
104

Kinds Are Calling Conventions

PAUL DOWNEN and ZENA M. ARIOLA, University of Oregon, USA

SIMON PEYTON JONES,Microsoft Research, UK

RICHARD A. EISENBERG, Bryn Mawr College, USA and Tweag I/O, UK

A language supporting polymorphism is a boon to programmers: they can express complex ideas once and

reuse functions in a variety of situations. However, polymorphism is pain for compilers tasked with producing

efficient code that manipulates concrete values.

This paper presents a new intermediate language that allows for efficient static compilation, while still

supporting flexible polymorphism. Specifically, it permits polymorphism over not only the types of values,

but also the representation of values, the arity of primitive machine functions, and the evaluation order of

arguments—all three of which are useful in practice. The key insight is to encode information about a value’s

calling convention in the kind of its type, rather than in the type itself.

CCS Concepts: • Software and its engineering → Semantics; Compilers.

Additional Key Words and Phrases: arity, levity, representation, polymorphism, type systems

ACM Reference Format:
Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg. 2020. Kinds Are Calling

Conventions. Proc. ACM Program. Lang. 4, ICFP, Article 104 (August 2020), 29 pages. https://doi.org/10.1145/
3408986

1 INTRODUCTION
Polymorphism supports reuse by allowing one piece of code to work with values of many different

types. But ubiquitous polymorphism usually comes with a runtime cost: all values must share a

common representation, usually a pointer to a “boxed” (heap-allocated) object. This is sometimes

much less efficient than a monomorphic version of the same code, specialized to a particular

representation (such as an unboxed 64-bit word).

One approach is to specialize code to a single type. But we would get more reuse if we could

specialize to, say, “any type represented by an unboxed 64-bit word.” Since kinds classify types,

perhaps we can write code that is monomorphic in the kind, but polymorphic in the type. Hence

our slogan: kinds are calling conventions. For example, consider the function twice:

twice f x = f (f x)

To control performance, we would like to have a say in matters like: Can f be a thunk? How many

arguments does f expect (its arity)? Can x be a thunk? How is x represented? Moreover, we want

to express the answers to these questions in a type system with strong static guarantees.

A major insight of this paper is the discovery that we can refine the vague notion of “ways in

which we want to classify types” along three different axes:

Authors’ addresses: Paul Downen; Zena M. Ariola, University of Oregon, Eugene, Oregon, USA, pdownen@cs.uoregon.

edu, ariola@cs.uoregon.edu; Simon Peyton Jones, Microsoft Research, Cambridge, UK, simonpj@microsoft.com; Richard

A. Eisenberg, Bryn Mawr College, Bryn Mawr, PA, USA , Tweag I/O, Cambridge, UK, rae@richarde.dev.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART104

https://doi.org/10.1145/3408986

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

https://doi.org/10.1145/3408986
https://doi.org/10.1145/3408986
https://doi.org/10.1145/3408986

104:2 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

• Representation. How is this argument represented at runtime?

• Levity. What is the evaluation strategy of this argument (e.g., call-by-value or call-by-need)?
• Arity. For functions, how many arguments are needed before its code can be executed?

Many functions can be polymorphic in some of these axes, but not in others.

Our focus is on an intermediate language. The programmer may write in a uniform language,

but the compiler needs an intermediate language that can express low-level representation choices,

and expose those choices to the optimizer. For example, the programmer might work exclusively

with boxed integer values, say of type Int, but the intermediate language can have an unboxed

type Int#, together with explicit operations to box and unbox integers. This allows the optimizer

to eliminate many box-followed-by-unbox chains [Peyton Jones and Launchbury 1991].

This paper builds directly on several earlier works that statically keep track of different repre-

sentations [Eisenberg and Peyton Jones 2017] and function arities [Downen et al. 2019] within a

type and kind system. Our new contribution is to bring them together into a single framework,

more powerful and more precise than any of its predecessors. Specifically:

• We introduce a polymorphic intermediate language that statically captures calling conventions
in kinds, and has polymorphism over the representation, levity, and arity of types (Section 4).

• Our intermediate language is equally well-suited for both eager and lazy functional languages.

Concretely we show how to compile two higher-level, polymorphic source languages—call-

by-name and call-by-value System F—to our intermediate language (Section 5).

• We show how to compile our polymorphic intermediate language to a lower-level language

with multiple representations (e.g., pointers versus integers) and multi-arity functions, but

not polymorphism (Section 6). Compilation is driven by kinds and keeps type erasure and

code reuse; typing restrictions ensures polymorphic code is compiled to monomorphic code.

• We provide evidence of correctness for the full compilation process (Theorems 1 to 4) from

both call-by-name and call-by-value source languages to machine code.

• We describe a small extension to our intermediate language to allow for dynamic checks on

the arities of closures, so that we can use the best arity available at runtime (Section 7).

2 FUNCTION ARITY
We identify three axes of classification, above. Of these three, we peel off arity to explain it first;

mixed representations and evaluation strategies have existed for longer and may be more familiar.

This section gives a high-level overview of our approach; the details will be nailed down in Section 4.

2.1 What Is Arity?
What is a function’s “arity?” In practical terms, the arity of a function determines what code a

compiler will generate to call that function. All modern architectures support calling conventions

that allow for efficiently calling subroutines by passing multiple arguments at once. If a function

has arity n, then a call to that function will pass n arguments simultaneously.

In a naively compiled curried language, every function has arity 1. This implementation of

functional languages is unacceptably inefficient. Instead, compilers must somehow map curried

surface-language functions onto multi-argument machine-language functions.

To do this, we need two things. First, an arity analysis; and second, an intermediate language in
which arity is explicit, so that we can express and memorialise the results of the analysis.

Arity analysis is not always straightforward. For example:

f1, f2, f3 : Int → Int → Int

f1 = λx .λy. let z = expensive x iny + z f2 = λx . f1 x

f3 = λx . let z = expensive x in λy.y + z f4 = λx . f3 x

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:3

Here, f1 clearly has arity 2 because it starts with two λs: it takes two arguments before computing

a result. Function f2 has only one λ, but still has arity 2, because we could safely η-expand it to

have two λs. In other words, f2 has arity 2, just like f1, because it also requires two arguments

before doing serious work. The function f3 has the same type as f1, but it must take its arguments

one at a time: in the call (map (f3 100) xs) we expect (expensive 100) to be computed at most once,

whereas the same call for f1 would recompute (expensive 100) for each element of xs. Similarly, f4
has arity 1: it cannot be η-expanded without the risk of computing (expensive 100) repeatedly.

These choices become particularly clear in a call-by-value language with side effects. For example,

if (expensive 100) printed something on the screen, the fact that it is evaluated only once—rather

than once for each element of xs—is a matter of semantics, not mere efficiency. Even in a pure

language like Haskell, an optimizing compiler should still treat computation as a sort of effect; it

must, for example, avoid changing the asymptotic efficiency of the program.

In light of these examples, here are two informal definitions of arity:

• An expression e has arity n when it can be soundly η-expanded to (λx1. . . xn .e x1. . . xn).
“Soundness” concerns semantics in an effectful language, but “only” efficiency in a pure one.

• An expression e has arity n when it does no “useful work” until it is applied to n arguments;

hence those arguments can be passed simultaneously.

Since the type of a function does not describe its arity (compare f1 and f3 above), practical compilers

like GHC perform arity analysis based on intensional properties: the form of the expression

determines its arity. In its simplest form, we can just count λs. Since that is pessimistic on examples

like f2, GHC uses a variety of simple static heuristic analyses [e.g., Breitner 2014]. The focus of this

paper is not on arity analysis, however, but rather on the intermediate language in which we can

memorialise the results of that analysis.

2.2 Arity in the Intermediate Language
However arity analysis is done, we need a way to express its results in the intermediate language.

In GHC, this is done through an informal decoration on each binder describing its arity.
1
This turns

out to be extremely unsatisfactory in practice: GHC has lots and lots of dark corners as a result of

this rather squishy notion of arity.

It would be much better if arity were a solid, statically-checked part of the intermediate language.

How is that possible? In the world of λ-calculi, we are familiar with calculi having unrestricted

β and η rules (such as the call-by-name λ-calculus), as well as calculi having restricted β and η
(such as the call-by-value [Sabry and Wadler 1997] or call-by-need λ-calculus [Ariola and Felleisen

1997]). The latter are often used as intermediate languages in compilers, to avoid recomputation of,

say, integers. The exact restrictions depend on the language being compiled: its evaluation strategy,

whether there are side effects, and so on. Our key idea, introduced by Downen et al. [2019], is this:

Define an intermediate language (IL) that has unrestricted η expansion for functions,

while allowing for restricted β reduction on other types of expressions.

This is an unusual choice, so we use a different notation for functions, λ(x :τ).e : τ { σ , where the
({) arrow denotes the new primitive function type. Now arity can be read from types: you can

freely η-expand any expression e : τ { σ , without reference to the form of e . The previous paper
[Downen et al. 2019] and this one are simply working out the consequences of this one idea.

2.3 Currying
If the primitive function type of our intermediate language allows unrestricted η-expansion, how
can we express functions like f3 that intentionally use currying as a way to avoid work duplication?

1
For aficionados, it is part of the binder’s IdInfo

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:4 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

We can do so like this:

f3 : Int { {Int { Int}

f3 = λx . let z = expensive x in Clos (λy.y + z)

The type Int { {Int { Int} makes explicit that f3 is an arity-1 function that returns a closure,

denoted by the curly braces, inside which is another arity-1 function. In the term language, λ builds
a primitive function of type τ { σ , while Clos builds a closure of type {τ }. Here are the (slightly
simplified) introduction (-I) and elimination (-E) rules:

Γ,x :τ ⊢ e : σ

Γ ⊢ λx :τ .e : τ { σ
Fun-I

Γ ⊢ e : τ
Γ ⊢ Clos e : {τ }

Clo-I

Γ ⊢ e : τ { σ Γ ⊢ e ′ : τ
Γ ⊢ e e ′ : σ

Fun-E

Γ ⊢ e : {τ }

Γ ⊢ App e : τ
Clo-E

The App form unboxes the primitive function wrapped up by Clos.
Our plan, then, is to desugar the source-language function type τ → σ into the intermediate-

language type as {τ { σ }, adding the corresponding Clos and App constructs in the terms.
2
Then

we can perform arity analysis, and express its results by transforming the intermediate language

program into one with fewer intermediate Clos nodes.

2.4 Functions Are Called, Not Evaluated
If we are able to freely η-expand, we must only evaluate functions when they are called. Consider:

x = let f : Int { Int = expensive 100 in . . . f . . . f . . .

When might expensive 100 be evaluated? In a strict language, it is evaluated right away, so the

value (some first-class function) can be bound to f before continuing with the body of the let. In
a lazy language like Haskell, expensive 100 might be forced long before f needs to be called, as

in seq f y or with a strict pattern. But in both cases, evaluating f without calling it violates the

unrestricted η we desire. After all, the definition of x is η-equivalent to:

x ′ = let f : Int { Int = λy.expensive 100 y in . . . f . . . f . . .

Afterη-expansion, the only way to evaluate expensive 100 is to call f with an argument. Unrestricted

η means that x and x ′ must be the same—in both semantics and asymptotic cost.

Unrestricted η-expansion requires a matching evaluation order for function bindings; the evalua-

tor must treat every expression e : τ { σ the same as (λx .e x). Yet, we do not want to change the

evaluation order for expressions of other types, like Int. Thus, our language’s semantics becomes

type-directed: it is only the type of f (in this case, Int { Int) that tells us not to evaluate the

right-hand side. In a precise sense (spelled out formally in Section 4), we cannot evaluate functions
(e.g., due to strictness, seq, etc.); functions can only be called. Furthermore, we will see in Section 3.7

that functions are, in fact, η-expanded during compilation to a lower level. So a semantics that

prematurely evaluates functions before they are called is not supported by our machine language.

3 WHY KINDS ARE CALLING CONVENTIONS
So far we have reviewed the ideas of Downen et al. [2019]. We are now ready to introduce the

problem we tackle in this paper, and our solution to it.

Previous research asserted types are calling conventions [Bolingbroke and Peyton Jones 2009].

We respectfully disagree, instead claiming that kinds are calling conventions. As we shall see,

this principle offers a unified framework combining several previous works on representations

2
In Downen et al. [2019], the intermediate language itself had two arrows, (→) as well as ({), but we have found it clearer

to have only one arrow for primitive functions plus the closure type {τ }.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:5

[Eisenberg and Peyton Jones 2017; Peyton Jones and Launchbury 1991], arity [Bolingbroke and

Peyton Jones 2009; Downen et al. 2019; Marlow and Peyton Jones 2004], and mixed evaluation

strategies [Downen and Ariola 2018] in intermediate languages. Specifically, we provide a type

system in which the kind κ of a type τ : κ classifies all the intensional properties needed to compile

an expression of type τ , namely its representation, arity, and levity.

3.1 Why Polymorphism Is a Problem
Consider this example of a polymorphic definition, in our intermediate language

poly : ∀a. (Int { Int { a) { (a,a)

poly = Λa.λ(f : Int { Int { a). letд : Int { a = f 3 in (д 5,д 4)

What is the arity of f and д? With “arities in the types,” we count the arrows, and answer 2 and 1

respectively. But what if a were instantiated by Bool { Bool? Then suddenly the answers become 3

and 2 respectively. Yikes!

One solution is to monomorphize the entire program, creating type-specialized versions of each

polymorphic function. This is patently unsatisfactory. First, it is a whole-program transformation.

Second, some languages (including Haskell and OCaml) support polymorphic recursion, which

makes static monomorphization impossible. Third, there is a risk of creating many copies of

essentially the same function, many of which wastefully compile to identical machine code.

Instead, we retain the traditional type-erasure model: each polymorphic function is compiled to

a single chunk of machine code that works the same no matter how its type is specialized. Under

this model, our function poly above is problematic. To compile code we must know the arity of

every function we call (because its arity determines its calling convention, and thus, what code to

generate), but in poly we do not know a stable arity of f or д for every instance of a.

3.2 Nonuniform Representations and Polymorphism
Interestingly, this exact same problem has arisen before, in the context of unboxed data types. A
contribution of this paper is to show that both can be solved with the same idea.

Nearly thirty years ago, GHC introduced the idea of distinguishing boxed and unboxed data types

in its intermediate language [Peyton Jones and Launchbury 1991]. They introduced two distinct

types for integers: Int# for primitive, unboxed machine integers; and Int for boxed integers,

represented as a pointer to a heap-allocated object and defined as:

data Int = I# Int#

The (sole) goal of distinguishing these two types is efficiency. If we had only boxed integers, then

even simple addition would be forced to evaluate and unbox each argument, then box up the

result. By making boxing and unboxing explicit we expose much more low-level information to the

optimizer, and can eliminate lots of intermediate boxes. For example, assume we have plus# and
minus# primitive operations, both of type Int# → Int# → Int#, and consider:

plus,minus : Int → Int → Int
plus (I# x) (I# y) = I# (plus# x y)
minus (I# x) (I# y) = I# (minus# x y)

sumFrom : Int → Int
sumFrom (I# 0) = I# 0
sumFrom x = plus x (sumFrom (minus x (I# 1))

This definition is wasteful; each recursive step allocates several new boxes on the heap only to be

immediately used by plus, minus, and sumFrom. Instead, as Peyton Jones and Launchbury [1991]

show, the recursive function can be optimized using the worker/wrapper transformation, like so:

sumFrom : Int → Int
sumFrom (I# x) = I# (sumFrom# x)

sumFrom# : Int# → Int#
sumFrom# 0 = 0

sumFrom# x = plus# x (sumFrom# (minus# x 1))

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:6 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

Now, the recursion is done by the more efficient sumFrom# function which works directly on

machine integers; no boxes are allocated or consumed, and so sumFrom# can be compiled with no

intermediate allocations. sumFrom becomes a wrapper around sumFrom#, just handling the issues

of boxing and unboxing. This is a huge gain in both time and space.

Notice the similarities between this work on unboxed data types and the earlier discussion

about arity. In both cases, we make IL expose more primitive, but less convenient, types of values

(primitive functions and unboxed integers respectively), along with a way to explicitly “box” them

into a more convenient form (using Clos and I# respectively) and later “unbox” them (using App
and pattern matching on I# respectively). Making these boxing and unboxing operations explicit

in the syntax of IL programs makes them accessible to the optimizer.

Alas, unboxed types cause trouble with polymorphism. For example, consider the generic, higher-

order binary application function:

binapp : ∀a b c .(a → b → c) → a → b → c binapp f x y = f x y

To compile binapp to a single piece of code, we cannot expect the calls binapp plus and binapp plus#
to both work; binapp would somehow have to handle arguments x and y with different representa-

tions (perhaps stored in different registers) to pass them along to plus versus plus#.
Notice that this is the exact same problem that we had with poly in Section 3.1: the code we

compile for binapp depends on how the type variables a and b are instantiated.

3.3 A Stop-Gap Solution
Because of the difficulty with polymorphism, unboxed types were originally introduced with a

draconian restriction on polymorphism: polymorphic type variables (like a,b, c in binapp) cannot be
instantiated with unboxed types (like Int#) [Peyton Jones and Launchbury 1991]. The mechanism

for enforcing the restriction was the kind system: Int has kind ⋆ (the kind of ordinary data types),

but Int# has a different kind # (the kind of unboxed data). GHC then required that the kind of a

quantified type variable t could be ⋆ or, say, (⋆→ ⋆), but never #.
Since this is the same problem as the one we encountered for arity, in function poly in Section 3.1,

we might expect the same solution to work. And indeed that is the approach adopted by Downen

et al. [2019]: type variables cannot range over arrow types τ { σ , whose kind is different from ⋆.
While this approach has served GHC well for nearly three decades, it has two major inadequacies:

(1) Too restrictive. Consider the error function, which prints a message and prematurely ends the

program. It can have the type ∀t .String → t . Because error never returns a value, it doesn’t matter

how t is represented; truly the same code can be used no matter if t is boxed or unboxed. But the

draconian restriction on unboxed types rejects this kind of polymorphism. Instead, specialized

versions are needed, like errorInt# : String → Int#, even though the compiled code is identical.

For error we would prefer to be able to say that the representation of t doesn’t matter.

(2) Kind polymorphism. In a language with kind polymorphism, we can write a term with type

∀k .∀(a : k).τ . Here, a can have any kind k , including #. We have now lost our ability to prevent

quantifiers over #-types, and need a new solution to the problem of uncompilable polymorphism.
3

3
A particularly knowledgeable reader might be aware that GHC supported kind polymorphism and restricted quantification

for a few years. This worked because a type like ∀k (a:k).a → a is ill-kinded; the→ type former puts requirements on a.
However, with kind equalities [Weirich et al. 2013], a type variable a : k can be cast to a more specific kind, causing chaos.

In fact, this interaction originally spurred the development of Eisenberg and Peyton Jones [2017].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:7

3.4 A Better Way: Look to the Kinds
Fortunately, both (1) and (2) can be solved, by using. . .more polymorphism. Let’s start with repre-

sentation polymorphism, using the approach of Eisenberg and Peyton Jones [2017].
4
We give Int

and Int# these more refined kinds:

Int : TYPE PtrR Int# : TYPE IntR

where TYPE : Rep → ⋆, and PtrR, IntR : Rep.5 The idea is that, given τ : TYPE r , values of type
τ have a runtime representation described by r . Now we can quantify over types represented

by a heap pointer with ∀(a : TYPE PtrR).τ . But we can also define representation-polymorphic

functions—like error : ∀(r : Rep)(a : TYPE r). String → a—solving problem (1).

What of problem (2)? Instead of limiting how type variables can be instantiated (which is

incompatible with full kind polymorphism), we instead add side conditions to the typing rules for

abstraction and application, excluding uncompilable programs like so:

Γ,x :τ ⊢ e : σ Γ ⊢ τ mono-rep
Γ ⊢ λx :τ .e : τ { σ

Fun-I

Γ ⊢ e : τ { σ Γ ⊢ e ′ : τ Γ ⊢ τ mono-rep
Γ ⊢ e e ′ : σ

Fun-E

The τ mono-rep caveat says τ ’s kind must be representation-monomorphic; that is, it can be

TYPE PtrR; or TYPE IntR; but not TYPE r . For example, we might try to give binapp this type

binapp : ∀(ra , rb , rc : Rep)(a : TYPE ra)(b : TYPE rb)(c : TYPE rc).(a → b → c) → a → b → c
binapp f x y = f x y

But that should be rejected because we cannot compile the call (f x y) without knowing how x
and y are represented (and thus, how to retrieve them and pass them to f). Indeed, it is rejected (by
both Fun-I and Fun-E). On the other hand, perhaps surprisingly, this type for binapp is fine:

binapp : ∀(rc : Rep)(a : TYPE PtrR)(b : TYPE PtrR)(c : TYPE rc).(a → b → c) → a → b → c

Notice that binapp can be representation-polymorphic in the return type c . Because our compiler

supports tail-call elimination, f is the one to return a value of type c to the caller, not binapp.

3.5 Arity Polymorphism
Arity and representations share problems (1) and (2), and thankfully, they share solutions, too. We

add a second parameter to TYPE that describes the arity of the function, like this:
6

poly : ∀(a : TYPE PtrR Call[2]). (Int { Int { a) { (a,a)

poly = Λ(a : TYPE PtrR Call[2]).λ(f : Int { Int { a). letд : Int { a = f 3 in (д 5,д 4)

Here, a’s kind says that it only ranges over arity-2 types, of kind TYPE PtrR Call[2], while f ’s type
Int { Int { a has kind TYPE PtrR Call[4], hence f has arity 4 in total. Similarly, д : Int { a
of kind TYPE PtrR Call[3] has arity 3. In short, the calling convention of a function (how many
arguments to pass simultaneously) is described by its kind. Of course, this meant that we had to

choose a particular arity for a, just as we had to choose a particular representation for the a and b
in binapp’s type. We enforce this “particular arity” constraint not at the point of abstraction, but at

the point of application. Here is the augmented Fun-E rule:

Γ ⊢ e : τ { σ Γ ⊢ e ′ : τ Γ ⊢ τ mono-rep Γ ⊢ τ mono-conv
Γ ⊢ e e ′ : σ

Fun-E

where the new side condition τ mono-conv ensures TYPE’s second parameter is statically known.

Preparing an argument of function type is precisely the point at which a compiler must compile

4
The paper Levity Polymorphism in fact describes representation polymorphism. For levity polymorphism, see Section 3.6.

5
GHC classifies representations like PtrR, IntR, etc., as RuntimeRep; here, we shorten the name to just Rep.

6
These kinds are somewhat simplified; the full story is in Section 4.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:8 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

code for that argument that actually takes the number of arguments specified by its kind. Requiring

the calling convention be monomorphic fixes that number statically; it can’t be a type variable, say.

3.6 Evaluation Strategy and Levity
We have discussed arity and representation, two of our three design axes. But what of levity?

When compiling a function call f (1 + 1), we must know the evaluation strategy to use: do we

evaluate (1 + 1) before calling f or after, on-demand? Programming languages typically commit

to a choice here, which is usually to evaluate (1 + 1) before the function call—the eager, call-by-

value strategy. Haskell makes the opposite choice, implementing the lazy, call-by-need strategy;

(1 + 1) is evaluated only when its value is needed, and only once. But regardless of a language’s

choice of evaluation strategy, some scenarios require the opposite. Programmers in eager languages

sometimes use constructs like Delay and Force [Wadler et al. 1998] to embed lazy evaluation, and

programmers in lazy languages manually introduce strictness (such as Haskell’s seq) to force eager

evaluation. So a compiler’s intermediate language should support both lazy and eager evaluation,

and ideally without favoring either over the other.

We can use types (or, more precisely, their kinds) to control evaluation order. For example,

suppose we have types IntL and IntU, where the L stands for “Lifted” (the type has an extra bottom

element, ⊥, denoting divergent computation) and U for “Unlifted” (the type has no extra bottom
element). Operationally, a value of lifted type must be represented as a pointer to a heap-allocated

object because it may be an unevaluated thunk; a value of unlifted type may well still be represented

by a pointer, but to the value itself, not a thunk. Variables of unlifted types cannot be bound to

(divergent) computations, so they must be evaluated eagerly at binding-time; variables of lifted

types may be bound to any unevaluated computation, so those bindings may be evaluated lazily.

The types of an eager language (like OCaml) are all unlifted, whereas the types of a lazy language

(like Haskell) are all lifted. But our IL supports both, and hence can be a target for both.

Once again, we can track levity in the kinds, like this:

IntL : TYPE PtrR EvalL IntU : TYPE PtrR EvalU Int# : TYPE IntR EvalU

The levity of a type is all about its evaluation strategy. We already know primitive functions cannot

be evaluated without calling them (Section 2.4), and thus a type has either a levity or an arity.

We accordingly re-use the second component of the kind TYPE, which in Section 3.5 described

the arity of a primitive function, using EvalL and EvalU to classify lifted and unlifted data types

respectively. Reflecting this dual use, we describe the second argument of TYPE as the kind’s

convention, connoting “calling convention” for functions and “evaluation convention” for data.

Once again, we can be polymorphic in both levity (Section 4.4) and convention (Section 4.5).

And we still keep the program compilable despite type erasure using suitable side conditions

(Section 4.6). In the case of levity, the mono-conv premise in Fun-E (recall Section 3.5) is exactly

what is needed to specify whether to compile this application using call-by-need or call-by-value.

3.7 From IL to ML

Returning to arities, how can poly in Section 3.5 be compiled? In particular, since д’s kind specifies

that it has arity 3, we must compile д to code that takes three arguments. So, before generating

code, we η-expand д. But apparently we can’t, at least not in the confines of IL’s type system,

because a is not an arrow type!

To have any hope of solving this problem, we must do more than say a is an arity-2 type. We

must also spell out the representations of its two arguments, so that we can generate code for

passing the η-expanded function arguments. In poly, the explicated calling convention looks like:

poly = Λ(a : TYPE PtrR Call[PtrR, IntR]). λ(f : Int { Int { a).
letд : Int { a = f 3 in (д 5,д 4)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:9

Kind ∋ κ ::= TYPE ρ ν

Type ∋ τ ,σ ::= t | Tp | Td | τ { σ | γ{τ } | ∀χ .σ TyVar ∋ χ ::= t :κ | r | д | n

Representation ∋ ρ ::= r | PtrR | IntR | . . . PrimType ∋ Tp ::= Int# | . . .

Levity ∋ γ ::= д | L | U DataType ∋ Td ::= Intγ | . . .

Convention ∋ ν ::= n | Evalγ | Call[α] Arity ∋ α ::= ρ,α | ε | arity(ν)

Expr ∋ e ::= x | c | I#γ e | case e of I# x→e ′ | λx :τ .e | e e ′ | Closγ e | App e | Λχ .e | e ϕ

Const ∋ c ::= i | op PrimOp ∋ op ::= error | . . .

Answer ∋ A ::= x | c | I#γ A | Closγ e | Λχ .A | A ϕ Erasable ∋ ϕ ::= τ | ρ | γ | ν

Fig. 1. Syntax of IL: An intermediate language with levity, representation, and arity polymorphism

The Call[PtrR, IntR] in a’s kind describes the representation of its two arguments.

Before code generation, we compile from IL into a lower-level representation ML (suggesting

“machine language”).ML is still statically typed, but much more coarsely:ML’s types correspond

to representations and calling conventions. So compiled polymorphic code might look like:

poly = λ(f :PtrR). letд : PtrR = λ(x :PtrR, y:PtrR, z:IntR). f (3,x ,y, z)

in (λ(y:PtrR, z:IntR). д(5,y, z), λ(y:PtrR, z:IntR). д(4,y, z))

InML the functions are uncurried, and specify all their arguments and their representations. As

such, every function is fully η-expanded, and every call is fully saturated. This representation is

less convenient for the optimizer (for which we use IL), but is just right for the code generator.

We discussML, and the lowering transformation from IL toML, in Section 6.

4 THE INTERMEDIATE LANGUAGE (IL)
Our intermediate language, which we call IL, is an explicitly-typed λ-calculus based closely on

System F, with its syntax (Fig. 1), formation of types (Fig. 2), and type system (Fig. 3). We cover the

kind system of IL in more detail in Sections 4.2 to 4.7.

The syntax for expressions e is given in Fig. 1, and includes the following forms.

• Variables x , and constants c .
• Primitive integers have type Int# : TYPE IntR EvalU, and are represented by amachine integer

(hence IntR in the kind). There are numeric constants, i : Int#, and primitive functions (op)
that operate over Int#, such as plus# : Int# { Int# { Int#.

• Boxed integers have type Intγ : TYPE PtrR Evalγ , where the levity γ can be L, U or a levity
variable д. A data-constructor application I#γ e : Intγ allocates a box containing the value

of e (see Section 3.6). Such I# boxes are unpacked by a pattern-matching case.
• Primitive functions are introduced and eliminated with the familiar forms λx :τ .e and e e ′.
As discussed in Section 2.2 we use a wavy arrow (τ { σ) to remind ourselves that in

this λ-calculus functions have some unusual behavior: they enjoy unrestricted η-expansion.
Multiple arguments, even though they are curried, are always passed simultaneously; e.g., if
f : Int# { Int# { Int# { Int#, then f is always called with all three arguments.

• Function closures are introduced and eliminated with the forms Closγ e and App e , respectively.
Similar to boxed integers, Closγ e allocates a new closure containing e , where γ records the

levity of the computation responsible for that allocation, just as with I#γ .
• Type abstraction Λχ .e and application e ϕ, have the same meaning as in System F. While

their operational interpretation in IL is analogous to λx :τ .e and e e ′, these abstractions and
applications are fully erased by compilation to a lower-level representation. The only new

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:10 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

Formation rules for kinds, levities, representations, conventions, arities:

Γ ⊢ κ kind
Γ ⊢ ρ rep Γ ⊢ ν conv
Γ ⊢ TYPE ρ ν kind

Γ ⊢ ρ rep Γ, r ⊢ r rep Γ ⊢ PtrR rep Γ ⊢ IntR rep

Γ ⊢ γ lev Γ,д ⊢ д lev Γ ⊢ L lev Γ ⊢ U lev

Γ ⊢ ν conv Γ,n ⊢ n conv
Γ ⊢ γ lev

Γ ⊢ Evalγ conv
Γ ⊢ α ari

Γ ⊢ Call[α] conv

Γ ⊢ α ari
Γ ⊢ ρ rep Γ ⊢ α ari

Γ ⊢ ρ,α ari Γ ⊢ ε ari
Γ ⊢ ν conv

Γ ⊢ arity(ν) ari

Kinds of types Γ ⊢ τ : κ

Γ ⊢ κ kind
Γ, t :κ ⊢ t : κ

Tvar
Γ ⊢ Int# : TYPE IntR EvalU

Int#

Γ ⊢ γ lev
Γ ⊢ Intγ : TYPE PtrR Evalγ

Int

Γ ⊢ τ1 : TYPE ρ1 ν1 Γ ⊢ τ2 : TYPE ρ2 ν2
Γ ⊢ τ1 { τ2 : TYPE PtrR Call[ρ1, arity(ν2)]

Fun

Γ ⊢ γ lev Γ ⊢ τ : TYPE ρ ν

Γ ⊢ γ{τ } : TYPE PtrR Evalγ
Clo

Γ, χ ⊢ σ : TYPE ρ ν Γ ⊢ TYPE ρ ν kind
Γ ⊢ ∀χ .σ : TYPE ρ ν

Forall

Γ ⊢ τ : κ κ = κ ′

Γ ⊢ τ : κ ′
K-Conv

Reflexivity, transitivity, symmetry, and compatibility for κ = κ ′ , plus the following rules:

arity(Evalγ) = ε arity(Call[α]) = α

Monomorphism restrictions:

Γ ⊢ τ : TYPE ρ ν ⊢ ρ rep
Γ ⊢ τ mono-rep Mono-Rep

Γ ⊢ τ : TYPE ρ ν ⊢ ν conv
Γ ⊢ τ mono-conv Mono-Conv

Fig. 2. Kind and levity system of IL

addition here is that binders χ and arguments ϕ range over four different sorts of type-level

variables and arguments (all erasable). The expressiveness and restrictions on these different

kinds of polymorphism are detailed in Sections 4.3 to 4.8. Type binders are annotated with

their kinds, and other binders are distinguished by their naming convention; we use a Latin

name for type-level variables and the corresponding Greek name for the syntactic category.

For clarity, we sometimes state the sort of variable being quantified (r :Rep, д:Lev, or n:Conv).

A subset of these expressions are Answers (denoted by A, Fig. 1), meaning that they are possible

results of evaluation. This classification accounts for the eventual type erasure mentioned above.

The apparent redex (Λχ .A) ϕ is an answer, because it is erased to A at compile-time. Answers

include closures Closγ e as usual, but not primitive functions λx :τ .e ; recall that functions are called
instead of evaluated, and thus cannot be answers of evaluation (Section 2.4).

The rules for well-formed types and kinds are given in Fig. 2, and include type variables t ,
primitive types Tp (of which we supply one, Int#), algebraic data types Td (of which we supply

one, Int), polymorphic types ∀χ .σ , primitive function types τ { σ and a closure type
γ{τ }.

IL’s type system given in Fig. 3 ensures the following guarantees for well-behaved programs:

• Static Compilation: Every well-typed program can be compiled to a lower-level representation

for a monomorphic machine, which models details such as specialized registers (for integers

versus pointers) and function calls with multiple arguments (Theorem 3).

• Type Safety: If a well-typed program is equal to a number (as per Section 4.9), then its compiled

code computes that number (Theorem 4). In particular, executing well-typed programs never

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:11

Types of expressions Γ ⊢ e : τ

Γ ⊢ τ : κ
Γ,x :τ ⊢ x : τ

Var
c : τ

Γ ⊢ c : τ
Const

Γ ⊢ e : Int#
Γ ⊢ I#γ e : Intγ

Int-I

Γ ⊢ e : Intγ Γ,x :Int# ⊢ e ′ : τ

Γ ⊢ case e of I# x → e ′ : τ
Int-E

Γ,x :τ ⊢ e : σ Γ ⊢ τ mono-rep
Γ ⊢ λx :τ .e : τ { σ

Fun-I

Γ ⊢ e : τ { σ Γ ⊢ A : τ Γ ⊢ τ mono-rep
Γ ⊢ e A : σ

Fun-A-E

Γ ⊢ e : τ { σ Γ ⊢ e ′ : τ Γ ⊢ τ mono-rep Γ ⊢ τ mono-conv
Γ ⊢ e e ′ : σ

Fun-E

Γ ⊢ e : τ Γ ⊢ τ mono-conv
Γ ⊢ Closγ e : γ{τ }

Clo-I

Γ ⊢ e : γ{τ }

Γ ⊢ App e : τ
Clo-E

Γ, χ ⊢ e : σ Γ ⊢ ∀χ .σ : κ

Γ ⊢ Λχ .e : ∀χ .σ ∀-I Γ ⊢ e : ∀χ .σ Γ ⊢ [ϕ/χ] poly
Γ ⊢ e ϕ : σ [ϕ/χ]

∀-E

Polymorphic instantiations: Γ ⊢ [ϕ/χ] poly

Γ ⊢ γ lev
Γ ⊢ [γ/д] poly

Γ ⊢ ρ rep
Γ ⊢ [ρ/r] poly

Γ ⊢ ν conv
Γ ⊢ [ν/n] poly

Γ ⊢ τ : κ Γ ⊢ κ kind
Γ ⊢ [τ/t :κ] poly

Types of constants: c : τ

i : Int# error : ∀r .∀д.∀(t : TYPE r Evalд). Int# { t

Fig. 3. Type system of IL

gets stuck, because the correct kind of register is used to store each value, and primitive

functions are always called with the correct number and kind of arguments.

Static compilation requires some typing rules in Fig. 3 to explicitly refer to the kinds of types, as
described in Fig. 2, that can be assigned to certain expressions. This shows up in the occasional

τ mono-rep and τ mono-conv side conditions, which we elaborate in Section 4.6. Intuitively,

τ mono-rep captures the fact that τ has a statically-known, monomorphic representation, and
τ mono-conv says that τ has a statically-known, monomorphic convention.

4.1 Simplifying Assumptions
To maintain a minimal presentation of IL, we make many simplifying assumptions that reduce

its number of features to a small representative core illustrating our main objectives. A realistic

implementation will include more features, which can either be added as an extension to IL, or

encoded in terms of the features shown here. Our simplifying assumptions are as follows:

• Higher kinds (e.g., ⋆→ ⋆) are not included, but are a standard extension orthogonal to IL.

• Int# is the only exemplary primitive unboxed type, which introduces the only non-pointer

representation IntR. Other atomic unboxed types and representations—say, for floating-point

numbers, characters, arrays, etc.—can be added straightforwardly, as can primitive operations

on these types, like plus# and minus# of type Int# { Int# { Int#. Unboxed tuple types

(#τ1, . . . ,τn#) are an extension that introduces a compound representation roughly dual to

the calling convention of functions: Call[ρ1, . . . , ρn] describes the representations of values
that a function needs to consume, while Tuple[ρ1, . . . , ρn] [Eisenberg and Peyton Jones 2017]
describes the representations of values that a tuple has within it.

• Intγ serves as the only example of an algebraic data type, which happens to be parameterized

by a levity γ specifying whether the result of the constructor is evaluated eagerly (U) or

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:12 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

lazily (L). In general, there should be a way to declare new user-defined algebraic data types.

These need not be levity polymorphic (i.e., have a γ parameter), but IL makes it possible to

combine levity polymorphism with user-defined data types; see Section 4.8.

• There is no built-in let-binding construct but, as usual, a non-recursive let can be regarded

as shorthand for λ and application: letx :τ = e in e ′ ≜ (λx :τ . e ′) e . The typing rules for

let-bindings can be derived from the rules for primitive function types τ { σ . As such,
let-bindings inherit similar side conditions on the type of the bound variable; see Section 4.6.

• error is the only source of computational effects in IL as presented here. Recursive let-

bindings, which are essential for practical functional programming, can be added straight-

forwardly, as can other computational effects, such as printing and state as in OCaml, with

additional primitive operations.

• Because error is the only side-effect in IL, call-by-name and call-by-need evaluation always

give the same result [Ariola and Felleisen 1997]. So in IL, we interpret “lifted” (L) as call-by-
need for operational concerns, and as call-by-name for equational reasoning. To accommodate

richer side-effects, the choice should instead be made explicit. This can be done directly in

IL by further dividing L into separate levities for call-by-name (CBN) and call-by-need (Need)
evaluation. For example, evaluating letx :Intγ = (print "bye "; I#γ 0) in (print "hi ";x ;x)
prints: "bye hi " with γ = U, "hi bye bye " with γ = CBN, and "hi bye " with γ = Need.

4.2 Kinds, Representations, Levities, and Conventions
A kind κ has the form TYPE ρ ν , where ρ describes the representation of the type, and ν describes

its convention, that is, what operations are allowed on that type. Suppose x : τ : TYPE ρ ν ; that is, x
is a term variable of type τ , whose kind is TYPE ρ ν . The representation ρ specifies the runtime

representation of the value of x . Referring to Fig. 1, ρ can be:

• PtrR, meaning that x is a pointer into the garbage-collected heap.

• IntR, meaning that x is a machine integer (not a pointer).

• r , a representation variable bound by a ∀; that is, we support representation polymor-

phism [Eisenberg and Peyton Jones 2017].

The convention ν describes the allowed operations on x , i.e., how it can be consumed. ν can be:

• EvalU, meaning that x cannot be bound to a computation like ⊥ (hence U for “Unlifted”).

This kind is used for primitive values, and heap pointers that point directly to the value itself

(such as a heap-allocated array).

• EvalL, meaning that x may be bound to a computation like ⊥ (hence L for “Lifted”). This kind
is used for thunks, which might need evaluation to get its value, and might diverge doing so.

• Evalд , where д is a levity variable bound by ∀; that is, we support levity polymorphism.

• Call[α], meaning that x is a primitive function (not a thunk) with an arity described by

α . The arity of an IL primitive function might be a fixed non-empty list ρ1, . . . , ρm , so x
takes preciselym ≥ 1 arguments,

7
with representations given by ρi . Otherwise, the arity is

ρ1, . . . , ρm , arity(ν), meaning that x takes at leastm arguments with the listed representations,

followed by possibly some more arguments given by the arity of ν .
• n, a convention variable bound by ∀; that is, we support convention polymorphism.

The kind TYPE PtrR EvalL expresses the uniform representation of a value in a lazy language: a

pointer to a lifted (i.e., possibly a thunk) object stored in the heap. Because this kind is so common,

7
There is no type in IL with the convention Call[], but it can easily arise in extensions of IL. In practice, unboxed tuple

arguments are passed simultaneously in several registers. So the type (# Bool, Int#, String #) { IntL can be given the

kind TYPE PtrR Call[PtrR, IntR, PtrR]. The nullary case of unboxed tuple arguments, (# #) { IntL, can then be given

the kind TYPE PtrR Call[].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:13

we often abbreviate it to⋆ for the default kind. In a call-by-value language we would instead define

the default kind ⋆ as TYPE PtrR EvalU, and EvalL would be used sparingly, if at all.

4.3 Calling Conventions in Kinds
We track the arity of a function type in its kind, as described in Sections 3.5 and 3.7. For example:

Int# { Int# : TYPE PtrR Call[IntR]
Int# { Int# { Int# : TYPE PtrR Call[IntR, IntR]
Int# { IntL { Int# : TYPE PtrR Call[IntR, PtrR]

The convention of each of these primitive function types has the form Call[α], where the arity
given by α describes the arguments needed to fully call functions of that type.

The formation rule for (τ1 { τ2) keeps track of these arities. Looking at rule Fun in Fig. 2, we

see the kind of (τ1 { τ2) has a calling convention of Call[ρ1, arity(ν2)]. Two special cases are:

Γ ⊢ τ1 : TYPE ρ1 ν Γ ⊢ τ2 : TYPE ρ
′ Call[ρ2, . . . , ρm]

Γ ⊢ τ1 { τ2 : TYPE PtrR Call[ρ1, ρ2, . . . , ρm]

Γ ⊢ τ1 : TYPE ρ1 ν Γ ⊢ τ2 : TYPE ρ
′ Evalγ

Γ ⊢ τ1 { τ2 : TYPE PtrR Call[ρ1]

The representation of the first argument (ρ1) is that of τ1. The rest of the arguments come from the

convention ν2 of τ2, via the type-level operation arity, as defined in Fig. 2. It returns the arity α
of Call[α]; and the empty arity in the case of Evalγ . But ν2 might also be a variable n, and then

arity(n) is stuck; that is why arity(ν) is part of the syntax of α in Fig. 1. Rule K-Conv allows calls

to arity to be calculated whenever desired.
8

4.4 Polymorphism in Levity and Representation
We are used to polymorphism over types, but we can gainfully employ polymorphism over levi-

ties, representations, and conventions, which is extremely useful in practice. For example, levity

polymorphism lets us write some functions that work uniformly over both strict and lazy values.

Adding two boxed integers can be defined as

plus : ∀д1. ∀д2. ∀д3. Intд1 { Intд2 { Intд3 plus (I# x) (I# y) = I# (plus# x y)

which is short-hand for the following definition in IL:

plus : ∀д1. ∀д2. ∀д3. Intд1 { Intд2 { Intд3

plus = Λд1.Λд2.Λд3.λ(x
′
:Intд1).λ(y ′:Intд2). casex ′ of I# x → casey ′ of I# y → I#д3 (plus# x y)

Notice that in this definition, the levities дi of the argument and return types are statically unknown,

so we must be able to pattern-match on and return values with unknown levities. Specifically, rule

Int-E in Fig. 3 allows a case-expression to scrutinize an integer of arbitrary levity γ . Operationally,
a levity-polymorphic case has to test the scrutinee to see if it is a thunk (in case the levity variable

is instantiated to L), and if so evaluate it. In essence, we can interpret a case on an unknown levity

as a lifted one because a case is always strict and, if it happens that д is U, the branch for handling

a thunk is simply dead code.
9

Similarly, suppose we had a primitive type of arrays, Array#γ , with kinding rule

Γ ⊢ γ lev Γ ⊢ τ : TYPE PtrR ν

Γ ⊢ Array#γ τ : TYPE PtrR Evalγ

8
Alternatively, we could require arity(ν) to be fully calculated in the Fun kinding rule. This would let us remove arity(ν)
from the grammar of arities, but also forces an additional restriction on the formation of types and expressions, specifically

Fun and Fun-I, to rule out arity(n). Such a restriction comes with the cost of breaking a pleasant property of IL: except

for the ∀ quantifier, any type made from well-kinded types is itself well-kinded.

9
We assume that the concrete, runtime representation of values (not thunks) is the same for both eager and lazy evaluation.

This is true in GHC and seems likely in other systems supporting laziness, but it may not hold in some systems.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:14 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

From a representation point of view, an Array#γ is represented by a pointer and contains pointers.

The array itself can be lifted or unlifted, and (independently) can contain lifted or unlifted values. For

example, the type Array#L (Array#U IntU) is a lifted array of pointers, each of which points directly

to an array of pointers to (boxed) integers. The ability to exclude the possibility of intermediate

thunks in this data structure is very valuable in high-performance code, as a recent spate of GHC

proposals shows [Eisenberg 2019; Graf 2020; Martin 2019a,b,c; Theriault 2019].

4.5 Polymorphism in Convention
We may also be polymorphic in conventions. Consider the reverse-apply function

revapp x f = f x

For now, suppose that it returns Int#. What type should revapp have? Here are two possibilities:

(1) revapp : ∀(t : TYPE PtrR EvalL). t { (t { Int#) { Int#
(2) revapp : ∀(t : TYPE IntR EvalU). t { (t { Int#) { Int#

We want to compile a function like revapp to a single block of efficient machine code. To do so, we
must know the representation of x , because we have to generate instructions to move x around. If

x is represented by an integer, it will be passed in one sort of register; if a float, in another; if a

pointer then yet another.
10
So we can choose (1) or (2), but not both.

On the other hand, consider these other possible types:

(3) revapp : ∀(t : TYPE PtrR EvalU). t { (t { Int#) { Int#
(4) revapp : ∀(t : TYPE PtrR Call[IntR]). t { (t { Int#) { Int#

Since we are simply moving x around, but not otherwise acting upon it, we can simultaneously

allow (1), (3), and (4). That is, we can be completely polymorphic in its convention n, thus:

(4) revapp : ∀(n : Conv) (t : TYPE PtrR n). t { (t { Int#) { Int#

What about the return type of f ? The code for revapp does not manipulate f ’s return value at all (it

does not even move it around, thanks to tail-call elimination), so it can be completely polymorphic

in the representation or t2, giving this type:

(5) revapp : ∀(n:Conv) (r :Rep) (д:Lev) (t1:TYPE PtrR n) (t2:TYPE r Eval
д). t1 { (t1 { t2) { t2

But notice that, unlike the argument type t1, revapp cannot be polymorphic in the convention of t2,
because a compiler needs to statically know the arity of the λ-bound argument f to generate code

for (f x) inside revapp (Section 4.6). It can, however, be evaluated with any levity.

4.6 Restrictions on Polymorphism
Of course we have the usual restrictions on polymorphism,

11
but IL’s polymorphism introduces

some new issues. We have already seen how unrestricted polymorphism is incompatible with

efficient static code generation
12
in Section 4.5, where we cannot allow revapp’s type argument t1

to have a representation-polymorphic kind. A second restriction is demonstrated by:

twice f x = f (f x)

10
Even if pointers occupy the same sort of register as integers, they are treated quite differently by the garbage collector, so

the code generator treats them differently.

11E.g., every free variable (of every sort) that appears anywhere in the type checking judgment Γ ⊢ e : τ must be bound by

Γ.
12
Runtime code generation would allow the system to clone fresh code for each representationally-distinct instantiation of

a function. But this is a pretty big hammer: only .NET does this. To keep things simple, we assume static code generation.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:15

Should (f x) be eagerly or lazily evaluated? If it has a lifted type, then we can build a thunk for it,

and pass that thunk to f . Otherwise, we must evaluate it before the call—remember, variables of

unlifted types are always bound to values, never thunks. So we can give twice either of these types:

(1) twice : ∀(t :TYPE PtrR EvalL). (t { t) { t { t
(2) twice : ∀(t :TYPE PtrR EvalU). (t { t) { t { t

but we must choose: unlike revapp, twice cannot be polymorphic in t ’s convention.
The restrictions on polymorphism used to ensure static compilability are embodied in the shaded

premises in the type system of Fig. 3. The judgment Γ ⊢ τ mono-rep, defined in Fig. 2 checks

that the representation of τ is monomorphic; that is, that it mentions no variables. This is ensured

by the empty context in the second premise of ruleMono-Rep. There is an equivalent judgment

Γ ⊢ τ mono-conv for conventions. Now returning to Fig. 3 we see the shaded premises:

• Rule Fun-E: for a general application, the argument type must be monomorphic in both the

representation (so that we know how to store it while passing), and convention (so that we

know when to evaluate it, or for first-class primitive function arguments, how to create it).

• Rule Fun-A-E: in the special case where the argument syntactically has the form of an

answer, we can allow the argument type to be levity-polymorphic, since in this case there is

no distinction between lazy or eager. If the application is lazy, then the argument does not

need to be evaluated anyway. If application is eager, then the argument is already a value (or

a variable that must be bound to a value), and again, does not need to be evaluated.

• Rule Clo-I: this rule boxes a primitive function so, just as in Fun-E, we must know that

function’s arity statically, so we can compile code for it that starts by taking the correct

number of arguments.

We can justify these restrictions intuitively, but how do we know that these are the “right” re-

strictions? To answer that question we will show, in Section 6, how to compile IL into our lower

level ML. In the translation from IL to ML in Fig. 8, we need exactly the shaded monomorphic

restrictions of Fig. 3. If any of these restrictions were removed, then there would be expressions

that are well-typed, yet uncompilable.

Our rules also include two additional, unshaded, monomorphism restrictions, in the Fun-I and

Fun-A-E rules. These restrictions enforce an extra invariant on the environment Γ: every variable
in Γ has a monomorphic representation. Besides making intuitive sense, this invariant could be

necessary in a compiler accounting for more low-level details like storing free variables in a

closure; doing so certainly requires knowing their representation. However, perhaps shockingly,

the compilation scheme we give in Section 6 does not require any monomorphism restrictions

in Fun-I and Fun-A-E: they could be deleted and yet all closed, well-typed expressions could

still be compiled. This example suggests different compilers might need different restrictions on

polymorphism. And from the reverse standpoint, other compilation schemes might allow for new

and more adventurous possibilities for levity, representation, and convention polymorphism.

As an example of why different restrictions are needed for the Fun-E and Fun-A-E rules, recall

the encoding of let-bindings from Section 4.1, which gives us the typing rules

Γ ⊢ e :τ Γ,x :τ ⊢ e ′ :σ Γ ⊢τ mono-rep Γ ⊢τ mono-conv
Γ ⊢ let x :τ = e in e ′ : σ

Let

Γ ⊢A :τ Γ,x :τ ⊢ e :σ Γ ⊢τ mono-rep
Γ ⊢ let x :τ = A in e :σ

Let-A

derived by composing Fun-I with Fun-E or Fun-A-E, respectively. That is, in general a let can
bind a variables to expressions with both a monomorphic representation and convention; but

convention-polymorphic answers can also be bound. Neither typing rule is more general than the

other: Let-A only applies to some bound expressions (pre-evaluated answers), whereas Let only

applies to bindings of some types (ones with statically-known conventions).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:16 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

Now, consider these let-bindings, which follow the restrictions of either Let or Let-A above:

(1) letx : ∀д.Intд
x = Λд. I#д 0 in . . .

(3) letx : ∀n.∀(t : TYPE PtrR n).t

x = y in . . .
(2) letx : IntL

x = plus L L L (I#L 1) (I#L 2) in . . .
(4) letx : ∀д.Intд{Intд

x = Λд.λ(y : Intд). f (f ′ y) in . . .

Both (1) and (3) bind x to syntactically manifest answers with convention-polymorphic types

(∀д.Intд : TYPE PtrR Evalд and ∀n.∀(t :TYPE PtrR n). t : TYPE PtrR n, respectively), which is well-

typed by Let-A. In contrast, (2) and (3) bind x to non-answer expressions, so x needs a convention-

monomorphic type (here, IntL : TYPE PtrR EvalL and ∀д. Intд { Intд : TYPE PtrR Call[PtrR],
respectively) in order to be well-typed by the Let rule.

4.7 The Forall Rule
The polymorphic quantifier ∀t :κ .σ has no impact on a type’s kind: it just inherits the kind of σ (rule

Forall in Fig. 2). Intuitively, this is because these quantifiers will be totally erased by compilation,

and have no impact on the final runtime code; the ∀ is “invisible” to the lower-level machine.

However, now that variables may appear in kinds, we must be careful they do not escape their

scope. For example, the following type is not well-kinded:

∀r . ∀(t :TYPE r EvalL). t { t :? TYPE PtrR Call[r]

Here the representation r of the first parameter escapes in the calling convention of this primitive

function type, because r is meant to be local to the type itself. This nonsense is prevented by the

second premise of rule Forall in Fig. 2 and the second premise of rule ∀-I in Fig. 3.

4.8 User-Defined Types and Code Reuse
Aswe have seen, polymorphism over these type descriptors—representation, convention, and levity—

increases the opportunities for code reuse. We can even have data types that are polymorphic

over these descriptors, although this is beyond the scope of the IL we formally describe here. For

example definition of boxed integers (given in Section 3.2) might be generalized to

data Int (д : Lev) : TYPE PtrR Evalд where
I# : Int# { Int д

Now, the Int type is parameterized by a chosen levity (д : Lev), which determines whether or not

the boxed integers are evaluated eagerly or lazily.

Polymorphism over a constructor’s arguments and result can be combined within a single

definition. For example, here is a further generalized definition of lists whose spine can be either

eagerly or lazily evaluated (д), and containing elements of any arity or evaluation strategy (n):

data List (д : Lev) (n : Conv) (t : TYPE PtrR n) : TYPE PtrR Evalд where
Nil : List д n t
Cons : t { List д n t { List д n t

Despite restrictions on polymorphism, we can define some levity-polymorphic functions over

this type. For example, we could write the following polymorphic definition which is capable of

summing up a list of integers with any combination of levities:

sum : ∀д1 д2 д3. List д1 Evalд2 (Int д2) { Int д3
sum Nil = I# 0
sum (Cons (I# x) xs) = case sum xs of I# y → I# (plus# x y)

sum’s caller chooses the levity of the list’s spine (д1), the list’s elements (д2), and the result (д3). This
is possible because sum is completely strict anyway; if it is given an evaluated list or an unevaluated

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:17

Type-based definition of substitutable values: Γ ⊢ e subst

Γ ⊢ A subst
Γ ⊢ e : τ Γ ⊢ τ : TYPE ρ EvalL

Γ ⊢ e subst
Γ ⊢ e : τ Γ ⊢ τ : TYPE ρ Call[α]

Γ ⊢ e subst
Equational axioms (in each rule, assume that Γ ⊢ S subst):

(β{) (λx :τ .e) S = e[S/x] (η{) λx :τ .(e x) = e : τ { σ

(β∀) (Λχ .e) ϕ = e[ϕ/χ] (η∀) Λχ .(e χ) = e : ∀χ .σ
(β {}) App (Closγ e) = e (η {}) Closγ (App S) = S :

γ{σ }

(βInt) case I#γ A of
I# x → e

= e[A/x] (ηInt) case e of
I# x → I#γ x

= e : Intγ

Plus closure under reflexivity, transitivity, symmetry, and compatibility.

Fig. 4. Equational theory of IL

thunk, the entire thing will be added together before a value is returned. Therefore, the same code

can be used for any combination of eager or lazy evaluation.

Other functions, such as the standard definition for mapping over a list:

map f Nil = Nil map f (Cons x xs) = Cons (f x) (map f xs)

cannot be so levity polymorphic. That’s because the order of evaluation in Cons (f x) (map f xs)
depends on the levity of (f x) and the recursive call (map f xs). We can give this type assignment

to map that specifies its result should be lazy, like in Haskell:

map : ∀д n (a:TYPE PtrR n) (b:TYPE PtrR EvalL). (a { b) { List д n a { List L EvalL b

Note that the input list can store values of any convention at all, and like with sum, it can be either

spine-strict or spine-lazy; map is strict in its second argument either way. Other evaluation orders

for map can be specified by replacing one or both of L in (List L EvalL b) with U. Although the

definition of map appears the same in IL, this change will compile to very different machine code.

4.9 Equational Theory
The equational theory for IL, as defined in Fig. 4, gives us a framework to reason about equivalent

IL expressions. We use this as the basis for correctness of compiling a high-level language to IL

(Theorem 2) and further on to a low-level language (Theorem 3). The rules for function closures

(namely β {} and η {}) and boxed integers (βInt and ηInt) are unsurprising, as are the rules for

erasable abstractions (β∀ and η∀). More distinctive is η{ , which (as discussed in Section 2) allows

unrestricted η in either direction for any expression of a primitive function type τ { σ .
That leaves the reduction rule β{ . As is usual in a call-by-value λ-calculus, only some expressions—

called substitutable values, denoted by the metavariable S—can be passed to a primitive function

and substituted for its formal parameter by the β{ rule. The β{ rule only fires if the argument

of the application is substitutable. Unlike most systems—using a purely syntactic definition of

substitutable values—IL identifies these expressions by their type and kind, as defined by the rules

for the Γ ⊢ e subst judgment. Using the type and kind of the argument to define substitutability,

rather than only its syntax, allows us to integrate several different evaluation orders (call-by-value,

call-by-name, etc.) within the same language.

Consider the rules for the Γ ⊢ e subst judgment. Firstly, we designate all answers A to be

substitutable. Notice that, up to type erasure, each answer is considered a value in the call-by-

value λ-calculus. In other cases, the criteria for substitutability of a typed term e : τ depends on

the convention of τ rather than the syntax of e . For example, in a call-by-name setting, every

expression can be substituted for a variable. So in IL, all lazily-evaluated arguments—which have

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:18 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

the convention EvalL—are substitutable values, and hence allow β{ to fire. In contrast, the only

values in call-by-value languages are answers (A), so variables of type EvalU can only be substituted

with answers. More generally, answers are always substitutable in all of the evaluation strategies

we are interested in here, so we can say something more: A is substitutable for all conventions.
This extra step is helpful in case we are dealing with an expression—like x or I#д i—which has an

unknown convention but will inevitably be substitutable in any case.

For example, consider the different evaluation orders of a function call with lifted or unlifted

arguments. On the one hand, we can express a lazy call to plus (Section 4.4) such as

(λx :IntL.e) (plus L (I#L 1) (I#L 2)) =β{ e[plus L (I#L 1) (I#L 2)/x]

which substitutes the unevaluated argument for the parameter x right away according to β{ . This

is possible because the argument has the type IntL : TYPE PtrR EvalL, and so it is substitutable by

virtue of its type. On the other hand, the corresponding eager call would be

(λx :IntU.e) (plus U (I#U 1) (I#U 2)) = (λx :IntU.e) (I#U 3) =β{ e[I#U 3/x]

Here, we cannot apply the β{ directly as before, because the argument is not substitutable: it has

the type IntU : TYPE PtrR EvalU but is not an answer. Instead we must first evaluate the argument;

the result is the answer (I#U 3), and β{ can now fire.

5 COMPILATION TO IL FROM A HIGHER LEVEL
IL is, by design, a fairly low-level language making fine distinctions about representation, calling

conventions, evaluation orders, and so on. This makes it a target for both eager and lazy languages.

To see how, we now give translations for call-by-name and call-by-value System F into IL.

5.1 Call-by-Name System F to IL

To translate call-by-name System F into IL, we begin by picking a single “uniform” IL kind⋆ that
captures all the types of the source language, namely ⋆ = TYPE PtrR EvalL. Each source-language

type τ translates to an IL type ⟦τ⟧ of kind ⋆; that is, a pointer to a lifted value, perhaps a thunk.

Fig. 5 gives this type translation. To get the correct call-by-name semantics for numbers, we

use the boxed integer type IntL, which happily has the correct kind. However, even though the

primitive function type ⟦τ⟧ { ⟦σ⟧ has the correct call-by-name semantics, it has the wrong

kind TYPE PtrR Call[PtrR], so the translation coerces Call[PtrR] to EvalL with a closure type.

Polymorphic type abstraction is unchanged, only clarified that bound type variable ranges over ⋆.
To compile expressions, we only need to expand out the additions prescribed by the translation

of types. Numeric constants need to be boxed, functions and their calls need the explicit coercions

to and from closures, and bound type variables are annotated with their uniform kind.

5.2 Call-by-Value System F to IL

We can compile a call-by-value version of system F using virtually the same procedure as above.

Again, we need to decide on a uniform kind that is suitable for each source-level type, which is

⋆ = TYPE PtrR EvalU for call-by-value evaluation. As before, we can compile source-level types

following the invariant that ⟦τ⟧ : ⋆, as again shown in Fig. 5.

Note that we still compile integers to a boxed type, so that all values are represented uniformly

by a pointer, but this time we make it unlifted to reflect the call-by-value semantics. Function types

are still wrapped in a closure, as in the call-by-name case, but this time unlifted ones.

The translation of polymorphism is more complex, however, due a mismatch with the semantics

of call-by-value System F. With call-by-value evaluation, the abstraction Λt .⊥ is a value, even

though ⊥ diverges, whereas in call-by-name they would be η-equivalent. We need to make sure

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:19

Call-by-name where ⋆ = TYPE PtrR EvalL

⟦Int⟧ ≜ IntL ⟦t⟧ ≜ t ⟦x⟧ ≜ x ⟦i⟧ ≜ I#L i

⟦τ → σ⟧ ≜ L{⟦τ⟧ { ⟦σ⟧} ⟦λx :τ .e⟧ ≜ ClosL (λx :⟦τ⟧.⟦e⟧) ⟦e e ′⟧ ≜ (App ⟦e⟧) ⟦e ′⟧
⟦∀t .τ⟧ ≜ ∀t :⋆.⟦τ⟧ ⟦Λt .e⟧ ≜ Λt :⋆.⟦e⟧ ⟦e τ⟧ ≜ ⟦e⟧ ⟦τ⟧

Call-by-value where ⋆ = TYPE PtrR EvalU

⟦Int⟧ ≜ IntU ⟦t⟧ ≜ t ⟦x⟧ ≜ x ⟦i⟧ ≜ I#U i

⟦τ → σ⟧ ≜ U{⟦τ⟧ { ⟦σ⟧} ⟦λx :τ .e⟧ ≜ ClosU (λx :⟦τ⟧.⟦e⟧) ⟦e e ′⟧ ≜ (App ⟦e⟧) ⟦e ′⟧
⟦∀t .τ⟧ ≜ U{∀t :⋆.⟦τ⟧} ⟦Λt .e⟧ ≜ ClosU (Λt :⋆.⟦e⟧) ⟦e τ⟧ ≜ (App ⟦e⟧) ⟦τ⟧

Fig. 5. Compiling call-by-name and call-by-value System F to IL

Call-by-name substitutable values:

V ::= e

Call-by-value substitutable values:

V ::= x | λx :τ .e | Λt .e
Equational axioms (for both call-by-name and -value definitions of V):

(β→) (λx :τ .e) V = e[V /x] (η→) λx :τ .(V x) = V : τ → σ

(β∀) (Λt .e) τ = e[τ/t] (η∀) Λt .(V t) = V : ∀t .σ
(name) (λx :τ .e x) e ′ = e e ′

Fig. 6. Equational theory of System F; call-by-value and call-by-name

that this abstraction is still a value even after the polymorphic Λ is erased. For that reason, we must

introduce the additional call-by-value closure which is preserved to runtime.

The compilation of call-by-value expressions is nearly the same as call-by-name expressions.

Besides swapping L for U, the only difference is in for polymorphic abstractions and instantiations.

These have an extra closure that signifies call-by-value evaluation and, more importantly, makes

sure that the value Λt .e in System F compiles to a value, namely ClosU (Λt :⋆.⟦e⟧), which is essential
when side effects or non-termination enters the picture. For example, evaluatingΛt .error t i returns
immediately in call-by-value System F, but the corresponding Λt :⋆.error PtrR U t i causes an error

in IL. Intuitively, the explicit closure and application serve to codify the standard definition of

type erasure for call-by-value System F, which traditionally erases Λt .e into λ().e .

5.3 Correctness of Source-to-IL Compilation
Compiling call-by-name and call-by-value System F into IL are both correct: type checking and

equalities are preserved by translation. We assume the standard type system for System F and

semantics in Fig. 6. Note that the name axiom, which gives a name to the argument of a function,

corresponds to a right-to-left evaluation order for the call-by-value semantics, and is a consequence

of β→ in the call-by-name semantics. The preservation of types is straightforward, where the

compilation of a typing environment ⟦Γ⟧ is defined pointwise.

Theorem 1 (Type Preservation). If Γ ⊢ e : τ is derivable then so is ⟦Γ⟧ ⊢ ⟦e⟧ : ⟦τ⟧.
Theorem 2 (Soundness and Completeness). Γ ⊢ e = e ′ : τ in call-by-name System F if and only if
⟦Γ⟧ ⊢ ⟦e⟧ = ⟦e ′⟧ : ⟦τ⟧ via call-by-name compilation, and likewise for call-by-value.

6 COMPILATION FROM IL TO A LOWER LEVEL
In order to illustrate how our levity-polymorphic intermediate language IL might be compiled

to a more conventional, lower-level language, we introduce an abstract machine that supports

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:20 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

PrimRep ∋ π ::= PtrR | IntR Strictness ∋ ψ ::= L | U KnownConv ∋ η ::= Evalψ | Call[π]

Expr ∋ e ::=W |W (a) | App e(a) | case e of I#(xIntR) → e ′ | letxψπ = e in e ′

Reference ∋ R ::= I#(a) | ClosnW | λ(xπ).e

Value ∋ V ::= c | I#(a) | ClosnW WHNF ∋W ::= R | a Arg ∋ a ::= c | xπ

StackCont ∋ K ::= ε | App(a);K | case I#(xIntR) → e;K | letxπ in e;K | setx ;K
Store ∋ H ::= ε | [x := R]H | [x := memo e]H

MachineState ∋ m ::= ⟨e |K |H ⟩ | error(n) Final ∋ Fin ::= ⟨V | ε |H ⟩ | error(n)

(PshApp) ⟨App e(a) |K |H ⟩ 7→ ⟨e | App(a);K |H ⟩

(PshCase) ⟨case e of I#(xIntR) → e ′ |K |H ⟩ 7→ ⟨e | case I#(xIntR) → e ′;K |H ⟩

(PshLet) ⟨letxUπ = e in e ′ |K |H ⟩ 7→ ⟨e | letxπ in e ′;K |H ⟩

(LAlloc) ⟨letxLPtrR = e ′ in e |K |H ⟩ 7→ ⟨e[yPtrR/xPtrR] |K | [y := memo e ′]H ⟩

(Call) ⟨(λ(xπ).e)(a) |K |H ⟩ 7→ ⟨e[a/xπ] |K |H ⟩

(Apply) ⟨ClosnW | App(a);K |H ⟩ 7→ ⟨W (a) |K |H ⟩ (if n = |a |)

(Unbox) ⟨I#(a) | case I#(xIntR) → e;K |H ⟩ 7→ ⟨e[a/xIntR] |K |H ⟩

(Move) ⟨c | letxπ in e;K |H ⟩ 7→ ⟨e[c/xπ] |K |H ⟩

(SAlloc) ⟨R | letxPtrR in e;K |H ⟩ 7→ ⟨e[yPtrR/xPtrR] |K | [y := R]H ⟩

(Fun) ⟨yPtrR(a) |K | [y := R]H ⟩ 7→ ⟨R(a) |K | [y := R]H ⟩

(Look) ⟨yPtrR |K | [y := R]H ⟩ 7→ ⟨R |K | [y := R]H ⟩

(Force) ⟨yPtrR |K | [y := memo e]H ⟩ 7→ ⟨e | sety;K | [y := memo e]H ⟩

(Memo) ⟨R | sety;K | [y := memo e]H ⟩ 7→ ⟨R |K | [y := R]H ⟩

(Error) ⟨error(n) |K |H ⟩ 7→ error(n)

Fig. 7. Syntax and semantics for ML

non-uniform representations and function arities, both of which must be monomorphic. The idea

is to model a realistic machine architecture with multiple basic kinds of data representations

(e.g., pointers vs. integers), and where primitive functions are passed multiple arguments but are

otherwise first order (though primitive function pointers may be passed as arguments and invoked).

The syntax of this language, which we callML, is given in Fig. 7, along with its abstract machine.
13

The syntax ofML is restricted from the more λ-calculus-inspired IL in several ways:

• Expressions follow the A-normal form (ANF) convention [Sabry and Felleisen 1993]: all

arguments a are either variables or constants. To support ANF,ML has a let construct.
• Primitive functions (λ(yπ).e) and calls (W (a)) have an explicit arity and pass multiple argu-

ments at once, but cannot be partially applied.

• An applied function cannot be an arbitrary expression; it must be a weak head-normal form,

namely a reference to a λ, variable, or constant. Every applicationW (a) can be resolved in at

most two steps: lookupW if it’s a variable, then applyW if it’s a λ or constant (like error).

As such, it is impossible to chain several calls in a row. For example, f (1)(2) is not a legal expression
in ML. If f is an arity 2 primitive function, it must be called as f (1, 2); if it is an arity-1 primitive

function returning a closure of an arity-1 primitive function, it must be called as (App f (1))(2). The

13
For aficionados of GHC, IL is like GHC’s Core language, while ML is like the STG language [Peyton Jones 1992].

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:21

number of arguments passed at once is explicitly fixed in each λ-abstraction and call site. In other

words,ML does not support polymorphism of function arity.

ML’s syntax includes annotations that make the semantically important information in types

explicit, so the syntax of programs makes it clear how they are executed. In particular, each

variable is annotated with its representation π , which must be either a pointer (PtrR) or integer
(IntR), corresponding to an assignment to an appropriate register. In other words, all variables are

permanently assigned a representation—intuitively, stored in either an integer or address register.

By design, ML does not support polymorphism over these representations because the different

types of machine registers are distinct, and the choice made is fixed in the code.

Additionally, each let binding is annotated as either eager (U) or lazy (L). This controls whether
the right-hand side of the let is evaluated first before being bound to the variable, or bound first

and evaluated later as needed. Again, this decision about evaluation order must be statically chosen

for each let, soML does not support polymorphism over evaluation order.

6.1 The Semantics ofML

Executing an ML program involves a machine configuration of the form ⟨e |K |H ⟩, where e is
the expression being evaluated, K is the continuation or call stack of evaluation, and H is the heap

for storing allocated memory. Heaps may contain both values ([x := V]H) or unevaluated thunks

([x := memo e]H). Both call stacks and heaps are conventional, except that a stack may contain

an application of many arguments in a single stack frame, like App(a);K . The other cases of stack
frames include a case, a strict let binding, and a set construct to memoize thunk evaluation.

Many of the steps of the machine are also conventional, including those for pushing stack

frames (PshApp, PshCase , PshLet) and allocating memory (LAlloc , SAlloc), but note that we include
cases for both lazy bindings (LAlloc) and strict ones (PshLet , SAlloc). Next we have the rules for
performing interesting reductions. Apply resolves the application of a closure by extracting the

primitive function it contains, andCall calls a primitive function directly. Note thatApply can check

that the number of arguments matches the arity of the closure at runtime (and potentially respond

appropriately if they do not match, as we do later in Section 7). Instead, Call is merely undefined

when the arguments don’t match the bound parameters, representing a type or memory unsafe

error. In addition, we haveMove for moving a constant into an appropriate variable (corresponding

to a register) andUnbox for extracting the contents of a boxed integer. Finally, we have the rules

for handling pointer variables at runtime. Fun expects a function pointer to map to a value. For

other pointers, we have to check if it is evaluated, to either Look up values or else Force thunks.14

When a forced thunk returns a value, it isMemoized to share the result on future uses.

6.2 Compilation
Compilation from IL to the low-level machine language ML is given in Fig. 8. The top-level

translation is Eν ⟦e⟧Γθ , which compiles a typed expression Γ ⊢ e : τ given τ ’s convention is

ν . The environment θ is a mapping from IL variables to ML arguments (either constants or

representation-annotated variables) written as [a1/x1] . . . [an/xn].
A key part in understanding the compilation in Fig. 8 is to remember the distinction between

calling and evaluating. In our system, only expressions with types like Int#, Intγ , and γ{τ } can be

evaluated. In contrast, expressions with types like τ { σ can only be called. Implementing this

distinction is the main role of Eν ⟦e⟧Γθ , which takes into account the convention ν of e : if it is Evalγ

14
Note that this uniform check on pointers yPtrR is needed to support levity polymorphism for types like Intд and

д{τ }.
In a more practical compiler, we could have specialized code that avoids a check when it is statically known, due to type

checking that yPtrR must be unlifted, so that the Look step always applies without a dynamic check. Thus, a language

which is call-by-value by default does not have to pay the runtime penalty for thunks unless they are actually being used.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:22 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

In the following, all equations are tried left-to-right, top-to-bottom.
Top-level eta expansion:

Eν ⟦A⟧Γθ ≜ A⟦A⟧Γθ EEvalγ ⟦e⟧Γθ ≜ C⟦e⟧Γθ (ε) ECall[π]⟦e⟧Γθ ≜ λ(xπ).C⟦e⟧Γθ (xπ)
Constants and variables:

C⟦i⟧Γθ (ε) ≜ i C⟦x⟧Γ,x :τθ (ε) ≜ θ (x) (if Γ ⊢ τ
conv
⇝ Evalψ)

C⟦error⟧Γθ (a) ≜ error(a) C⟦x⟧Γ,x :τθ (a) ≜ (θ (x))(a) (if Γ ⊢ τ
conv
⇝ Call[π])

Applications (the following equations are tried top-to-bottom):

C⟦App e⟧Γθ (a) ≜ App (C⟦e⟧Γθ (ε))(a)
C⟦e ϕ⟧Γθ (a) ≜ C⟦e⟧Γθ (a)
C⟦e A⟧Γθ (a) ≜ C⟦e⟧Γθ (A⟦A⟧Γθ ,a) (if A⟦A⟧Γθ = xπ or A⟦A⟧Γθ = c)
C⟦e A⟧Γθ (a) ≜ letxUPtrR = A⟦A⟧Γθ inC⟦e⟧Γθ (xPtrR,a)
C⟦e e ′⟧Γθ (a) ≜ letx

lev(η)
π = Eη ⟦e ′⟧Γθ inC⟦e⟧Γθ (xπ ,a) (if Γ ⊢ e ′:τ , Γ ⊢τ

rep
⇝π , and Γ ⊢τ

conv
⇝η)

Boxing and unboxing:

C⟦I#γ A⟧Γθ (ε) ≜ A⟦I#γ A⟧Γθ
C⟦I#γ e⟧Γθ (ε) ≜ letxUIntR = C⟦e⟧Γθ (ε) in I#(xIntR)

C⟦case e ′ of I# x → e⟧Γθ (a) ≜ caseC⟦e ′⟧Γθ (ε) of I#(xIntR) → C⟦e⟧Γ,x :Int#
[xIntR/x]θ

(a)

Abstractions:

C⟦λx :σ .e⟧Γθ (a′,a) ≜ C⟦e⟧Γ,x :σ
[a′/x]θ (a)

C⟦Λχ .e⟧Γθ (a) ≜ C⟦e⟧Γ, χθ (a)

C⟦Closγ e⟧Γθ (ε) ≜ A⟦Closγ e⟧Γθ
Type erasure of answers:

A⟦c⟧Γθ ≜ c A⟦x⟧Γθ ≜ θ (x) A⟦I#γ A⟧Γθ ≜ I#(A⟦A⟧Γθ)
A⟦A ϕ⟧Γθ ≜ A⟦A⟧Γθ A⟦Λχ .A⟧Γθ ≜ A⟦A⟧Γθ

A⟦Closγ e⟧Γθ ≜ Clos|arity(η)| E
Call[arity(η)]⟦e⟧Γθ (if Γ ⊢ e : τ and Γ ⊢ τ

conv
⇝ η)

Calculating known representations and conventions, and the levity of a known convention:

Γ ⊢ τ : TYPE π ν π ∈ PrimRep

Γ ⊢ τ
rep
⇝ π

Γ ⊢ τ : TYPE ρ η η ∈ KnownConv

Γ ⊢ τ
conv
⇝ η

lev(Evalψ) = ψ
lev(Call[π]) = U

Fig. 8. Compiling IL to ML

then we can evaluate the result of e directly by the main compilation translation, otherwise if it is

Call[π] then e must be called (not evaluated). To make sure that the definition and call sites of

a primitive function match, we always fully η-expand these expressions when they are defined:

either on the right-hand side of lets or in the body of Closures. Because of η-expansion, this step
of compilation is only defined when the calling convention is statically known (e.g., it is not a
variable n or partially-defined like Call[r1, r2, arity(n)]). In any case, we next move to the main

work-horse of compilation, C⟦e⟧Γθ (a), that producesML code to evaluate the result of e applied to

the arguments (a). Again, there are invariants to this translation that we will enumerate shortly.

For C⟦e⟧Γθ (a), literal constants are just passed through, but compiling a call to error assumes

precisely one argument. What if the user has written a partial application of error? Such partial

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:23

applications are always η-expanded to be fully saturated, satisfying the requirement here. Compiling

a variable x looks it up in the environment θ , but there is differentML code for evaluating x versus

calling it, even when there are no arguments. In other words, a primitive function variable x with the

empty calling convention Call[] compiles as C⟦x⟧Γ
[yPtrR/x]θ (ε) = yPtrR()—a nullary function call—but

a variable x with the convention Evalγ compiles as to the pointer lookup C⟦x⟧Γ
[yPtrR/x]θ (ε) = yPtrR.

Closure applications are compiled straightforwardly, and erasable arguments ϕ and binders Λχ .e
are simply dropped. IL answers can be compiled outright to aML WHNF via A⟦A⟧Γθ . Compiling

an application to an answer A depends on the nature of that answer:

• If A⟦A⟧Γθ is a variable or constant (after type erasure), then it can be passed directly.

• Otherwise, name the argument with a let (respecting the A-normal form) and pass it by

reference. In this case, the compiled argument will always have the form I#(a) or ClosnW ,

meaning the let-binding will always be represented as a pointer into the heap.
15

In the variable case, we do not need to track the levity or representation of the argument, because

these decisions have already been made by the context, when the variable definition itself was

compiled. Crucially, we did not have to look up any information in the typing environment to

compile answer arguments; this is why no highlighted premises are needed in rule Fun-A-E.

In the case of an application e e ′ to an arbitrary argument that needs to be computed, corre-

sponding to Fun-E, we always generate a let similar to the second case for e A. However, for Fun-E,
we need to determine the representation, convention, and levity of the binding, which could truly

be anything. This corresponds to the highlighted side conditions in Fun-E.

6.3 Correctness of Compilation
Notice how the same polymorphism restrictions used in the typing rules also appear during

compilation. Even though the defined compilation translation is partial (not every syntactically

valid expression can be compiled), all well-typed IL expressions with a known convention have

a defined compilation to ML. In particular, Eη⟦e⟧ is well-defined for any closed expression

⊢ e : τ : TYPE ρ η, where the syntax of known conventions η is given in Fig. 7.

In fact, we allow for a little more levity polymorphism during compilation: EEvalд⟦e⟧, for a
polymorphic levity д, is also allowed. That’s because the generated code will be executed exactly

when expression is evaluated: in other words, when a computation is forced, there is no difference

between eager (U) or lazy (L). This added flexibility is essential for compiling levity polymorphic

expressions appearing in strict contexts, such as in the discriminant of a case or first argument of

App. Although implicit, the C translation assumes that evaluation of the compiled expression is

being forced. In contrast, the A translation does not assume this, because it is used in contexts

that do not force the expression. This small difference is how we are able to pass variables of any
convention (eager, lazy, or primitive functions) without erroneously introducing extra strictness.

During compilation, we occasionally need to know representation (π) or convention (η) of a

sub-expression. This appears in Fig. 8 as highlighted side conditions Γ ⊢ τ
rep
⇝ π and Γ ⊢ τ

conv
⇝ η,

respectively. In general, compilation could fail if the representation or convention in the kind of

τ are partially unknown—that is, contains free variables. But any closed representation has the

form π and any closed convention is equivalent to a η, as defined by the syntax ofML in Fig. 7.

The places where this requirement appears corresponds exactly to the highlighted monomorphism

restrictions in Fig. 3.

Theorem 3 (Closed Compilation). If ⊢ e : τ and ⊢ τ : TYPE ρ ν then Eν ⟦e⟧ is defined.

15
A more feature-rich language may allow for representations other than just a single pointer, in this case. Even then,

answers compile to values with syntactically manifest representations, so no additional typing information is needed here.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:24 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

This theorem just states when compilation succeeds in generatingML code from a closed IL

expression. We should also expect that compilation preserves the behavior of that IL expression as

well. In other words, if an expression is equal to some answer in IL (as per Fig. 4), then executing

the compiled code should give the same answer inML. But we are not interested in evaluating

primitive functions directly—they are called, not evaluated!—so answers will be of some Evaluatable
types like (un)boxed integers, which are simple enough values to line up on the nose.

Theorem 4 (Soundness and Completeness).
(1) For any ⊢ e : Int#, ⊢ e = i : Int# if and only if ⟨EEvalU⟦e⟧ | ε | ε⟩ 7→∗ ⟨i | ε |H ⟩.
(2) For any ⊢ e : Intγ , ⊢ e = I#γ i : Intγ if and only if ⟨EEvalγ ⟦e⟧ | ε | ε⟩ 7→∗ ⟨I#(i) | ε |H ⟩.

7 DYNAMIC ARITY
Consider the following program written in Haskell, where exp is some expensive function:

16

dataT = MkT (Int → Int → Int)

t1 = MkT (λx . let z = exp x in λy.z + y)
t2 = MkT plus

appT1 : T → Int → Int
appT1 (MkT д) = д 1
appT2 : T → Int
appT2 (MkT д) = д 1 2

In terms of the informal notion of arity in the source language (Section 2), we can say that t1 stores
an arity 1 closure and t2 stores an arity 2 closure. Likewise, appT1 performs an arity 1 application

and appT2 performs an arity 2 application. This can be compiled to IL (extended with data type

declarations) similar to the translation in Fig. 5, which formalizes the arities like so:

dataT = MkT L{Int { L{Int { Int}}

t1 = MkT (ClosL λx . let z = exp x in ClosL λy.z + y)
t2 = MkT (ClosL λx .ClosL λy.plus x y)

appT1 : T { L{Int { Int}
appT1 (MkT д) = Appд 1

appT2 : T { Int
appT2 (MkT д) = App (Appд 1) 2

Notice how appT2 (MkTд) does not apply д to both arguments at once; instead, it must evaluate д
applied to 1 first, then apply the returned closure to 2 in a separate step. The two-step application

process is mandated by the type of the MkT constructor, even though most of the time MkT will

ultimately be used store a closure capable of accepting both arguments at once. This arity demotion

can be seen in t1, where the binary plus function is wrapped up in a chain of two unary closures,

as required by MkT . As a result, the call appT1 t2 must pass 1 and 2 separately to plus, losing the
opportunity for the faster binary calling convention that seemed possible in the source program.

We can attempt improve the performance of t2 and appT2 with an alternate translation:

dataT ′ = MkT ′ L{Int { Int { Int}

t1′ = MkT ′ (ClosL λx .λy. let z = exp x in z + y)
t2′ = MkT ′ (ClosL plus)

appT1′ : T ′ { Int { Int
appT1′ (MkT ′д)x = Appд 1x

appT2′ : T ′ { Int
appT2′ (MkT ′д) = Appд 1 2

Now, MkT ′
contains a closure of a single binary function. This way, appT2′ t2′ steps to the single

binary application plus 1 2, passing both arguments at once to plus. But the type of MkT ′
makes

it impossible to contain closures that memoize work when applied to only one argument—an

unfortunate, unintended ramification of this “optimization.” Unlike before, the closure inside t1′

recomputes exp x every time the second argument is given, instead of memoizing the result once

the first argument is provided. Here, we make this fact syntactically explicit by η-expanding the
definitions of t1′ and appT1′, but because{-types are fully extensional, the same recomputation

16
The exact same example applies to OCaml as well by replacing L with U in translations into IL that follow.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:25

will occur no matter what. For example, map (appT1′ t1′) [1..1000] recomputes exp 1 for all 1000

elements of the list, whereas the previous map (appT1 t1) [1..1000] only computes exp 1 once.

The root of the problem is that the data type definition of T forces us to pick one type for the
constructor MkT . Because IL statically links this type to an arity, we are thus forced to pick one
arity for MkT closures that is used throughout the entire program. MkT may often be used to hold

essentially binary function closures, but the computational effect of unary application of MkT
closures can still be crucial in certain corners of a program—either for asymptotic complexity in

Haskell or for side effects in OCaml.

Rather than enforcing statically that every call is exactly saturated, perhaps we could perform

a dynamic check. Given a binary application, we could interrogate the function value to check

its arity, and behave differently depending on whether that arity is 1 (an over-saturated call), 2

(exactly saturated, the fast case), or greater than 2 (unsaturated). This is, in fact, what GHC does

today, and corresponds to the “unknown” function calls of Marlow and Peyton Jones [2004] which

inspect the arities of closure values at runtime to choose the best calling convention. But how can

IL—with its statically-tracked notion of arity—accommodate dynamic arity checking?

The key is to allow for the primitive functions contained in closures to have a different arity than

their call site, thus requiring a dynamic check on all Applications of closures. Applying too few

arguments creates a partial application, and applying too many is broken down into several steps.

More formally, the syntax ofML can be extended with partial applications Closn f (a), where f
has been applied to arguments a so far and n is the number of remaining arguments expected before

f can be called. Now, consider these extra rules for dynamic handling a runtime arity mismatch:

(Apply) ⟨ClosnW (a) | App(a′);K |H ⟩ 7→ ⟨W (a,a′) |K |H ⟩ (if |a′ | = n)

(PApp) ⟨ClosnW (a) | App(a′);K |H ⟩ 7→ ⟨Closn−|a
′ |W (a,a′) |K |H ⟩ (if |a′ | < n)

(OApp) ⟨ClosnW (a) | App(a′,a′′);K |H ⟩ 7→ ⟨W (a,a′) | App(a′′);K |H ⟩ (if |a′ | = n, |a′′ | > 0)

In practice, these extra rules for partial- and over-application lets us treat closure types like

L{Int { L{Int { Int}} and L{Int { Int { Int} as the same, without endangering type safety

due to arity mismatch. For example, this would eliminate the difference between the T and T ′
data

types from before. With these dynamic arity checks, it is safe to call appT1 t2′: this results in a

partial application because the caller (appT1) only provides one argument to the binary closure (t2′).
Likewise, it is safe to call appT2′ t1: this results in an over application where the caller (appT2′)
wants to pass two arguments to a unary closure (t1). Yet, in the cases where the optimal arities do

match (like appT1 t1 and appT2′ t2′), the fastest calling convention is used at runtime. Therefore,

the types T and T ′
can be used interchangeably, in some sense, as long as arities are checked at

runtime. More generally, dynamic arity checks lets us safely equate these two closure types:

γ{τ { γ{σ }} = γ{τ { σ }

This could be formalized in IL as a type equality or a type-safe coercion [Breitner et al. 2016]:

both types are represented identically at runtime as closure objects with some runtime arity count.

In the end, both known and unknown calls of Marlow and Peyton Jones [2004] can be captured in

the intermediate language. The arity of a type τ { σ is known statically by its kind, and the program

must provide the right number of arguments and binders. However, types like
γ{τ { σ } and

γ{τ { γ{σ }}, which both store additional arity information at runtime, can be freely interchanged

at compile time, as long as the arities are checked at runtime. To be clear, this extension has a

trade-off: the closures described here are subject to extra dynamic checks. It is possible that an

implementation would want to have both statically checked closures and dynamically checked

ones. We can accommodate both by simply having two different closure types (with their own

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:26 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

Clos and App). Then, an optimizing compiler, or an expert user, can select the one with the best

performance for a particular part of a program.

8 RELATEDWORK
The system presented in this paper is the culmination of several independent lines of work on

expressing performance issues directly in an intermediate language. The underlying theme is to

capture the low-level details of calling conventions as features of a higher-level functional language.

8.1 Representation and Levity in the Kinds
The idea of distinguishing (un)boxed and (un)lifted types goes back to Peyton Jones and Launchbury

[1991]. That distinction has been static until recent work added levity polymorphism to the mix

[Eisenberg and Peyton Jones 2017], and shown that its utility is greater than expected (see Section

7 of that work). However, Eisenberg and Peyton Jones [2017] conflates levity polymorphism and

representation polymorphism. Our contribution separates the two completely, with applications

that are polymorphic in one but not the other. One our main requirements is to generate only one
piece of code for every polymorphic definition. Certain definitions that must be rejected, because

compilation would depend on a choice made at runtime. An alternative approach by Dunfield

[2015] accepts more uses of levity polymorphism at the cost of generating different code for each
choice—an exponential blowup of code size in practice—which we avoid.

8.2 Optimizing Curried Functions
Previous work established methods for optimizing curried function calls dynamically at runtime,

avoiding the overhead of naively calling ((f 1) 2) 3 by passing one argument at a time. In practice,

f will often expect all three arguments before doing any interesting work, so those calls should be

fused when possible. Fusing can be done by pushing many arguments on the stack at once (the

push/enter model) [Krivine 2007; Leroy 1990] or by evaluating the arity of closures (the eval/apply

model) [Marlow and Peyton Jones 2004]. In this work, we capture this dynamic type of optimization

within the syntax and types of programs, as described in Section 7.

8.3 Function Arity in Types
While there is performance to be gained by dynamically optimizing curried function calls at runtime,

it is even better to optimize statically at compile time. Of course, this is easy to do when the compiler

can find the definition of the called function [Marlow and Peyton Jones 2004]. This scheme is easily

thwarted by higher-order functions, so a less syntactic approach—like one based on types—can be

beneficial. Uncurrying—representing a function a→b→c→d as (a,b, c)→d—is an obvious place to

start, and has been investigated before [Bolingbroke and Peyton Jones 2009; Dargaye and Leroy

2009; Hannan and Hicks 1998]. However, when polymorphism is brought into the picture, type

quantification is irreparably fused with multi-arity functions; see [Downen et al. 2019, Section 8.1].

Following Downen et al. [2019], IL instead retains the curried form of function types. However,

IL goes significantly beyond that work by supporting type polymorphism over arrow types

(Section 4.3), and polymorphism over levities (Section 4.4) and conventions (Section 4.5). Another

difference is that Downen et al. [2019] had two function arrows, (τ
γ
→σ) and (τ { σ), whereas IL

has just one arrow (τ { σ), plus the closure type γ{τ }. The two are inter-convertible: we showed

how to translate τ
γ
→σ to IL for either γ in Fig. 5, and in the other direction we have

γ{τ } = ()
γ
→τ

with (Closγ e) = λγ().e and (App e) = e (). Note that, to make the analogy operationally exact, the

unit type () should be an unboxed, empty tuple (i.e., represented as 0 arguments at runtime). The

approach here has a greater economy of concepts, and a nice correspondence with Int# and Intγ .
However, two function arrows might be better for a practical compiler.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

Kinds Are Calling Conventions 104:27

8.4 The Glasgow Haskell Compiler
GHC already implements a rich kind system, including polymorphism over types, kinds, and

representations. Indeed GHC goes further: instead of a stratified zoo of different things (types,

kinds, representations, etc.) as in Fig. 1, they are all types [Weirich et al. 2013] kept separate

by their kinds. This is a fantastic simplification, immediately allowing polymorphism over all

these conceptually-different things. This does, however, make it hard not to have polymorphism!

Returning to Section 4.3, it would be hard to prevent instantiation of a forall-quantified type variable

with an arrow type, requiring a restriction like “this quantified variable can have any kind other
than Call.” So GHC’s infrastructure strongly encourages fully-fledged polymorphism.

8.5 Logical Foundations
The IL language is not an ad-hoc collection of design compromises driven by only performance

considerations. Rather, it grows directly from principled foundations in logic.

Previous work on unboxed types and extensional functions shares the observation that lifting—in
the sense of denotational semantics—corresponds to a mismatch between machine primitives and

the semantics of a programming language. Unlifted types can be implemented more directly—and

therefore more efficiently—in a machine. But the cause of lifting depends on the type: unlifted

integers need to be call-by-value whereas unlifted curried functions need to be call-by-name. The

first reconciliation was achieved in call-by-push-value [Levy 2001], which avoids all lifting unless

explicitly requested. As such, this paper can be seen as a practical extension of this foundation.

The same connection between types and evaluation is also tied to focusing and polarity [Andreoli

1992; Laurent 2002] in proof search, which corresponds to pattern-matching in functional program-

ming [Zeilberger 2008, 2009] and semantics and computation [Munch-Maccagnoni 2009, 2013].

Recently, these mixed evaluation strategy languages have been extended with practical features

like call-by-need evaluation [Downen and Ariola 2018; McDermott and Mycroft 2019] to model

shared computation. Of note, the types in IL used for boxing and indirection correspond exactly to

the “polarity shifts” of Downen and Ariola [2018] to and from call-by-need. In particular, the boxed

integer type corresponds to an “up shift” (Int = ⇑Int#) and the function closures to a “down shift”

({τ { σ } = ⇓(τ { σ)). For the sake of usability, IL performs other implicit polarity conversions

of types based on their context. For example, closing over a non-function type like Int# implicitly

shifts it to a “nullary function” (there written ↑ Int), expressed by the encoding {Int#} = ⇓↑Int#.

9 CONCLUSION
This paper illustrates a cohesive system for including low-level details—specifically representation,
levity, and arity—inside a higher-level intermediate language. Not only does this let the language

express intensional properties of programs, it also lets programs abstract over these details when
they do not impact compilation. Parts of this work have been implemented already in the Glasgow

Haskell Compiler, and we intend to further implement the entirety of kinds as calling conventions.

The story presented here takes an explicitly typed intermediate language and—through type-driven

elaboration—compiles it to an untyped target language. As future work, it could be enlightening

to consider how types might be preserved by compilation by giving a sufficiently expressive type

system for the lower-level language. Since the main objective is to capture performance in the

intermediate language, we would also like to characterize the cost of computation in its semantics.

ACKNOWLEDGMENTS
The authors would like to thank Norman Ramsey and the anonymous reviewers, whose feedback

was invaluable in improving the presentation of this paper. The material is based upon work

supported by the National Science Foundation under Grant No. 1719158.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

104:28 Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A. Eisenberg

REFERENCES
Jean-Marc Andreoli. 1992. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic and Computation 2, 3

(1992), 297–347. https://doi.org/10.1093/logcom/2.3.297

Zena M. Ariola and Matthias Felleisen. 1997. The Call-By-Need Lambda Calculus. Journal of Functional Programming 7, 3

(May 1997), 265–301. https://doi.org/10.1017/S0956796897002724

Maximilian C. Bolingbroke and Simon L. Peyton Jones. 2009. Types Are Calling Conventions. In Proceedings of the 2nd ACM
SIGPLAN Symposium on Haskell (Haskell ’09). ACM, 1–12.

Joachim Breitner. 2014. Call Arity. In Trends in Functional Programming - 15th International Symposium, TFP 2014, Soesterberg,
The Netherlands, May 26-28, 2014. Revised Selected Papers. 34–50.

Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and Stephanie Weirich. 2016. Safe zero-cost coercions for

Haskell. Journal of Functional Programming 26 (2016), e15. https://doi.org/10.1017/S0956796816000150

Zaynah Dargaye and Xavier Leroy. 2009. A verified framework for higher-order uncurrying optimizations. Higher-Order
and Symbolic Computation 22, 3 (2009), 199–231.

Paul Downen and Zena M. Ariola. 2018. Beyond Polarity: Towards a Multi-Discipline Intermediate Language with Sharing.

In 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK. 21:1–21:23.
Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. 2019. Making a Faster Curry with Extensional

Types. In Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell (Haskell 2019). Association for

Computing Machinery, New York, NY, USA, 58–70. https://doi.org/10.1145/3331545.3342594

Joshua Dunfield. 2015. Elaborating evaluation-order polymorphism. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015. 256–268.

Richard Eisenberg. 2019. GHC Proposal 29: revised levity polymorphism. https://github.com/ghc-proposals/ghc-proposals/

blob/master/proposals/0029-levity-polymorphism.rst

Richard A. Eisenberg and Simon Peyton Jones. 2017. Levity polymorphism. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. 525–539.

Sebastian Graf. 2020. GHC Proposal 265: unlifted data types. https://github.com/ghc-proposals/ghc-proposals/blob/master/

proposals/0265-unlifted-datatypes.rst

John Hannan and Patrick Hicks. 1998. Higher-Order unCurrying. In POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, CA, USA, January 19-21, 1998. 1–11.

Jean-Louis Krivine. 2007. A Call-By-Name Lambda-Calculus Machine. Higher-Order and Symbolic Computation 20, 3 (2007),

199–207.

Olivier Laurent. 2002. Étude de la polarisation en logique. Ph.D. Dissertation. Université de la Méditerranée - Aix-Marseille

II.

Xavier Leroy. 1990. The ZINC experiment: an economical implementation of the ML language. Technical report 117. INRIA.
Paul Blain Levy. 2001. Call-By-Push-Value. Ph.D. Dissertation. Queen Mary and Westfield College, University of London.

Simon Marlow and Simon L. Peyton Jones. 2004. Making a fast curry: push/enter vs. eval/apply for higher-order languages.

In Proceedings of the Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP 2004, Snow Bird, UT,
USA, September 19-21, 2004. ACM, 4–15.

Andrew Martin. 2019a. GHC Proposal 112: unlifted arrays. https://github.com/ghc-proposals/ghc-proposals/blob/master/

proposals/0112-unlifted-array.rst

Andrew Martin. 2019b. GHC Proposal 203: pointer rep. https://github.com/ghc-proposals/ghc-proposals/blob/master/

proposals/0203-pointer-rep.rst

Andrew Martin. 2019c. GHC Proposal 98: unlifted newtypes. https://github.com/ghc-proposals/ghc-proposals/blob/master/

proposals/0098-unlifted-newtypes.rst

Dylan McDermott and Alan Mycroft. 2019. Extended Call-by-Push-Value: Reasoning About Effectful Programs and

Evaluation Order. In Programming Languages and Systems, Luís Caires (Ed.). Springer International Publishing, Cham,

235–262.

Guillaume Munch-Maccagnoni. 2009. Focalisation and Classical Realisability. In Computer Science Logic: 23rd international
Workshop, CSL 2009, 18th Annual Conference of the EACSL (CSL 2009), Erich Grädel and Reinhard Kahle (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 409–423.

Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-Associative Composition of Programs and Proofs. Ph.D.
Dissertation. Université Paris Diderot.

Simon L. Peyton Jones. 1992. Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-machine.

Journal of Functional Programming 2, 2 (1992), 127–202.

Simon L. Peyton Jones and John Launchbury. 1991. Unboxed Values As First Class Citizens in a Non-Strict Functional

Language. In Proceedings of the 5th ACM Conference on Functional Programming Languages and Computer Architecture.
Springer-Verlag, London, UK, UK, 636–666.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1017/S0956796897002724
https://doi.org/10.1017/S0956796816000150
https://doi.org/10.1145/3331545.3342594
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0029-levity-polymorphism.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0029-levity-polymorphism.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0265-unlifted-datatypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0265-unlifted-datatypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0112-unlifted-array.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0112-unlifted-array.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0203-pointer-rep.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0203-pointer-rep.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0098-unlifted-newtypes.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0098-unlifted-newtypes.rst

Kinds Are Calling Conventions 104:29

Amr Sabry and Matthias Felleisen. 1993. Reasoning About Programs in Continuation-Passing Style. Lisp and Symbolic
Computation 6, 3-4 (Nov. 1993), 289–360.

Amr Sabry and Philip Wadler. 1997. A Reflection on Call-by-Value. ACM Transactions on Programming Languages and
Systems 19, 6 (1997), 916–941.

Alex Theriault. 2019. GHC Proposal 209: levity-polymorphic Lift. https://github.com/ghc-proposals/ghc-proposals/blob/

master/proposals/0209-levity-polymorphic-lift.rst

Philip Wadler, Walid Taha, and David Macqueen. 1998. How to add laziness to a strict language without even being odd. In

Proceedings of the Standard ML Workshop.
Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In International

Conference on Functional Programming (ICFP ’13). ACM.

Noam Zeilberger. 2008. On the Unity of Duality. Annals of Pure and Applied Logic 153, 1 (2008), 660–96.
Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and Pattern-Matching. Ph.D. Dissertation. Carnegie Mellon

University.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 104. Publication date: August 2020.

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0209-levity-polymorphic-lift.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0209-levity-polymorphic-lift.rst

	Abstract
	1 Introduction
	2 Function Arity
	2.1 What Is Arity?
	2.2 Arity in the Intermediate Language
	2.3 Currying
	2.4 Functions Are Called, Not Evaluated

	3 Why Kinds are Calling Conventions
	3.1 Why Polymorphism Is a Problem
	3.2 Nonuniform Representations and Polymorphism
	3.3 A Stop-Gap Solution
	3.4 A Better Way: Look to the Kinds
	3.5 Arity Polymorphism
	3.6 Evaluation Strategy and Levity
	3.7 From IL to ML

	4 The Intermediate Language (IL)
	4.1 Simplifying Assumptions
	4.2 Kinds, Representations, Levities, and Conventions
	4.3 Calling Conventions in Kinds
	4.4 Polymorphism in Levity and Representation
	4.5 Polymorphism in Convention
	4.6 Restrictions on Polymorphism
	4.7 The Forall Rule
	4.8 User-Defined Types and Code Reuse
	4.9 Equational Theory

	5 Compilation to IL from a Higher Level
	5.1 Call-by-Name System F to IL
	5.2 Call-by-Value System F to IL
	5.3 Correctness of Source-to-IL Compilation

	6 Compilation from IL to a Lower Level
	6.1 The Semantics of ML
	6.2 Compilation
	6.3 Correctness of Compilation

	7 Dynamic Arity
	8 Related Work
	8.1 Representation and Levity in the Kinds
	8.2 Optimizing Curried Functions
	8.3 Function Arity in Types
	8.4 The Glasgow Haskell Compiler
	8.5 Logical Foundations

	9 Conclusion
	Acknowledgments
	References

