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Abstract

We present Rosenthal-type moment inequalities for matrix-valued U-statistics of order
2. As a corollary, we obtain new matrix concentration inequalities for U-statistics. One
of our main technical tools, a version of the non-commutative Khintchine inequality
for the spectral norm of the Rademacher chaos, could be of independent interest.
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1 Introduction.

Since being introduced by W. Hoeffding [16], U-statistics have become an active topic
of research. Many classical results in estimation and testing are related to U-statistics;
detailed treatment of the subject can be found in excellent monographs [7, 20, 30, 21].
A large body of research has been devoted to understanding the asymptotic behavior of
real-valued U-statistics. Such asymptotic results, as well as moment and concentration
inequalities, are discussed in the works [8, 7, 12, 14, 18, 11, 17], among others. The case
of vector-valued and matrix-valued U-statistics received less attention; natural examples
of matrix-valued U-statistics include various estimators of covariance matrices, such as
the usual sample covariance matrix and the estimators based on Kendall’s tau [37, 15].

Exponential and moment inequalities for Hilbert space-valued U-statistics have been
developed in [2]. The goal of the present work is to obtain moment and concentration
inequalities for generalized degenerate U-statistics of order 2 with values in the set of
matrices with complex-valued entries equipped with the operator (spectral) norm. The
emphasis is made on expressing the upper bounds in terms of computable parameters.
Our results extend the matrix Rosenthal’s inequality for the sums of independent random
matrices due to Chen, Gittens and Tropp [5] (see also [19, 25]) to the framework of
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U-statistics. As a corollary of our bounds, we deduce a variant of the Matrix Bernstein
inequality for U-statistics of order 2.

We also discuss connections of our bounds with general moment inequalities for
Banach space-valued U-statistics due to R. Adamczak [1], and leverage Adamczak’s
inequalities to obtain additional refinements and improvements of the results.

We note that U-statistics with values in the set of self-adjoint matrices have been
considered in [6], however, most results in that work deal with the element-wise sup-
norm, while we are primarily interested in results about the moments and tail behavior
of the spectral norm of U-statistics. Another recent work [26] investigates robust
estimators of covariance matrices based on U-statistics, but deals only with the case of
non-degenerate U-statitistics that can be reduced to the study of independent sums.

The key technical tool used in our arguments is the extension of the non-commutative
Khintchine’s inequality (Lemma 3.3) which could be of independent interest.

2 Notation and background material.

Given A € C%4 42, A* ¢ C%*% will denote the Hermitian adjoint of A. H? — C%*¢
stands for the set of all self-adjoint matrices. If A = A*, we will write Apax (A) and
Amin (4) for the largest and smallest eigenvalues of A.

Everywhere below, || - || stands for the spectral norm |A| := /Amax (A*A). If dy =
dy = d, we denote by tr(A) the trace of A. The Schatten p-norm of a matrix A is defined

as |Als, = (tr(A*A)P/Q)l/p . When p = 1, the resulting norm is called the nuclear norm
and will be denoted by | - |+. The Schatten 2-norm is also referred to as the Frobenius
norm or the Hilbert-Schmidt norm, and is denoted by || - |r; and the associated inner
product is (A1, A2y = tr(A¥ As).

Given z € C%, |z|, = v/2*2 stands for the usual Euclidean norm of z. Let 4, B € H%.
We will write A > B(orA > B) iff A — B is nonnegative (or positive) definite. For a,b € R,
we set a v b := max(a,b) and a A b := min(a, b). We use C to denote absolute constants
that can take different values in various places.

Finally, we introduce the so-called Hermitian dilation which is a tool that often allows
to reduce the problems involving general rectangular matrices to the case of Hermitian
matrices.

Definition 2.1. Given a rectangular matrix A € Céxd2 the Hermitian dilation D :
Cdrxdz -, Qlditd2)x(ditd2) js defined as

D(A) — <£* g) . 2.1)

. AA* 0

Since D(A)? = < 0 A*A

The rest of the paper is organized as follows. Section 2.1 contains the necessary
background on U-statistics. Section 3 contains our main results - bounds on the H¢-
valued Rademacher chaos and moment inequalities for H%-valued U-statistics of order 2.
Section 4 provides comparison of our bounds to relevant results in the literature, and
discusses further improvements. Finally, Section 5 contains the technical background
and proofs of the main results.

) , it is easy to see that |[D(A)| = [|A].

2.1 Background on U-statistics.

Consider a sequence of i.i.d. random variables X7, ..., X,, (n > 2) taking values in a
measurable space (S, ), and let P denote the distribution of X;. Define

I:LVL:= {(Zl,,lm) 1<Z‘7<n77 Zj#lklf]#k},

EJP 0 (2018), paper O. http://www.imstat.org/ejp/
Page 2/31


http://dx.doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/

Moment inequalities for U-statistics

and assume that H;, __; :S8™ — HY, (i, ...,4m,) € I™, 2 < m < n, are S™-measurable,
permutation-symmetric kernels, meaning that H;, i, (¥1,..-,%m) = Hi_ i, Ty Tx,,)
for any (z1,...,2,,) € 8™ and any permutation . For example, when m = 2, this con-

ditions reads as H;, s, (z1,22) = Hi, i, (z2,21) for all 41 # iz and z1, 2. The generalized
U-statistic is defined as [7]

Un = Z Hil,‘..,im(Xilv"inm)‘ (22)

(1, sim )€™

When H;, .. ;. = H, we obtain the classical U-statistics. It is often easier to work with
the decoupled version of U,, defined as
r_ o 1) (m)
Un - Z Hllpwﬂm (Xil yree 7Xz'm ) )
(il ..... ’Lm,)EI"L
n
where {Xl(k)} , k=1,...,m are independent copies of the sequence Xi,...,X,,. Our

ultimate goal i_s.lto obtain the moment and deviation bounds for the random variable
|Un, — EU,|.

Next, we recall several useful facts about U-statistics. The projection operator
Tm,k (k < 'm) is defined as

T H (Xiy - %3,) 1= (Ox,, — P) ... (6x,, — P)P™ *H,

xik
where

" H j j H(yr, . ym)dQ(y1) .. dQ(ym).

for any probability measure @ on (S, B), and ¢, is a Dirac measure concentrated at z € S.
For example, m, 1 H(z) = E[H(X1,...,Xn)| X1 =2] —EH(X1,..., Xn).

Definition 2.2. Let F : S™ — HY be a measurable function. We will say that F is
P-degenerate of orderr (1 < r <m) iff

EF(x1,...,%Xp, X1y s Xm) =0Vxq,...,%,. €S,

and EF (X1, ...,Xq, Xp41, Xp42,- .-, Xm) IS not a constant function. Otherwise, F is non-
degenerate.

For instance, it is easy to check that 7, 1/ is degenerate of order £ — 1. If F'is
degenerate of order m — 1, then it is called completely degenerate. From now on, we
will only consider generalized U-statistics of order m = 2 with completely degenerate
(that is, degenerate of order 1) kernels. The case of non-degenerate U-statistics is easily
reduced to the degenerate case via the Hoeffding’s decomposition; see page 137 in [7]
for the details.

3 Main results.

Rosenthal-type moment inequalities for sums of independent matrices have appeared
in a number of previous works, including [5, 25, 31]. For example, the following inequality
follows from Theorem A.1 in [5]:

Lemma 3.1 (Matrix Rosenthal inequality). Suppose that ¢ > 1 is an integer and fix
r > q v logd. Consider a finite sequence of {Y;} of independent H%-valued random
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matrices. Then

2 1/2q

E Z(Yi —~EY;)

K3

1/2
< 24/er (ZE (Y, — EYi)2>

1/2q
+ 44/ 2er (Emax HYZ-—EYI-HQQ) . (3.1)

The bound above improves upon the moment inequality that follows from the matrix
Bernstein’s inequality (see Theorem 1.6.2 in [31]):

Lemma 3.2 (Matrix Bernstein's inequality). Consider a finite sequence of {Y,} of inde-
pendent H?-valued random matrices such that |[Y; — EY;|| < B almost surely. Then

d

where o2 := “ZiE(Yi - EYi)QH.

DY —EY))

K2

4
> 204/u + 3Bu> < 2de™™,

Indeed, Lemma 5.8 implies, with ¢y = C (a«/log(Qd) + Blog(?d)) for some absolute
constant C' > 0 and after some simple algebra, that

<E

for an absolute constant C; > 0 and all ¢ > 1. This bound is weaker than (3.1) as it
requires almost sure boundedness of |Y; — EY;| for all ;. One the the main goals of
this work is to obtain operator norm bounds similar to inequality (3.1) for He-valued
U-statistics of order 2.

a\ 4
) <Oy («/q + log(2d) o + (q + log(2d))B> ,

Z (Y; - EY;)

?

3.1 Degenerate U-statistics of order 2.

Moment bounds for scalar U-statistics are well-known, see for example the work
[12] and references therein. Moreover, in [1], author obtained moment inequalities for
general Banach-space valued U-statistics. Here, we aim at improving these bounds for
the special case of H%-valued U-statistics of order 2. We discuss connections and provide
comparison of our results with the bounds obtained by R. Adamczak [1] in Section 4.

3.2 Matrix Rademacher chaos.

The starting point of our investigation is a moment bound for the matrix Rademacher
chaos of order 2. This bound generalizes the spectral norm inequality for the matrix
Rademacher series, see [31, 34, 35, 36]. We recall Khintchine’s inequality for the matrix

Rademacher series for the ease of comparison: let A,..., A, € H? be a sequence of
fixed matrices, and ¢4, ..., &, — a sequence of i.i.d. Rademacher random variables. Then
2\ 1/2 1/2

E (3.2)

<+e(l+2logd)-

n
gt
1=1

n
2
2.4
i=1

Furthermore, Jensen’s inequality implies this bound is tight (up to a logarithmic factor).
Note that the expected norm of > ¢;A4; is controlled by the single “matrix variance”
parameter |>" | A?||. Next, we state the main result of this section, the analogue of
inequality (3.2) for the Rademacher chaos of order 2.

EJP 0 (2018), paper O. http://www.imstat.org/ejp/
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Lemma 3.3. Let {A;, i, )] ;-1 € H? be a sequence of fixed matrices. Assume that

J
ables, and define

{e(-i)}l N’ 1 = 1,2, are two independent sequences of i.i.d. Rademacher random vari-
jE

X = Z Ai17i25(1)5(2)~

’il 12
(7:171‘2)6[%

Then for any q > 1,

1/2
max 3 [GG] | ), A%, < (B|x|20)"/C?
(i1,%2)€l2
1/2
4
< Zgoremax{OGTL ) ) ARyl L G
(41,62)€12
where r := q v logd, and the matrix G € H"? s defined via its block structure as
0 A172 P Al,n
Asn 0 ... A,
¢= : : : : (3.4)
A'IL,l An’Q oo O

Remark 3.4 (Constants in Lemma 3.3). Matrix Rademacher chaos of order 2 has been
studied previously in [29], [27] and [28], where Schatten-p norm upper bounds were
obtained by iterating Khintchine’s inequality for Rademacher series. Specifically, the
following bound holds for all p > 1 (see Lemma 5.4 for the details):

2
1/2|<P

N En A?

82}7, 4 11,02

i1,7,2=1
Sap

2p
22
Bix1, <2(22) maxd e

Using the fact that for any B € H?, |B| < | B|s,, < d"/*’|B| and taking p = ¢ v log(nd),
one could obtain a “naive” extension of the inequality above, namely
1/2
(BIX[?)"*? < Cmax (g.log(nd)) max § |GG™|,| >, 42,
(il,iz)EI;
that contains an extra log(n) factor which is removed in Lemma 3.3.
One may wonder if the term |GG*| in Lemma 3.3 is redundant. For instance, in the
2 .| = |GG*|. However,

case when {A4;, ;, }, :, are scalars, it is easy to see HZ(il inyer2 A i
a more careful examination shows that there is no strict dominance among |GG*| and

Hz(ihia)eli Afhh . The following example presents a situation where Hz(il,ig)elg Afhiz <
lcG=|.
Example 3.5. Assume thatd > n > 2, let {aj,...,as} be any orthonormal basis in R¢,
and a := [aT,... al]? € R" be the “vertical concatenation” of ay, ..., a,. Define
Ail,h = ailaz'j; + ai2ag;7 Z.laiQ € {17 27 cee 5n}a
and
o (1) .(2)
X = Z 62»1 61'2 Ai1,i2~
(il,ig)EI?Z
EJP 0 (2018), paper 0. http://www.imstat.org/ejp/

Page 5/31


http://dx.doi.org/10.1214/YY-TN
http://www.imstat.org/ejp/

Moment inequalities for U-statistics

Then |GG*| = [GGT| > (n—2) al§ = (n —2)n, and |5 A2

11 12 612 11,12

= 2(n —1). Details
are outlined in Section 5.4.

It follows from Lemma 5.1 that

|GGH| <

i1

Z lwz :

PHOELS

(3.5)

Often, this inequality yields a “computable” upper bound for the right-hand side of the
inequality (3.3), however, in some cases it results in the loss of precision, as the following
example demonstrates.

Example 3.6. Assume that niseven,d > n > 2, let {a;,...,a,} be an orthonormal
basis in R?, and let C € R®*™ be an orthogonal matrix with entries ¢i,j such that ¢;; = 0
for all 7. Define

A

T ..
i1,d2 = Ciyig (aha +a;,a 11) y 11,12 € {1727"')n}a

1) (2
and X = Y, 5, cp2 60020 Aiy i, Then [GG*| =1, |, 10 er2 A2 4| = 2, but

2

11

2 An iz

it 70

Details are outlined in Section 5.4.

3.3 Moment inequalities for degenerate U-statistics of order 2.

Let H;, i, : Sx 8+ HY, (i1,is) € I2, be a sequence of degenerate kernels, for example,
H;, i, (x1,22) = 72 2H11 i» (21, z2) for some non-degenerate permutation-symmetric Hz
Recall that U, the generalized U-statistic of order 2, has the form

1,02°

Un = Z Hil,iz(XiuXiz)'

(i1,42)€l2

Everywhere below, IE;[-], j = 1,2, stands for the expectation with respect to {Xi(j)}
i=1

only (that is, conditionally on all other random variables). The following Theorem is our
most general result; it can be used as a starting point to derive more refined bounds.

Theorem 3.7. Let {ij)} , J = 1,2, be S-valued i.i.d. random variables, H;; :
i=1 :
S x S — H¢ - permutation-symmetric degenerate kernels. Then for all ¢ > 1 and
r = max(q, log(ed)),
2g 1/2q

(el <i[B] ¥ Hy (X0, x2)

11 )
(’L‘l,ig)EITZL

<128/\/E[16r3/2 (Emax N o2, (Xfll),X(f))
i1

i2tl2 70

Q> 1/(2q)
Q) 1/2¢ ]

EJP 0 (2018), paper O. http://www.imstat.org/ejp/
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where the matrix G € H™ is defined as

0 Hi (X§1),X2(2>) o Hi, (x0 x®
N Ho (XS),X{Q)) 0 o Hayp (X, x
G:= (3.6)
Hos (X,S”, X{”) Hpo (X,S”, XQ(Q)) . 0
Proof. See Section 5.2.3. O

The following lower bound (proven in Section 5.2.4) demonstrates that all the terms
in the bound of Theorem 3.7 are necessary.
q) 1/(2q)

Lemma 3.8. Under the assumptions of Theorem 3.7,

1/2
(B .1>) “>c <Emax

Z 11 i (XZ(J)’X(:))

i2:la 0
q\ 1/2q
~~_ 9\ 1/2q
2 1) (2
+(BlEaGe ) T (B Y mem?, (X x2)
(1,1 ’LQ 612

where C' > 0 is an absolute constant.

Example 3.9. Let {A;, ;, }1<i, <i»<n be fixed elements of H? and X1, ..., X,, - centered
ii.d. real-valued random variables such that Var(X;) = 1. Consider Y =}, _; A, i, Xi, Xi,,

where A4,, ;, = A;, i, for i > i;. We will apply Theorem 3.7 to obtain the bounds for
(EHYHQ‘I)I/QQ. In this case, H;, i, (X(l) X )) A; X(l)X(2) and it is easy to see that

1 12 1,12
1/q
Emax (IE max |X; |2q>

ay\ 1/(29) 1/2
) < max
1 1<i<n
1/2 1/
1) (2
and Hz(il,iz)eﬁ EHZQI i2 <X11 ’X )H HZ i1,i2)€l2 31#2

2. AL

Jj#i

1) x(@2)
>, HL, (xD.xD)

12192701

2
. Moreover,

(Eﬁé*)ij = XXM S A A,
g ki,j

implying that ]Ezéé* = DG D, where G is defined as in (3.4) and D € H"? is a diagonal
matrix D = diag(XF)7 . ,X,(ll)) ® I;, where ® denotes the Kronecker product. It yields

2
that HEQGG* fl)’ - |GG*|, hence

< max;

~ ~ 19\ 1/2a 1/2q
(IEHIEQGG* ) < |ce|M? (Ellg_ag( |Xi|2q> .

Combining the inequalities above, we deduce from Theorem 3.7 that

1/2
1/2q
2q\1/2q 2 2 1/2
(E“YH ’1) <C|r Z Ail,iQ (E IIEza<X |X| q) HGG*H
(i],ig)EIﬁ
1/2 1/q
3/2 2q
+7r nrﬁtx Z A“)Z2 (E 1r£1?<Xn|X| ) 1, (3.7)
i #1]
EJP 0 (2018), paper O. http://www.imstat.org/ejp/
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where r = max(q,log(ed)). If for instance |X;| < M almost surely for some M > 1, it
follows that
1/2 ]

On the other hand, if X, is not bounded but is sub-Gaussian, meaning that (E|X; |q)1/ 1<
Co,/q for all ¢ € IN and some o > 0, then it is easy to check that

1/2

M HGG*HI/Q-I— Z A2 . + 322 max

11,22
(’il ,ig)EITZL

(EB]Y[2)"* < C|r

Z A21712

i #1]

1/2q
(E max |X; |2q) < Cy+/log(n)o/2q,

1<i<n

1/2q
and the estimate for <E HYH2‘1) follows from (3.7).

Our next goal is to obtain more “user-friendly” versions of the upper bound, and we

first focus on the term E|E,GG*|” appearing in Theorem 3.7 that might be difficult to
deal with directly. It is easy to see that the (i, j)-th block of the matrix E,GG* is

(EQG@*) = Z E, [H H(xD, X(2>) (Xu) X(Q))]
B ki

It follows from Lemma 5.1 that

[oNelex (EQG@*) -3 Y Em2, (xD.x), (3.8)
i1 |li2:i2#1
hence
i 1/2a q\ 1/2q
o)™ (2(3] 3w () )
i1 |[i2:i2#0
1/2
(2] 5, o (x0x2)
i1 G292 #11

Z E2 ’Ll 7,2 (XZ(1)7X(2)>
1 12

i2:i2 711

q> 1/2q

where we used Rosenthal’s inequahty (Lemma 5.5 applied with d = 1) in the last step.
Together with the fact that HEH2 (X( x® )H <F HIE H? ( XM x( ) H for all iy, i, and

21 )
q) 1/(29)

+ 24/2eq <E max
i1

the inequality

<Emax Z E.H 11 iy (XZ(3)7X( ))

(PHOELSY
we obtain the following result.

S om2, ( “>’X<2>)

Q912 F#i1

q\ 1/2q
) (]E max

Corollary 3.10. Under the assumptions of Theorem 3.7,

(E ||UnH2q>1/2q <256/\/E[r (ZE Z EyH? . ( 1(1)7X(2))

i2tia 70

o ( “>’X<2>>

i2:92#1

.
)
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Remark 3.11. Assume that H; ; = H is independent of ¢, j and is such that | H (z1, z2)| <
M for all 1,z € S. Then
q

Emax < (n—1)TM*,

>oaz, (xx®)

12192 #%11
and it immediately follows from Lemma 5.7 and Corollary 3.10 that for all ¢ > 1 and an
absolute constant C' > 0,

Pr <|Un >C <\/]E H]EgHQ(Xl(l),Xéz))H (t +logd) - n + M~/n (t + log d)3/2)) <e
(3.9)

Next, we obtain further refinements of the result that follow from estimating the term

a\ 1/(29)
P32 <Emax Z “)22( 211),X( )) ) .

12192 #01
Lemma 3.12. Under the assumptions of Theorem 3.7,

ay\ 1/(29)
Z i1 12( 11)’X(2)) >
i1 F11
Z EoH 11 0 ( 7(11)7)(( ))

1/2
19:12 711 ‘)
q> 1/2q

1/2q
o ()

Proof. See Section 5.2.5. O

r3/2 (]E max

<dev2y 1+ logd[ (ZE

+ 73/2 <E max

Z ]E2 Z] L2 (Xl(l)?X( ))
1 12

1212711

i9:l2 Fi1

+7“2< E max

One of the key features of the bounds established above is the fact that they yield
estimates for E |U,,|: for example, Theorem 3.7 implies that
1/2
)1/2 Y 2, (X0, x2)

11,12 11
21722) 12

1/2
> HE, (X xD) ) ) (3.10)

G212 #11
for some absolute constant C. On the other hand, direct application of the non-
commutative Khintchine’s inequality (3.2) followed by Rosenthal’s inequality (Lemma
5.5) only gives that

E|U,| < Clogd< (B HEzéé*

logd (E max

E|U,| <01ogd<ZE

(1) (2)
Z 11 i Xu ’X ‘)

3 PREEA
<Clogd<<ZE 3 EHE ij),X D (3.11)
i1 1212 #11
logd< E max HZQ1 Z2( p ,X(2>H> )
o G212 70 !
EJP 0 (2018), paper O. http://www.imstat.org/ejp/
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and it is easy to see that the right-hand side of (3.10) is never worse than the bound
(3.11). To verify that it can be strictly better, consider the framework of Example 3.6,
where it is easy to check (following the same calculations as those given in Section 5.4)

that
1/2
> - 1’
1/2

2
Bn?, (x0.x2)) =2,

(11,7,2)€I2

(1E HEQCJG*

Z 11 i (Xl(ll)’X(Qz)>

1912 #11

1/2
) =1, Emax

1/2
while (3, B |80, B2H2 , (X0, X)) = v

Remark 3.13 (Extensions to rectangular matrices). All results in this section can be
extended to the general case of C% %% - valued kernels by considering the Hermitian
dilation D(U,,) of U,, as defined in (2.1), namely

DU, = Y. D(H (X<1> X(z))>€IHd1+d27

11
(il,iz)EI%
and observing that |U,| = |D(U,)|.

4 Adamczak’s moment inequality for U-statistics.

The paper [1] by R. Adamczak developed moment inequalities for general Banach
space-valued completely degenerate U-statistics of arbitrary order. More specifically,
application of Theorem 1 in [1] to our scenario B = (]Hd7 | - H) and m = 2 yields the
following bounds forall ¢ > 1 and ¢ >

(BT, |2) /7 <C(IEIUnI+\/6~A+q~B+q3/2‘F+q2~D>, (4.1)

Pr(uUnH>C(E||Un\|+\/E-A+t-B+t3/2-r+t2-D)) <et,

where C' is an absolute constant, and the quantities A, B,T", D will be specified below
(see Section 5.3 for the complete statement of Adamczak’s result). Notice that inequality
(4.1) contains the “sub-Gaussian” term corresponding to ,/q that did not appear in the
previously established bounds.

We should mention another important distinction between (4.1) and the results of
Theorem 3.7 and its corollaries, such as inequality (3.9): while (4.1) describes the
deviations of |U, || from its expectation, (3.9) states that U, is close to its expectation as
a random matrix; similar connections exist between the Matrix Bernstein inequality [33]
and Talagrand’s concentration inequality [3]. It particular, (4.1) can be combined with a
bound (3.10) for E|U, | to obtain a moment inequality that is superior (in a certain range
of q) to the results derived from Theorem 3.7.
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Theorem 4.1. Inequalities (4.1) hold with the following choice of A, B,T" and D:

1/2
A =+/log(de) EHEgéé* +

S EA? (Xu) X(z))

1,12 11 772
(il,ig)EI%

1/2
+ log(de) (]Emax Z 11 iz (Xz(ll)’X(z)) ') ’
i2:92 711
1/2
B = sup Z E (Z*Hihiz (Xz(l)’X(2)> )
zeC4:||z]2<1 (i1,i2)€l2
1/2
1 2

< Z EHi io (XZ(1)7X(2)) ’

(1;1,1@)6[%

e

p-| %l (30 x2)]

(41,i2)el2

logd
+(1+ o8 >< E max
q o 12:12 711

where CNT'Z were defined in (3.6).

q> 1/2q

xO x@
Z E2 1122( i1 ’Xiz)

PREEA

1/(29)

1/2q
2, (30, x2)| )
71712 11 9

Proof. See Section 5.3. O

It is possible to further simplify the bounds for A (via Lemma 3.12) and D to deduce that
one can choose

1/2

2
en?, (x0.x2) |
(7,1,12)61
1/2

B=| sw S OE (Z*H (ij), X<2)) ) :
€012 <1 iy iyers
q> 1/2q

I = (log(de))*”” (Z E,

A =log(de) EHEQGC\;’* +

S B, (x0.x2)

i2tl2 70

1/(29)
(4.2)

Dotogde) [ 3 Elm2, (x0.x®)[

(21 ’Lz)GIz

The upper bound for A can be modified even further as in (3.8), using the fact that
<YE Y B, (X0.xD) ‘
i1

i9:i2 F#1i1
EJP 0 (2018), paper O. http://www.imstat.org/ejp/
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5 Proofs.

5.1 Tools from probability theory and linear algebra.

This section summarizes several facts that will be used in our proofs. The first

inequality is a bound connecting the norm of a matrix to the norms of its blocks.
Lemma 5.1. Let M € H%*% be nonnegative definite and such that M = (;1* g)

where A € H" and B € H%. Then
1< AL+ 1Bl
for any unitarily invariant norm || - ||.

Proof. It follows from the result in [4] that under the assumptions of the lemma, there
exist unitary operators U, V such that

A X\ (A 0\, . 0 0\
(e )0 (0 o) v (o 5)v

hence the result is a consequence of the triangle inequality. O

The second result is the well-known decoupling inequality for U-statistics due to de
la Pena and Montgomery-Smith [8].

Lemma 5.2. Let {X;}?, be a sequence of independent random variables with values
in a measurable space (5, S), and let {X,i(k) » ., k=1,2,...,m be m independent copies
of this sequence. Let B be a separable Banach space and, for each (i1, ...,im) € I,
let H;,.. 4, : S™ — B be a measurable function. Moreover, let ® : [0,00) — [0,0) be a

convex nondecreasing function such that

E®(|Hi,y,... iy, (Xiys -5 Xi,)

) <

for all (i1,...,im) € I". Then

E® Z Hil,...,im (Xila e aX’im) <

(i1 i €L

EQ (Cn| D] Hil’m,im(Xi(ll)’__.7Xi(m)) ’

(215eenstm )€™

tm

then the constant C,, can be taken to be m™. Finally, there exists a constant D,, > 0
such that for allt > 0,

where C, :=2"(m™ — 1) - ((m —1)™~! —1)-...-3. Moreover, if H;, .. ;  is P-canonical,

Pr Z H;, (Xila"'7Xi7n) =1

Stm

(11, 0yim JELT
< Dm Pr DnL Z o;
(1,00 sim )EIT
Furthermore, if H;, . ; s permutation-symmetric, then, both of the above inequalities

can be reversed (with different constants C,,, and D,,,).
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The following results are the variants of the non-commutative Khintchine’s inequali-
ties (that first appeared in the works by Lust-Piquard and Pisier) for the Rademacher
sums and the Rademacher chaos with explicit constants, see [24, 23], page 111 in [27],
Theorems 6.14, 6.22 in [28] and Corollary 20 in [32].

Lemma 5.3. Let B; € C™** | j = 1,...,n be the matrices of the same dimension, and let
{e;}jew be a sequence of i.i.d. Rademacher random variables. Then for any p > 1,

1/2 2p 1/2 2p
2\/5 p n
V) B,B* BB
() | (Em) | (£ )

Sap Sap

2p

N

Sgp

Lemma 5.4. Let {A;, ;,}} ;,—1 be a sequence of Hermitian matrices of the same dimen-

n

sion, and let {55’”} , k=1,2, be iid. Rademacher random variables. Then for any
i=1

p=1,

2p
<

Z Z All,lz 511) 7,2

i1=1142=1

Szp

NG 1/2|%P
2 (26217) max H (GG*) 12 5, ( 2 Azl w) .

Sgp

where the matrix G € H"? is defined as

A A o A,

Agy A ... Aoy
G = ) ) )

Anl An2 v Ann

The following result (Theorem A.1 in [5]) is a variant of matrix Rosenthal’s inequality
for nonnegative definite matrices.

Lemma 5.5. Let Y;,...,Y, € H? be a sequence of independent nonnegative definite
random matrices. Then for all ¢ > 1 and r = max(q, log(d)),

q\ 1/2q
(]E ) < DIEY;
J

The next inequality (see equation (2.6) in [12]) allows to replace the sum of moments
of nonnegative random variables with maxima.

1/2 1/24
+ 2V 2er (Emax |Y7q) .
j

Lemma 5.6. Let &1,...,&, be independent random variables. Then for all ¢ > 1 and

az=0, .
g1 Y |67 < 2(1 + ¢”) max (wqm max &7, (Z E|51-|> ) :
im1 ¢

i=1
Finally, the following inequalities allow transitioning between moment and tail
bounds.
Lemma 5.7. Let X be a random variable satisfying (E|X[?)"/? < asp® + asp®? + aop +
a1\/p + ag for all p > 2 and some positive real numbers a;, j = 0,...,3. Then for any
u =2,
Pr (\X| > e(agu’® + asu®? + asu + a1 /u + ao)) < exp(—u).
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See Proposition 7.11 and 7.15 in [10] for the proofs of closely related bounds.

Lemma 5.8. Let X be a random variable such that Pr (| X| > ag + a11/u + agu) < e™¥
for allu > 1 and some 0 < ag, a1,a2 < 0. Then

(B|X|?)"P < C(ag + a1/p + azp)
for an absolute constant C' > 0 and allp > 1
The proof follows from the formula E|X|P = psgo Pr(|X| > t)tP~dt, see Lemma A.2
in [9] and Proposition 7.14 in [10] for the derivation of similar inequalities. Next, we
will use Lemma 5.2 combined with a well-known argument to obtain the symmetrization
inequality for degenerate U-statistics.
Lemma 5.9. Let H;, ;, : S x S — H? be degenerate kernels, X1, ..., X, —ii.d. S-valued
random variables, and assume that {X(k)}Z 1. k= 1,2, are independent copies of this
sequence. Moreover, let { Z(-k)} , k =1,2, beiid Rademacher random variables.
i=1
Define
1) (2 2
U= 3 Ve (X0, x2). (5.1)
(il,ig)el?
Then for any p > 1,
1/p 1/p
(B10.7) " <16(B |0

Proof. Note that
P
EHUWHP =E Z Hil,i2(X117X )
(i1,d2)el?

p
<E|2 Y Hia (X0xD)]

i1 0
(i1 ,in)El2

where the inequality follows from the fact that H;, ;, is P-canonical, hence Lemma 5.2
applies with constant equal to C5 = 4.

Next, for i = 1,2, let E;[-] stand for the expectation with respect to {X j( ), 5 )}
j=1

only (that is, conditionally on {X ](-k), sg.k)} , k # 1). Using iterative expectations and
j=1

the symmetrization inequality for the Rademacher sums twice (see Lemma 6.3 in [22]),

we deduce that
p

11 )

E|U, P <" B| Y Hi (X0, X0)

(il,ig)EIZ

Z Z Hi, ., (Xz(ll ,X(2))

11=1142%#11

=4P I | [E;

n p
2 Y o) 3y (X0, X2) 1

i1=1 G271

p
4P|y |2 Z 3l ( W xe )) 1
L io=1117#12
B P
<1’ |4 2 7(11) (S)H“ i (X7(1 )7 X(Q))
(41,i2)€l2
O
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5.2 Proofs of results in Section 3.
5.2.1 Proof of Lemma 3.3.

Recall that .
X=> > Ail,@ez(f)fﬁf),

i1=112%#1%1

2p
where A;, ;, € H? for all i1, >, and let C), := 2 (%p) . We will first establish the upper
bound. Application of Lemma 5.4 (Khintchine’s inequality) to the sequence of matrices

{Ai i}; ;,—y suchthat A; ; =0for j =1,...,n yields

1/2
1/2 2v/2
(EHXH?’) g V2 H(GG*)1/2 J0Y a2, , (5.2)
2p e S2p (z 1)512 1,2
1,t2)€ly 52,
where
0 A12 Aln
G| T g
Ay Awy ... 0

Our goal is to obtain a version of inequality (5.2) for p = oo. To this end, we need to find
an upper bound for
Sa2p }

Since G is a nd x nd matrix, a naive upper bound is of order log(nd). We will show that it
can be improved to logd. To this end, we need to distinguish between the cases when
the maximum in (5.2) is attained by the first or second term. Define

Biyiy=[010]...] A, 4, |...]0]0] e C&"e,

1/2
2
(Z(il,ig)elg Ail,z‘z)

b

Szp

gf)-maux{‘(GG*)U2

n
p=q
b

1/2
max {’(GG*)l/Q (Z(ilin)EIEL A?l’h)

where A;,;, sits on the i;-th position of the above block matrix. Moreover, let
Bi, = Y, B (5.3)
11:01 #i2
Then it is easy to see that
GG* = BiB,,,
i

2
Z Alzlﬂé = EBQB;;'
i

(il 489 )EI,,QL
The following bound gives a key estimate.

Lemma 5.10. Let M,,..., My be a sequence of C**™¢-valued matrices. Let A1, ..., A\na
be eigenvalues onj M3 M; and letv, ..., vq be eigenvalues onj M;M?¥. Then Z?:dl A =

d . 1 d
Zj=1 v;j. Furthermore, if max; \; < 3 Zj=1 v, then

1/2|2P 1/2|%P
J J

Sap Sap

for any integer p > 2.
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The proof of the Lemma is given in Section 5.2.2. We will apply this fact with M; = B;,
j=1,...,n. Assuming that max; \; < 3 Z;Lil A;, it is easy to see that the second term in
the maximum in (5.2) dominates, hence

1/2||%P P
2 2 2
E|X[g <Cp 2 Af i = Cptr Z A
(il,ig)EI% (il,ig)EI%
Szp
p p
<Cp-d- DAL =Cod-| D A7 (54

(1;1,1@)6[% (ilyiQ)GI%

where the last equality follows from the fact that for any positive semidefinite matrix H,
|HP| = |H||P. On the other hand, when max; \; > %Zyil \;, it is easy to see that for all
p=1,

nd s nd s P
d J > J
” ];1 max; )\z Z (maxl- )\1) ’

j=1

which in turn implies that
P nd
d (max )\i> > Z AL (5.5)
7 i

Moreover,

1/2 » p nd
(2 B;ZBZ-2> =tr ((2 B;;Bi2> ) = >IN (5.6)
i2 i2 =1

Sap

Combining (5.5), (5.6), we deduce that

1/2||%P P
‘ <Z B} BZ-2> <d (Z B Bh)
i2 i2

Sayp

where the second from the last equality follows again from the fact that for any positive
semi-definite matrix H, |H?| = |H||?. Thus, combining the bound above with (5.2) and
(5.4), we obtain

= d|(GG*)"| = d|GG*|”,

p

E|X|% <d-Cymaxi[GGH".| Y A2

11,12
(i1 ,ig)EIﬁy

Finally, set p = max(q, log(d)) and note that d'/?? < /e, hence

1/2
4
(BIX|2) ™ < (B|X )" < <= max{logd, ¢} - max{ [GG*|,| Y A2,
Ve (i1,i2)€ly
This finishes the proof of upper bound.
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Now, we turn to the lower bound. Let IE,[-] stand for the expectation with respect to

{egl)} only. Then
j=1

1/(2p) 1/2
(EIX )7 = (Bl X)?) 7 = | BE >
(il,i2)€12
2
= | E|E, Z 511) ES)AH ia
(7:1,7;2)61,,2
2 1/2
(B ( z aan)
71 19:t2 F11

It is easy to check that

91\ 1/2

(1) (2)A

11 12 11,12

1/2

n %
Z ( Z sg i Zz) (ZE(Q)B ) (2523)&2) ,
i1=1 \in:inis ia

where B; were defined in (5.26). Hence

(Blx|P7) 7 > (

Next, for any matrix A e C%*%,

0 A%\’
(4 7%)

i A*A 0
I\ 0 aar

<Z€<2’B ) <25<2>B )

1/2

)

)H _ max{[A* Al |AA*]} = |A44%],

where the last equality follows from the fact that | AA*| = ||[A*A|. Taking A = >, &, 2)B

yields that

1/(2p) 1/2
(E|x (> = (& |BB*|)"* = [ E (Z

12

211/2
@ ( 0 B} _
>E<Z o <Bz‘z 0 >> -

2

= max {
2

5.2.2 Proof of Lemma 5.10.

19| s

The equality of traces is obvious since

N
tr (Z MjM;> 2 tr (M; M)

Jj=1 j=1

Set

nd
= 2 A
i=1

EJP 0 (2018), paper O.

>'B;,B
i2

12 T2

9N\ 1/2
@ ( 0 B
‘2 \ B, o0
1/2
Z(B B 0 >
By, B

N
= Z tr
j=1

d
= v
i=1

Page 17/31
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1/2
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N
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Note that
N 1/2|%P N p nd
(2 MJ*MJ> =tr ((Z M]*MJ> ) =Y\
Jj=1 Sa, Jg=1 =1
N 1/2|%P N P
(Z MJMJ*> :tr<<2 MJM]*> ) =3
=1 Sa0 =1 i=1

Moreover, \; = 0, v; > 0 for all 4, j, and max; \; < lZFl v; = % by assumption. It is
clear that
2p

N 1/2 d
(Z MjM;-“> > min Zuf.

viz0 3¢, vi=S ;7]

=1 Sap
Hence, it is enough to show that
d
max Z AP < min Z VP, (5.7)
osh<§, Xt Ai=S ] vi20, Y vi=S

The right hand side of the inequality (5.7) can be estimated via Jensen’s inequality as

d 1 d
min ny=d- min EZV?

viz0, XL, vi=S = =0, N, vi=5

1 &Y AN
=d- min - > vi| =d-|=) . (5.8)
o (55 - (3)

It remains to show that Z?jl N o< d- (§)p. For a sequence {aj}jvvzl < R, let a¢;) be

the j-th smallest element of the sequegce where the ties are broken arbitrary. A
sequence {a]} _, majorizes a sequence {b; } , Whenever Z aN—j) = Z?:o bv—j for
all0 < k< N-—2and};a; =>b;. A functlon g: RN IR is called Schur-convex if
g(ai,...,an) = g(b1,...,by) whenever {aj};.\[:1 majorizes {bj}jvzl. It is well known that
if f: R — R is convex, then g(aj,...,an) = Zjvzl f(a;) is Schur convex. In particular,
g(ai,...,an) = Zjv 1 ], where aq,...,ay = 0, is Schur convex for p > 1. Consider the
sequence a; = ... =aq = 5, Gg41 = ... = Gpg = 0 @nd by = Ay,...,byqg = Apq. Since

max; \; < 2 = by assumption, the sequence {a;} majorizes {b;}, hence Schur convexity
yields that Z”d N < Zf (3 ) =d- (5 ) , implying the result. !

5.2.3 Proof of Theorem 3.7.

The first inequality in the statement of the theorem follows immediately from Lemma
5.2. Next, it is easy to deduce from the proof of Lemma 5.9 that
2q 1/2q
1) () s2a\ Y24
Bl Y Hia (x0,x2) <4(Blu*) ", (5.9)

(i1,42)€l?

1We are thankful to the anonymous Referee for suggesting an argument based on Schur convexity, instead
of the original proof that was longer and not as elegant.
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where U], was defined in (5.1). Applying Lemma 3.3 conditionally on {X; ])}l 5 Ji=12,
we get

2\ 1/(29)
29\ /24 1) (2 2
(Bloa ) " =B Y PP (D, x2)
(i17i2)6I7
q\ 1/2q
< eV max(q.logd) | Emax{ [GG*,| Y HZ (ijlX}?) . (5.10)

(7;1,1-2)61721

where G was defined in (3.6). Let CNTQ- be the i-th column of CNJ, then

S

01,82 i 7
(i1,i2)€l2 i=1

G =N Y HL, (O xP) =Y &d
i=1

Let Q; € H(n+1)dx(n+1)d he defined as

o

Do
o J?g?
N——

so that

Inequality (5.10) implies that

2g\ 1/(20)

E Z ey (2)Hl1712 (X(l) X( )) < de % max (g,1log d) <

1/(29)
11 12 11 7712 > .
(’L‘l,ig)EIQ/

(5.11)
Let 5[] stand for the expectation with respect to {XZ@ } only (that is, conditionally
i=1

{ xW } ). Then Minkowski inequality followed by the symmetrization inequality

q\ 1/(29) 1/(2q) q\ 1/2q

1mp1y that

(E

Z - F2Q7)

n a\ 1/(29) n a\ /29
=<EE2 > Q7 — a7 ) + (E D EaQ7 )
=1 =1
q\ 1/(29) q\ 1/2q
<V?2 (IE Q7 ) + (]E ) . (5.12)
=1

/(2q)

Next, we obtain an upper bound for (E ¥, lQZHQ) . To this end, we apply Khint-

2r
chine’s inequality (Lemma 5.3). Denote C,. := (%r) , and let E.[-] be the expectation
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with respect to {¢;}?_; only. Then for r > ¢ we deduce that

2r n /2|27
<C}? (Z Q?)

Sar i=1 Sar

o (2 Qg> <V (2 Q- \qu)

i=1 i=1

" 1/2 2r
<O ma Q2] (Z Q3> |
= S27‘

where we used the fact that Q} < |Q?|Q? for all 4, and the fact that A < B implies that
trg(A) < trg(B) for any non-decreasing g : R — R. Next, we will focus on the term

(Ee) |, (o)) o((Eore) )

Applying Lemma 5.10 with M; = G‘;‘.‘, j=1,...,n, we deduce that
n o~ o~ \1/2 ~ 1/2
(Zi:1 Gz’Gi ) ' i=1 G*Gi)
Sa,

which implies that tr ((Z:‘Zl CNT‘l(N?;“)r> <tr ((ZL (NJ;“(NL)7> and
2r
Z Q2 " 2d - Zn] G*Cs
i=1
Sa;

> Ltr (Z?:1 G;"Gi>, let \; be the j-th eigenvalue of 3 | G;G*, and

n

= 2 51@?

i=1

2r

Sa

2r 2r

< Ltr (ZZ”:l é;"@z) then

’

Sar

71

r

i | Y0, GiC
note that

w(SLGrG)  w(SLGer) @ < A )
) T Zmax max; A,

where r > 1. In turn, it implies that

n n
i=1 =1

Thus

7~
NNgE
N———
H
~
[V
(v}
S
|
(=
H
-~
z ~
1p=
Qe
Qe
3
N—————
5
N———
+
ot
=N
/-~
< ~
L 3
D
S %
Qu
N————
5
N——

S27‘
n r n r
<d| Y G:GF| +d|). GiG;
i=1 i=1
Putting the bounds together, we obtain that
n 2r n T n r
E. | Q| <2dCY?max Q[ max{ DGGE| |GG } (5.13)
i=1 Sap ' i=1 i=1
T
1/2 2|"
<2dC};/* max HQZ |
1
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q 2r a/2r
Next, observe that for r such that 2r > ¢ ;;1 sz?H < (]EE ?=1 sz? > by
Holder’s inequality, hence
n q\ 1/2q n o\ 1/2¢
(E >16Q3 ) = (EIEE >16Q3 )
j=1 j=1
2r a/2r 1/2q 2r a/2r 1/2q
EE EEJ'Q? Eg ZEjQ?
j:1 j:1 827‘
y a2\ /%
1/4r n
< (20012) 7 | B [ max] Q2" @2
! i=1
Set r = g v logd and apply Cauchy-Schwarz inequality to deduce that
n ay\ 1/2q 1 /(4q) n ay 1/(49)
<]E D@3 ) < (8r)M4 (Emax HQqu) <]E Q7 ) . (5.14)
j=1 ¢ i=1

Substituting bound (5.14) into (5.12) and letting
q\ 1/(29)
- <]E ) 7

Ry < (80)'1/2R, (Bma|Q2") " + (E

we obtain

q> 1/2q
q> 1/2q

Z E,Q7
i=1

If 2,a,b > 0 are such that z < a\/z + b, then z < 4a? v 2b, hence

R, < 16v2r (Emax HQ?U‘J)W@ +2 (E

2q> 1/(29)

Finally, it follows from (5.11) that

<E

S DD x®, x)

12 11 ’

(’Ll 7.2 612

a\ 1/2q
2 3/ g\ /20 8 N 2
64\/;1" IE)mZax ”QZ H ) + %r E ;EQQ,L'
1/2q
2 1/(2q) ~ oo A
64\/71"3/2 (Emax HG* ) L5, (E GG +E|Y EGrC,
€ Ve i=1

1=1
g\ 1/(29)
64\/51"3/2 (Emax H; . (X‘(l) X‘(2)) )
e 11,12 11 2
i2:12#11
. . . q\ 1/2q
~ ~ x® x@
+ﬁr<E D ELGG +E Z( > E ’1’2( i )> ) 7
_ i1=1 \i2:t27%#11
(5.15)
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where the last equality follows from the definition of CNL To bring the bound to its final

form, we will apply Rosenthal’s inequality (Lemma 5.5) to
that

the last term in (5.15) to get

a\ 1/2q 1/2

x® x@ 2 (1) 5 (2)

( Z ( 2 105 1122( 1 ’X )) > < Z EH“ZZ (le 7X )

i1=1 \i2:i2#1%1 (i1,i2)el2
qy\ 1/2q
(1) (2
+ 2v/2er <Emax > EaH,, (X0 x2) ) .
i2:G2 711

Moreover, Jensen’s inequality implies that

q
X, x®

1

2, H

< ]Emax

% i, (20 XD)

PHIEA

E max

hence this term can be combined with one of the terms in

5.2.4 Proof of Lemma 3.8.

(PHOELSY

q
M) x@

i1 0

L (X0 X17)

)

(5.15).

Let IE;[-] stand for the expectation with respect to the variables with the upper index
i only. Since H;, ;, (-,-) are permutation-symmetric, we can apply the second part of
Lemma 5.2 and (twice) the desymmetrization inequality (see Theorem 3.1.21 in [13]) to

get that for some absolute constant Cy > 0

2q 1/(2q)
1/(2q) 1
2 1 () 1@
(Bloa) " =g (e ) ZZ):EIZ Hi, i, (X0, X2)
11,22 n
2\ 1/(20)

1

~o (BB Y] Y Hi (X;”,X@’)
0 i1 G2t Al

2\ 1/(20)

! ¥ x®

2o Z Zlﬂz( i1 7Xi )
200 G292 #11 ’

o\ 1/(20)

! ) 5 (@)

= | EE Y. Y eV H, (XX
QCO ig 11:01Fi2 ( ' ’ )

2\ V/(20)

1 1) (2 2

2476(0 E Z 651)51(-2)}]1'1’1'2 (Xz(l)’X( ))

(i1,i2)€l2
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Applying the lower bound of Lemma 3.3 conditionally on {Xl-(l)} and {Xl-@)} , we
=1

= i=1

1/2q
} ) (5.16)

1/2q q\ 1/2q
) ( i )
g\ 1/2¢ q\ 1/2q

where C:‘i is the i-th column if the matrix G deﬁned in (3. 6) we also used the identities
GG* = Y | GG, Z(h’iz)ep H? . (X(l) X ) > G*G The inequality above

11,12 1
takes care of the second and third terms in the lower bound of the lemma. To show that

the first term is necessary, let
0 G*
Q= < Gi 0 ) '

It follows from the first line of (5.16) that

1/(2
o VCD 1 ay 1/(20)
(B1o.) " 217 (B2 @ .

Let i, be the smallest value of i < n where max; |Q?| is achieved. Then >, Q% > Q?
hence HQf*

obtain

Z Y

1/(2q)
(E HUnHQQ) ! =c (E max {

1
=z E
4\/500 (

G,G* GG,

1
>—— | [E
4/2C, (

T )

< ||Z;L=1 QfH Jensen’s inequality implies that

1/(2
o\ V2D 1 e
(0 P) >rco E

ZQ?

> —— (IE max HQQH >1/(2q) > L (]E max HC:'*C:’ q) e
4Cy e A ’
where the last equality holds since il = Hé‘é;k . The claim follows.

5.2.5 Proof of Lemma 3.12.

Note that
q\ 1/(29)
73/ <]Emax zmz( i ,Xi(:)) >
B2l F11
a\ 1/(2q)
< 732 ( szl . (Xz(ll)’X(Q)> )
i1 gt 12#11
a\ 1/(29)
_ 32 (Eleg SNowz, (ij),X<2)) ) . (5.17)
i1 RO
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Next, Lemma 5.5 implies that, for » = max(q, log(d)),
q
Z G ( “)’X(z)) <22q1l Z E.H? ,, (Xz(ll)7X(2))
P91l #11 inin iy
2 (1) (2)
e (x|

We will now apply Lemma 5.6 with a = 1 and &;, := HZiz#l E,H? (XZ-(II),XS)) H to get
that

DB <2(1+q <Emax
i1

q

(5.18)

+ (2v/2¢)?%r1 By max

19:12711

q

Z IE2 71 i2 (X1(11)7X(2))

12102701
Z E2 11 12( 1(1)1X(2))

q
—a (21& ) ) (5.19)
i1 G212 #11

Combining (5.17) with (5.18) and (5.19), we obtain (using the inequality 1 + ¢ < e7) that

q\ 1/(29)
r3 (IE max >

Z 05 2112( 1(1)7X§2))

G212 70

Z ]EQ 11 i2 <X1(11)7X(2))

PREEA

Z <X(1) X(z))
11 i i1 0

Q912 F#1i1

< 46\/5[ (E max

+\/ng<ZE

+r2< E max
i

1912 F11

q) 1/2¢

1/2q
H? ( § ,X<2>)H> 1 (5.20)

which yields the result.

5.3 Proof of Theorem 4.1.

Let J = I < {1,2}. We will write i to denote the multi-index (i, i) € {1,...,n}?. We
will also let i; be the restriction of i onto its coordinates indexed by I, and, for a fixed
value of i, let (H;);, be the array {H;, i € {1,...,n}!/l}, where H; := H;, ;, (Xl(ll), X(Z)).
Finally, we let E; stand for the expectation with respect to the variables with upper

indices contained in I only. Following section 2 in [1], we define

It |, - EI\JSHP{EJZ@ w199 ol <1,

jeJ

fi(j) 1S — R for all i,jv and ZE

OIEEONE
L7 xy )‘ <1,jeJ} (5.21)

and | (Hj);,, H@,@ = , where (A, Ay) := tr(A; A¥) for A, Ay e H? and | - |4 denotes

the nuclear norm. Theorem 1 in [1] states that forall g > 1

1/2q
1/2 .
<E HU"HQQ) . <C Z Z q‘Jl/QHI | (Z Eje (Hi)i[ ”?rq’) )
ire

Ic{1,2} JcI
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where C' is an absolute constant. Obtaining upper bounds for each term in the sum
above, we get that

1/2q
(IEHUnHQq) <C[EHUnH+\/§.A+q.B+q3/2,F+q2.D]’

where

A <2 El sup ZE2 szl 12 7(11)7X(2)) (I)> )

i Pfx<17y

B<| swp ) 1E<Hi1,12 (xM x@) <1>>

| lse<L (4 ip)er2

2q 1/2¢
+2 ZEQ E; sup Z i iz (X ,X(Q)) ,
io Q:[| @5 <1
5\ ¢ 1/2q
2 ]E2 sup E1<H1 ,i Xl(l),X(Z) q)> y
(Z (‘P<I>*<1Z e

1/2q
p<| Y B|Hyu(x X(Q))H

11 772
(i1,42)€l2

The bounds for A, B,I', D above are obtained from (5.21) via the Cauchy-Schwarz in-
equality. For instance, to get a bound for A, note that it corresponds to the choice
I ={1,2} and J = {1} or J = {2}. Due to symmetry of the kernels, it suffices to consider
the case J = {2}, and multiply the upper bound by a factor of 2. When J = {2},

1/2q
2q .
I,J 1{1 2}

—Erswp{ B Y, (Hiu(X, XD, @) 12 (X)) : ol <

11
(i17’i2)€I%

{1.2},{2}

(2 Ere|(

ire

12 ()] <
2
— E sup {EQZ YoH;, (X, X2, >-f§j> (x2) o). <1, ZIE 12 (x| < 1}
i2 il 3

(2
<E; sup Z E, Z iy o ( 11’X \/7
N IS AR

12

o\ 1/2
< E; sup ZEz ZH (X X2, <I>> el <1
o\ 1/2

| <17;

=E [ sup Z ZHWQ (xD, x32, <1>>
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It is not hard to see that the inequality above is in fact an equality, and it is attained by
setting, for every fixed &,

1 2
(S Hiinl XEJ,X( @)
27
VB (S ) X )

\/E2<Zi1 Hiy iy (X<1) X(Q)) ‘I)>
where o;, = are such that ;. ai = 1. The bounds for
iy B2, Hiyip (X0 X2, 0
other terms are obtained quite similarly. Next, we will further simplify the upper bounds
for A, B,T', D by analyzing the supremum over ¢ with nuclear norm not exceeding 1. To

this end, note that

o ( X(2>) .

(I>»—>IE<H (xD, x®) <1>>

11,52 11

is a convex function, hence its maximum over the convex set {® € H? : |®|, < 1} is
attained at an extreme point that in the case of a unit ball for the nuclear norm must be
a rank-1 matrix of the form ¢¢* for some ¢ € C?. It implies that

2 2
sup E Hil,iQ(Xl(l),X§2>),<I>> < sup E Hil7i2(X{1),X§2)),¢¢*>
@] <1 olola<1

<[er:

11 Z2

(XS’,X;Q))H . (5.22)

Moreover,

2q
HEQ Hal sup }151712 51)7 52))7
; ( ®:| 5 <1 Z o
-YE, <]E1 > Hia (X0, X))
’ig 7;1
< ZEQ IE, ZHM’Q (Xz(ll)aX(Q)>
iz il
<) By (2\/?

12

;

2¢q

1/2
DE A, (X xD)
1 12

2q
2q 1/2q
+4\/§6T(E1max‘Hil,i2 (Xfl”,x )H ) ) . (5.23)
21

where we have used Lemma 3.1 in the last step, and » = gvlogd. Combining (5.22),(5.23),
we get that
q) 1/2q

1/2q
+8v/2er (Z EmaXH i (ij),X(”)H > . (5.24)

1/2
B < ooEE? (XD x| +aver (2 E,

(i1,d2)€l2

Z B, (X0 xD)

It is also easy to get the bound for I': first, recall that

2
®HZE1<HMQ (xD, x@), >
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is a convex function, hence its maximum over the convex set {® € H? : |®[, < 1} is
attained at an extreme point of the form ¢¢* for some unit vector ¢. Moreover,

<Hi1’i2(X1(11)7X ) ¢¢*> = ¢*Hi1,i2(X1(11)7X )¢¢*H11,22(X£3)7X1(22))¢
< 6*H (X(l) X(Q))qb
’Ll 'LQ

11 )

due to the fact that ¢p¢* < I. Hence

2
g El <}IZ1 2 Xl(ll)’ X(Q) (I)> S sup ZEl ((’b* Q1,82 (Xz(ll)vX(2))¢)
b: H‘PH*Sl ¢ || lla=17]

B 1ol ¢* (El 2 i1, Z2 111)’ X )

@)
b Iol2=1 ElZ S X)),
2=

and we conclude that

q\ 1/2q
(2)
= <§E2 <<I> Hiblﬁ:@ Er <H“ & “ ’X (I)> ) )
q\ 1/2q
<ZE2 ZEI i1 22( 211)? 1(2)> > . (525)

The bound for A requires a bit more work. The following inequality holds:

Lemma 5.11. The following inequality holds:

1/2

2
A < 2E; sup ZE2 Z TN Xl(ll),X(Z)),‘I) <
Q:| 2w <17;

64+/¢ log(de) <E max

S om2, ( ) x >)

(PHSELS

‘> 1/2
1/2

1) (2
Z ]E 11 ’LQ (le ’X ) b

(11712)61

+ 84/2¢log(de)

where G was defined in (3.6).

Combining the bounds (5.24), (5.25) and Lemma 5.11, and grouping the terms with
the same power of ¢, we get the result of Theorem 4.1.

It remains to prove Lemma 5.11. To this end, note that Jensen’s inequality and an
argument similar to (5.22) imply that

o\ 1/2
E, sup i1, 11)»X( )) P
<I>:H<I’H*<1Z Z vial iy
9\ 1/2
< [E sup i1 i (X ,X(2) P
<I>:|\<I>u*<1% Z vz )
211\ 1/2
(1
Z (ZHllﬂz 21)7Xz( ))>
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Next, arguing as in the proof of Lemma 3.3, we define
A 1 N
Bivin = (010 Hiy i (X0 X)) [ 0] 0] € R,

where H;, ;, sits on the 7;-th position of the block matrix above. Moreover, let

Bi,= Y Bi. (5.26)

11:%1 F#%2

Using the representation (5.26), we have

1/2 1\ 1/2

(<) () (22) )
oI\ 1/2 o\ 1/2
(el B))) =l )

i2
where {51‘2}?2:1 is sequence of i.i.d. Rademacher random variables, and the last step
follows from the symmetrization inequality. Next, Khintchine’s inequality (3.2) yields

that
1/2
D (T
BmB*
2

1/2
5.}
i

>owz, (xx®)

(il,ig)elg’

2
By (2 Hi, XS%X(”))

iz

A <44/e(1 + 2logd) (

19|

=44/e(1 + 2logd) <IE max{

1/2

=4+/e(1 + 2logd) | Emax HC:'C:’*,

Note that the last expression is of the same form as equation (5.10) in the proof of
Theorem 3.7 with ¢ = 1. Repeating the same argument, one can show that

1/2
A < 64+4/elog(de) (]E max 2 21,12 ( 211),X(2)> D

i2:92 #01
1/2
+8y/2elog(de) | B| Y EuGiGY | + | D) EBH? (X;l), X >> ,
% (11 7,2)612
which is an analogue of (5.15).
5.4 Calculations related to Examples 3.5 and 3.6.
We will first estimate |GG*|. Note that the (4,%)-th block of the matrix GG* is
(GG*), Z A?; = Z (asa] + ajaiT)2 = (n—aa; + Z aja) .
J:#i J:#i J#i
The (i, j)-block for j # i is
(GG* Z A kAjk = Z (aiaf + akaiT) (ajaz + aka;‘-r) =(n— 2)aiajT.
k#i,j k#i,j
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We thus obtain that

n
GG* = (n —2)aa’ + Diag 2 aa; ..., 2 aja; |,
j=1

Jj=1

n terms

where Diag(-) denotes the block-diagonal matrix with diagonal blocks in the brackets.
Since

Diag (Z a;a; ,...,Zajaf> > 0,
Jj=1 j=1
it follows that
|GG*| = (n - 2)|a]3 = (n - 2)n.

On the other hand,

2 T2 T T
Z A7 Ll = (a,al +aj,al)"| = Z (ai,a], +aj,a;)
(1;1,’LI2)EI% (1;1,’LI2)EI% (il,iz)EI%
=2(n—1) =2(n—1).
where the last equality follows from the fact that {a;,...,a,} are orthonormal.

For Example 3.6, we similarly obtain that

(GG*),, = Z A (aia? + ajaiT)2

Jij#i
_ 2 T 2 T _ T 2 . .T
- (Z Ci,j) a;a; + Z ¢ jaja; = aa; + Z ¢ ja;a;
J:j#i Jij#i Jij#i

(GG*)ij = Z Ci kCjk; (aiaf + akaiT) (ajakT. + akajT) =0, i # 7,
k#i,j

hence |GG*| = max; [(GG*);;| = 1. On the other hand,

2 _ 2 T T2
Z Ai17i2 - Z Ciy ia (ailaiz + ai2ai1)
(il,ig)EIE (il,ig)EIE
_ 2 —
= Ci\ia (a“a + a;,a 12 Zaa =2,
(7;1,7;2)613

and

Z Z A?Mé :Z

2 T T\2
Z Ci17i2 (ailaiz + aiZail) '

i1 ||ig:iai i1 |[i2#i1
T T —
- Z Z 11 Ji2 (ailail + ai2ai2) Z a, azl + Z 11 Lipin @ 12 =n.
i1 ||i2:i2#11 G212 #11
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