was 9.23%. Previous work indicated best performing pairs had
higher levels of percent gaze overlap on the area that was the
source of the workload change [Devlin et al. 2019]. Therefore, only
percent gaze overlap on the Video Feed panel was calculated for
each minute in both the low and high workload scenario because
this was the panel associated with the primary task and was the
means in which workload was manipulated.

The best performing pairs’ range of mean percent gaze overlap
across both low (range = 17.4-33.0%) and high workload (range =
40.0-63.7%) was higher than the worst performing pairs’ (low work-
load range = 1.0-7.3%, high workload range = 9.9-22.2%). Figure 2
shows the change in percent gaze overlap from low to high work-
load averaged for each minute of the scenario. The best performing
pairs increased their percent gaze overlap from low to high work-
load throughout the scenario more than worst performing pairs,
except for the last minute. Percent recurrence was also calculated
to determine whether there were other shared visual attention pat-
terns between the pair. Specifically, maximum percent recurrence
was of interest as this would indicate when the pairs’ visual at-
tention sequences were most coordinated. Percent recurrence was
then calculated for each lag, which was based on the eye tracker
refresh rate, present in a +£10 s window per recommendations by
previous work [Dale et al. 2011]. Then the max percent recurrence
value was found for each minute of the low and high workload
scenario and then averaged for the best and worst performing pairs
(Figure 3 and 4, respectively). Compared to worst performing pairs,
the mean max percent recurrence was consistently higher for best
performing pairs for the entirety of low and high workload (ex-
cept for the last minute of low workload). Similar to percent gaze
overlap, the best performing pairs max percent recurrence also
increased from low (range = 22.2-37.4%) to high workload (range =
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Figure 2: Mean change in percent gaze overlap over time be-
tween the low and high workload scenario for best and worst
performing pairs. Error bars represent standard error of the
mean

49.9-74.6%) whereas worst performing pairs did not increase at the
same rate (low workload range = 3.9-36.8%; high workload range =
14.0-40.8%). This suggests the best performing pairs viewed AOIs
in a similar pattern. Across all pairs, percent recurrence increased
as the scenario progressed.
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Figure 3: Mean max percent recurrence over time for best
and worst performing pairs in low workload scenario. Error
bars represent standard error of the mean

For every percent recurrence value, there was an associated lag
time. In this work, the lag time indicates when visual attention
patterns were most similar during the +£10 s window: negative lag
times are associated with leading behavior whereas positive lag
times are associated with lagging behavior. For this study, the lag
time variation can be captured by counting the amount of times
the sign of the lag time changed (i.e., to and from a negative and
positive value) over the 15 min scenarios. We found no trend in
these lag times as their sign seemed to change frequently over the
course of each scenario for both pair types. For reference, a lag



ETRA °20 Short Papers, June 2-5, 2020, Stuttgart, Germany

100.0%

90.0%

80.0%

70.0%

T
—
B

60.0%

]
0,
50.0% l Best

40.0% | —Worst

Percent recurrence [%]

30.0% r

L L~
20.0% | TN ™
Pz

10.0% r

0.0%

12 3 4 5 6 7 8 9 10 11 12 13 14 15
Minute in high workload scenario

Figure 4: Mean max percent recurrence over time for best
and worst performing pairs in high workload scenario. Er-
ror bars represent standard error of the mean

time could change sign a minimum of zero times (i.e., be the same
sign the entire scenario) or a maximum of 14 times (i.e., switch
every minute during the scenario). During low workload, the sign
of the lag time changed, on average, 8.3 times for best performing
pairs and 7.3 times for worst performing pairs. For high workload,
the sign of the lag time changed, an average, 4.7 times for best
performing pairs and 7 times for worst performing pairs. Although
the number of switches is relatively large for both performance
groups, the best performing pairs’ average number of switches
decreased by 44% when workload increased whereas the number
of switches remained relatively the same for the worst performing
pairs. This may suggest the best performing pairs began to establish
shared visual attention allocation patterns, which in turn may have
led to better performance.

5 DISCUSSION

This work aimed to understand how shared visual attention differed
with performance when pairs experienced a workload change from
low to high with a more granular and sensitive eye tracking anal-
ysis. The results support there is a positive relationship between
gaze overlap and performance over time. This is expected from pre-
vious work that studies collaborations in a multitasking, dynamic,
coordinated environment [Devlin et al. 2019; Gergle and Clark 2011;
Hajari et al. 2016]. It further suggests better performance is asso-
ciated with participants engaging in substantial increases in their
shared visual attention earlier and sustaining those levels over time,
even when they could divide tasks and responsibilities. This further
underscores the importance of technology to include common infor-
mation spaces for collaborators, regardless of task interdependence,
so they can adapt to environmental changes quickly and effectively
[Fiore and Wiltshire 2016]. This finding has the potential to directly
inform technology design for environments experiencing varying
workload levels, as it could rely on this metric to indicate when
shared visual attention levels are ideal or need intervention.
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Maximum percent recurrence was larger for best performing
pairs, on average, compared to worst performing pairs, which is
consistent with the percent gaze overlap results and is also similar
to previous work [Coco et al. 2018; Hajari et al. 2016; Richardson
and Dale 2005]. This suggests improved performance is not only
dependent on “viewing the same location at the same time”, but
also the sequence in which viewing is shared. These results further
suggest poor performance is associated with a lack of coordinated
visual attention as the worst performers consistently had much
lower percent recurrence, even when various lag times were con-
sidered. However, this may not hold true for all cases, as [Coco et al.
2018] contends recurrence is dependent on environmental factors
like task paradigm and the presence of feedback. Nevertheless, this
work suggests percent recurrence of shared visual attention could
also be used as a quantifiable indicator of successful collaborative
performance in real-time as workload changes.

Our results also found the lag times of when percent recurrence
was maximized were dynamic over time for both best and worst
performing pairs. This may be attributed to the experimental setup
as we did not define set roles for the pairs in the testbed, which is
unlike previous work, but is expected to be the approach used for
future missions [Sibley et al. 2015]. Incorporating lag times further
explains how a pair is coordinating their visual attention and can
potentially be used to inform how technology should intervene to
increase coordination. We found here that a basic analysis of the
lag time values associated with maximum percent recurrence may
indicate when more established visual attention strategies were
becoming adopted by pairs who had better performance during
high workload. Although a more robust analysis is needed, this
finding could be applied by designing technology that assists op-
erators to engage in more effective collaboration when workload
changes to avoid performance detriments. For example, maximum
recurrence and its lag time could be continuously calculated so cues
are presented to collaborators when needed and designed to assist
them towards more efficient leading/lagging behavior.

6 CONCLUSION

Overall, this work suggests better performance during workload
increases may be attributed to shared visual attention that is large
in magnitude and consistent over time. The findings support the
potential of technology to rely on these metrics to inform and im-
prove collaboration. Future research needs to further explore how
to effectively use this information and take into account other po-
tential environmental features, e.g. the impact of seeing a partner’s
gaze in real-time [Schneider et al. 2018]. Nevertheless, this work
shows the value of including quantitative and real-time measures in
dynamic domains to better understand differences in collaboration
success, which in turn can inform technology to effectively assist
operators with changing workloads in real-time [Winnefeld and
Kendall 2013].
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