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Analysis of opinion dynamics in social networks plays an important role in today’s life. For predicting users’

political preference, it is particularly important to be able to analyze the dynamics of competing polar opin-

ions, such as pro-Democrat vs. pro-Republican. While observing the evolution of polar opinions in a social

network over time, can we tell when the network evolved abnormally? Furthermore, can we predict how the opin-

ions of the users will change in the future? To answer such questions, it is insufficient to study individual user

behavior, since opinions can spread beyond users’ ego-networks. Instead, we need to consider the opinion

dynamics of all users simultaneously and capture the connection between the individuals’ behavior and the

global evolution pattern of the social network.

In this work, we introduce the Social Network Distance (SND)—a distance measure that quantifies the like-

lihood of evolution of one snapshot of a social network into another snapshot under a chosen model of polar

opinion dynamics. SND has a rich semantics of a transportation problem, yet, is computable in time linear

in the number of users and, as such, is applicable to large-scale online social networks. In our experiments

with synthetic and Twitter data, we demonstrate the utility of our distance measure for anomalous event

detection. It achieves a true positive rate of 0.83, twice as high as that of alternatives. The same predictions

presented in precision-recall space show that SND retains perfect precision for recall up to 0.2. Its precision

then decreases while maintaining more than 2-fold improvement over alternatives for recall up to 0.95. When

used for opinion prediction in Twitter data, SND’s accuracy is 75.6%, which is 7.5% higher than that of the

next best method.
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1 INTRODUCTION

Analysis of opinion formation in the society plays an important role in today’s life. Businesses
are interested in advertising their products in social networks relying on viral marketing. Politi-
cal strategists are interested in predicting an election outcome based on the observed sentiment
change of a sample of voters. Mass media and security analysts may be interested in a timely
discovery of anomalies based on how a social network “behaves.” Thus, it is important to enable
modeling and prediction of user opinion evolution in a social network.

How can we quantify the change in opinions of users with respect to their expected behavior in a
social network? How can we predict how the opinions of individual users will evolve in the future?
Having observed the evolution of user opinions over time, can we tell when the opinions evolved ab-
normally? To answer such questions, we need a distance measure for the comparison of states of
a social network that explicitly models user opinion evolution, incorporating both the distribu-
tion of user opinions at two time instances and the network structure that defines the pathways
for opinion dissemination. In this work, we develop such a distance measure and employ it for
anomaly detection and opinion prediction.

While the dynamics of a social network can be characterized by evolution of both the network’s
structure and user opinions, in this article we focus on the latter. We assume that there are two
polar opinions in the network, positive and negative. Users having no or an unknown opinion are
termed neutral, while those expressing opinion—active. A network state is comprised of the opin-
ions of all network users at a given time. Polar opinions compete in that users are less willing
to spread opinions different from their own, yet, are more eager to spread “friendly” opinions.
Such competition may arise when the notions the opinions relate to, such as political parties or
smartphone brands, are inherently competing.

Having observed the behavior of a social network’s users over time and quantified their opin-
ions, we obtain a time series of network states. Its analysis—whether anomaly detection or future
state forecasting—is, however, problematic, as network states do not naturally belong to any vector
space, and the numerous existing time series analysis techniques cannot be readily applied. Our
approach is to treat network states as members of a metric space induced by a distance measure
governed by both the network’s structure and user opinions. We propose a semantically and math-
ematically appealing, as well as efficiently computable distance measure Social Network Distance
(SND) for the social network states containing polar opinions and demonstrate its utility in two
applications. First, we detect which network states in a series are anomalous with respect to the
expected opinion evolution, where the latter is determined by a chosen model of polar opinion dy-
namics. Second, we predict unknown opinions of individual users in a partially observed network
state based on the historical dynamics of other users’ opinions.

In this work, we make the following specific contributions:

—We propose SND—the first distance measure suitable for the comparison of social network
states containing polar opinions under a chosen model of opinion dynamics.

—We develop a scalable method for exact computation of SND in time linear in the number
of network users. This is achieved via exploiting the special structure of the transportation
problem underlying SND and the use of special shortest path and minimum-cost network
flow algorithms.

—We demonstrate the utility of SND in two applications with both synthetic and Twitter data.
Using SND for anomaly detection, we achieve a true positive rate (TPR) of 0.83, twice as
high as that of alternatives. The same predictions presented in precision-recall space show
that SND retains perfect precision for recall up to 0.2. Its precision then decreases while
maintaining more than 2-fold improvement over alternatives for recall up to 0.95. When
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Table 1. Notation Summary

1 Vectors of all ones
0 Vector of all zeroes
⊗ Kronecker product

diag(v ) Diagonal matrix with vector v as the main diagonal
G (V ,E) Network with nodes V (|V | = n) and edges E (|V | =m)

X ,X (t ) ∈ {+1, 0,−1}n Network state (at time t ) comprised of all users’ opinions
Xi ,Xi (t ) ∈ {+1, 0,−1} Opinion of user i in network state X (at time t )

Iv
P

Set of users holding opinion v in network state P

Pi j (P ,v ) Likelihood of user j acquiring opinion v from user i in network state P
nΔ Number of users who changed opinion between two network states

used for user opinion in Twitter data, SND’s prediction accuracy is 75.6%, which is 7.5%
higher than that of the next best method.

2 PRELIMINARIES

2.1 Network and Network States

We are given a social network G (V ,E), where V (|V | = n) is the set of nodes (users) and E is
the set of edges (social ties). At each point in time, each user holds a quantified opinion on the
chosen topic of interest. In this work, we will quantify the opinions on a discrete scale {+1, 0,−1},1
with 0 standing for neutrality, and +1 and −1 corresponding to two polar alternatives, such as
the Democrats vs. the Republicans or iOS vs. Android. Note, however, that the algorithmic results
we obtain in this work also hold for a more general case of any finite discrete opinion scale. The
opinions of all network users at time t comprise the network state G (t ) ∈ {+1, 0,−1}n at time t ,
where Gi (t ) ∈ {+1, 0,−1} is the opinion of user i .

2.2 User Opinions and Their Dynamics

We assume that the dynamics of user opinions is governed by a learned in advance opinion dynam-
ics modelM that provides Pi j (P ,v )—the likelihood of user j adopting opinion Pi = v ∈ {+1,−1} of
user i in network state P . In Appendix A.1, we provide two examples of definitions of Pi j (P ,v ) for
the variants of Independent Cascade [11] and Linear Threshold [9] models supporting competing
opinions. In our experiments, however, we will assume a simple and intuitive opinion dynamics
model, using the following definition of (log-)likelihoods Pi j (P ,v ):

− logPi j (P ,v ) =
⎧⎪⎪⎨⎪⎪⎩
cadverse if Pi = −v or Pj = −v,
cneutral else if Pi = 0,
cfriendly else if Pi = v and Pj � −v,

(1)

where cadverse, cneutral, cfriendly ∈ R+ are constant log-likelihoods of adopting adverse, neutral, or
friendly opinion (relatively to opinion v), respectively. Thus, users willingly spread opinions sim-
ilar to their own (cfriendly is small) are unwilling to spread adverse opinions (cadverse is large), with
the behavior of neutral users being somewhere in-between (cfriendly < cneutral < cadverse).

1There is a great body of research on the methods for opinion classification based on user-generated content, including

[49, 51]. Our focus is, however, on the analysis of how opinions spread, rather than on how to quantify them.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 38. Publication date: August 2019.



38:4 V. Amelkin et al.

2.3 Earth Mover’s Distance

In this work, we will target computing distances between network states P ,Q ∈ {+1, 0,−1}n using
a distance measure, whose semantics will be similar to that of one well-studied distance measure—
Earth Mover’s Distance (EMD) [46]. Originally defined as an edit-distance for histograms (which,
in our case, can be seen simply as n-dimensional non-negative vectors), EMD computes the cost
of an optimal transformation of one histogram into another, where an elementary edit operation
is transportation of a unit of mass from one histogram bin to another bin. The costs of these
elementary transforms are collectively referred to as the ground distance.

Formally, EMD between two histograms P ∈ R+n and Q ∈ R+m (that, in our case, will be de-
rived from network states) over ground distance D ∈ R+n×m (that, in our case, will be defined
based on the distances between users in the network and the likelihoods of the opinions spreading
between them) is the solution to the problem of optimal mass transportation from suppliers {Pi }
to consumers {Q j } with respect to transportation costs {Di j }:

EMD(P ,Q,D) =
n∑

i=1

m∑
j=1

Di j f̂i j

/ n∑
i=1

m∑
j=1

f̂i j , (2)

{ f̂i j } = arg min
{fi j }

n∑
i=1

m∑
j=1

fi jDi j ,

n∑
i=1

m∑
j=1

fi j = min
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

Pi ,

m∑
j=1

Q j

⎫⎪⎪⎬⎪⎪⎭ ,
fi j ≥ 0,

m∑
j=1

fi j ≤ Pi ,

n∑
i=1

fi j ≤ Q j , (1 ≤ i ≤ n, 1 ≤ j ≤ m),

where { f̂i j }n×m is an optimal solution or transportation plan.
In addition to having the semantics that will suit our distance measure design goals, EMD is

metric, as the following theorem states.

Theorem 2.1 (Metricity of EMD [46]). If all network states under comparison have equal total
masses, and the underlying ground distance is metric, then EMD is metric.

Metricity of EMD will allow our own EMD-based distance measure to also be metric, which—in
addition to making a distance measure “natural”—can be exploited to improve practical perfor-
mance of distance measure-based algorithms in applications [13].

3 DISTANCE MEASURE FOR NETWORK STATES WITH POLAR OPINIONS

The central problem we address in this article is as follows:

Problem 1. Given two network states P ,Q ∈ {+1, 0,−1}n and assuming that the dynamics of user
opinions is governed by modelM, define and compute the distance between network states P and Q
reflecting how likely one of these network states has evolved into another under modelM.

According to the problem definition above, if network stateQ has evolved from network state P
closely following modelM, then the resulting distance should be small; if, however, either network
states P and Q are unrelated, or they are related, but the opinions evolved following a model very
different from M, then the distance should be large. The existing distance measures, including
vector space (�p -like), graph-based, iterative, and feature-based ones—reviewed in detail in Sec-
tion 7.2—do not possess such a semantics, and we need to look for a new more suitable distance
measure.

The model M that we assume in the problem’s definition to be known can be learned from
data. For example, we can pick multiple general models, such as Independent Cascade or Linear
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Fig. 1. dM (P ,Q ) accumulates likelihoods of all possible network state evolution paths.

Threshold models, fit them to data [22], and choose the one that fits the data best. Alternatively,
the model may come from domain knowledge.

Next, we will, first, translate the above defined problem into the formal language of probability,
and, after that, address the question of making the obtained formalization tractable.

Let us put X (t ) to be the state of the network at time t , and X (1, . . . ,k ) = X (1), . . . ,X (k ) to be
a network state evolution path—a sequence of states over which the network evolved. Then, the
likelihood of X (1, . . . ,k ) is defined as

P {X (1, . . . ,k )} =
k∏

t=2

P {X (t ) | X (t − 1)}.

Using this notation, a perfect distance measure can be defined as

dM (P ,Q ) =
∑
k≥2

∑
X (1, . . . , k )

X (1)=P, X (k )=Q

P {X (1, . . . ,k )}. (3)

According to its definition, dM (P ,Q ) measures the likelihood of user opinions evolving from state
X (1) = P to state X (k ) = Q along all possible network state evolution paths—as illustrated in
Figure 1—where the opinion change likelihoods are determined by the underlying modelM.

Despite the attractive semantics of dM , its computation is clearly unfeasible, as the number of
possible evolution paths between two network states is exponential in the number of nodes. To
come up with a tractable alternative, we simplify dM by making several assumptions.

Assumption 1 (Maximum-likelihood opinion evolution). Opinions evolve along to the most
likely network state evolution path.

According to Assumption 1—standard for maximum likelihood estimation methods—we will not
care about every possible network state evolution path, instead, focusing on the most likely one.

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 38. Publication date: August 2019.
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Under this Assumption dM simplifies to d (1) as follows:

d (1) (P ,Q ) = max
k≥2

max
X (1, . . . , k )

X (1)=P,X (k )=Q

P {X (1, . . . ,k )}. (4)

To further simplify the obtained distance measure, we will target the term being maximized
in (4), and make another assumption.

Assumption 2 (Independent Markovian opinion acqisition). Users acquire opinions asyn-
chronously, independently of other users’ opinion acquisition, relying only on the opinions of network
users at the previous time.

According to this assumption, opinions of different users evolve at individual time scales (in
contrast to synchronous opinion evolution, where all users simultaneously update their opinions),
and depend only on the previously observed opinions of other users. This assumption simplifies

distance measure d (1) into d (2) as follows:

d (2) (P ,Q ) = max
k≥2

max
X (1, . . . , k )

X (1)=P,X (k )=Q

n∏
i=1

k∏
t=2

P {Xi (t ) | X (t − 1)} . (5)

Now, to make the maximization task in (5) tractable, we will make one more assumption.

Assumption 3 (Opinion source uniqeness). An opinion is adopted by a user from a single
most likely source.

This assumption—previously used by Gomez-Rodriguez et al. [21] in the context of cascade
inference—is natural in those cases when obtaining knowledge immediately causes or is equivalent
to opinion acquisition, such as in the case of learning an incriminating piece of news about a
politician. In these situations, a contact with a single information source is sufficient to acquire
opinion, and contacting additional sources would not solidify that opinion even further.

If we put fji ∈ [0, 1] to be the likelihood of user j being the source for opinion acquisition by

user i , d (2) simplifies under Assumption 3 into d (3) as follows:

d (3) (P ,Q ) =
∏

v ∈{+1,−1}
max
{fji }

∏
i ∈I v

Q

∑
j ∈I v

P

fjiP

{
j infects i with opinion v along the most likely

evolution path P = X (1), X (2), . . . , X ( ·) = Q

}
, (6)

∑
j

fji = |Qi |,
∑

i

fji ∈ Z+,

where Iv
P

is the set of users holding opinion v in network state P . Here, fji can alternatively be
viewed collectively as a probabilistic mapping between opinion sources and destinations. The ob-
tained distance measure (6) is equivalent to the following one expressed using log-likelihoods

d (4) (P ,Q ) =
∑

v ∈{+1,−1}
min
{fji }

∑
i ∈I v

Q

∑
j ∈I v

P

fji

(
− logP

{
j infects i with opinion v along the most likely

evolution scenario P = X (1), X (2), . . . , X ( ·) = Q

})

=
∑

v ∈{+1,−1}
min
{fji }

∑
i ∈I v

Q

∑
j ∈I v

P

fjiD ji (P ,v ), (7)

∑
j

fji = |Qi |,
∑

i

fji ∈ Z+. (8)
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Fig. 2. Growth of the number of active users—holding non-neutral opinions w.r.t. topic “Obama”—in a sample
of Twitter network over time.

In the expression above, D ji (P ,v ) ∈ R+n×n is the log-likelihood (or cost) of opinion v’s spreading
from user j to user i along the most likely path through the network in state P . Provided that for
each pair of nodes j and i , the chosen opinion dynamics modelM defines the likelihood Pji (P ,v )
of opinion v spreading through edge (j, i ) in network state P—as per (1)—D ji (P ,v ) is defined as
the length of the shortest path from node j to node i in the network whose structure is identical to that
of the network that P is defined over, and whose edge (j, i ) is weighted with − logPi j (P ,v ).

Finally, if we relax fji ∈ [0, 1] in (7) to be arbitrary non-negative reals, the obtained distance
measure (7) and (8) almost exactly matches EMD described in detail in Section 2.3:

EMD(P ,Q,D) =
n∑

i=1

m∑
j=1

Di j f̂i j

/ n∑
i=1

m∑
j=1

f̂i j ,

{ f̂i j } = arg min
{fi j }

n∑
i=1

m∑
j=1

fi jDi j ,

n∑
i=1

m∑
j=1

fi j = min
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

Pi ,

m∑
j=1

Q j

⎫⎪⎪⎬⎪⎪⎭ ,
fi j ≥ 0,

m∑
j=1

fi j ≤ Pi ,

n∑
i=1

fi j ≤ Q j , (1 ≤ i ≤ n, 1 ≤ j ≤ m).

Besides the difference in the normalization factor
∑

i, j f̂i j , EMD imposes an extra constraint upon
the sum of fi j , requiring

∑
fi j = min{∑i Pi ,

∑
j Q j }. For us, it would roughly mean that the number

of active users—holding opinions +1 and −1—in both network states P andQ should be equal. The
latter, however, does not hold in practice—as shown in Figure 2—as already active users may be
unwilling to become neutral, and even more active users may appear while information spreads
through the network. This difference will disappear when we replace EMD with its generalization
EMD� in Section 4.

Based on the obtained expression (7) and expression (2) for EMD, we can define the nonsym-
metric version of our SND as follows:

SNDasym (P ,Q ) =
∑

v ∈{+1,−1}
EMD(Pv ,Qv ,D (P ,v )),

where Pv is a network state containing absolute values of the entries of P , in which all the users
holding opinions different fromv in P are considered neutral (Qv is defined similarly), and ground
distance D (P ,v ) consists of log-likelihoods as defined in (7). The defined above SNDasym (P ,Q ) is
suitable for the comparison of time-ordered network states—when we know that network state
P preceded network state Q in time. However, we would like to be able to compare arbitrary un-
ordered network states. This may be important for such applications as nearest neighbor network
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state search, where nearest neighbor candidate network states may either precede or succeed in
time the target network state. To that end, instead of building upondM (P ,Q ), we will be interested

in
√
dM (P ,Q ) · dM (Q, P ), and, having repeated all the simplifications with the obtained expression,

define our Social Distance Measure as follows.

Definition 3.1 (Social Network Distance (SND)).

SND(P ,Q ) =
1

2

∑
v ∈{+1,−1}

[
EMD(Pv ,Qv ,D (P ,v )) + EMD(Qv , Pv ,D (Q,v ))

]
, (9)

where EMD is a version of EMD. In Appendix A.5, we provide a toy example of computing SND for
two network states, where in place of EMD we use its generalization EMD� designed in Section 4.

Notice that SND is a linear combination of multiple instances of EMD, so the following theorem
trivially holds.

Theorem 3.2 (Metricity of SND). SND is metric as long as the underlying EMD is metric.

Also note that, since SND is defined via log-likelihoods, as per (7)–(9), its relationship with the
likelihood of a network’s transitioning between two network states is inverse—higher distance
values correspond to lower likelihoods, and vice versa.

To summarize, we have defined SND—a distance measure that approximates the (log-)likelihood
of a network state’s most-likely transition into another network state. As we have mentioned
earlier, SND was defined via EMD ignoring the normalization factor in the definition (2) of EMD
as well as the difference in the constraints between (2) and (8). In the following Section 4, we will
generalize EMD to address both these issues, and use its generalization EMD� in definition (9) of
SND.

4 GENERALIZED EARTH MOVER’S DISTANCE (EMD
�)

4.1 Why Do We Need a New Earth Mover’s Distance?

Our distance measure SND defined in the previous Section 3 uses an EMD, such as the original
EMD [46], as a building block. Unfortunately, the original EMD cannot adequately compare net-
work states P and Q having different total masses, that is, network states with

∑
Pi �

∑
Q j —it

ignores the mass mismatch |∑ Pi −
∑
Q j |, so that a network state with a very small total mass has

a very small distance to any other network state. Applicably to states of a social network, that lim-
itation is particularly pronounced, as, usually, subsequent network states have more active users
and, hence, a larger total mass than preceding network states.

There are several versions of EMD that address the original EMD’s neglect for network state
mass mismatch. One of them [41] augments EMD with an additive mass mismatch penalty as

�EMD(P ,Q,D) = EMD(P ,Q,D) min
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

Pi ,

n∑
j=1

Q j

⎫⎪⎪⎬⎪⎪⎭ + αmax
i, j
{Di j }









n∑

i=1

Pi −
n∑

j=1

Q j








 ,
where α is a constant parameter. Term αmaxi, j {Di j }|

∑
Pi −

∑
Q j | in the above expression rep-

resents the mass mismatch penalty that depends only on the magnitude of the mass mismatch
and the maximum ground distance, thereby, being unable to capture the fine details of the net-
work’s structure that D can depend upon. This is, however, inadequate for the comparison of the
states of a social network, because the network’s behavior depends not only on the number of new
activations, but as importantly on where these newly activated users are located in the network.
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Fig. 3. Network states P and Q defined over the same network are extended with bank nodes, whose values

are chosen, so that the total masses of the extended network states P̃ and Q̃ are equal. The ground distances

D̃bank,i = D̃i,bank = γ from and to the bank node are uniformly defined based on the largest ground distance
between the initially present nodes.

Fig. 4. A network state [P1, . . . , P4, P
(1) , . . . , P (4)] extended with local bank nodes P (i ) . The undirected edges

to and from the bank nodes—displayed dashed—are weighted with ground distances γ1, . . . ,γ4, respectively.

Another EMD version EMDα [34] extends each network state with an extra node—the bank
node—whose value is chosen to equalize the network states’ total masses. An example of such an
extension is shown in Figure 3.

However, as we establish in Theorem A.1 in the Appendix, EMDα is numerically equivalent

to �EMD and, hence, is also inadequate for the purpose of network state comparison for the same

reason �EMD is.
In Section 6.4, we will show how the above statements about inadequacy of existing versions of

EMD for opinion evolution analysis translate into performance of our anomaly detection method
using different versions of EMD.

Hence, we need to design a new EMD-like primitive that would fit the comparison of states of
a social network, and replace EMD in SND’s definition (9).

4.2 Generalized Earth Mover’s Distance (EMD
�)

In this section, we propose EMD�—a new version of EMD, building upon EMDα’s idea of aug-
menting network states to even their masses. However, unlike its predecessor, EMD� extends net-
work states with multiple local bank nodes—as shown in Figure 4—and distributes the total mass
mismatch over all of them, thereby, relating the mass mismatch penalty to the structure of the
network, while achieving the total mass equality of the two network states under comparison.

Prior to formalizing EMD�, let us, first, better understand its advantage over the existing EMDs
as well as fitness to the analysis of opinion evolution. Consider the example in Figure 5. There
are three network states defined over the same network, which has two pronounced clusters L
and R connected by three bridge edges. The distribution of mass over cluster L is identical in all
three statesGi , while cluster R is empty inG1 and has some differently distributed mass inG2 and
G3. In G2 the extra mass has been “propagated” from cluster L to cluster R through the bridges,
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Fig. 5. Three network states defined over the same two-cluster network.

while in G3 the same amount of extra mass has been randomly distributed over cluster R. Thus,
if we assume that G2 and G3 have “evolved” from G1 through a (not completely random) network
process of mass diffusion, then G2 should intuitively be closer to G1 than G3 is. However, only

EMD� captures this intuition as EMD�(G1,G2) < EMD�(G1,G3), while for EMDα and �EMD, G2

and G3 are equidistant from G1, and for the original EMD, both G2 and G3 are identical to G1. In
Section 6.4, we will show how this intuition translates into the relative performance of different
versions of EMD when used with our method for anomaly detection.

We will now turn from the intuition for the formal definition of different components of EMD�

and, eventually, EMD� itself. The extension of network state P ∈ Rn with local bank nodes requires

definition of the ground distances γi to/from the bank nodes as well as the banks’ values P (i ) .

—Bank node ground distances γi : In the extreme case, when γi = 0, in the transportation prob-
lem underlying EMD�, the mass is transported to/from the banks at a zero cost, which
would result in EMD�’s ignorance of the network state mass mismatch Δ, making it simi-
lar to the original EMD up to normalization by Δ. If, on the other hand, γi is much larger
than the ground distances between regular (non-bank) nodes, then the value of EMD� will
be dominated by the effect of the network state mass mismatch, hiding the impact of the
actually present mass. Thus, γi should be chosen of the same order as the ground distances
Di j between regular nodes, with the particular values of γi being empirically learned.

—Bank node values P (i ) : The values of the added bank nodes should be determined based upon
two ideas. Firstly, the value of a bank node should intuitively be proportional to the total
mass of the node the bank is attached to, thereby, preserving the relative distribution of mass
over the network. Secondly, the values of all the bank nodes should be such, that the two
network states under comparison have equal total masses. The following definition of value

P (i ) of a bank node connected to the ith node of network state P in the context of comparing
network states P = [P1, . . . , Pn] and Q = [Q1, . . . ,Qn] incorporates both above-mentioned
requirements:

P (i ) =

⎧⎪⎪⎨⎪⎪⎩
( ∑n

j=1 Q j/
∑n

j=1 Pj − 1
)
Pi , if

∑
Q j >

∑
Pj ,

0, otherwise.

Next, we formally define EMD�. Suppose we are given two network states P = [P1, . . . , Pn] and
Q = [Q1, . . . ,Qn] defined over a network G = 〈V ,E〉 with ground distance Dn×n . Network states

P and Q are extended with bank nodes, with P (i ) and Q (i ) being the values of the bank nodes
attached to the ith regular node of P andQ , respectively. Ground distances to/from the bank nodes
are defined, collectively, as γ = [γ1, . . . ,γn]ᵀ.

Then, EMD� is defined as follows.
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Definition 4.1 (Generalized Earth Mover’s Distance (EMD�)).

EMD�(P ,Q ) = EMD(P̃ , Q̃, D̃) max
{∑

Pi ,
∑

Q j

}
, (10)

P̃ =
[
P , P (1), . . . , P (n)

]
, Q̃ =

[
Q,Q (1), . . . ,Q (n)

]
,

D̃ =

⎡⎢⎢⎢⎢⎢⎣
D D + 1n ⊗ γᵀ

D + 1ᵀ
n ⊗ γ D + 1n ⊗ γᵀ + 1ᵀ

n ⊗ γ − 2 diag(γ )

⎤⎥⎥⎥⎥⎥⎦ ,
where P (i ) is the value of the ith bank node that P is extended with (same for Q), 1n ∈ Rn×1 is a
vector of all ones, diag(v ) is a diagonal matrix with the elements of vector v on its main diagonal,
and ⊗ is Kronecker product.

Metricity of EMD�, which can be exploited to improve practical performance of distance-based
search in applications [13], is established in the following Theorem, proven in Appendix A.3.

Theorem 4.2. Given a finite setH of network states and metric ground distance D, EMD� defined
over D is metric onH ×H .

Having generalized EMD�, so that it can handle comparison of network states, we will now
be using EMD� as our EMD of choice in the definition (9) of SND. We provide a toy example of
computing EMD� as part of SND in Appendix A.5.

5 EFFICIENT COMPUTATION OF SND

While we have designed SND (9), its computation is non-trivial. Since SND is a linear combination
of multiple instances of EMD�, its computation involves:

—Computing the ground distanceD (G (t ),v ) based on the structure of the underlying network
G = 〈V ,E〉 (|V | = n, |E | =m) and the opinions of the users in network state G (t ).

—Computing EMD�, when the network states and the ground distance are provided.

Computing the ground distance D implies computing shortest paths in a network with edge
weights − logPi j (P ,v ). Direct all-to-all shortest path computation using Dijkstra’s algorithm
would incur time cost O (n2 logn) for sparseG. Computing EMD� is algorithmically equivalent to
computing EMD, and, since the latter is formulated as a solution to a transportation problem, it can
be computed either using a general-purpose linear solver, such as Karmarkar’s algorithm [27], or a
solver that exploits the special structure of the transportation problem, such as the transportation
simplex algorithm [25]. The time complexity of both these algorithms, however, is supercubic in
n. Thus, the exact computation of SND using existing techniques is prohibitively expensive at the
scale of real-world online social networks. Furthermore, the existing approximations of EMD are
either inapplicable to the comparison of network states derived from a social network’s states [33,
41, 42], since they drastically simplify the ground distance [31, 50], or are effective only for some
graphs, such as trees, structurally not characteristic of social networks [37].

Nevertheless, in what follows, we propose a method to compute SND exactly and in time linear
in n under the following two realistic assumptions.

Assumption 1. The number nΔ of users who change their opinions between two network states
under comparison is significantly smaller than the total number n of users in the network.

Assumption 2. The log-likelihoods − logPi j (P ,v ) of opinion spread—being the edge weights
in the network in which ground distances are defined as lengths of shortest paths—are positive
integers bounded from above by constant U � +∞ ∈ Z+.
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Assumption 1 is reasonable in most applications the network states under comparison are not
very far apart in time and, hence, nΔ � n; Assumption 2 is reasonable, because most of the log-
likelihoods are large reals, and rounding them would not introduce a large error.

We will now use the above stated assumptions to design an efficient algorithm for SND. Since,
according to its definition (9), SND’s computation involves computation of four instances of EMD�,
we will actually be dealing with efficient computation of EMD� on the inputs supplied by SND.
Our method for efficient computation of SND requires the following two lemmas.

Lemma 5.1. For any two network states P ∈ Rn and Q ∈ Rn , and ground distance D ∈ Rn×n , if
Pi = Qi = 0, then the removal of ith elements from P , Q , as well as ith row and column from D does
not affect the value of EMD�(P ,Q,D).

Lemma 5.1 is straightforward, since zero-value Pi and Qi do not supply or consume any mass
in the underlying transportation problem, and, hence, do not affect the cost of the optimal trans-
portation plan. While Lemma 5.1 allows removing redundant suppliers and consumers from the
underlying transportation problem, the following Lemma 5.2—proven in Appendix A.4—allows
to transform the network states, without affecting the value of EMD�, exposing the redundant
suppliers and consumers for removal.

Lemma 5.2 (Network State Reduction). Given two arbitrary network states P ,Q ∈ Rn and a
ground distance D ∈ Rn×n , if D is semimetric,2 then for any i ∈ {1, . . . ,n},

EMD�(P ,Q,D) = EMD�([P1, . . . , Pi−1, Pi −min {Pi ,Qi }, Pi+1, . . . , Pn],

[Q1, . . . ,Qi−1,Qi −min {Pi ,Qi },Qi+1, . . . ,Qn],D).

We will, now, state the main result for the efficient computation of SND as Theorem 5.3, whose
constructive proof provides the algorithm for SND’s computation.

Theorem 5.3. Under Assumptions 1 and 2, SND between network states P = [P1, . . . , Pn] andQ =
[Q1, . . . ,Qn] defined over network G = 〈V ,E〉, ( |V | = n, |E | =m) can be computed in time

T = O (nΔ (m + n
√

logU + n2
Δ log (nΔnU ))).

Proof. Throughout this proof, we will use notation P+ = P (+1) to denote a network state where
users holding negative opinions are considered neutral, and D (P ,+) = D (P ,+1) to denote the
ground distance for the spread of opinion +1 through the network in state P , as well as the similar
notation P− and D (P ,−) for negative opinions.

We will focus on the efficient computation of the first summand EMD�(P+,Q+,D (P ,+)) in def-
inition (9) of SND(P ,Q,D), as computation of three other summands is algorithmically equivalent
and takes the same time. For the analysis of the computation of EMD�(P+,Q+,D (P ,+)), let us
assume, without loss of generality, that

∑n
i=1 P

+
i ≥

∑n
j=1 Q

+
j . As per (10), EMD�(P+,Q+,D (P ,+))

is the solution of a transportation problem with suppliers P̃+ = [P+1 , . . . , P
+
n , 01×n], consumers

Q̃+ = [Q+1 , . . . ,Q
+
n ,Q

+(1), . . . ,Q+(n)], and ground distance D̃ (P ,+).
Now, we can apply Lemmas 5.1 and 5.2 to reduce the size of the obtained transportation prob-

lem. From Assumption 2, D̃ (P ,+) is semimetric. Non-negativity and identity of indiscernibles
straightforwardly follow from Assumption 2 and the definition of the length of a shortest path.
Subadditivity follows from the shortest path problem’s optimal substructure. Thus, we can apply

Lemma 5.2 to each pair P̃+i , Q̃+i of corresponding suppliers and consumers, and due to Assump-
tion 1, a large number (n − nΔ) of them have equal values. As a result, many suppliers and con-
sumers become empty. Then, due to Lemma 5.1, all the obtained empty nodes can be disregarded.

2A semimetric is a metric with the symmetry requirement dropped.
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If we put Mi = min {P+i ,Q+i }, then the reduced transportation problem is defined for suppliers

[P+i1
−Mi1 , . . . , P

+
inΔ
−MinΔ

] and consumers [Q+j1
−Mj1 , . . . ,Q

+
jnΔ
−MjnΔ

,Q+(1), . . . ,Q+(n)], and

ground distance D̃ (P ,+) that contains only the rows and columns corresponding to the remaining
suppliers and consumers. The remaining suppliers and non-bank consumers correspond to the
users who have different opinion in P+ and Q+, and the number of such users, due to Assump-

tion 1, is at most nΔ. The bank nodes Q+(1), . . . ,Q+(n) , however, do not get affected by Lemma 5.2

in Q̃+ (since only the banks of the lighter network state P can have non-zero mass) and hence

are not removed, yet, they are removed from P̃+ due to Lemma 5.1. Thus, we have an unbalanced
transportation problem, where the number nΔ of suppliers is much less than the number n + nΔ
of consumers.

Now, in order to compute EMD�(P+,Q+,D (P ,+)), we need to compute D̃ (P ,+) and to actually
solve the obtained transportation problem.

Due to the structure of the reduced transportation problem, we need to compute only a small

part of D̃ (P ,+). Since there are at most nΔ suppliers, we need to solve at most nΔ instances of
single-source shortest path problem (SSSP) with at most nΔ + n destinations. Since, due to As-
sumption 2, edge costs in the network are integer and bounded by U , each SSSP instance can be
solved using Dijkstra’s algorithm based on a combination of a radix and a Fibonacci heaps [2] in
time

Tsssp = O (m + n log
√
U ).

(Notice, that if we assumed
∑n

i=1 P
+
i ≤

∑n
j=1 Q

+
j , and the reduced P̃+ contained nΔ + n nodes, we

would not need to run nΔ + n SSSP instances. Instead, we would invert the edges in the network
and compute the shortest paths in reverse, still solving only nΔ SSSP instances.)

Next, we approach the solution of the reduced transportation problem with known ground dis-
tances. This problem can be viewed as a minimum-cost network flow problem in an unbalanced
bipartite graph, where the number of consumers is much greater than the number of suppliers or
vice versa. Since, due to Assumption 2, edge costs are integers bounded by U , our minimum-cost
flow problem can be solved using Goldberg–Tarjan’s algorithm [20] augmented with the two-edge
push rule of Ahuja et al. [3] in time

Ttransp = O (nΔm + n
3
Δ log (nΔ max

i, j
D̃ (P ,+)i j )).

Since no shortest path has more than (n − 1) edge, and the edge costs are bounded by U , the
expression for time simplifies to

Ttransp = O (nΔm + n
3
Δ log (nΔnU )).

Thus, the total time for computing EMD(P+,Q+,D (P ,+)) and, consequently, SND(P ,Q,D) is

T = O (nΔTsssp +Ttransp) = O (nΔ (m + n log
√
U + n2

Δ log (nΔnU ))). �

Theorem 5.3 immediately entails the following corollary.

Corollary 5.4. If the social network is sparse, that ism = O (n), and the number nΔ of users who
changed their opinions is bounded, then SND is computable in time O (n).

6 EXPERIMENTAL RESULTS

In this section, we report experimental results, demonstrating the utility of SND in applications
in comparison to other distance measures. We also evaluate scalability of our implementation of
SND.
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6.1 Experimental Setup

Twitter data: Our Twitter dataset is based on the crawled data of [35], and includes 48M tweets
sent over 6 years. From these tweets, we select around 270k tweets sent between May-2008
and August-2011, containing hashtags related to the political topics—such as “Obama,” “GOP,”
“Palin,”“Romney”—popular in the US during these years, and connect users in a network based on
their follower–followee relationship. As a result, we obtain a network of 10k users tweeting about
politics, each having an average of 130 neighbors in the network. Within each quarter, we quan-
tify the sentiment of each tweet as described in [36] using the sentiment classification approach
of [51]. Then, we find the users who posted at least as many as 10% of the average number of
per-user tweets posted within the quarter, and label them as active. Other users are assumed to be
neutral, and their opinions for the quarter are set to 0. An active user’s opinion is set to +1 (−1) if
he or she has posted at least 4 times more positive (negative) than negative (positive) tweets within
the quarter, assuming that such a skew in the tweets’ sentiment is enough to identify whether the
user likes or dislikes the topic. Otherwise—if an active user has posted enough of both positive and
negative tweets—this user’s opinion is set to 0, that is, such user is considered neutral. As soon as
we have quantified the quarterly opinion of each user, the opinions of all the users comprise that
quarter’s network state.

Synthetic data: We also perform experiments on synthetic scale-free networks of sizes |V | from
10k to 200k and scale-free exponents from −2.9 to −2.1. To generate the first network state, a
number of initial adopters are chosen uniformly at random, and approximately equal numbers of
them adopt opinions +1 and −1. Each subsequent network state G (t + 1) is randomly generated
from the preceding network state G (t ) as follows. A number of G (t )’s neutral users get a chance
to be activated. Each of them adopts an opinion from her neighbors with probability Pnbr and a
random opinion with a smaller probability Pext. If a user is to adopt an opinion from the neighbors,
which opinion to adopt is decided in a probabilistic voting fashion based on the numbers of active
in-neighbors of each kind. This generative model is a version of Independent Cascade model [11],
where edges in a neighborhood are activated simultaneously with probability Pnbr, and external
influence Pext is allowed.

Distance measures: In our experiments, SND does not make any assumptions regarding the
above described generative process of opinion evolution in synthetic data, and assumes the simple
model (1), whose parameter cadverse, cneutral, and cfriendly values are learned from how well SND per-
forms in applications, and, as a result, are set, respectively, to 1000, 40, and 5 for anomaly detection
experiments, and to 100, 20, and 5 in opinion prediction experiments. SND is compared with the
following distance measures.

—hamming(P ,Q ). Hamming distance is a representative of �p -like distance measures per-
forming basic coordinate-wise comparison. It measures the number of users whose opinions
differ in network states P and Q .

—quad-form(P ,Q,L) =
√

(P −Q )ᵀL(P −Q ). Quadratic-Form Distance [23] based on the
Laplacian matrix L [39] of the network. It combines the differences of opinions of the corre-
sponding users based on the network’s structure. More specifically, when L = diag(A1) −A
is the difference between the diagonal degree matrix diag(A1) of the network and its adja-

cency matrix A,
√

(P −Q )ᵀL(P −Q ) =
∑

(i, j )∈E Ai j ((P −Q )i − (P −Q )j )
2 aggregates differ-

ences between P and Q along all the edges present in the network.
—walk-dist(P ,Q ) = 1

n
‖con(P ) − con(Q )‖1 . Compares vectors con(P ) = [con(P1), . . . , con(Pn )]

of users’ “contention,” where con(Pi ) is the amount by which the i’th user’s opinion deviates
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Fig. 6. Anomaly detection on synthetic data. |V | = 20k, scale-free exponent γ = −2.3. A series of 40 network
states is generated using Pnbr = 0.12 and Pext = 0.01 for normal and Pnbr = 0.08 and Pext = 0.05 for anoma-
lous network states’ generation, respectively. The three simulated anomalies are displayed as solid vertical
lines.

from the opinion of this user’s average active in-neighbor. Thus, walk-dist summarizes how
different the network’s users are from their respective neighbors.

6.2 Detecting Anomalous Network States

Synthetic data: In a series G (1), . . . ,G (t ), . . . of network states, we want to detect which transi-
tions in the series are anomalous, that is, when opinions change unexpectedly deviating from their
established evolution pattern. In particular, we are interested in those anomalies that are hard to
detect by observing simple summaries of social network states, such as the number of newly ac-
tivated users. To simulate such anomalies with synthetic data, we change the values of Pnbr and
Pext—controlling the process of opinion evolution from one network state to the other—preserving
their sum, thereby, affecting which users get activated, yet, maintaining the same activation rate.

To detect anomalies, in a series of network states, we compute the distances between adjacent
states, normalize these distances by the number of active users, and rescale the obtained values to
fit range [0, 1]. Then, spikes in the resulting series of distances are considered anomalies.

A qualitative analysis of anomaly detection on synthetic data is presented in Figure 6. For each
simulated anomaly, SND produces a well noticeable spike, reacting to the qualitative change in the
opinion dynamics process, while other distance measures do not recognize such anomalies. The
additional experiment exposing this difference in sensitivity of SND vs. simpler distance measures
is provided in Section 6.5.

In order to quantify the performance of the competing distance measures at detecting simulated
anomalies, we create a simple anomaly score St = |(dt − dt−1) + (dt − dt+1) |, where dt is the value
of a given distance measure at time t normalized by the number of users active at time t and
rescaled. The semantics of the above defined St —matching up to a constant factor the central finite-
difference approximation of the second-order time derivative [30] of dt —is such that large “hikes”
in a distance series, e.g.,dt+1 � dt —large increases or decreases—receive high scores, and “spikes,”
e.g., dt � dt−1, dt � dt+1—large increases followed by large decreases or vice versa—receive even
higher scores, making it easy to distinguish these two anomalous distance sequences from those
close to linear. We rank the network state transitions for each compared distance measure by
St in decreasing order and compute true and false positive predictions for increasing ranks. We
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Fig. 7. ROC and Precision-Recall curves comparing the quality of anomaly detection by different distance
measures in a series of 300 network states—in which 30 transitions are anomalous, while the rest are normal—
over synthetic network with |V | = 30k and scale-free exponent γ = −2.3. The network states are generated
using Pnbr = 0.08 and Pext = 0.001 for normal and Pnbr = 0.07 and Pext = 0.011 for anomalous instances.

perform this evaluation on a series of 300 network states over a scale-free network with scale-free
exponent γ = −2.3. In total, 30 uniformly randomly selected pairs of adjacent network states are
anomalous (Pnbr = 0.07, Pext = 0.011), while the rest are normal (Pnbr = 0.08, Pext = 0.001). The
corresponding ROC and Precision-Recall curves are displayed in Figure 7. SND’s accuracy domi-
nates that of competing distance measures throughout the spectrum of false positive rates (FPRs).
Particularly, for FPRs up to 0.3, SND achieves a TPR of 0.83, while the next best distance measure
(hamming) achieves only 0.4. The same predictions presented in precision-recall space similarly
demonstrate SND’s dominance. It retains perfect precision for recall up to 0.2. Its precision then
decreases while maintaining more than 2-fold improvement over alternatives for recall up to 0.95.

Twitter data: To obtain the ground truth for anomaly detection on our Twitter dataset, we collect
“search interest” data from Google Trends3 and cross-check this data with American Presidents4

log of political events in the US. The anomaly detection results for topic “Obama” are shown in
Figure 8.

We can distinguish two types of events based on SND’s behavior relatively to that of other
distance measures. One type is the polarizing events when SND noticeably disagrees with the
other distance measures. For example, during quarters 05’09–11’09, the Economic Stimulus Bill
had a highly polarized response in the House of Representatives,5 with no Republican voting in its
favor. Another such anomaly takes place during quarters 02’10–08’10, when the Affordable Care
Act (“Obama Care”) was introduced, and which was a very controversial topic based on the House
vote distribution6 and the analysis from socialmention.com.7

The other events are those where SND agrees with the other distance measures. Three examples
are (a) “election,” (b) “Tax plan,” and (c) “bin Laden” (even though, all distance measures noticeably
increase their value during the last quarter, we do not mark this quarter as anomalous, since we
do not have the distance values for the next quarter.)

The (a) election of Barack Obama as the President of the US, extensively covered by the
news media, had likely been accompanied by a very noticeable change in the rate of new

3http://www.google.com/trends/explore.
4http://www.american-presidents-history.com.
5http://www.nytimes.com/2009/01/29/us/politics/29obama.html.
6https://tinyurl.com/obamacare-house-vote.
7http://socialmention.com/search?q=obama+care.
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Fig. 8. Anomaly detection on Twitter data (May’08–Aug’11). The distance series are accompanied by the
curve showing Google Trends’ scaled interest in topic “Obama.” Network states detected to be anomalous
by at least one distance measure are displayed as solid vertical lines.

Fig. 9. Distance measure-based user opinion prediction. Network states G (t ) reside in the network
state space. The series of distances 〈. . . ,d−3,d−2,d−1〉 between past network states . . . ,G (−4),G (−3),
G (−2),G (−1) adjacent in time is extrapolated to estimate the distance d∗ to the true current network state

Ĝ (0) to be predicted. We, then, search for the assignment of opinions to target users in G (0) to make the
distance from G (−1) to the obtained network state G∗ (0) as close to d∗ as possible.

user activation, so, as expected, both SND and simpler distance measures sensitive to the user
activation rate successfully detect this anomaly. However, the (b) Obama’s tax cut extension and
(c) bin Laden’s assassination—not flagged as anomalies by SND—were not polarizing, as the tax
cut had received large support in the Senate from both Democrats and Republicans,8 while bin
Laden’s assassination has probably evoked the same type of sentiment on Twitter across the US.

6.3 Predicting User Opinions

Our distance measure-based method for user opinion prediction—illustrated in Figure 9—is as
follows.

8http://tinyurl.com/wiki-obama-tax-relief-2010.
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Given a series of states 〈. . . ,d−3,d−2,d−1〉 of a social network, we want to predict the unknown

opinions of a specified set of users in the true current network state Ĝ (0) based on the observed
recent G (−t ) t = 1, 2, . . . and the incomplete (partially known) current G (0) network states. Such
situation may arise either if the target users keep their profiles private or simply have not yet
generated enough content in the current quarter to reliably quantify their opinions. We assume
that over the recent time period—corresponding to the observed network states—the opinions in
the network evolved “smoothly,” so that the observed network states carry enough information to
complete the partially known current network state. Under this assumption, and having chosen
a distance measure dist , we compute the distances d−t = dist(G (−t − 1),G (−t )) between adjacent
past network states, then, extrapolate the obtained series of distances via linear 4-point9 least
squares fitting to estimate the expected distance d∗ from the most recentG (−1) to the yet not fully

known true current network state Ĝ (0). Then, we search for the assignment of opinions to the
target users in the partially known current network state G (0)—resulting in a candidate network
stateG∗ (0)—that would make the distance dist(G (−1),G∗ (0)) from the most recent to the candidate
network state as close to the estimate d∗ as possible.

While there may be multiple candidate network statesG∗ (0) whose distances are close tod∗—the
network states in Figure 9 close to the sphere of radius d∗ centered at G (−1)—due to the spatially
sensitive nature of network state comparison that SND provides, the set of such candidate network
states will be rather small, and the opinions of the target users in these network states will be close

to the true target user opinions in Ĝ (0).
We have used two methods for the search of the best opinion assignment. The first method is a

randomized search with uniformly randomly chosen opinions, and the number of random opinion
assignments (100 in our experiments) being considerably lower than the total number of possible
assignments (1M+ in our experiments). The second method was greedy hill climbing, the results
for which are not reported, performing no better than the randomized search.

In each experiment, we uniformly randomly select 20 active users—with roughly equal represen-
tation of positive and negative opinions—in the current network state, predict their opinions and
measure the prediction accuracy. We repeat this procedure 10 times, each time targeting a different
set of users, and report means and standard deviations of the obtained prediction accuracies.

The predictions are made using the above distance measure-based method with SND as well
as other distance measures. To put the prediction performance of these methods in context, we
include in the comparison several non-distance measure-based opinion prediction methods:

— icc-simulation, ltc-simulation [40] simulate the model—Independent Cascade or Linear
Threshold with uniformly randomly chosen thresholds, respectively—until convergence
multiple times (from 10 to 500, in our experiments) and use the modes of the target users’
opinion as the prediction. In our experiments, the simulation starts with the most recent
completely known network state G−1, and proceeds until 99.99% of users get active. The
edge activation probabilities Pedдe are selected uniformly, with Pedдe ranging from 0.001
to 0.01. The results for the best Pedдe are reported.

— icc-max-likelihood, ltc-max-likelihood are max-likelihood-based methods similar to [47]
and [17]. Like SND-based opinion prediction, this method generates uniformly random
opinion assignments, computes the likelihood of each resulting network state and uses the
most likely one for the prediction. The opinion adoption likelihoods are computed as de-
scribed in Appendix A.1, with all edges assumed to be active, and ε = 0.01.

9We have experimented with different numbers of points used with least squares. Using less than four points resulted in a

poor opinion prediction performance, while using more than four points did not improve the performance much.
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Table 2. Means μ and Standard Deviations σ of User Opinion
Prediction Accuracies

User opinion prediction accuracy, %

Synthetic data Twitter data
Method μ σ μ σ

SND 74.33 2.65 75.63 5.60

hamming 68.44 12.34 68.13 5.80
quad-form 66.67 13.58 67.50 9.63
walk-dist 56.22 15.35 31.88 9.98

icc-simulation [40] 76.25 9.54 59.38 4.17
ltc-simulation [40] 67.50 11.65 58.75 5.18
icc-max-likelihood [47] 67.41 7.03 57.50 8.02
ltc-max-likelihood [47] 57.50 8.45 55.63 11.78
community-lp [15] 65.25 9.43 56.87 8.43

The largest means and the smallest standard deviations are shown in bold.

—community-lp [15, IV.B] detects communities in the network via label propagation and, then,
predicts user opinions based on these users’ membership in the discovered communities.
This method does not rely on any opinion dynamics model, and only assumes that users
likely connect with other likeminded users.

We experiment with both synthetic and Twitter data. For synthetic data, we generate a scale-
free network with n = 10,000 users and scale-free exponent γ = −2.5. A series of network states is
generated using the same version of Independent Cascade model as was used in anomaly detection
experiments, with probabilities of opinion adoption from the neighbors Pnbr and from the external
source Pext ranging between 0.001 and 0.2. The number of initially active users is set to 800.

The opinion prediction results are summarized in Table 2. There are four important
observations:

(a) Among the distance-based methods, SND always performs best on both synthetic and
Twitter data, with the mean prediction accuracy of 74–75% and a consistently low standard
deviation. This suggests that SND captures more opinion dynamics-specific information
than other distance measures, and should be preferred, particularly, when such simple
statistics as the rate of new user activation are uninformative.

(b) Among the non-distance measure-based methods, icc-simulation’s prediction accuracy on
synthetic data is 76.25%, the best result, comparable to 74.33% accuracy of SND. Such good
performance of icc-simulation on synthetic data is not surprising, as its predictions rely
on the Independent Cascade model, whose version was used to generate the synthetic
data. On Twitter data, however, icc-simulation’s accuracy is 59.38%, compared to 75.63%
accuracy of SND.

(c) Methods icc-max-likelihood and ltc-max-likelihood perform worse than SND, as they base
prediction on the opinions of the closest active neighbors, while SND is looking for the
most likely opinion propagation through potentially long paths in the network.

(d) SND-based method outperforms community-lp based on community detection via label
propagation. In our experiments, community-lp’s prediction accuracy is 57–65%, while
this method’s authors report the accuracy of 95% for their data [15]. The likely cause of
such a discrepancy is a very high level of homophily in their data (the reasons of which
were discussed in [14]), while in our less homophilous data, community-lp performs worse
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Fig. 10. Comparison of several versions of SND internally using EMD�, EMDα, and EMD, respectively, at
anomaly detection on synthetic data. |V | = 256, scale-free exponent γ = −2.3. A series of 21 network states
is generated using Pnbr = 0.1 and Pext = 0.01 for normal and Pnbr = 0.08 and Pext = 0.03 for anomalous
network states’ generation, respectively. The simulated anomalies are displayed as solid vertical lines.

by capturing only users’ reachability by the opinions of each kind, whereas SND performs
better by looking for the most likely opinion propagation scenario.

6.4 Anomaly Detection and Social Network Distance via EMD
�, EMD

α, and EMD

In Section 4.2, we motivated the design of a new version of EMD by providing intuition for why
its existing variants would not suit the analysis of opinion evolution. Here, we show how different
versions of EMD perform in anomaly detection on synthetic data to provide additional experi-
mental support to the claim that EMD� is a necessary component of SND. To that end, we borrow
the experimental design from Section 6.2, and compare how SND—that internally uses EMD�—
performs in anomaly detection on synthetic data in comparison to other implementations of SND

that rely on EMD and EMDα (and, hence, �EMD, which is equivalent to EMDα), respectively. As
computation of EMD and EMDα does not scale, we perform this experiment on a network with
256 nodes. The results are shown in Figure 10.

We can see that, expectedly, SND(EMD)—the version of SND internally using the original
EMD—does not recognize the extra mass (the newly activated users) in new network states, and, as
a result, it considers all network states to be equivalent to the very first network state. SND(EMDα)
reacts to the changes in the number of newly activated users in each network state, but it cannot
distinguish between the cases when these new activations are expected (normal or in-network
user activation) and when these new activations are anomalous (largely external user activation).
As a result, SND(EMDα) does not recognize the anomalies, while SND = SND(EMD�) does by
producing recognizable spikes at the times of anomalous network transitions.

6.5 Sensitivity to Opinion Dynamics Models

In the anomaly detection and user opinion prediction experiments, performance of SND stemmed
from its being spatially sensitive to the changes in the user opinion distribution, and promptly re-
acting to qualitative changes in the underlying opinion spread process. In this section, we conduct
an experiment confirming that sensitivity of SND. We show the effectiveness of SND in detecting
qualitative changes in the user opinions’ evolution under an advanced opinion dynamics model,
that cannot be spotted by the distance measures performing coordinate-wise comparison. To that
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Fig. 11. SND and �1 distances between network states of normal (ICC) and anomalous (random) transitions.

end, we generate a number of pairs 〈G (1),G (2)〉 of network states adjacent in time (G (2) is gen-
erated from G (1)) over a synthetic scale-free network. Some of these pairs correspond to normal
transitions, while others correspond to anomalous transitions in the network’s evolution. For the
normal transitions, G (2) is generated from G (1) using the Independent Cascade model [11]. For
the anomalous transitions, most new user activations inG (2) happen randomly, independently of
the network’s structure. We study the distances assigned to normal and anomalous network state
transitions by SND and �1, and plot them as functions of the number nΔ of users whose opinions
change over each network state transition. The results are shown in Figure 11.

We see that SND clearly separates anomalous transitions from normal ones, while �1 cannot
discern anomalous network state transitions, as �1’s value is mostly determined by nΔ, which is
representative of the distance measures performing coordinate-wise comparison.

6.6 Scalability of SND

We have implemented10 SND in MATLAB and C++. We use the minimum-cost network flow solver
CS2 [19] that implements Goldberg–Tarjan’s algorithm [20], but, unlike it is prescribed by The-
orem 5.3, does not use the two-edge push rule of Ahuja et al. [3]. Additionally, for computing
shortest paths, our implementation of Dijkstra’s algorithm uses a priority queue based on a binary
heap, rather than a combination of a Fibonacci and a radix heaps [2]. As a result, our implementa-
tion of SND scales slightly worse than linearly—as guaranteed by Theorem 5.3—but still very well
to be applicable to real-world social networks. Figure 12 shows how our implementation of SND
scales with respect to the number n of users in the network in comparison to a direct computa-
tion of SND using CPLEX’ linear solver [16]. Our implementation’s scalability with respect to the
number nΔ of users holding different opinions in two network states under comparison is shown
in Figure 13.

7 RELATED WORK

While the topic of understanding how opinions form and spread has been around for decades,
with the rise of online social networks, the number of thematic works exploded—see surveys [1,
12, 43, 44] for reference. More recently, the analysis and modeling of polar opinion formation and
spread has received attention [6]. The majority of the existing works, however, are dedicated to

10https://victoramelkin.com/pub/snd/.
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Fig. 12. Time for computing SND

when the number of users having dif-
ferent opinion is nΔ = 1,000, and the
total number of users n in the net-
work grows up 200k.

Fig. 13. Time for computing SND us-
ing our method, with the network size
n = 20k, and the number nΔ of users
who changed their opinions growing
up to 10k.

either designing opinion formation models, or designing algorithms for extremal problems over
social networks, such as influence maximization.

In this work, our algorithm design efforts target two specific applications—anomaly detection
in the process of a network’s state evolution and prediction of opinions of network users—that
have not yet received enough attention. Below, in Section 7.1, we review existing works related to
our two applications of choice. The methods we design in this work belong to the class of distance
measure-based methods, and, hence, in Section 7.2, we also review a range of existing distance
measures that can be considered competitors to SND when used with our anomaly detection and
opinion prediction methods.

7.1 Anomaly Detection and Opinion Prediction

7.1.1 Anomaly Detection. There is a multitude of methods for anomaly detection in networks
[5, 45], yet, most of them—such as [4] and [54]—are concerned with localizing an outlier part of the
network. Detecting fake users in a social network is one representative application. We, however,
are concerned with social network event detection—detecting moments of time when a social
network behaves unexpectedly—the methods to address which are almost non-existent. Existing
general methods for event detection, such as the ones based on tensor decomposition [45], would
not scale to real-world large-scale social networks. The state of the art in large-scale network event
detection is comparing network state snapshots using different distance measures. This is also our
approach in this article, and we provide a review of existing distance measures that can compete
with ours in Section 7.2.

7.1.2 User Opinion Prediction. The majority of works concerned with social network user opin-
ions target opinion detection from user-generated content, with only a few works’ targeting the
actual user opinion prediction. Conover et al. [15] detect communities in the network and assign
user opinions based on community membership. Saito et al. [47] and De et al. [17] predict user
opinions based on maximum-likelihood estimation, where predicted opinions are assigned based
on those from the most likely state. Finally, Najar et al. [40] predict user opinions via simulating
opinion formation models and tracking which opinions are assigned to the target users in simula-
tion. We use the mentioned approaches as our opinion prediction baselines in Section 6.3.
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7.2 Distance Measures

There is a large number of existing distance measures used in vector spaces, including �p , Ham-
ming, Canberra, Cosine, Kullback–Leibler, and Quadratic Form [23] distances. However, none of
them are suitable for the comparison of social network states, since these distance measures either
compare opinion vectors coordinate-wise, thereby, not capturing user interaction in the network,
or in the case of Quadratic Form distance, capture the user interaction in a very limited way,
being unaware of the underlying process that causes the difference between two user opinion
distributions.

Existing graph-oriented distance measures are also unsuitable for comparing network states
with polar opinions. The first type of such distance measures is graph isomorphism-based dis-
tance measures, such as largest common subgraph [10]. They are node state-oblivious, and, hence
are not applicable to the comparison of network states. Another type of graph distance measures
is Graph Edit Distance (GED)-based distance measures [18] that define the distance between two
networks as the cost of an optimal sequence of node or edge insertions, deletions, and substitu-
tions, transforming one network into another. GED can be node state-aware, but its value is not
interpretable from the opinion dynamics point of view, and even its approximate computation
takes cubic time (a single computation of GED on a 10k-node network on our hardware takes
about a month). DeltaCon [28] is a scalable graph-oriented distance measure, yet, it quantifies
the networks’ structural difference, while we focus on node states.

A third class of distance measures includes iterative distance measures [8, 26, 29, 38], which
express similarity of the nodes of two networks recursively, use a fix-point iteration to compute
node similarities, and, then, aggregate node similarities to obtain the similarity of two networks.
These share the problem of GED—they do not capture the way competing opinions spread in the
network. The same drawback is shared by the related diffusion-based distance measures [24, 32,
48], that compare network states by quantifying how differently a heat diffusion process proceeds
in the network when the network states defined the initial temperatures of the nodes.

The last class includes feature-based distance measures [7, 52, 53, 53], which compare either
the distributions of local node properties (e.g., degree, clustering coefficient) or the spectra of two
networks. Despite their efficient computability, such distance measures do not fit the comparison
of network states with polar opinions. The spectral distance measures are inadequate because they
do not deal with node states directly,11 while other feature-based distance measures only deal with
summaries based on opinion of each kind, thus, being unable to capture competition of opinions.

8 LIMITATIONS

Despite the demonstrated effectiveness and efficiency of SND, there are scenarios in which its use
is either prohibitively or unnecessarily expensive.

—When SND is too expensive: One reason to choose a simpler distance measure, such as �p ,
over SND is the latter’s computational cost. While it is asymptotically linear in the number
n of nodes, its cost can potentially be too high in practice for networks having 100M+ nodes.
In such networks, a single computation of SND can take several days. If it is nonetheless
desirable to use SND on such a large network, one can partition that network into clusters
of tractable size and perform the SND-based analysis on each individual cluster.

—When SND is unnecessarily expensive: Using SND may be superfluous if the changes in
the rate of new user activation reveal enough information for the target application. For

11Even if node states are artificially encoded into a network’s structure, there is still a possibility for two structurally

different networks to have identical spectra and, hence, a zero spectral distance.
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example, the user activation rate alone is clearly enough to detect a presidential election
day. For detection of such “anomalies,” a distance measure as simple as Hamming distance
may suffice.

9 FUTURE RESEARCH

Among the directions for future research are the following.

—New applications: Since SND is, effectively, the first distance measure designed specifically
for the comparison of states of a social network containing competing opinions, one poten-
tial future research direction is using SND in other applications operating in a metric space
setting, such as network state classification, clustering, and search.

—Combining macro-level distance measure-based and user-level analysis: It may be lucrative
to combine SND with non-distance measure-based methods. For example, in the method
of Conover et al. [15] that predicts opinions based on the content of the users’ tweets, the
objective function can be augmented with an SND-based term, thereby, performing opinion
fitting at both the micro-level of each user and the macro-level of the entire network.

—Design of a distance measure for both structural and opinion changes: Finally, it may be fruitful
to design a distance measure that would capture changes in both the opinions of the users
and the structure of the social network simultaneously. Such a distance measure would
be more computationally complex than SND, but would result in a more accurate analysis
when the network structure changes a lot from network state to network state.

10 CONCLUSION

In this article, we proposed SND—the first distance measure for comparing the states of a social
network containing polar opinions. Our distance measure quantifies how likely one state of a
social network has evolved into another state under a given model of opinion dynamics. Despite
the high computational complexity of the transportation problem underlying SND, we propose
a linear-time algorithm for its exact computation, making SND applicable to real-world online
social networks. We demonstrate the usefulness of SND in detecting anomalous network states
and predicting user opinions, where SND-based methods consistently outperform competitors.
Our anomaly detection method achieves a TPR of 0.83 when the FPR is 0.3, while the next best
method’s TPR is only 0.4 at the same FPR. The accuracy of SND-based method for user opinion
prediction in Twitter data is 75.63%, which is 7.5% higher than that of the next best method. We
also show that, unlike the distance measures performing coordinate-wise comparison, SND can
detect qualitative changes in the network’s evolution pattern. SND is a powerful alternative to
simpler distance measures, and is effective when such summaries of network users’ behavior as
the number of active users are uninformative, and a deeper insight into the opinion dynamics
process is required.

A APPENDIX

A.1 Opinion Acquisition Under Independent Cascade and Linear Threshold Models

In this section, we provide two examples of how to define the likelihoodPi j (P ,v ) of user j adopting
opinion v from user i in network state P for the versions of Independent Cascade and Linear
Threshold models supporting competing opinions.
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Independent Cascade: For the version of the Independent Cascade model [11] supporting multiple
opinion values, Pi j (P ,v ) is defined as follows:

P IC
i j (P ,v ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if dj ({i}) > dj (I+1
P ∪ I

−1
P ),

1 else if Pi = v and Pj = v,
max(0,pi j−ε )∑
i∈act (P, j )

pi j
else if Pi = v and Pj = 0,

ε otherwise,

where Iv
P

is a set of users holding opinion v in network state P , puv is an edge activation prob-
ability [22], dj (I ) is the length of the shortest path from users I to user j, act (P , j ) = {k | k ∈
I+1
P ∪ I

−1
P and dj ({k }) = dj (I+1

P ∪ I
−1
P )} is the set of users active in network state P closest to user j,

and ε is a negligible likelihood of an “impossible” event.
In the original model, ε = 0, that is, neutral users cannot infect others, and active users neither

drop their opinions nor spread opinions opposite to their own. That, however, would lead to the
distances between many network states to be +∞ since the opinion evolution may follow the
assumed opinion dynamics model not exactly. In order to obviate this issue, we aim to—instead of
just declaring two network states qualitatively unreachable—always quantify the distance between
them, and, thus, assign some negligible probabilities ε to the events that original opinion dynamics
models posit as impossible.

Linear threshold: For the version of Linear Threshold model [9] supporting multiple opinion
values, Pi j (P ,v ) is defined as

P LT
i j (P ,v ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if i � N in (P , j ),
1 else if Pi = v ∧ Pj = j,

(1−ε )ωi j∑
k∈N in (P, j )

ωk j
else if Pi = v and Pj = 0 and

∑
k ∈N in (P, j )

ωk j ≥ θ j ,

ε otherwise,

whereωi j is an edge weight reflecting relative influence of i upon j, θi is user i’s opinion switching
threshold, N in (P , j ) is the set of j’s in-neighbors active in network state P , and ε has the same se-
mantics of a negligible likelihood of an “impossible” event as in the earlier case of the Independent
Cascade model.

A.2 Equivalence of EMD
α and �EMD

In Section 4.1, we used EMDα—an existing version of EMD—and relied upon its equivalence to
another existing version of EMD, namely,

�EMD(P ,Q,D) = EMD(P ,Q,D) min
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

Pi ,

n∑
j=1

Q j

⎫⎪⎪⎬⎪⎪⎭ + αmax
i, j
{Di j }









n∑

i=1

Pi −
n∑

j=1

Q j








 .
In this section, we provide a formal definition of EMDα, and establish its equivalence with �EMD
in Theorem A.1. Formally, EMDα is defined as follows:

P = [P1, . . . , Pn], Q = [Q1, . . . ,Qn],

Pbank =

n∑
j=1

Q j , P̃ = [P1, . . . , Pn , Pbank] ,

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 4, Article 38. Publication date: August 2019.



38:26 V. Amelkin et al.

Qbank =

n∑
i=1

Pi , Q̃ = [Q1, . . . ,Qn ,Qbank] ,

D̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Dn×n

|
α max

i, j
{Di j }
|

—α max
i, j
{Di j }— 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

EMDα (P ,Q ) = EMD(P̃ , Q̃, D̃) · ���
n∑

i=1

Pi +

n∑
j=1

Q j
��� .

Despite the syntactic differences between EMDα and �EMD, the following Theorem establishes
that they are actually numerically equivalent.

Theorem A.1. If ground distance D ∈ Rn×n is metric, and α ≥ 1
2 , so that both EMDα and �EMD

are metric [34, 41], then ∀P ,Q ∈ R+n : EMDα (P ,Q,D) = �EMD(P ,Q,D).

Proof. Without loss of generality, let us assume that
∑
Pi ≤

∑
Q j , and use the following

notation

Δ = Δ(P ,Q ) =









n∑

i=1

Pi −
n∑

j=1

Q j








 , γ = αmax
i, j
{Di j },

so that the expression for �EMD gets rewritten as

�EMD(P ,Q ) = EMD(P ,Q ) min
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

Pi ,

n∑
j=1

Q j

⎫⎪⎪⎬⎪⎪⎭ + γΔ.

Our aim is to show that EMDα has exactly the same expression as �EMD as long as they both
are metric. To do so, let us consider how a unit of mass can be transported from network state P
to network state Q , both extended with a bank node, as per the definition of EMDα.

As shown in Figure 14, there are two qualitatively different alternatives for moving a unit of

mass from regular (non-bank) node i of network state P̃ : a unit of mass can be moved either to a

regular node j or to the bank node of Q̃ .
In the first case, the total transportation cost of a unit of mass is exactly the ground distance

D̃i j = Di j between regular nodes i and j.

In the second case, the immediate cost of transportation to the bank node is D̃i,bank = γ . How-
ever, because we have routed mass from a regular node to the bank node, there exists a regular

node s in Q̃ having a “mass deficit” that has to be fulfilled from the bank node of P̃ . Thus, if we

move a unit of mass from a regular node of P̃ to the bank node of Q̃ , there is an additional incurred

cost γ of moving an additional unit of mass from the bank node of P̃ to some regular node of Q̃ .
Hence, the total cost of transportation of a unit of mass in the second case is

γ + γ = 2αmax
i, j

Di j ≥ (since α ≥ 0.5) ≥ max
i, j

Di j .

Thus, from the point of view of optimal mass transportation, it may never be preferable to
move a unit of mass from a regular node to the bank node if there is an option to transport mass
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Fig. 14. Two qualitatively different ways to transport a unit of mass from extended network state P̃ =

[P1, . . . , Pn ,k + Δ] to extended network state Q̃ = [Q1, . . . ,Qn ,k], where
∑
Pi ≤

∑
Q j . Dashed arrows rep-

resent the flow of mass. The bank node is attached to every node of each network state. k =
∑
Pi , so that

the total masses of two extended network states are equal.

from a regular node to another regular node. Consequently, an optimal solution to the EMDα’s
transportation problem can be decomposed as follows:

EMDα (P ,Q,D) = EMD(P̃ , Q̃, D̃) ���
n∑

i=1

Pi +

n∑
j=1

Q j
���

= min
{fi j }

n+1∑
i, j=1

fi j D̃i j = (let b = n + 1)

= min
{fi j }

[ n∑
i, j=1

fi j D̃i j

︸������︷︷������︸
regular nodes

to regular nodes

+

n∑
i=1

fib D̃ib

︸������︷︷������︸
regular nodes

to bank node

+

n∑
j=1

fbj D̃bj

︸������︷︷������︸
bank node to

regular nodes

+ fbb D̃bb︸��︷︷��︸
bank node

to bank node

]

= min
{fi j }

[ n∑
i, j=1

fi jDi j + γ
n∑

j=1

fbj

︸�︷︷�︸
Δ

]
= min
{fi j }

⎡⎢⎢⎢⎢⎢⎣
n∑

i, j=1

fi jDi j + γΔ

⎤⎥⎥⎥⎥⎥⎦
= min
{fi j }

⎡⎢⎢⎢⎢⎢⎣
n∑

i, j=1

fi jDi j

⎤⎥⎥⎥⎥⎥⎦ + γΔ = EMD(P ,Q,D) ×min

{∑
Pi ,

∑
Q j

}
+ γΔ

= �EMD(P ,Q,D).

An additional useful observation, formalized below as Corollary A.2—that will subsequently show
instrumental in the proof of Theorem 4.2—is that a particular value of k does not matter for EMDα,
since in every optimal solution of its underlying transportation problem, any amount of mass

exceeding Δ in the bank node of the lighter network state is transported at cost D̃bank,bank = 0 to
the bank node of the heavier network state. �
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Corollary A.2. For network states P = [P1, . . . , Pn] and Q = [Q1, . . . ,Qn], and ground distance
D, if

∑
Pi =

∑
Q j and D is metric, then for all k ≥ 0 ∈ R+, the following holds:

EMD

������
[P ,k], [Q,k],

⎡⎢⎢⎢⎢⎢⎢⎢⎣
D

|
ω
|

—ω — 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
������
= EMD(P ,Q,D),

where [X ,k] is network stateX extended with a single bank node with value k and a uniformly defined
ground distance ω ≥ 1

2 maxi, j Di, j to/from the regular nodes of X .

Informally, Corollary A.2 states that, for any two network states of equal total mass, we can
increase their total masses by an arbitrary value without affecting the EMD between them.

A.3 Proof of Theorem 4.2

Proof (Theorem 4.2) Let us define M = maxX ∈H
∑

k Xk < ∞. Next, we define an auxiliary dis-
tance measure EMD ′ as follows:

EMD′(P ,Q,D) = EMD(P ′,Q ′,D ′),

P ′ =
⎡⎢⎢⎢⎢⎣P̃ ,M −

∑
i

P̃i

⎤⎥⎥⎥⎥⎦ ,
Q ′ =

⎡⎢⎢⎢⎢⎢⎣Q̃,M −
∑

j

Q̃ j

⎤⎥⎥⎥⎥⎥⎦ ,

D ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D̃

|
max

i, j
{D̃i j }/2
|

— max
i, j
{D̃i j }/2 — 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where P̃ , Q̃ , and D̃ are the extended network states, and the extended ground distance, respectively,

as defined by EMD�. From the definition of EMD� (10), it follows that
∑
P̃i =

∑
Q̃i and, henceM −∑

P̃i = M −∑
Q̃i = k . Thus, since

∑
P ′i =

∑
Q ′i = M , D is metric, and k ≥ 0, from Corollary A.2

with P = P̃ , Q = Q̃ , D = D̃, and ω = 1
2 maxi, j D̃i j , we have

EMD′(P , Q,D) = EMD(P ′,Q ′,D ′) = (from Corollary A.2) = EMD(P̃ , Q̃, D̃)

= (from definition (10) of EMD�) =
EMD�(P ,Q,D)

max
{∑

Pi ,
∑
Q j

} .
Thus, EMD� is metric iff EMD′ is metric. The latter’s metricity, according to Theorem 2.1, requires
equality of total masses of all network states and metricity of the ground distance. From the defini-
tion of EMD′, it is clear that all network states P ′ andQ ′ supplied to EMD by EMD′ have the same
total mass M . As to metricity of the ground distance, the identity of indiscernibles and symmetry
straightforwardly follow from the corresponding properties of the original ground distance D and
our choice of the ground distances to/from the bank nodes to be non-negative and symmetric. The
triangle inequality trivially holds as network state extension does not introduce any new triangles.
Hence, by Theorem 2.1, EMD′ and, consequently, EMD� is metric. �
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A.4 Proof of Reduction Lemma 5.2

Proof (Lemma 5.2). First, we will show that there is always an optimal plan fi j in the problem

of optimal mass transportation from P̃ to Q̃ over D̃ such that ∀1 ≤ i ≤ n : fii = min {P̃i , Q̃i } = M ,
and, then, use such a plan to argue about the value of EMD�.

Consider an arbitrary optimal transportation plan f̂i j , and assume that ∃i ∈ [1;n] : δ = M −
f̂ii > 0. We will now use f̂ to construct another optimal transportation plan f †i j such that f †ii = M .

Initially, we put f † = f̂ and, then, re-route mass flows in f † to eventually achieve the desired value

of f †ii .

Since, initially, f †ii < M , the remaining at least δ units of mass should be distributed by P̃i and

consumed by Q̃i to/from other consumers/suppliers. Among those, let us pick the ones that sup-

ply/consume the least amount of mass to Q̃i and from P̃i , respectively: � = arg minj�i f
†
ji , and r =

arg minj�i f
†

i j . Without loss of generality, let us assume that f †
�i
≤ f †ir and denote Δ = min { f †

�i
,δ }.

Now, we will re-route Δ units of mass in f † as follows:

f †
�i
← f †

�i
− Δ, f †

�r
← f †

�r
+ Δ, f †ir ← f †ir − Δ, f †ii ← f †ii + Δ.

The updated transportation plan is legal, as the total amount of mass supplied or consumed by
each node has not changed. The total cost of f † has been updated as follows:

newcost ( f †) ← cost ( f †) − ΔD̃�i − ΔD̃ir + ΔD̃ii + ΔD̃�r

=
(
since D and, hence, D̃ is semimetric, D̃ii = 0

)
= cost ( f †) − Δ(D̃�i + D̃ir − D̃�r )

≤
(
since D̃ is semimetric, D̃�i + D̃ir ≥ D̃�r

)
≤ cost ( f †).

Since the cost of the obtained legal plan f † cannot be strictly less than the cost of an optimal plan

f̂ , the performed update of f † has not changed its cost, and the updated f † is still an optimal

plan. The described above re-routing procedure is repeatedly performed on f † until f †ii reaches

M = min {P̃i , Q̃i }.
Finally, to see why the statement of the lemma holds, we observe that the value of EMD� is the

cost of any optimal transportation plan, and the cost of f † in particular. However, the cost of f †

does not depend on f †ii , since, due to semimetricity of D̃, mass f †ii gets transported at cost D̃ii = 0.

Thus, M can be subtracted from P̃i , Q̃i , and f †ii , without affecting the total cost of f †. The solution
of the latter modified transportation problem, however, is exactly

EMD�([P1, . . . , Pi−1, Pi −M, Pi+1, . . . , Pn], [Q1, . . . ,Qi−1,Qi −M,Qi+1, . . . ,Qn],D). �

A.5 Example of Computing SND

In this section, we provide an example of computing SND over a toy network, and discuss the
semantics of SND’s value. Consider the following network G on 6 nodes, with {0, 1}-adjacency
matrix A01, and three states X , Y , and Z of that network, as shown in Figure 15.
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Fig. 15. Example networkG and three network states X , Y , and Z . Pluses correspond to node values +1, and
minuses—to −1.

A01 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X = [+1,−1, 0,+1, 0, 0]ᵀ

Y = [+1,−1, 0,+1,+1, 0]ᵀ

Z = [+1,−1, 0,+1, 0,−1]ᵀ

In this example, SND will rely on the following underlying opinion propagation model, defined
via Pi j (X ,+1) and Pi j (X ,−1)—the likelihoods of positive and negative opinion spread between
pairs of nodes in network state X :

P (X ,+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε 0.01 0.8 ε ε ε
ε ε ε ε ε ε
ε ε ε 0.2 0.2 ε
ε ε ε ε 0.01 0.5
ε ε ε ε ε ε
ε ε ε ε ε ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, P (X ,−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε ε ε ε ε ε
ε ε 0.5 0.01 ε ε
ε ε ε 0.01 0.2 ε
ε ε ε ε 0.01 0.01
ε ε ε ε ε ε
ε ε ε ε ε ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ε = 0.001 is the likelihood of an “implausible event”—discussed in Appendix A.1—which
makes sure we can always quantify distance between network states, even if some opinion adop-
tions seem implausible, possibly, due to missing data. We will not observe such implausible events
when comparing X and Y , but the comparison of X and Z will be affected by the choice of ε .

In what follows, we will show how to compute an asymmetric version of SND

SNDasym (X ,Y ) =
∑

v ∈{−1,+1}
EMD�(Xv ,Yv ,D (X ,v )),

and compare the obtained value with that of SNDasym (X ,Z ). Computation of full SND(X ,Y ) =
1
2 [SNDasym (X ,Y ) + SNDasym (Y ,X )] would be performed using the same procedure.

Expression for SNDasym (X ,Y ) contains a sum with two terms. For the term corresponding to
v = −1, we have

X−1 = [0, 1, 0, 0, 0, 0]ᵀ = Y−1,

so EMD�(X−1,Y−1,D (X ,−1)) = 0. Thus, we need to compute only EMD�(X+1,Y+1,D (X ,+1)):

X+1 = [1, 0, 0, 1, 0, 0]ᵀ Y+1 = [1, 0, 0, 1, 1, 0]ᵀ.

The obtained X+1 and Y+1 have different masses

Δ =








n∑
i=1

X+1
i −

n∑
i=1

Y+1
i







 = |2 − 3| = 1,
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Fig. 16. X+1 and Y+1 extended with bank nodes. Blank nodes (regular or bank) have zero values. The bank
nodes attached to nodes 1 and 4 are indexed as 7 and 8, respectively.

so EMD� extends X+1 and Y+1, equalizing their masses, as follows (also, demonstrated in
Figure 16):

X̃+1 = [(X+1)ᵀ | 0.5, 0.5]ᵀ = [1, 0, 0, 1, 0, 0, 0.5, 0.5]ᵀ,

Ỹ+1 = [(Y+1)ᵀ | 0.0, 0.0]ᵀ = [1, 0, 0, 1, 1, 0, 0, 0]ᵀ.

The corresponding extended ground distance matrix D (X ,+1) is obtained as follows:

D̃ (X ,+1) = a2asp (− log(P̃ (X ,+1))),

P̃ (X ,+1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P (X ,+1)

|
exp{−γ }I1

|

|
exp{−γ }I4

|
— exp{−γ }I1 —
— exp{−γ }I4 —

02×2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Ij is the jth column of the identity matrix, γ = 0.001 is the log-likelihood assigned to the
edges to/from the added bank nodes, and a2asp (A) is the matrix of the lengths of all-to-all shortest
paths in the network with adjacency matrix A. In an efficient computation of EMD�, outlined in
Theorem 5.3, we would not need to compute all shortest paths, but in this example we do so for
the sake of simplicity.

Finally, we compute EMD�(X+1,Y+1,D (X ,+1)) as the value of a min-cost bipartite network

flow with sources X̃+1, destinations Ỹ+1, and transportation costs D̃ (X ,+1):

EMD�(X+1,Y+1,D (X ,+1)) =mc f (X̃+1, Ỹ+1, D̃ (X ,+1)) ≈ 4.2.

The corresponding optimal flow is shown in Figure 17. Thus, we conclude that SNDasym (X ,Y ) ≈
4.2.

If we translate the obtained distance value SNDasym (X ,Y ) = 4.2 from log-scale, we will get
exp{−SNDasym (X ,Y )} = 0.015. Taking into account that SND quantifies the likelihood of a net-
work’s state transition, does the value of 0.015 make sense on its own as a probability? If we
assume that, in reality, node 5 could have got opinion +1 through either of two equiprobable paths
1→ 3→ 5 or 4→ 5, then the likelihood of the network’s transitioning from X+1 to Y+1 would
have been

0.5 · P13 (X ,+1) · P35 (X ,+1) + 0.5 · P45 (X ,+1)

= 0.5 · 0.8 · 0.5 + 0.5 · 0.001 ≈ 0.20 � 0.015 = exp{−SNDasym (X ,Y )}.

We see that SND may considerably underestimate the likelihood of network state transition, and,
hence, it may not be reasonable to interpret SND’s value in isolation as a (log-)likelihood. However,
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Fig. 17. Optimal flow of opinion +1 from sources X̃+1 to destinations Ỹ+1 through network in state X̃+1.

The cost of this flow is ≈ 4.2, where node-to-node transportation costs are defined via D̃ (X ,+1).

the value of SND between two network states makes sense when used in relation to other values
of SND between other network state pairs. For example, if we repeated the above procedure to
compute SNDasym (X ,Z ), we would have obtained

SNDasym (X ,Z ) ≈ 7.9 � 4.2 = SNDasym (X ,Y ),

which is expected, as transition from X to Z includes propagating negative opinion through node
4 holding positive opinion, while transition from X to Y does not involve such unlikely opinion
adoptions. SND effectively captures such a difference, indicating that Y is a more likely successor
to X than Z .
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