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Abstract: This paper presents a class of new algorithms for distributed
statistical estimation that exploit divide-and-conquer approach. We show
that one of the key benefits of the divide-and-conquer strategy is robust-
ness, an important characteristic for large distributed systems. We establish
connections between performance of these distributed algorithms and the
rates of convergence in normal approximation, and prove non-asymptotic
deviations guarantees, as well as limit theorems, for the resulting estima-
tors. Our techniques are illustrated through several examples: in particular,
we obtain new results for the median-of-means estimator, and provide per-
formance guarantees for distributed maximum likelihood estimation.
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1. Introduction

This paper introduces new statistical estimation methods that exhibit scala-
bility, a necessary characteristic of modern methods designed to perform sta-
tistical analysis of large datasets, as well as robustness that guarantees stable
performance of distributed systems when some of the nodes exhibit abnormal
behavior. The computational power of a single computer is often insufficient to
store and process modern data sets, and instead data is stored and analyzed in
a distributed way by a cluster consisting of several machines. We consider a dis-
tributed estimation framework wherein data is assumed to be randomly assigned
to computational nodes that produce intermediate results. We assume that no
communication between the nodes is allowed at this first stage. On the second
stage, these intermediate results are used to compute some statistic on the whole
dataset; see figure 1 for a graphical illustration. Often, such a distributed setting
is unavoidable in applications, whence interactions between subsamples stored
on different machines are inevitably lost. Most previous research focused on the
following question: how significantly does this loss affect the quality of statistical
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Fig 1: Distributed estimation protocol where data is randomly distributed across
nodes to obtain “local” estimates that are aggregated to compute a “global”
estimate.

estimation when compared to an “oracle” that has access to the whole sample?
The question that we ask in this paper is different: what can be gained from
randomly splitting the data across several subsamples? What are the statistical
advantages of the divide-and-conquer framework? Our work indicates that one
of the key benefits of an appropriate merging strategy is robustness. In partic-
ular, the quality of estimation attained by the distributed estimation algorithm
is preserved even if a subset of machines stops working properly. At the same
time, the resulting estimators admit tight probabilistic guarantees (expressed in
the form of exponential concentration inequalities) even when the distribution
of the data has heavy tails – a viable model of real-world samples contaminated
by outliers.

We establish connections between a class of randomized divide-and-conquer
strategies and the rates of convergence in normal approximation. Using these
connections, we provide a new analysis of the “median-of-means” estimator
which often yields significant improvements over the previously available re-
sults. We further illustrate the implications of our results by constructing novel
algorithms for distributed maximum likelihood estimation that admit strong
performance guarantees under weak assumptions on the underlying distribution.

1.1. Background and related work

Let us introduce a simple model for distributed statistical estimation. Assume
that X1, . . . , XN is a sequence of independent random variables with values in
a measurable space (S,S) that represent the data available to a statistician.
We will assume that N is large, and that that the sample X = (X1, . . . , XN )
is partitioned into k disjoint subsets G1, . . . , Gk of cardinalities nj := card(Gj)
respectively, where the partitioning scheme is independent of the data. Let Pj

be the distribution of Xj , j = 1, . . . , N . The goal is to estimate an unknown
parameter θ∗ = θ∗(Pj), j = 1, . . . , N shared by P1, . . . , PN and taking val-
ues in a separable Hilbert space (H, ‖ · ‖H); for example, if S = H, θ∗ could
be the common mean of X1, . . . , XN . Distributed estimation protocol proceeds
via performing “local” computations on each subset Gj , j ≤ k, and the local
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estimators θ̄j := θ̄j(Gj), j ≤ k are then pieced together to produce the final

“global” estimator θ̂(k) = θ̂(k)(θ̄1, . . . , θ̄k). We are interested in the statistical
properties of such distributed estimation protocols, and our main focus is on the
final step that combines the local estimators. Let us mention that the condition
requiring the sets Gj , 1 ≤ j ≤ k to be disjoint can be relaxed; we discuss the ex-
tensions related to U-quantiles in section 2.6 below. The problem of distributed
and communication – efficient statistical estimation has recently received signif-
icant attention from the research community. While our review provides only a
subsample of the abundant literature in this field, it is important to acknowledge
the works by Mcdonald et al. (2009); Zhang, Wainwright and Duchi (2012); Fan,
Han and Liu (2014); Shafieezadeh-Abadeh, Esfahani and Kuhn (2015); Battey
et al. (2015); Duchi et al. (2014); Lee et al. (2015); Cheng and Shang (2015);
Rosenblatt and Nadler (2016); Zinkevich et al. (2010). Li, Srivastava and Dun-
son (2016); Scott et al. (2016); Shang and Cheng (2015); Minsker et al. (2014)
have investigated closely related problems for distributed Bayesian inference.
Applications to important algorithms such as Principal Component Analysis
were investigated in Fan et al. (2017); Liang et al. (2014), among others. Jordan
(2013), author provides an overview of recent trends in the intersection of the
statistics and computer science communities, describes popular existing strate-
gies such as the “bag of little bootstraps”, as wells as successful applications of
the divide-and-conquer paradigm to problems such as matrix factorization.

The majority of the aforementioned works propose averaging of local esti-
mators as a final merging step. Indeed, averaging reduces variance, hence, if
the bias of each local estimator is sufficiently small, their average often attains
optimal rates of convergence to the unknown parameter θ∗. For example, when
θ∗(P ) = EPX is the mean of X and θ̄j is the sample mean evaluated over the

subsample Gj , j = 1, . . . , k, then the average of local estimators θ̃ = 1
k

∑k
j=1 θ̄j

is just a empirical mean evaluated over the whole sample. More generally, it
has been shown by Battey et al. (2015); Zhang, Duchi and Wainwright (2013)
that in many problems (for instance, linear regression), k can be taken as large
as O(

√
N) without negatively affecting the estimation rates; similar guarantees

hold for a variety of M-estimators (see Rosenblatt and Nadler, 2016). However,
if the number of nodes k itself is large (the case we are mainly interested in),
then the averaging scheme has a drawback: if one or more among the local
estimators θ̄j ’s is anomalous (for example, due to data corruption or a com-
puter system malfunctioning), then statistical properties of the average will be
negatively affected as well. For large distributed systems, this drawback can be
costly.

One way to address this issue is to replace averaging by a more robust proce-
dure, such as the median or a robust M-estimator; this approach is investigated
in the present work. In the univariate case (θ∗ ∈ R), the merging strategies we
study can be described as solutions of the optimization problem

θ̂(k) = argmin
z∈R

k∑
j=1

ρ
(
|θ̄j − z|

)
(1)
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for an appropriately defined convex function ρ; we investigate this class of esti-
mators in detail. A natural extension to the case θ∗ ∈ R

m is to consider

θ̂(k) = argmin
y∈Rm

k∑
j=1

ρ
(∥∥θ̄j − y

∥∥
◦
)

for some convex function ρ and norm ‖ · ‖◦. For example, if ρ(x) = x, then θ̂(k)

becomes the spatial, also known as geometric or Haldane’s, median (Haldane,
1948; Small, 1990) of θ̄1, . . . , θ̄k. Since the median remains stable as long as at
least a half of the nodes in the system perform as expected, such model for
distributed estimation is robust. The merging approach based on the various
notions of the multivariate median has been previously considered by Minsker
(2015) and Hsu and Sabato (2016); here, we analyze the setting when ρ(x) = x
and ‖ · ‖◦ is the L1-norm using a novel approach.

Existing results for the median-based merging strategies have several pitfalls
related to the deviation rates, and in most cases known guarantees are sub-
optimal. In particular, these guarantees suggest that estimators obtained via
the median-based approach are very sensitive to the choice of k, the number
of partitions. For instance, consider the problem of univariate mean estimation,
where X1, . . . , XN are i.i.d. copies of X ∈ R, and θ∗ = EX is the expectation of
X. Assume that card(Gj) ≥ n := �N/k� for all j, let θ̄j = 1

|Gj |
∑

i:Xi∈Gj
Xi be

the empirical mean evaluated over the subsample Gj , and define the “median-
of-means” estimator via

θ̂(k) = med
(
θ̄1, . . . , θ̄k

)
, (2)

where med (·) is the usual univariate median. This estimator has been introduced
by Nemirovski and Yudin (1983) in the context of stochastic optimization, and
later appeared in Jerrum, Valiant and Vazirani (1986) and Alon, Matias and
Szegedy (1996). If Var(X) = σ2 < ∞, it has been shown (for example, by Lerasle

and Oliveira, 2011) that the median-of-means estimator θ̂(k) satisfies

∣∣∣θ̂(k) − θ∗

∣∣∣ ≤ 2σ
√
6e

√
log(1/α)

N
(3)

with probability ≥ 1 − α if k = �log(1/α)� + 1. However, this bound does not
provide insight at what happens at the confidence levels other than 1− α. For

example, if k = �
√
N�, the only conclusion we can make is that

∣∣∣θ̂(k) − θ∗

∣∣∣ �
N−1/4 with high probability, which is far from the “parametric” rate N−1/2.

And if we want the bound to hold with confidence 99% instead of 1 − e−
√
N ,

then, according to (3), we should take k = �log 100�+ 1 = 5, in which case the
beneficial effect of parallel computation is very limited. The natural questions
to ask is the following: is it possible to “decouple” parameter k, the number
of subgroups, from α that controls the deviation probability? Is the median-
based merging step suboptimal for large values of k (e.g., k = �

√
N�), or is
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the problem related to the suboptimality of existing bounds? We claim that in
many situations the latter is the case, and that previously known results can
be strengthened: for instance, the statement of Corollary 1 below implies that
whenever E|X − θ∗|3 < ∞, the median-of-means estimator satisfies

|θ̂(k) − θ∗| ≤ 3σ

(
E |X − θ∗|3

σ3

k

N − k
+

√
s

N − k

)
(4)

with probability ≥ 1 − 4e−2s, for all s � k simulnateously.1 Inequality (4)
shows that the estimator (2) has “typical” deviations of order N−1/2 when-
ever k = O(

√
N), hence the “statistical cost” of employing a large number of

computational nodes is minor. Moreover, we will prove that
√
N
(
θ̂(k) − θ∗

)
d−→

N
(
0, π

2σ
2
)
if k → ∞ and k = o(

√
N) as N → ∞. It will also be demonstrated

that improved bounds hold in other important scenarios, such as maximum
likelihood estimation, even when the subgroups have different sizes and the ob-
servations are not identically distributed.

1.2. Organization of the paper

Section 1.3 describes notation used throughout the paper. Sections 2 and 3
present main results and examples for the cases of univariate and multivari-
ate parameter respectively. Outcomes of numerical simulation are discussed in
section 4, and proofs of the main results are contained in section 5.

1.3. Notation

Everywhere below, ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ stand for the L1, L2 and L∞ norms
of a vector.

Given a probability measure P , EP (·) will stand for the expectation with re-
spect to P , and we will write E(·) when P is clear from the context. Convergence

in distribution will be denoted by
d−→.

For two sequences {aj}j≥1 ⊂ R and {bj}j≥1 ⊂ R for j ∈ N, the expression

aj � bj means that there exists a constant c > 0 such that aj ≤ cbj for all
j ∈ N. Absolute constants will be denoted c, C, c1, etc., and may take different
values in different parts of the paper. For a function f : Rd �→ R, we define

argmin
z∈Rd

f(z) = {z ∈ R
d : f(z) ≤ f(x) for all x ∈ R

d},

and ‖f‖∞ := ess sup{|f(x)| : x ∈ R
d}. Finally, f ′

+(x) = limt↘0
f(x+t)−f(x)

t

and f ′
−(x) = limt↗0

f(x+t)−f(x)
t will denote the right and left derivatives of

f respectively (whenever these limits exist). Additional notation and auxiliary
results are introduced on demand for the proofs in section 5.

1Another known approach (Devroye et al., 2016) is based on a variant Lepski’s method;
we compare our bounds to the guarantees implied by this method in section 2.4.1.
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1.4. Main results

As we have argued above, existing guarantees for the estimator (2) are sensitive
to the choice of k, the number of partitions. In the following sections, we demon-
strate that these bounds are often suboptimal, and show that large values of k
often do not have a significant negative effect on the statistical performance of
resulting algorithms.

The key observation underlying the subsequent exposition is the following:
assume that the “local estimators” θ̄j , 1 ≤ j ≤ k, are asymptotically normal
with asymptotic mean equal to θ∗. In particular, distributions of θ̄j ’s are ap-
proximately symmetric, with θ∗ being the center of symmetry. The location
parameters of symmetric distributions admits many robust estimators of the
form (1), the sample median being a notable example.

This intuition allows us to establish a parallel between the non-asymptotic
deviation guarantees for distributed estimation procedures of the form (1) and
the degree of symmetry of “local” estimators quantified by the rates of conver-
gence to normal approximation. Results for the univariate case are presented in
section 2, and extensions to the multivariate case are presented in section 3.

2. The univariate case

We assume that X1, . . . , XN is a collection of independent (but not necessarily
identically distributed) S-valued random variables with distributions P1, . . . , PN

respectively. The data are partitioned into disjoint groups G1, . . . , Gk of cardi-
nality nj := card(Gj) each, and such that

∑k
j=1 nj = N . Let θ̄j := θ̄j(Gj), 1 ≤

j ≤ k be a sequence of independent estimators of the parameter θ∗ ∈ R shared
by P1, . . . , PN . Our main assumption will be that θ̄1, . . . , θ̄k are asymptotically
normal as quantified by the following condition.

Assumption 1. Let Φ(t) be the cumulative distribution function of the standard
normal random variable Z ∼ N(0, 1). For each j = 1, . . . , k,

gj(nj) := sup
t∈R

∣∣∣∣∣∣P
⎛⎝ θ̄j − θ∗√

Var
(
θ̄j
) ≤ t

⎞⎠− Φ(t)

∣∣∣∣∣∣→ 0 as nj → ∞.

If what follows, we will set σ
(j)
nj :=

√
Var
(
θ̄j
)
. Furthermore, let

Hk :=

⎛⎝1

k

k∑
j=1

1

σ
(j)
nj

⎞⎠−1

be the harmonic mean of σ
(j)
nj ’s, and set αj =

Hk

σ
(j)
nj

. Note that α1 = . . . = αk = 1

if σ
(1)
n1 = . . . = σ

(k)
nk .
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2.1. Merging procedure based on the median

In this subsection, we establish guarantees for the merging procedure based on
the sample median, namely,

θ̂(k) = med
(
θ̄1, . . . , θ̄k

)
.

This case is treated separately due to its practical importance, the fact that we
can obtain better numerical constants, and a conceptually simpler proof.

Theorem 1. Assume that s > 0 and nj = card(Gj), j = 1, . . . , k are such that

1

k

k∑
i=1

(
gi(ni) +

√
s

k

)
· max
j=1,...,k

αj <
1

2
. (5)

Moreover, let assumption 1 be satisfied, and let ζj(nj , s) solve the equation

Φ
(
ζj(nj , s)/σ

(j)
nj

)
− 1

2
= αj ·

1

k

k∑
i=1

(
gi(ni) +

√
s

k

)
.

Then for all s satisfying (5),∣∣∣θ̂(k) − θ∗

∣∣∣ ≤ ζ(s) := max
j=1,...,k

ζj(nj , s)

with probability at least 1− 4e−2s.

Proof. See section 5.2.

The following lemma yields a more explicit form of the bound and numerical
constants.

Lemma 1. Assume that 1
k

∑k
i=1

(
gi(ni) +

√
s
k

)
· max
j=1,...,k

αj ≤ 0.33. Then

ζ(s) ≤ 3Hk · 1
k

k∑
j=1

(
gj(nj) +

√
s

k

)
.

Proof. This is an immediate consequence of Lemma 4 in the Appendix.

Remark 1. Let σ̄(1) ≤ . . . ≤ σ̄(k) be the non-decreasing rearrangement of

σ
(1)
n1 , . . . , σ

(k)
nk . It is easy to see that the harmonic mean Hk of σ

(1)
n1 , . . . , σ

(k)
nk

satisfies

Hk ≤ k

�k/m� · 1

�k/m�

�k/m�∑
j=1

σ̄(j)

for any integer 1 ≤ m ≤ k, hence the deviations of θ̂(k) are controlled by the

smallest elements among
{
σ
(j)
nj

}k

j=1
rather than the largest.
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2.2. Example: new bounds for the median-of-means estimator

The univariate mean estimation problem is pervasive in statistics, and serves
as a building block of more advanced methods such as empirical risk minimiza-
tion. Early works on robust mean estimation include Tukey’s “trimmed mean”
(Tukey and Harris, 1946), as well as “winsorized mean” (Bickel et al., 1965);
also see discussion in Bubeck, Cesa-Bianchi and Lugosi (2013). These techniques
often produce estimators with significant bias. A different approach based on
M-estimation was suggested by O. Catoni (Catoni, 2012); Catoni’s estimator
yields almost optimal constants, however, its construction requires additional
information about the variance or the kurtosis of the underlying distribution;
moreover, its computation is not easily parallelizable, therefore this technique
cannot be easily employed in the distributed setting.

Here, we will focus on a fruitful idea that is commonly referred to as the
“median-of-means” estimator that was formally defined in equation (2) above.
Several refinements and extensions of this estimator to higher dimensions have
been studied by Minsker (2015); Hsu and Sabato (2013); Devroye et al. (2016);
Joly, Lugosi and Oliveira (2016); Lugosi and Mendelson (2017). Advantages of
this method include the facts that that it can be implemented in parallel and
does not require prior knowledge of any information about parameters of the
distribution (e.g., its variance). The following result for the median-of-means
estimator is the corollary of Theorem 1; for brevity, we treat only the case of
identically distributed observations. Recall that n = �N/k� and card(Gj) ≥
n, j = 1, . . . , k.

Corollary 1. Let X1, . . . , XN be a sequence of i.i.d. copies of a random variable
X ∈ R such that EX = θ∗, Var(X) = σ2, and E|X − θ∗|3 < ∞. Then for all

s > 0 and k such that 0.4748E|X−θ∗|3
σ3

√
n

+
√

s
k ≤ 0.33, the estimator θ̂(k) defined

in (2) satisfies

|θ̂(k) − θ∗| ≤ σ

(
1.43

E |X − θ∗|3 /σ3

n
+ 3

√
s

kn

)

with probability at least 1− 4e−2s.

Remark 2. The term 1.43σ E|X−θ∗|3/σ3

n can be thought of as the “bias” due to

asymmetry of the distribution of the sample mean. Note that whenever k �
√
N

(so that n �
√
N), the right-hand side of the inequality above is of order

(kn)−1/2 � N−1/2. It is also not hard to see that dependence on k in the term

1.43σ E|X−θ∗|3/σ3

n ∝ k
N can not be improved in general. Indeed, assume that X

has exponential distribution E(1). Then the sum
∑n

j=1 Xj has Gamma distri-
bution Γ(n, 1) with mean equal to n. Moreover, it is known (Choi, 1994) that
for large n, the median M of Γ(n, 1) satisfies n − 1/3 < M < 1 − 1/3 + 1

2n ,
hence one easily checks that the median Mn of the law of 1

n

∑n
j=1 Xj−n satisfies

|Mn| ≥ 1
4n ∝ k

N for n large enough. On the other hand, when k → ∞ while n

remains fixed, θ̂(k) → Mn almost surely.
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Proof. It follows from the Berry-Esseen Theorem (Fact 1 in section 5.1) that

assumption 1 is satisfied with σ
(1)
n = . . . = σ

(k)
n = σ√

n
, and

gj(n) ≤ 0.4748
E|X − θ∗|3

σ3
√
n

for all j. Lemma 1 implies that maxj ζj(n, s) ≤ 3 σ√
n

(
0.4748E|X−θ∗|3

σ3
√
n

+
√
s/k
)
,

and the claim follows from Theorem 1.

Results similar to Corollary 1 can be obtained under weaker moment assump-
tions as well.

Corollary 2. Let X1, . . . , XN be a sequence of i.i.d. copies of a random variable
X ∈ R such that EX = θ∗, Var(X) = σ2, E|X−θ∗|2+δ < ∞ for some δ ∈ (0, 1).
Then there exist absolute constants c1, C2 > 0 such that for all s > 0 and k

satisfying E|X−θ∗|2+δ

σ2+δnδ/2 +
√

s
k ≤ c1, the following inequality holds with probability

at least 1− 4e−2s:

|θ̂(k) − θ∗| ≤ C2 σ

(
E |X − θ∗|2+δ

/σ2+δ

n
1+δ
2

+

√
s

N

)
.

In this case, typical deviations of θ̂(k) are still of order N−1/2 as long as
k � Nδ/(1+δ). The proof of this result again follows from Theorem 1 and a
version of the Berry-Esseen inequality stated in section 5.1. Finally, we remark
that under stronger assumptions on the distribution of X, the “bias term” can
be improved.

Corollary 3. Let X1, . . . , XN be a sequence of i.i.d. copies of a random variable
X ∈ R such that EX = θ∗, Var(X) = σ2, E(X−θ∗)

3 = 0 and E|X−θ∗|3+δ < ∞
for some δ ∈ (0, 1). Moreover, assume that the characteristic function φX(t) of
X is such that lim sup

t→∞
|φX(t)| < 1. Then there exist positive constants cX1 , CX

2

that depend on the distribution of X such that for all s > 0 and k such that

n− 1+δ
2 +

√
s
k ≤ cX1 , the estimator θ̂(k) defined in (2) satisfies

|θ̂(k) − θ∗| ≤ CX
2 σ

(
1

n1+δ/2
+

√
s

N

)
with probability at least 1− 4e−2s.

Proof. It follows from Theorem 2 in (Ibragimov, 1967) that under the stated
assumptions, there exists CX > 0 that depends on the distribution of X such
that

sup
s∈R

∣∣∣∣P(√n
X̄n − μ

σ
≤ s

)
− Φ(s)

∣∣∣∣ ≤ CX

n
1+δ
2

,

hence gj(n) ≤ CX

n
1+δ
2

for all j. The claim now follows from Lemma 1 and Theorem

1.
We remark the the requirement lim sup

t→∞
|φX(t)| < 1 implies that the distribu-

tion of X is not concentrated on a lattice.
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2.3. Example: distributed maximum likelihood estimation

LetX1, . . . , XN be i.i.d. copies of a random vectorX ∈ R
d with distribution Pθ∗ ,

where θ∗ ∈ Θ ⊆ R. Assume that for each θ ∈ Θ, Pθ is absolutely continuous with
respect to a σ-finite measure μ, and let pθ = dPθ

dμ be the corresponding density. In
this section, we state sufficient conditions for assumption 1 to be satisfied when
θ̄1, . . . , θ̄k are the maximum likelihood estimators (MLE) of θ∗. All derivatives
below (denoted by ′) are taken with respect to θ, unless noted otherwise. Pinelis
(2016) proved that the following conditions suffice to guarantee that the rate of
convergence of the distribution of the MLE to the normal law is n−1/2. Assume
that the the log-likelihood function 	x(θ) = log pθ(x) is such that:

(1) [θ∗ − δ, θ∗ + δ] ⊆ Θ for some δ > 0;
(2) “standard regularity conditions” that allow differentiation under the expec-

tation: assume that E	′X(θ∗) = 0, and that the Fisher information
E	′X(θ∗)

2 = −E	′′X(θ∗) := I(θ∗) is finite;

(3) E |	′X(θ∗)|3 + E |	′′X(θ∗)|3 < ∞;
(4) for μ-almost all x, 	x(θ) is three times differentiable for θ ∈ [θ∗ − δ, θ∗ + δ],

and

E sup|θ−θ∗|≤δ |	′′′X(θ)|3 < ∞;

(5) P
(
|θ̄1 − θ∗| ≥ δ

)
≤ cγn for some positive constants c and γ ∈ [0, 1).

In turn, condition (5) above is implied by the following two inequalities (see
Pinelis, 2016, section 6.2, for detailed discussion and examples):

1. H2(θ, θ∗) ≥ 2− 2
(1+c0(θ−θ∗)2)

γ , whereH(θ1, θ2) =

√∫
Rd

(√
pθ1 −

√
pθ2
)2

dμ

is the Hellinger distance, and c0, γ are positive constants;
2. I(θ) ≤ c1 + c2 |θ|α for some positive constants c1, c2 and α and all θ ∈ Θ.

Corollary 4. Assume that conditions (1)-(5) are satisfied, and that card(Gj) ≥
n = �N/k�, j = 1, . . . , k. Then for all s > 0 such that C√

n
+ cγn +

√
s
k ≤ 0.33,

∣∣∣θ̂(k) − θ∗

∣∣∣ ≤ 3√
I(θ∗)

(
C

n
+

c√
n
γn +

√
s

kn

)
with probability at least 1 − 4e−2s, where C is a positive constant that depends
only on {Pθ}θ∈[θ∗−δ,θ∗+δ].

Proof. It follows from results in Pinelis (2016), in particular equation (5.5), that

whenever conditions (1)-(5) hold, assumption 1 is satisfied for all j with σ
(j)
n =

(nI(θ∗))
−1/2

, where I(θ∗) is the Fisher information, and gj(n) ≤ C√
n
+ cγn,

where C is a constant that depends only on {Pθ}θ∈[θ∗−δ,θ∗+δ]. Lemma 1 implies
that

max
j=1,...,k

ζj(n, s) ≤ 3

(
C√
n
+ cγn +

√
s/k

)
,

and the claim follows from Theorem 1.
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Remark 3. Results of this section can be extended to include other M-esti-
mators besides MLEs, as Bentkus, Bloznelis and Götze (1997) have shown that
M-estimators satisfy a variant of Berry-Esseen bound under rather general con-
ditions.

2.4. Merging procedures based on robust M-estimators

In this section, we establish performance guarantees for a distributed algorithms
based on the robust M-estimators. Let ρ be a convex, even function such that
ρ(z) → ∞ as |z| → ∞ and ‖ρ′+‖∞ < ∞. Moreover, it will be assumed that
ρ′−(z) ≥ z/2 for 0 < z ≤ 2, where ρ′− is the left derivative of ρ. For instance,
ρ(z) = |z| and the Huber’s loss

ρM (z) =

{
z2/2, |z| ≤ M,

M |z| −M2/2, |z| > M,
(6)

where M ≥ 1, satisfy these assumptions. We study the family of merging pro-
cedures based on the M-estimators

θ̂(k)ρ := argmin
z∈R

1√
N

k∑
j=1

γj ρ
(
τj(z − θ̄j)

)
,

where γj , j = 1, . . . , k are the nonnegative weights and τj , j = 1, . . . , k are
nonnegative “scaling factors.” The sample median med

(
θ̄1, . . . , θ̄k

)
corresponds

to the choice of ρ(x) = |x|, equal weights γj = 1 and τj = 1, j = 1, . . . , k.
Results below demonstrate that different choice of weights leads to potentially
better bounds. We will also assume that for all 1 ≤ j ≤ k,

0 < lim inf
n→∞

σ(j)
n nβj ≤ lim sup

n→∞
σ(j)
n nβj < ∞

for some known constants β1, . . . , βk > 0. In this case, we will set

τj :=
nβj

Δ
, γj := n

1/2−βj

j ,

where Δ > 0. Moreover, let

Vj := n
βj

j σ(j)
nj

, Δ̄j := max(Δ, Vj).

The following result quantifies non-asymptotic performance of the estimator

θ̂
(k)
ρ .

Theorem 2. Let assumption 1 be satisfied, and suppose that s > 0 and
n1, . . . , nk are such that

√
2s+2

k∑
j=1

√
nj

N
gj(nj)≤

min(0.136, 0.09ρ′+(2))

2
∥∥ρ′+∥∥∞

⎛⎝ 1√
N

k∑
j=1

n
1/2+βj

j

Δ̄j

⎞⎠ min
j=1,...,k

Δ̄j

n
βj

j

.

(7)
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Then for all s satisfying (7),

∣∣∣θ̂(k)ρ − θ∗

∣∣∣ ≤ ∥∥ρ′+∥∥∞
min

(
0.1364, 0.09ρ′+(2)

)
×

⎛⎝ 1√
N

k∑
j=1

n
1/2+βj

j

Δ̄j

⎞⎠−1⎛⎝√
2s+ 2

k∑
j=1

√
nj

N
gj(nj)

⎞⎠ (8)

with probability at least 1− 2e−s.

Proof. See section 5.3.

To understand the implications of this technical bound, we consider the spe-
cial case when the expressions can be simplified significantly. Let ρ(z) = |z|,
and assume that β1 = . . . = βk = 1/2 and gj(n) ≤ CXn−1/2 for all j and some
CX > 0 that depends on the distribution of X. Moreover, let

H̃k :=

⎛⎝ k∑
j=1

nj

N

1

Vj

⎞⎠−1

be the weighted harmonic mean of V1, . . . , Vk, and set α̃j =
H̃k

Vj
.

Corollary 5. There exist positive constants c1, C2 such that for all s > 0 and
n1, . . . , nk satisfying(√

s+ CX k√
N

)
max

j=1,...,k
α̃j ≤ c1

√√√√ N

max
j=1,...,k

nj
, (9)

the following inequality holds with probability at least 1− 2e−s:∣∣∣θ̂(k)ρ − θ∗

∣∣∣ ≤ C2 H̃k

(
CX k

N
+

√
s

N

)
. (10)

Proof. Observe that for ρ(z) = |z|, the estimator θ̂
(k)
ρ does not depend on the

choice of Δ, hence Δ̄j = Vj for all j. Next, note that⎛⎝ 1√
N

k∑
j=1

n
1/2+βj

j

Vj

⎞⎠ min
j=1,...,k

Vj

n
βj

j

=

⎛⎝ k∑
j=1

nj

N

1

Vj

⎞⎠ min
j=1,...,k

Vj

√
N

nj

≥ min
j=1,...,k

Vj

⎛⎝ k∑
j=1

nj

N

1

Vj

⎞⎠√ N

maxj nj
=

1

maxj α̃j

√
N

maxj nj
,

hence (11) implies (7). It is also straightforward to check that (8) implies (10)
for an appropriate choice of the constant C2.
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Let us compare the previous bound with the result of Theorem 1 when the
observations are i.i.d. with variance σ2: Theorem 1 yields that

∣∣∣θ̂(k) − θ∗

∣∣∣ ≤ C3σ
1

1
k

∑k
j=1

√
nj

⎛⎝√ s

k
+

E|X − θ∗|3
σ3

1

k

k∑
j=1

1
√
nj

⎞⎠ ,

while (10) implies that∣∣∣θ̂(k) − θ∗

∣∣∣ ≤ C4σ

(
E|X − θ∗|3

σ3

k

N
+

√
s

N

)

with probability at least 1− 2e−s. By concavity of x �→ √
x, 1

1
k

∑k
j=1

√
nj

≥
√

k
N ,

and by the inequality between the harmonic mean and arithmetic mean,

1

k

k∑
j=1

1
√
nj

≥
√

k

N
,

hence the second inequality is stronger than the first.

Remark 4. Assume that ρ is Huber’s loss defined in (6) with M = 1, the data
are i.i.d.,and that |Gj | = n for all j. The bound of Theorem 2 implies that one
should pick the scaling factor Δ that is not too large, as the quantity max(Δ, Vn)
controls the estimation error, where Vn = nβσn. On the other hand, it will be
shown in section 2.5 that to get an estimator with small asymptotic variance,
one should choose Δ that is not too small, and the “optimal” choice is Δ = Vn.
While Vn is typically unknown, it can be estimated from the data. Indeed, since
θ̄j’s are approximately normal, their standard deviation can be estimated by the
median absolute deviation as

σ̂n,k =
1

Φ−1(0.75)
med

(
|θ̄1 −med

(
θ̄1, . . . , θ̄k

)
|, . . . , |θ̄k −med

(
θ̄1, . . . , θ̄k

)
|
)
,

where the factor 1/Φ−1(0.75) is introduced to make the estimator consistent
(Hampel et al., 2011). At the same time, when ρ(x) = |x|, the estimator is in-
variant with respect to Δ, but its asymptotic variance is larger than the variance
of the estimator based on Huber’s loss with optimally chosen scale parameter.

2.4.1. Adversarial contamination

One of the advantages of allowing the number of subgroups k to be large is
improved robustness with respect to adversarial contamination. Assume that
the initial sample X1, . . . , XN is merged with a set of O < N outliers that
are generated by an adversary who has an opportunity to inspect the data in
advance; combined dataset of cardinality Ñ = N + O is then presented to a
statistician. We would like to understand performance of proposed estimators
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in this framework. To highlight the dependence of the estimation error on the
number O of outliers, we consider only the simplest scenario of i.i.d. data and
equal group sizes satisfying card(Gj) = n ≥ �Ñ/k�. Moreover, suppose that
β1 = . . . = βk = 1/2 and that g(n) ≤ CXn−1/2. In this case, the estimator we
are interested in is defined as

θ̂(k)ρ := argmin
z∈R

1√
Ñ

k∑
j=1

ρ

(√
n
z − θ̄j
Δ

)
where Δ > 0. In what follows, we will also assume that k > 2O. The following
result holds.

Theorem 3. There exist positive constants c1(ρ), C2(ρ) such that for all s > 0
and n1, . . . , nk satisfying √

s

k
+

CX

√
n
+

O
k

≤ c1(ρ), (11)

the following inequality holds with probability at least 1− 2e−s:∣∣∣θ̂(k)ρ − θ∗

∣∣∣ ≤ C2(ρ) Δ̃

(
CX k

N
+

√
s

N
+

O√
n

N

)
,

where Δ̃ = max
(
Δ,

√
nσ

(1)
n

)
.

Proof. See section 5.4.

The display above implies that, if k ≥ C · O for a sufficiently large constant

C, the error
∣∣∣θ̂(k)ρ − θ∗

∣∣∣ behaves like the maximum of 2 terms: the first term is

the error bound for the case O = 0, and the second term is of order Δ̃
√
nO

N .
Dependence on O in Theorem 3 can not be improved in general: indeed, if θ∗
is the mean and X has 3 finite moments, it is known (Steinhardt, Charikar
and Valiant, 2017) that the estimation error can not be of order smaller than

max
(
(O/N)2/3, N−1/2

)
. At the same time, if k � N ·

(O
N

)2/3
, the bound of

Theorem 3 is exactly of the form (O/N)2/3 +O
(
N−1/2

)
.

Remark 5. An important characteristic of Theorem 3 is that its guarantees
still hold uniformly over all 0 < s � k, as long as O/k is not too large. Another
method for obtaining bounds that hold uniformly over the wide range of confi-
dence parameters s was suggested by Devroye et al. (2016), and is based on the
ability to construct, for each 0 < s ≤ c1N , a “sub-Gaussian” confidence interval
with coverage probability at least 1 − e−s. While our bounds rely on stronger
moment assumptions to obtain uniformity over a wider range of confidence pa-
rameters, they have two important advantages in the context of the median-of-
mean estimators: first, they do not require prior information about the variance
that is needed to construct confidence intervals. Second, in the framework of ad-
versarial contamination, our bounds are uniform over all 0 < s � k, while the
guarantees obtained in Devroye et al. (2016) can only be made uniform over the
range O � s � N ; when O is relatively large, this difference becomes noticeable.
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2.5. Asymptotic results

In this section, we complement the previously discussed non-asymptotic devi-

ation bounds for θ̂
(k)
ρ by the asymptotic results that partially explain the dif-

ference that the choice of the function ρ makes. For the benefits of clarity, we
make some simplifying assumptions, and the complete list is presented below:

(1) X1, . . . , XN are i.i.d., n = �N/k� and card(Gj) = n, j = 1, . . . , k; result for
subgroups of different sizes is presented in Appendix 5.8.

(2) Assumption 1 is satisfied for some function g(n) (note that there is no
dependence on index j due to the i.i.d. assumption);

(3) k and n are such that k → ∞ and
√
k · g(n) → 0 as N → ∞;

(4) ρ is a convex, even function, such that ρ(z) → ∞ as |z| → ∞ and ‖ρ′+‖∞ <
∞;

(5) θ̂
(k)
ρ is defined as

θ̂(k)ρ := argmin
z∈R

k∑
j=1

ρ

(
z − θ̄j
σn

)
,

where σ
(1)
n = . . . = σ

(k)
n ≡ σn is the standard deviation of θ̄j .

For z ∈ R, define
L(z) := Eρ′ (z + Z) ,

where Z ∼ N(0, 1). Note that, since ρ is differentiable almost everywhere,
L(z) = Eρ′−(z + Z) = Eρ′+(z + Z).

Theorem 4. Under assumptions (1)-(5) above,

√
k
θ̂
(k)
ρ − θ∗
σn

d−→ N(0,Ω2),

where Ω2 =
E(ρ′(Z))

2

(L′(0))2
.

Proof. See section 5.5.

For example, if ρ(x) = |x|, Theorem 4 implies that under appropriate as-

sumptions, the median-of-means estimator θ̂(k) defined in (2) satisfies

√
N
(
θ̂(k) − θ∗

)
d−→ N

(
0,

π

2
σ2
)
.

Indeed, in this case σn = σ/
√
n, where σ2 = Var(X1), and

ρ′(x) =

⎧⎪⎨⎪⎩
−1, x < 0,

0, x = 0,

1, x > 0,

hence a simple calculation yields Ω2 = 1/(L′(0))2 = π/2.
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If we consider the mean estimation problem with Huber’s loss ρM (x) (6)
instead of ρ(x) = |x|, we similarly deduce that

ρ′(x) =

⎧⎪⎨⎪⎩
−M x ≤ −M,

x, |x| < M,

M, x ≥ M,

and we get the well-known (Huber, 1964) expressionΩ2=
∫ M
−M

x2dΦ(x)+2M2(1−Φ(M))

(2Φ(M)−1)2
;

in particular, Ω2 → 1 as M → ∞. For instance, Ω2 � 1.15 for M = 2 and
Ω2 � 1.01 for M = 3.

Remark 6. The key assumptions in the list (1)-(5) governing the regime of
growth of k and n are (2) and (3). For instance, if the random variables possess
finite moments of order (2 + δ) for some δ ∈ (0, 1], then it follows from the

Berry-Esseen bound (Fact 1 in section 5.1) that
√
k g(n) → 0 if k = o

(
N

δ
1+δ

)
as N → ∞.

2.6. Connection to U-quantiles

In this section, we discuss connections of proposed algorithms to U-quantiles
and the assumption requiring the groups G1, . . . , Gk to be disjoint. We assume
that the data X1, . . . , XN are i.i.d. with common distribution P , and let θ∗ =
θ∗(P ) ∈ R be a real-valued parameter of interest. It is clear that the estimators
produced by distributed algorithms considered above depend on the random
partition of the sample. A natural way to avoid such dependence is to consider
the U-quantile (in this case, the median)

θ̃(k) = med
(
θ̄J , J ∈ A(n)

N

)
,

where A(n)
N := {J : J ⊆ {1, . . . , N}, card(J) = n := �N/k�} is a collection of all

distinct subsets of {1, . . . , N} of cardinality n, and θ̄J := θ̄(Xj , j ∈ J) is an
estimator of θ∗ based on {Xj , j ∈ J}. For instance, when card(J) = 2 and

θ̄J = 1
card(J)

∑
j∈J Xj , θ̃

(k) is the well-known Hodges-Lehmann estimator of the

location parameter, see Hodges and Lehmann (1963); Lehmann and D’Abrera
(2006); for a comprehensive study of U-quantiles, see Arcones (1996). The main

result of this section is an analogue of Theorem 1 for the estimator θ̃(k); it
implies that theoretical guarantees for the performance of θ̃(k) are at least as
good as for the estimator θ̂(k). Since the data are i.i.d., it is enough to impose
the assumption 1 on θ̄ (X1, . . . , Xn) only, hence we drop the index j and denote
the normalizing sequence {σn}n∈N and the corresponding error function g(n).

Theorem 5. Assume that s > 0 and n = �N/k� are such that

g(n) +

√
s

k
<

1

2
. (12)
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Moreover, let assumption 1 be satisfied, and let ζ(n, s) solve the equation

Φ (ζ(n, s)/σn) =
1

2
+ g(n) +

√
s

k
.

Then for any s satisfying (12),∣∣∣θ̃(k) − θ∗

∣∣∣ ≤ ζ(n, s)

with probability at least 1− 4e−2s.

Proof. See section 5.6. As before, a more explicit form of the bound immediately
follows from Lemma 1.

A drawback of the estimator θ̃(k) is the fact that its exact computation re-
quires evaluation of

(
n
N

)
estimators θ̄J over subsamples

{
{Xj , j ∈ J}, J ∈

A(n)
N

}
. For large N and n, such task becomes intractable. However, an approxi-

mate result can be obtained by choosing 	 subsets J1, . . . , J	 fromA(n)
N uniformly

at random, and setting θ̃
(k)
	 := med

(
θ̄J1 , . . . , θ̄J�

)
.

We note that Theorem 2 admits a similar extension for the estimator defined
as

θ̃(k)ρ := argmin
z∈R

∑
J∈A(n)

N

ρ

(√
n
z − θ̄J
Δ

)
.

Namely, if the data are i.i.d., then under the assumptions on ρ made in section
2.4, ∣∣∣θ̃(k)ρ − θ∗

∣∣∣ ≤ C1(ρ)max (σ,Δ)

(√
s

N
+

g(n)√
n

)
(13)

with probability at least 1−2e−s, whenever s > 0 and n = �N/k� are such that√
s

k
+ g(n) ≤ c2(ρ)

for some positive constants C1(ρ), c2(ρ). We omit the proof of (13) since the
required modifications in the argument of Theorem 2 are exactly the same as
those explained in the proof of Theorem 5.

3. Estimation in higher dimensions

Results presented above admit natural extension to higher dimensions. In this
section, it will be assumed that θ∗ = (θ∗,1, . . . , θ∗,m) ∈ R

m, m ≥ 2, is a
vector-valued parameter of interest. Let X1, . . . , XN be i.i.d. random variables
that are randomly partitioned into disjoint groups G1, . . . , Gk with cardinalities
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n1, . . . , nk, and let θ̄j := θ̄j(Gj) ∈ R
m, 1 ≤ j ≤ k be a sequence of estimators

of θ∗, the common parameter of the distributions of Xj ’s. Define

g
(m)
j (nj) := max

i=1,...,m
sup
t∈R

∣∣∣∣∣∣P
⎛⎝ θ̄j,i − θ∗,i√

Var
(
θ̄j,i
) ≤ t

⎞⎠− Φ(t)

∣∣∣∣∣∣
and V

(i)
j := n

1/2
j

√
Var
(
θ̄j,i
)
. Moreover, we will assume that for all 1 ≤ i ≤ m

and 1 ≤ j ≤ k,

0 < lim inf
nj→∞

V
(i)
j ≤ lim sup

nj→∞
V

(i)
j < ∞.

We will be interested in the estimator given by weighted L1 median

θ̂(k) := argmin
z∈Rm

k∑
j=1

√
nj

N

∥∥z − θ̄j
∥∥
1
.

Theorem 6. There exist absolute constants c1, C2 > 0 such that for all s > 0
and all n1, . . . , nk satisfying

√
s+

k∑
j=1

√
nj

N
g
(m)
j (nj) ≤ c1

√
N

maxj=1,...,k nj
, (14)

the following inequality holds with probability at least 1− 2e−s:

∥∥∥θ̂(k) − θ∗

∥∥∥
∞

≤ C2 max
i,j

V
(i)
j

⎛⎝√s+ logm

N
+

k∑
j=1

√
nj

N
g
(m)
j (nj)

⎞⎠ .

Proof. See section 5.7.

Similar results can be established under the more general setting of Theorem
2, albeit at the cost of bulkier statements.

3.1. Example: multivariate median-of-means estimator

Consider the special case of Theorem 6 when θ∗ = EX is the mean of X ∈ R
m,

and θ̄j(X) := 1
|Gj |
∑

Xi∈Gj
Xi are the sample means evaluated over the subsam-

ples indexed by G1, . . . , Gk. The problem of finding the mean estimator that
admits sub-Gaussian concentration around EX under weak moment assump-
tions on the underlying distribution has recently been investigated in several
works. For instance, Joly, Lugosi and Oliveira (2016) constructs an estimator
that admits “almost optimal” behavior under the assumption that the entries of
X possess 4 moments. Recently, Lugosi and Mendelson (2017, 2018) proposed
new estimators that attains optimal bounds and requires existence of only 2 mo-
ments. More specifically, the aforementioned papers show that, for any s such
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that 2
N < e−s < 1, there exists an estimator θ̂(s) such that with probability at

least 1− c e−s, ∥∥∥θ̂(s) − θ∗

∥∥∥
2
≤ C

(√
tr (Σ)

N
+

√
s λmax(Σ)

N

)
,

where c, C > 0 are numerical constants, Σ is the covariance matrix of X, tr (Σ)
is its trace and λmax(Σ) – its largest eigenvalue. However, construction of these
estimators explicitly depends on the desired confidence level s, and (more impor-
tantly) they are numerically difficult to compute. On the other hand, Theorem
6 demonstrates that performance of the multivariate median-of-means estima-
tor is robust with respect to the choice of the number of subgroups k, and
the resulting deviation bounds hold simultaneously over the range of confidence
parameter s under mild assumptions, for example when the coordinates of X
possess 2+δ moments for some δ > 0. The following corollary summarizes these
claims.

Corollary 6. Let X1, . . . , XN be i.i.d. random vectors such that θ∗ = EX1

is the unknown mean, Σ = E
[
(X1 − θ∗)(X1 − θ∗)

T
]
is the covariance matrix,

σ2
i = Σi,i, and maxi=1,...,m E|X1,i − θ∗,i|2+δ < ∞ for some δ ∈ (0, 1]. Moreover,

assume that nj ≥ n := �N/k� for all 1 ≤ j ≤ k. Then there exist absolute
constants c1, C2 > 0 such that for all s > 0 and k satisfying√

s

k
+ max

i=1,...,m

E|X1,i − θ∗,i|2+δ

σ2+δ
i

1

nδ/2
≤ c1,

the following inequality holds with probability at least 1− 2e−s:∥∥∥θ̂(k) − θ∗

∥∥∥
∞

≤ C2 max
i=1,...,m

σi

(
max

i=1,...,m

E|X1,i − θ∗,i|2+δ

σ2+δ
i

1

n
1+δ
2

+

√
s+ logm

N

)
.

Proof. Result follows immediately from Theorem 6 and Fact 1 in section 5.1.

Remark 7. Let us compare the bound achieved in Corollary 6 with the deviation
guarantees for the sample mean of gaussian random vectors. It follows from the
general deviation inequalities for suprema of Gaussian processes (Ledoux and
Talagrand, 1991) that if Z1, . . . , ZN are i.i.d. copies of N(θ∗,Σ) random vector
Z, then the sample mean Z̄N satisfies

∥∥Z̄N − θ∗
∥∥
∞ ≤ C

[
E‖Z‖∞√

N
+ sup

‖v‖1≤1

(
E (〈Z, v〉)2

)1/2√ s

N

]

with probability at least 1− e−s. It is easy to check that

E‖Z‖∞ ≤ C max
j=1,...,m

√
Σj,j

√
logm

for an absolute constant C > 0, and this bound is tight when Σ is an identity
matrix. Moreover, as the maximum of a convex function v �→ 〈Σv, v〉 over the
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	1 ball is attained at one of the extreme points, sup‖v‖1≤1

(
E (〈Z, v〉)2

)1/2
=√

sup‖v‖1≤1 〈Σv, v〉 =
√

max
j=1,...,m

Σj,j. Hence, as long as k � Nδ/(1+δ) (so that

the term maxi=1,...,m
E|X1,i−θ∗,i|2+δ

σ2+δ
i

(
k
N

) 1+δ
2 is of order o(N−1/2)), the deviation

inequality of Corollary 6 provides sub-Gaussian guarantees in the range 0 < s �
k.

4. Simulation results

We illustrate results of the previous sections with numerical simulations that
compare performance of the median-of-means estimator with the usual sample
mean, see figure 2 below. Moreover, we compared the theoretical guarantees for
the median-of-means estimator (described in section 2.2) against the empirical
outcomes for the Lomax distribution with shape parameter α = 4 and scale
parameter λ = 1; the corresponding probability density function is

p(x) =
α

λ

(
1 +

x

λ

)−(α+1)

for x ≥ 0

In particular, the Lomax distribution with α = 4 and λ = 1 has mean 1/3
and median 4

√
2 − 1 ≈ 0.1892. Since the mean and median do not coincide,

the error of the median-of-means estimator has a significant bias component
for large values of k. Figure 3 depicts the impact of the bias beyond k =

√
N

(equivalently, logN k = 1/2), and also the fact that the median error is mostly
flat for k <

√
N .

Finally, we assessed empirical coverage of the confidence intervals constructed
using Theorem 4 and centered at the median-of-means estimator; results are
presented in figure 4. The sample of size N = 105 was generated from the half-
t distribution with 3 degrees of freedom; recall that a random variable ξ has

half-t distribution with ν degrees of freedom if ξ
d
= |η| where η has usual t-

distribution with ν degrees of freedom. It is clear that half-t distribution is both
asymmetric and heavy-tailed. Each sample was further corrupted by outliers
sampled from the normal distribution with mean 0 and standard deviation 105;
the number of outliers ranged from 0 to

√
N = 100 with increments of 20. The

median-of-means estimator was constructed for k =
√
N = 100. For comparison,

we present empirical coverage levels attained by the sample mean in the same
framework.

5. Proofs

In this section, we present the proofs of the main results.

5.1. Preliminaries

We recall several well-known facts that are used in the proofs below. The fol-
lowing generalization of Berry-Esseen bound (Berry, 1941; Esseen, 1942) is due
to Petrov (1995).
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Fig 2: Comparison of errors corresponding to the median-of-means and sam-
ple mean estimator over 256 runs of the experiment. In (a) the sample of
size N = 106 consists of i.i.d. random vectors in R

2 with independent Pareto-
distributed entries possessing only 2.1 moments. Each run computes the median-
of-means estimator using partition into k = 1000 groups, as well as the usual
sample mean. In (b), the ordered differences between the error of the sample
mean and the median-of-means over all 256 runs illustrates robustness. Positive
error differences in (b) indicate lower error for the median-of-means, and nega-
tive error differences occur when the sample mean provided a better estimate.
Images (c) and (d) illustrate a similar experiment that was performed for
two-dimensional random vectors with independent entries with Student’s t-
distribution with 2 degrees of freedom. In this case, the sample size is N = 100
and the number of groups is k = 10.

Fact 1 (Berry-Esseen bound). Assume that Y1, . . . , Yn is a sequence of i.i.d.
copies of a random variable Y with mean μ, variance σ2 and such that E|Y −
μ|2+δ < ∞ for some δ ∈ (0, 1]. Then there exists an absolute constant A > 0
such that

sup
s∈R

∣∣∣∣P(√n
Ȳ − μ

σ
≤ s

)
− Φ(s)

∣∣∣∣ ≤ A
E|Y − μ|2+δ

σ2+δnδ/2
.

Moreover, for δ = 1, A ≤ 0.4748.
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Fig 3: The solid and dotted lines indicate theoretical bounds for the different
values of the sample size N , with the solid part indicating the number of sub-
groups k for which our estimates hold. The dashed lines indicate empirical error
between the median-of-means estimator and the true mean. We consider three
cases: N = 216 (blue), N = 218 (green), and N = 220 (red). The x-axis is
logN k taken from a uniform partition of (0, 1) and the y-axis indicates the me-
dian error of the median-of-means estimator over 216 runs of the experiment.
For each value of N and k, we run 216 simulations by drawing N i.i.d. random
variables with Lomax distribution with shape parameter α = 4 and scale pa-
rameter λ = 1, splitting into k groups, and then computing the median of the
means of those groups. From the 216 simulations, we display (on a logarithmic
scale) the median of the absolute differences between the true mean 1/3 and
the median-of-means estimators, producing the dashed lines in the figure. The
solid and dotted lines are our theoretical bounds with 4e−2s = 1/2 (that is, the
probability that the solid and dotted bounds holds is guaranteed to be at least
1/2).

The upper bound on A in the case when E|X|3 < ∞ is due to Shevtsova
(2011).

Fact 2 (Bounded difference inequality). Let X1, . . . , Xk be i.i.d. random vari-
ables, and assume that Z = g(X1, . . . , Xk), where g is such that for all j =
1, . . . , k and all x1, x2, . . . , xj , x

′
j , . . . , xk,∣∣g(x1, . . . , xj−1, xj , xj+1, . . . , xk)− g(x1, . . . , xj−1, x

′
j , xj+1, . . . , xk)

∣∣ ≤ cj .

Then

P(Z − EZ ≥ t) ≤ exp

{
− 2t2∑k

j=1 c
2
j

}
and

P(Z − EZ ≤ −t) ≤ exp

{
− 2t2∑k

j=1 c
2
j

}
.
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Nominal confidence level Fraction of outliers

0 0.2√
N

0.4√
N

0.6√
N

0.8√
N

1√
N

0.8 0.94 0.0008 0 0 0 0
0.95 0.99 0.001 0 0 0 0

(a)

Nominal confidence level Fraction of outliers

0 0.2√
N

0.4√
N

0.6√
N

0.8√
N

1√
N

0.8 0.88 0.82 0.77 0.66 0.6 0.53
0.95 0.99 0.97 0.93 0.85 0.79 0.71

(b)

Fig 4: Empirical coverage levels of confidence intervals constructed using (a) the
Central Limit Theorem for the sample mean and (b) Theorem 4 for the median
of means; (a) reflects the results obtained for the sample mean and (b) reflects
the results obtained for the median-of-means estimator.

Finally, we recall the definition of a U-statistic. Let h : Rn �→ R be a mea-
surable function of n variables, and

A(n)
N := {J : J ⊆ {1, . . . , N}, card(J) = n} .

A U-statistic of order n with kernel h based on the i.i.d. sample X1, . . . , XN is
defined as (Hoeffding, 1948)

UN (h) =
1(
n
N

) ∑
J∈A(n)

N

h (Xj , j ∈ J) .

Clearly, EUN (h) = Eh(X1, . . . , Xn), moreover, UN (h) has the smallest variance
among all unbiased estimators. The following analogue of fact 2 holds for the
U-statistics:

Fact 3 (Concentration inequality for U-statistics, (Hoeffding, 1963)).
Assume that the kernel h satisfies |h(x1, . . . , xn)| ≤ M for all x1, . . . , xn. Then
for all s > 0,

P(|UN (h)− EUN (h)| ≥ s) ≤ 2 exp

{
−2�N/n�t2

M2

}
.

5.2. Proof of Theorem 1

Observe that ∣∣∣θ̂(k) − θ∗

∣∣∣ = ∣∣med
(
θ̄1 − θ∗, . . . , θ̄k − θ∗

)∣∣ .
Let Φ(nj ,j)(·) be the distribution function of θ̄j − θ∗, j = 1, . . . , k, and Φ̂k(·)
– the empirical distribution function corresponding to the sample W1 = θ̄1 −
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θ∗, . . . ,Wk = θ̄k − θ∗, that is,

Φ̂k(z) =
1

k

k∑
j=1

I {Wj ≤ z} .

Suppose that z ∈ R is fixed, and note that Φ̂k(z) is a function of the random

variables W1, . . . ,Wk, and EΦ̂k(z) =
1
k

∑k
j=1 Φ

(nj ,j)(z). Moreover, the hypoth-
esis of the bounded difference inequality (fact 2) is satisfied with cj = 1/k for
j = 1, . . . , k, and therefore it implies that∣∣∣∣∣∣Φ̂k(z)−

1

k

k∑
j=1

Φ(nj ,j)(z)

∣∣∣∣∣∣ ≤
√

s

k
(15)

on the draw of W1, . . . ,Wk with probability ≥ 1− 2e−2s.
Let z1 ≥ z2 be such that 1

k

∑k
j=1 Φ

(nj ,j)(z1) ≥ 1
2+
√

s
k and 1

k

∑k
j=1 Φ

(nj ,j)(z2)

≤ 1
2 −
√

s
k . Applying (15) for z = z1 and z = z2 together with the union bound,

we see that for j = 1, 2,∣∣∣∣∣∣Φ̂k(zj)−
1

k

k∑
j=1

Φ(nj ,j)(zj)

∣∣∣∣∣∣ ≤
√

s

k

on an event E of probability ≥ 1−4e−2s. It follows that on E , Φ̂k(z1) ≥ 1/2 and

1− Φ̂k(z2) ≥ 1/2 simultaneously, hence

med (W1, . . . ,Wk) ∈ [z2, z1] (16)

by the definition of the median. It remains to estimate z1 and z2. Assumption
1 implies that

1

k

k∑
j=1

Φ(nj ,j)(z1) ≥
1

k

k∑
j=1

Φ

(
z1

σ
(j)
nj

)
−

∣∣∣∣∣∣1k
k∑

j=1

(
Φ(nj ,j)(z1)− Φ

(
z1

σ
(j)
nj

))∣∣∣∣∣∣
≥ 1

k

k∑
j=1

Φ

(
z1

σ
(j)
nj

)
− 1

k

k∑
j=1

gj(nj).

Hence, it suffices to find z1 such that 1
k

∑k
j=1 Φ

(
z1
σ
(j)
nj

)
≥ 1

2+
√

s
k+

1
k

∑k
j=1 gj(nj).

Recall that αj =
1/σ(j)

nj

1/k
∑k

i=1 1/σ
(i)
nj

, j = 1, . . . , k, and let ζj(nj , s) solve the equation

Φ
(
ζj(nj , s)/σ

(j)
n

)
− 1

2
= αj ·

1

k

k∑
i=1

(
gi(ni) +

√
s

k

)
.
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Note that ζj(n, s) always exists since αj · 1k
∑k

i=1

(
gi(ni) +

√
s
k

)
< 1

2 by assump-

tion. Finally, since
∑k

j=1 αj = k, it is clear that any

z1 ≥ max
j=1,...,k

ζj(nj , s)

satisfies the requirements. Similarly,

1

k

k∑
j=1

Φ(nj ,j)(z2) ≤
1

k

k∑
j=1

Φ

(
z2

σ
(j)
nj

)
+

∣∣∣∣∣∣1k
k∑

j=1

(
Φ(nj ,j)(z2)− Φ

(
z2

σ
(j)
nj

))∣∣∣∣∣∣
≤ 1

k

k∑
j=1

Φ

(
z2

σ
(j)
nj

)
+

1

k

k∑
j=1

gj(nj)

by assumption 1, hence it is sufficient to choose z2 such that z2 ≤
maxj=1,...,k ζ̃j(nj , s), where ζ̃j(nj , s) satisfies Φ

(
ζ̃j(nj , s)/σ

(j)
n

)
− 1

2 = −αj ·
1
k

∑k
i=1

(
gi(ni) +

√
s
k

)
. Noting that ζ̃j(nj , s) = −ζj(nj , s) and recalling (16),

we conclude that ∣∣∣θ̂(k) − θ∗

∣∣∣ ≤ max
j=1,...,k

ζj(nj , s)

with probability at least 1− 4e−2s.

5.3. Proof of Theorem 2

We will use notation as in the proof of Theorem 1. Let

F (z) =
1√
N

k∑
j=1

n
1/2−βj

j ρ

(
n
βj

j

Δ
(z − θ̄j)

)
.

Clearly, 0 ∈ ∂F
(
θ̂
(k)
ρ

)
, where ∂F (z) is the subdifferential of F at point z. In

turn, it implies that F ′
+

(
θ̂
(k)
ρ

)
≥ 0 and F ′

−

(
θ̂
(k)
ρ

)
≤ 0, where

F ′
+ (z) =

1√
N

k∑
j=1

n
1/2
j

Δ
ρ′+

(
n
βj

j

Δ
(z − θ̄j)

)
,

F ′
− (z) =

1√
N

k∑
j=1

n
1/2
j

Δ
ρ′−

(
n
βj

j

Δ
(z − θ̄j)

)
.

Suppose z1, z2 are such that F ′
+ (z1) > 0 and F ′

− (z2) < 0. Since F ′
+, F ′

− are

increasing, it is easy to see that θ̂
(k)
ρ ∈ (z2, z1). To find such z1 and z2, we

proceed in 3 steps; we provide a bound on z1, and the bound on z2 follows in a
similar manner.
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Observe that

F ′
+ (z) =

1√
N

k∑
j=1

n
1/2
j

Δ

(
ρ′+

(
n
βj

j

Δ
(z − θ̄j)

)
− Eρ′+

(
n
βj

j

Δ
(z − θ̄j)

))

+
1√
N

k∑
j=1

n
1/2
j

Δ

(
Eρ′+

(
n
βj

j

Δ
(z − θ̄j)

)
− Eρ′+

(
1

Δ

(
n
βj

j z − Zj

)))

+
1√
N

k∑
j=1

n
1/2
j

Δ
Eρ′+

(
1

Δ

(
n
βj

j z − Zj

))
,

where Zj ∼ N
(
θ∗, V

2
j

)
, j = 1, . . . , k.

(a) First, note that the bounded difference inequality (fact 2) implies that
for any fixed z ∈ R,

k∑
j=1

√
nj

N

(
ρ′+

(
n
βj

j

Δ
(z − θ̄j)

)
− Eρ′+

(
n
βj

j

Δ
(z − θ̄j)

))
≥ −‖ρ′‖∞

√
2s

with probability at least 1− e−s.
(b) Next, we will find an upper bound for∣∣∣∣∣Eρ′+

(
n
βj

j

Δ
(z − θ̄j)

)
− Eρ′+

(
1

Δ

(
n
βj

j z − Zj

))∣∣∣∣∣ .
Note that for any bounded non-negative function f : R �→ R+ and a signed
measure Q,∣∣∣∣∫

R

f(x)dQ

∣∣∣∣ =
∣∣∣∣∣
∫ ‖f‖∞

0

Q (x : f(x) ≥ t) dt

∣∣∣∣∣ ≤ ‖f‖∞ max
t≥0

|Q (x : f(x) ≥ t)| .

Since any bounded function f can be written as f = max(f, 0) − max(−f, 0),
we deduce that∣∣∣∣∫

R

f(x)dQ

∣∣∣∣ ≤ ‖f‖∞
(
max
t≥0

|Q (x : f(x) ≥ t)|+max
t≤0

|Q (x : f(x) ≤ t)|
)
.

Moreover, if f is monotone, the sets {x : f(x) ≥ t} and {x : f(x) ≤ t}

are half-intervals. Applying this to f(x) = ρ′+

(
n
βj
j

Δ

(
z − σ

(j)
nj (x+ θ∗)

))
and

Q = Φ(nj ,j) − Φ, we deduce that∣∣∣∣∣Eρ′+
(
n
βj

j

Δ
(z − θ̄j)

)
−Eρ′+

(
1

Δ

(
n
βj

j z−Zj

))∣∣∣∣∣ ≤ 2‖ρ′‖∞ sup
t∈R

∣∣∣Φ(nj ,j)(t)− Φ(t)
∣∣∣

= 2‖ρ′‖∞ gj(nj).
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(c) In remains to find z1 satisfying

k∑
j=1

√
nj

N
Eρ′+

(
1

Δ

(
n
βj

j z1 − Zj

))
> ‖ρ′‖∞

⎛⎝√
2s+ 2

k∑
j=1

√
nj

N
gj(nj)

⎞⎠ .

The following bound yields the desired inequality.

Lemma 2. Let ε > 0 be such that

ε ≤
min

(
0.1364, 0.09ρ′+(2)

)
2
√
N

⎛⎝ k∑
j=1

n
1/2+βj

j

max (Δ, Vj)

⎞⎠ min
j=1,...,k

max (Δ, Vj)

n
βj

j

,

and set

z1 =
ε

min
(
0.1364, 0.09ρ′+(2)

)√N

⎛⎝ k∑
j=1

n
1/2+βj

j

max (Δ, Vj)

⎞⎠−1

.

Then
k∑

j=1

√
nj

N
Eρ′+

(
n
βj

j z1 − Zj

Δ

)
> ε.

Proof. The proof is relatively long and is presented in section 5.8.

Finally, set ε :=
∥∥ρ′+∥∥∞ (√2s+ 2

∑k
j=1

√
nj

N gj(nj)
)
. If conditions of Lemma

2 are satisfied, the result follows. The estimate for z2 follows the same pattern,
and yields that one can choose z2 = −z1, implying the claim.

5.4. Proof of Theorem 3

Let J ⊂ {1, . . . , k} of cardinality |J | ≥ k−O be the subset containing all j such
that the subsample {Xi, i ∈ Gj} does not include any of the O outliers. Clearly,
{Xi : i ∈ Gj , j ∈ J} are still i.i.d. as the partitioning scheme is independent of
the data. Set NJ :=

∑
j∈J |Gj |, and note that

NJ ≥ n|J | ≥ kn

2
.

All the probabilities below are evaluated conditionally on NJ . The proof closely
follows the steps of the proof of Theorem 2. Let

F (z) =
Δ√
Ñ

k∑
j=1

ρ

(√
n
z − θ̄j
Δ

)
.
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As 0 ∈ ∂F
(
θ̂
(k)
ρ

)
, we have that F ′

+

(
θ̂
(k)
ρ

)
≥ 0 and F ′

−

(
θ̂
(k)
ρ

)
≤ 0. We would

like to find z1, z2 are such that F ′
+ (z1) > 0 and F ′

− (z2) < 0. Since F ′
+, F ′

− are

increasing, it is easy to see that θ̂
(k)
ρ ∈ (z2, z1) in this case. Observe that

F ′
+ (z) =

√
n√
Ñ

∑
j∈J

ρ′+

(√
n
z − θ̄j
Δ

)
+

√
n√
Ñ

∑
j /∈J

ρ′+

(√
n
z − θ̄j
Δ

)
The second sum can be estimated as∣∣∣∣∣∣

√
n√
Ñ

∑
j /∈J

ρ′+

(√
n
z − θ̄j
Δ

)∣∣∣∣∣∣ ≤ ‖ρ′‖∞
∑
j /∈J

√
n√
Ñ

≤ ‖ρ′‖∞
O√
k
,

hence, to guarantee that F ′
+ (z1) > 0, it suffices to find z1 satisfying

√
n√
Ñ

∑
j∈J

ρ′+

(√
n
z1 − θ̄j

Δ

)
> ε̃ := ‖ρ′‖∞

O√
k
.

By the definition of the set J , the sum in the expression
√
n√
Ñ

∑
j∈J

ρ′+

(√
n
z1 − θ̄j

Δ

)
is over the subgroups not including the adversarial contamination, hence it can
be processed in exactly the same way as in the proof of Theorem 2, and the
desired inequality would follow.

5.5. Proof of Theorem 4

Recall that L(z) = Eρ′(z+Z) for Z ∼ N(0, 1), and note that under our assump-
tions, equation L(z) = 0 has a unique solution z = 0 (even if ρ is not strictly
convex). Next, observe that

Pr

⎛⎝ k∑
j=1

ρ′−

(
θ∗ − θ̄j +

tΩσn√
k

σn

)
< 0

⎞⎠ ≤ Pr

(√
k

σn

(
θ̂(k)ρ − θ∗

)
≥ tΩ

)

≤ Pr

⎛⎝ k∑
j=1

ρ′−

(
θ∗ − θ̄j +

tΩσn√
k

σn

)
≤ 0

⎞⎠ ,

hence it suffices to show that both the left-hand side and the right-hand side of
the inequality above converge to 1−Φ(t) for all t. We will outline the argument
for the left-hand side, and the remaining part is proven in a similar fashion.
Note that

Pr

⎛⎝ k∑
j=1

ρ′−

(
θ∗ − θ̄j +

tΩσn√
k

σn

)
< 0

⎞⎠
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= Pr

(∑k
j=1 Yn,j − EYn,j√

kVar (Yn,1)
< −

√
kEYn,1√
Var (Yn,1)

)
, (17)

where Yn,j = ρ′−

(
θ∗−θ̄j+

tΩσn√
k

σn

)
.

Lemma 3. Under the assumptions of Theorem 4,
√
kEYn,1 → tΩL′(0) and√

Var (Yn,1) →
√

E (ρ′(Z))
2
= Ω · L′(0) as N → ∞,

where Z ∼ N(0, 1).

Proof of Lemma 3. Let Z ∼ N(0, 1). Since ρ is convex, its derivative ρ′ :=
(ρ′+ + ρ′−)/2 is monotone and continuous almost everywhere (with respect to
Lebesgue measure). Together with the assumption that ‖ρ′‖∞ < ∞, Lebesgue
dominated convergence Theorem implies that

d

dz
L(z)

∣∣
z=0

= lim
h→0

1

h
√
2π

∫
R

ρ′(x+ h)e−x2/2dx

= lim
h→0

1

h
√
2π

∫
R

ρ′(x)e−(x−h)2/2dx

=
1√
2π

∫
R

xρ′(x)e−x2/2dx. (18)

Next, we will prove the assertion that
√
kEYn,1 → tΩL′(0). It is easy to see

that

√
kEYn,1 =

√
k

(
Eρ′
(
θ∗ − θ̄1
σn

+
tΩ√
k

)
− Eρ′

(
Z +

tΩ√
k

))

+ tΩ · 1

tΩ/
√
k

⎛⎝Eρ′
(
Z +

tΩ√
k

)
− Eρ′ (Z)︸ ︷︷ ︸

=0

⎞⎠ .

Reasoning as in the proof of Theorem 2 (see step (b) in section 5.3), we deduce
that ∣∣∣∣Eρ′(θ∗ − θ̄1

σn
+

tΩ√
k

)
− Eρ′

(
Z +

tΩ√
k

)∣∣∣∣ ≤ 2 ‖ρ′‖∞ g(n),

where g(n) is the function from assumption 1. Hence, recalling that g(n)
√
k → 0

as N → ∞, we obtain that

√
k

(
Eρ′
(
θ∗ − θ̄1
σn

+
tΩ√
k

)
− Eρ′

(
Z +

tΩ√
k

))
→ 0 as N → ∞.

On the other hand, it follows from (18) that for t �= 0

tΩ · 1

tΩ/
√
k
Eρ′
(
Z +

tΩ√
k

)
N→∞−−−−→ tΩ · L′(0).
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For t = 0, it is also clear that Eρ′ (Z) = 0. To establish the fact that√
Var (Yn,1) →

√
E (ρ′(Z))

2
,

note that weak convergence of θ̄1−θ∗
σn

to the normal law (assumption 1) together
with Lebesgue dominated convergence Theorem implies that

Eρ′
(
θ∗ − θ̄1
σn

+
tΩ√
k

)
→ Eρ′ (Z) = 0,

E

(
ρ′
(
θ∗ − θ̄1
σn

+
tΩ√
k

))2

→ E (ρ′(Z))
2
.

Since L′(0) > 0, we deduce that

E
1/2 (ρ′(Z))

2
= Ω · L′(0),

and the claim follows.

Lemma 3 implies that −
√
k EYn,1√
Var(Yn,1)

N→∞−−−−→ t. It remains to apply Lindeberg’s

Central Limit Theorem (Serfling, 1981, Theorem 1.9.3) to Yn,j ’s to deduce the
result from equation (17). To this end, we only need to verify the Lindeberg
condition requiring that for any ε > 0,

E(Yn,1 − EYn,1)
2 I
{
|Yn,1 − EYn,1| ≥ ε

√
k
}
→ 0 as k → ∞. (19)

However, since ρ′(·) (and hence Yn,1) is bounded, (19) easily follows.

5.6. Proof of Theorem 5

The argument is similar to the proof of Theorem 1. Let Φ(n)(·) be the dis-

tribution function of θ̄1−θ∗
σn

and Φ̂(Nn)
(·) – the empirical distribution function

corresponding to the sample
{
WJ = θ̄J−θ∗

σn
, J ∈ A(n)

N

}
of size

(
N
n

)
.

Suppose that z ∈ R is fixed, and note that Φ̂(Nn)
(z) is a U-statistic with mean

Φ(n)(z). We will apply the concentration inequality for U-statistics (fact 3) with
M = 1 to get that ∣∣∣Φ̂(Nn)(z)− Φ(n)(z)

∣∣∣ ≤√ s

�N/n� ≤
√

s

k
(20)

with probability ≥ 1− 2e−2s; here, we also used the fact that n = �N/k�.
Let z1 ≥ z2 be such that Φ(n)(z1) ≥ 1

2 +
√

s
k and Φ(n)(z2) ≤ 1

2 −
√

s
k .

Applying (20) for z = z1 and z = z2 together with the union bound, we see that
for j = 1, 2, ∣∣∣Φ̂(Nn)(zj)− Φ(n)(zj)

∣∣∣ ≤√ s

k

on an event E of probability≥ 1−4e−2s. It follows that on E , med
(
WJ , J ∈ A(n)

N

)
∈ [z2, z1]. The rest of the proof repeats the argument of section 5.2.
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5.7. Proof of Theorem 6

Set F (z) :=
∑k

j=1

√
nj

N

∥∥z − θ̄j
∥∥
1
. Then θ̂(k) = argminz∈Rm F (z) by the defini-

tion. Since F (z) is convex, the sufficient and necessary condition for θ̂(k) to be its

minimizer is that 0 ∈ ∂F (θ̂(k)), the subdifferential of F at point z = (z1, . . . , zm).
It is easy to see that

∂F (z) =

{
u ∈ R

m :

k∑
j=1

√
nj

N
ρ′−,i(zi− θ̄j,i) ≤ ui ≤

k∑
j=1

√
nj

N
ρ′+,i(zi− θ̄j,i), ∀i

}
,

where ρ(x) = |x|, ρ′+,i(x) = I
{
zi ≥ θ̄j,i)

}
− I

{
zi < θ̄j,i)

}
and ρ′−,i(x) =

I
{
zi > θ̄j,i)

}
− I
{
zi ≤ θ̄j,i)

}
are the right and left derivative of ρ. Since the

subdifferential is convex, it suffices to find points zi,1, zi,2, i = 1, . . . ,m such
that for all i,

k∑
j=1

√
nj

N
ρ′−,i(zi,1 − θ̄j,i) > 0, (21)

k∑
j=1

√
nj

N
ρ′+,i(zi,2 − θ̄j,i) < 0.

This task has already been accomplished in the proof of Theorem 2: in particular,
the argument presented in section 5.3 yields that, on an event of probability at
least 1− 2e−s, inequalities (21) hold for fixed i with

zi,1 = θ∗,i + C2 max
j=1,...,k

V
(i)
j

⎛⎝√ s

N
+

k∑
j=1

√
nj

N
g
(m)
j (nj)

⎞⎠ ,

zi,2 = θ∗,i − C2 max
j=1,...,k

V
(i)
j

⎛⎝√ s

N
+

k∑
j=1

√
nj

N
g
(m)
j (nj)

⎞⎠ ,

assuming that condition (14) is satisfied. The union bound implies that for
i = 1, . . . ,m simultaneously,∣∣∣θ̂(k)i − θ∗,i

∣∣∣ ≤ C2 max
j=1,...,k

V
(i)
j

⎛⎝√ s

N
+

k∑
j=1

√
nj

N
g
(m)
j (nj)

⎞⎠ (22)

with probability ≥ 1− 2me−s. The result follows by taking the maximum over
i on both sides of (22).

5.8. Proof of Lemma 2

For any bounded function h such that h(−x) = −h(x) and h(x) ≥ 0 for x ≥ 0,
and any z ≥ 0,∫

R

h(z + x)φσ(x)dx =

∫ ∞

0

h(x) (φσ(x+ z)− φσ(−x+ z)) dx ≥ 0,
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where φσ(x) = (2πσ)−1/2e−x2/2σ2

. Recall that ρ′+(x) ≥ x
2 for 0 < x ≤ 2, and

take
h(x) := ρ′+(x)−

x

2
I{|x| < 2}.

Observe that h(x) ≥ 0 for x ≥ 0 by assumptions on ρ, hence for any j,

Eρ′+

(
n
βj

j z1 − Zj

Δ

)

=
1

2
E

(
n
βj

j z1 − Zj

Δ
I

{∣∣∣∣∣n
βj

j z1 − Zj

Δ

∣∣∣∣∣ < 2

})
+ Eh

(
n
βj

j z1 − Zj

Δ

)

≥ max

(
1

2
E

(
n
βj

j z1 − Zj

Δ
I

{∣∣∣∣∣n
βj

j z1 − Zj

Δ

∣∣∣∣∣ < 2

})
, Eh

(
n
βj

j z1 − Zj

Δ

))
,

(23)

where we used the fact that both terms are nonnegative. Next, we will find lower
bounds for each of the terms in the maximum above, starting with the first.

(1) Consider two possibilities: (a) Δ < Vj and (b) Δ ≥ Vj . In the first case,

we will use the trivial lower bound E

(
n
βj
j z1−Zj

Δ I

{∣∣∣∣nβj
j z1−Zj

Δ

∣∣∣∣ < 2

})
≥ 0. The

main focus will be on the second case. To this end, note that Z :=
Zj

Vj
∼ N(0, 1),

hence

1

2
E

(
n
βj

j z1 − Zj

Δ
I

{∣∣∣∣∣n
βj

j z1 − Zj

Δ

∣∣∣∣∣ < 2

})

= − Vj

2Δ
E

(
Z I

{∣∣∣∣∣n
βj

j z1

Vj
− Z

∣∣∣∣∣ < 2
Δ

Vj

})
+

n
βj

j z1

2Δ
P

(∣∣∣∣∣n
βj

j z1

Vj
− Z

∣∣∣∣∣ < 2
Δ

Vj

)
.

(24)

Direct computation shows that for any a ∈ R, t > 0,∣∣∣E (Z I {|a− Z| ≤ t})
∣∣∣ = 1√

2π
e−

a2+t2

2

∣∣eat − e−at
∣∣ . (25)

Take a =
n
βj
j z1

Vj
, t = 2 Δ

Vj
, and observe that assumptions of the Theorem imply

the inequality |a| ≤ t
4 . The minimum of the function a �→ a2+ t2−2|a|t over the

set 0 ≤ a ≤ t/4 is attained at a = t/4, implying that a2+ t2−2|a|t ≥ 9
16 t

2 > t2

2 .
Combining this with (25), we deduce that∣∣∣E (Z I {|a− Z| ≤ t})

∣∣∣ ≤ 1√
2π

e−t2/4e−|at| ∣∣eat − e−at
∣∣

=
e−t2/4

√
2π

(
1− e−2|at|

)
≤ e−t2/4

√
2π

· 2|at|,
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hence∣∣∣∣∣ Vj

2Δ
E

(
Z I

{∣∣∣∣∣n
βj

j z1

Vj
− Z

∣∣∣∣∣ < 2
Δ

Vj

})∣∣∣∣∣
≤ 2√

2π

∣∣∣∣∣z1n
βj

j

Vj

∣∣∣∣∣ e−Δ2

V 2
j =

2√
2π

∣∣∣∣∣z1n
βj

j

Δ

∣∣∣∣∣ ΔVj
e
−Δ2

V 2
j .

Moreover, since |z1| ≤ 1
2

Δ

n
βj
j

by assumptions of the lemma, it follows that

P

(∣∣∣∣∣n
βj

j z1

Vj
− Z

∣∣∣∣∣ < 2
Δ

Vj

)
≥ P

(
|Z| < 3Δ

2Vj

)
≥ 1− 2Φ(−3/2) > 0.86.

Together with (23), (24), the last display yields that

Eρ′+

(
n
βj

j z1 − Zj

Δ

)
>

∣∣∣∣∣0.862 z1n
βj

j

Δ

∣∣∣∣∣− 2√
2π

∣∣∣∣∣z1n
βj

j

Δ

∣∣∣∣∣ ΔVj
e
−Δ2

V 2
j .

As x �→ xe−x2

is decreasing for x ≥ 1/
√
2, one easily checks that Δ

Vj
e
−Δ2

V 2
j ≤ e−1

as Δ ≥ Vj , hence

Eρ′+

(
n
βj

j z1 − Zj

Δ

)
>

(
0.43− 2

e
√
2π

)
|z1|

n
βj

j

Δ
> 0.1364|z1|

n
βj

j

Δ
.

(2) To estimate the second term, we start with a simple inequality

Eh

(
n
βj

j z1 − Zj

Δ

)
≥ Eρ′+

(
n
βj

j z1 − Zj

Δ

)
I

{∣∣∣∣∣n
βj

j z1 − Zj

Δ

∣∣∣∣∣ ≥ 2

}

≥ ρ′+(2)E

(
I

{
Zj − n

βj

j z1

Δ
≤ −2

}
− I

{
Zj − n

βj

j z1

Δ
≥ 2

})

which follows from the definition of h and assumptions on ρ. Again, we consider
two possibilities: (a) Δ < Vj and (b) Δ ≥ Vj . In case (b), we use the trivial
bound (recalling that z1 ≥ 0)

E

(
I

{
Zj − n

βj

j z1

Δ
≤ −2

}
− I

{
Zj − n

βj

j z1

Δ
≥ 2

})
≥ 0.

In the first case, we see that

Pr

(
Zj − n

βj

j z1

Δ
≤ −2

)
− Pr

(
Zj − n

βj

j z1

Δ
≥ 2

)
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= Pr

(
Z ∈

[
−
n
βj

j z1

Vj
− 2

Δ

Vj
,
n
βj

j z1

Vj
− 2

Δ

Vj

])
.

Lemma 5 implies that

Pr

(
Z ∈

[
−
n
βj

j z1

Vj
− 2

Δ

Vj
,
n
βj

j z1

Vj
− 2

Δ

Vj

])
≥ 2e

− 2Δ2

V 2
j Pr

(
Z ∈

[
0,

n
βj

j z1

Vj

])

≥ 2e−2 Pr

(
Z ∈

[
0,

n
βj

j z1

Vj

])
,

where we used the fact that Δ < Vj by assumption. Finally, Lemma 4 implies
that

Pr

(
Z ∈

[
0,

n
βj

j z1

Vj

])
>

1

3

n
βj

j z1

Vj

whenever z1 ≤ 0.99
Vj

n
βj
j

. In conclusion, we demonstrated that in case (a)

Eh

(
n
βj

j z1 − Zj

Δ

)
>

2e−2

3
ρ′+(2)z1

n
βj

j

Vj
> 0.09 ρ′+(2)z1

n
βj

j

Vj
.

Combining results (1) and (2) for both terms in the maximum (23), we see that
for any Δ > 0,

Eρ′+

(
n
βj

j z1 − Zj

Δ

)
> min

(
0.1364, 0.09ρ′+(2)

)
z1

n
βj

j

max(Δ, Vj)
(26)

given that |z1| ≤ 1
2
max(Δ,Vj)

n
βj
j

. Let ε > 0. It is easy to check that setting

z1 =
ε

min
(
0.1364, 0.09ρ′+(2)

)√N

⎛⎝ k∑
j=1

n
1/2+βj

j

max (Δ, Vj)

⎞⎠−1

yields, in view of (26), that

k∑
j=1

√
nj

N
Eρ′+

(
n
βj

j z1 − Zj

Δ

)
> ε,

as long as condition |z1| ≤ 1
2
max(Δ,Vj)

n
βj
j

holds for all j. The latter is equivalent to

requirement that

ε ≤
min

(
0.1364, 0.09ρ′+(2)

)
2
√
N

⎛⎝ k∑
j=1

n
1/2+βj

j

max (Δ, Vj)

⎞⎠ min
j=1,...,k

max (Δ, Vj)

n
βj

j

.
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Appendix A: Central limit theorem in the case of unequal subgroup
sizes.

We present an extension of Theorem 4 in the case of non-equal subgroup sizes
for the estimator θ̂(k) = med

(
θ̄1, . . . , θ̄k

)
. The following assumptions will be

imposed:

1. X1, . . . , XN are independent, card(Gj) = nj , and
∑k

j=1 nj = k;

2. Assumption 1 is satisfied with some {σ(j)
n }n≥1 and gj(n), j = 1, . . . , k;

3. k → ∞ and maxj=1,...,k

√
k · gj(nj) → 0 as N → ∞;

4. maxj≤k
Hk

σ
(j)
nj

√
k

N→∞−−−−→ 0, where Hk :=

(
1
k

∑k
j=1

1

σ
(j)
nj

)−1

is the harmonic

mean of σ
(j)
nj ’s.

Theorem 7. Under assumptions (a)-(e) above,

√
k
θ̂(k) − θ∗

Hk

d−→ N
(
0,

π

2

)
.

Proof. Define d−(x) := I {x>0} − I {x≤0}, and Ynj ,j =d−
(
θ∗−θ̄j+t

√
π
2
Hk√
k

)
.

We will show that

1. 1
k

∑k
j=1

√
kEYnj ,j → t as N → ∞;

2. 1
k

∑k
j=1 Var(Ynj ,j) → 1 as N → ∞.

To prove the first claim, first assume that t �= 0 (for t = 0 the argument follows
the same line with simplifications), and observe that

√
kEYnj ,j =

√
k

(
Ed−

(
θ∗ − θ̄j

σ
(j)
nj

+ t

√
π

2

Hk

σ
(j)
nj

√
k

)
− Ed−

(
Z + t

√
π

2

Hk

σ
(j)
nj

√
k

))

+ t

√
π

2

Hk

σ
(j)
nj

· 1

t
√

π
2

Hk

σ
(j)
nj

√
k

⎛⎝Ed−

(
Z + t

√
π

2

Hk

σ
(j)
nj

√
k

)
− Ed− (Z)︸ ︷︷ ︸

=0

⎞⎠ .

Moreover,∣∣∣∣∣√k

(
Ed−

(
θ∗ − θ̄j

σ
(j)
nj

+ t

√
π

2

Hk

σ
(j)
nj

√
k

)
− Ed−

(
Z + t

√
π

2

Hk

σ
(j)
nj

√
k

))∣∣∣∣∣ ≤ 2gj(nj),

while under assumption (d),

1

t
√

π
2

Hk

σ
(j)
nj

√
k

⎛⎝Ed−

(
Z + t

√
π

2

Hk

σ
(j)
nj

√
k

)
− Ed− (Z)︸ ︷︷ ︸

=0

⎞⎠→ 2√
2π

as N → ∞.
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It then follows from assumption (c) that∣∣∣∣∣∣∣∣∣∣
1

k

k∑
j=1

√
kEYnj ,j − t Hk

1

k

k∑
j=1

1

σ
(j)
nj︸ ︷︷ ︸

=1

∣∣∣∣∣∣∣∣∣∣
→ 0 as N → ∞.

Claim (b) follows since E
(
Ynj ,j

)2
= 1 and maxj≤k EYnj ,j → 0 under assumption

(d). The rest of the argument repeats the proof of Theorem 4 for ρ(x) = |x|.

Appendix B: Supplementary results.

Lemma 4. Assume that 0 ≤ α ≤ 0.33 and let z(α) be such that Φ(z(α))−1/2 =
α. Then z(α) ≤ 3α.

Proof. It is a simple numerical fact that whenever α ≤ 0.33, z(α) ≤ 1; indeed,

this follows as Φ(1) � 0.8413 > 1/2 + 0.33. Since e−y2/2 ≥ 1− y2

2 , we have

√
2πα =

∫ z(α)

0

e−y2/2dy ≥ z(α)− 1

6
(z(α))

3 ≥ 5

6
z(α), (27)

Equation (27) implies that z(α) ≤ 6
5

√
2π α. Proceeding again as in (27), we see

that
√
2πα ≥ z(α)− 1

6
(z(α))

3 ≥ z(α)− 12π

25
α2z(α) ≥ z(α)

(
1− 1.51α2

)
,

hence z(α) ≤
√
2π

1−1.51α2 α. The claim follows since α ≤ 0.33 by assumption, and
√
2π

1−1.51·0.332 < 3.

Lemma 5. Let A ⊂ R be symmetric, meaning that A = −A, and let Z ∼
N(0, 1). Then for all x ∈ R,

Pr(Z ∈ A− x) ≥ e−x2/2 Pr(Z ∈ A).

Proof. The result is often known as the Cameron-Martin inequality; we give a
short proof for reader’s convenience. Observe that

Pr(Z ∈ A) =

∫
R

I{z ∈ A} 1√
2π

e−z2/2dz

= ex
2/2

∫
R

I{z ∈ A}e−xz/2exz/2
1√
2π

e−z2/2e−x2/2dz

≤ ex
2/2

√∫
R

I{z ∈ A} 1√
2π

e−(z−x)2/2dz

√∫
R

I{z ∈ A} 1√
2π

e−(z+x)2/2dz

= ex
2/2

∫
R

I{z ∈ A} 1√
2π

e−(z−x)2/2dz = ex
2/2 Pr(Z ∈ A− x),

and the claim follows.
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statistiques 48 1148–1185. Institut Henri Poincaré. MR3052407

Cheng, G. and Shang, Z. (2015). Computational Limits of Divide-and-
Conquer Method. arXiv preprint arXiv:1512.09226.

Choi, K. P. (1994). On the medians of gamma distributions and an equation of
Ramanujan. Proceedings of the American mathematical society 121 245–251.
MR1195477

Devroye, L., Lerasle, M., Lugosi, G., Oliveira, R. I. et al. (2016).
Sub-Gaussian mean estimators. The annals of statistics 44 2695–2725.
MR3576558

Duchi, J. C., Jordan, M. I., Wainwright, M. J. and Zhang, Y. (2014).
Optimality guarantees for distributed statistical estimation. arXiv preprint
arXiv:1405.0782.

Esseen, C.-G. (1942). On the Liapounoff limit of error in the theory of prob-
ability. Ark. mat. astr. och fys. 28A 1–19. MR0011909

Fan, J., Han, F. and Liu, H. (2014). Challenges of Big Data analysis. National
science review 1 293–314.

http://www.ams.org/mathscinet-getitem?mr=1427494
http://www.ams.org/mathscinet-getitem?mr=1401857
https://arxiv.org/abs/arXiv:1509.05457
http://www.ams.org/mathscinet-getitem?mr=1615335
http://www.ams.org/mathscinet-getitem?mr=0003498
http://www.ams.org/mathscinet-getitem?mr=0177484
http://www.ams.org/mathscinet-getitem?mr=3124669
http://www.ams.org/mathscinet-getitem?mr=3052407
https://arxiv.org/abs/arXiv:1512.09226
http://www.ams.org/mathscinet-getitem?mr=1195477
http://www.ams.org/mathscinet-getitem?mr=3576558
https://arxiv.org/abs/arXiv:1405.0782
http://www.ams.org/mathscinet-getitem?mr=0011909


5250 S. Minsker

Fan, J., Wang, D., Wang, K. and Zhu, Z. (2017). Distributed Estimation of
Principal Eigenspaces. arXiv preprint arXiv:1702.06488. MR4025733

Haldane, J. B. S. (1948). Note on the median of a multivariate distribution.
Biometrika 35 414–417. MR0029137

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A.

(2011). Robust statistics: the approach based on influence functions 196. John
Wiley & Sons. MR0829458

Hodges, J. L. and Lehmann, E. L. (1963). Estimates of location based on
rank tests. The annals of mathematical statistics 598–611. MR0152070

Hoeffding, W. (1948). A class of statistics with asymptotically normal distri-
bution. The annals of mathematical statistics 293–325. MR0026294

Hoeffding, W. (1963). Probability inequalities for sums of bounded ran-
dom variables. Journal of the American statistical association 58 13–30.
MR0144363

Hsu, D. and Sabato, S. (2013). Loss minimization and parameter estimation
with heavy tails. arXiv preprint arXiv:1307.1827. MR3491112

Hsu, D. and Sabato, S. (2016). Loss minimization and parameter estimation
with heavy tails. Journal of machine learning research 17 1–40. MR3491112

Huber, P. J. (1964). Robust estimation of a location parameter. The annals
of mathematical statistics 35 73–101. MR0161415

Ibragimov, I. A. (1967). On the Chebyshev-Cramér asymptotic expansions.
Theory of probability & its applications 12 455–469. MR0216550

Jerrum, M. R., Valiant, L. G. and Vazirani, V. V. (1986). Random gen-
eration of combinatorial structures from a uniform distribution. Theoretical
computer science 43 169–188. MR0855970

Joly, E., Lugosi, G. and Oliveira, R. I. (2016). On the estimation of the
mean of a random vector. arXiv preprint arXiv:1607.05421. MR3619312

Jordan, M. (2013). On statistics, computation and scalability. Bernoulli 19
1378–1390. MR3102908

Ledoux, M. and Talagrand, M. (1991). Probability in Banach spaces. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)] 23. Springer-Verlag, Berlin. Isoperimetry and processes.
MR1102015 (93c:60001) MR1102015

Lee, J. D., Sun, Y., Liu, Q. and Taylor, J. E. (2015). Communication-
efficient sparse regression: a one-shot approach. arXiv preprint
arXiv:1503.04337. MR3625709

Lehmann, E. L. and D’Abrera, H. J. (2006). Nonparametrics: statistical
methods based on ranks. Springer New York. MR2279708

Lerasle, M. and Oliveira, R. I. (2011). Robust empirical mean estimators.
arXiv preprint arXiv:1112.3914.

Li, C., Srivastava, S. and Dunson, D. B. (2016). Simple, Scalable and
Accurate Posterior Interval Estimation. arXiv preprint arXiv:1605.04029.
MR3694589

Liang, Y., Balcan, M.-F. F., Kanchanapally, V. and Woodruff, D.

(2014). Improved distributed Principal Component Analysis. In Advances in
neural information processing systems 3113–3121.

https://arxiv.org/abs/arXiv:1702.06488
http://www.ams.org/mathscinet-getitem?mr=4025733
http://www.ams.org/mathscinet-getitem?mr=0029137
http://www.ams.org/mathscinet-getitem?mr=0829458
http://www.ams.org/mathscinet-getitem?mr=0152070
http://www.ams.org/mathscinet-getitem?mr=0026294
http://www.ams.org/mathscinet-getitem?mr=0144363
https://arxiv.org/abs/arXiv:1307.1827
http://www.ams.org/mathscinet-getitem?mr=3491112
http://www.ams.org/mathscinet-getitem?mr=3491112
http://www.ams.org/mathscinet-getitem?mr=0161415
http://www.ams.org/mathscinet-getitem?mr=0216550
http://www.ams.org/mathscinet-getitem?mr=0855970
https://arxiv.org/abs/arXiv:1607.05421
http://www.ams.org/mathscinet-getitem?mr=3619312
http://www.ams.org/mathscinet-getitem?mr=3102908
http://www.ams.org/mathscinet-getitem?mr=MR1102015
http://www.ams.org/mathscinet-getitem?mr=1102015
https://arxiv.org/abs/arXiv:1503.04337
http://www.ams.org/mathscinet-getitem?mr=3625709
http://www.ams.org/mathscinet-getitem?mr=2279708
https://arxiv.org/abs/arXiv:1112.3914
https://arxiv.org/abs/arXiv:1605.04029
http://www.ams.org/mathscinet-getitem?mr=3694589


Distributed statistical estimation 5251

Lugosi, G. and Mendelson, S. (2017). Sub-Gaussian estimators of the mean
of a random vector. The annals of statistics. 47 783–794. MR3909950

Lugosi, G. and Mendelson, S. (2018). Near-optimal mean estimators with
respect to general norms. Probability theory and related fields. 175 957–973.
MR4026610

Mcdonald, R., Mohri, M., Silberman, N., Walker, D. and Mann, G. S.

(2009). Efficient large-scale distributed training of conditional maximum en-
tropy models. In Advances in neural information processing systems 1231–
1239.

Minsker, S. a. (2015). Geometric median and robust estimation in Banach
spaces. Bernoulli 21 2308–2335. MR3378468

Minsker, S., Srivastava, S., Lin, L. and Dunson, D. B. (2014). Robust
and scalable Bayes via a median of subset posterior measures. arXiv preprint
arXiv:1403.2660. MR3763758

Nemirovski, A. and Yudin, D. (1983). Problem complexity and method effi-
ciency in optimization. John Wiley & Sons Inc. MR0702836

Petrov, V. V. (1995). Limit theorems of probability theory: sequences of inde-
pendent random variables. Oxford, New York. MR1353441

Pinelis, I. (2016). Optimal-order bounds on the rate of convergence to nor-
mality for maximum likelihood estimators. arXiv preprint arXiv:1601.02177.
MR3634332

Rosenblatt, J. D. and Nadler, B. (2016). On the optimality of averag-
ing in distributed statistical learning. Information and inference 5 379–404.
MR3609865

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A.,
George, E. I. and McCulloch, R. E. (2016). Bayes and big data: the
consensus Monte Carlo algorithm. International journal of management sci-
ence and engineering management 11 78–88.

Serfling, R. J. (1981). Approximation theorems of mathematical statistics.
MR0595165

Shafieezadeh-Abadeh, S., Esfahani, P. M. and Kuhn, D. (2015). Dis-
tributionally robust logistic regression. In Advances in neural information
processing systems 1576–1584.

Shang, Z. and Cheng, G. (2015). A Bayesian Splitotic Theory For Nonpara-
metric Models. arXiv preprint arXiv:1508.04175.

Shevtsova, I. (2011). On the absolute constants in the Berry-Esseen
type inequalities for identically distributed summands. arXiv preprint
arXiv:1111.6554. MR3287912

Small, C. (1990). A survey of multidimensional medians. International statis-
tical review 58 263–277.

Steinhardt, J., Charikar, M. and Valiant, G. (2017). Resilience: A
criterion for learning in the presence of arbitrary outliers. arXiv preprint
arXiv:1703.04940. MR3761781

Tukey, J. and Harris, T. (1946). Sampling from contaminated distributions.
Annals of mathematics statistics 448–485. MR0120720

Zhang, Y.,Duchi, J. andWainwright, M. (2013). Divide and conquer kernel

http://www.ams.org/mathscinet-getitem?mr=3909950
http://www.ams.org/mathscinet-getitem?mr=4026610
http://www.ams.org/mathscinet-getitem?mr=3378468
https://arxiv.org/abs/arXiv:1403.2660
http://www.ams.org/mathscinet-getitem?mr=3763758
http://www.ams.org/mathscinet-getitem?mr=0702836
http://www.ams.org/mathscinet-getitem?mr=1353441
https://arxiv.org/abs/arXiv:1601.02177
http://www.ams.org/mathscinet-getitem?mr=3634332
http://www.ams.org/mathscinet-getitem?mr=3609865
http://www.ams.org/mathscinet-getitem?mr=0595165
https://arxiv.org/abs/arXiv:1508.04175
https://arxiv.org/abs/arXiv:1111.6554
http://www.ams.org/mathscinet-getitem?mr=3287912
https://arxiv.org/abs/arXiv:1703.04940
http://www.ams.org/mathscinet-getitem?mr=3761781
http://www.ams.org/mathscinet-getitem?mr=0120720


5252 S. Minsker

ridge regression. In Conference on learning theory 592–617. MR3450540
Zhang, Y., Wainwright, M. J. and Duchi, J. C. (2012). Communication-
efficient algorithms for statistical optimization. In Advances in neural infor-
mation processing systems 1502–1510. MR3727612

Zinkevich, M., Weimer, M., Li, L. and Smola, A. J. (2010). Parallelized
stochastic gradient descent. In Advances in neural information processing sys-
tems 2595–2603.

http://www.ams.org/mathscinet-getitem?mr=3450540
http://www.ams.org/mathscinet-getitem?mr=3727612

	Introduction
	Background and related work
	Organization of the paper
	Notation
	Main results

	The univariate case
	Merging procedure based on the median
	Example: new bounds for the median-of-means estimator
	Example: distributed maximum likelihood estimation
	Merging procedures based on robust M-estimators
	Adversarial contamination

	Asymptotic results
	Connection to U-quantiles

	Estimation in higher dimensions
	Example: multivariate median-of-means estimator

	Simulation results
	Proofs
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Lemma 2

	Appendix A: Central limit theorem in the case of unequal subgroup sizes.
	Appendix B: Supplementary results.
	Acknowledgements
	References

