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ABSTRACT
In this paper, we consider the resilience problem for a type of fractional
compartment models by studying an equivalent boundary value prob-
lem. A series of criteria on the existence, uniqueness, and multiplicity of
solutions or positive solutions are obtained. The sensitivity analysis for a
model parameter is then conducted. Examples are given to demonstrate
the applications of the results as well.
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1. Introduction

In this paper, we consider a fractional compartment model

u′ + aDα
0+u = f (u, t), 0 < t < 1, (1)

together with the boundary condition (BC)

u(0) = bu(1), (2)

where a> 0, b> 0, 0 < α < 1, f (x, t) ∈ C(R × [0, 1]),R), and Dα
0+u denotes the left Rie-

mann–Liouville fractional derivative of u defined by

(
Dα
0+u

)
(t) = 1

�(1 − α)

d
dt

∫ t

0
(t − s)−αu(s) ds,

provided the right-hand side exists, where � is the Gamma function.
Fractional differential equations (FDEs) have been a focus of research for decades and have been

applied in many areas. Compared with classical integer order differential equations (DEs), FDEs own
superior merits of describing the long-term memory in time or long-range spatial interactions. In
addition, the involvement of fractional order derivative(s) offers more degrees of freedom than inte-
ger order DEs even with exactly the same assumptions and conditions. These appealing features
have attracted scholars to develop FDE models for problems arise in various fields of sciences and
engineering, see for example [1–11].

To improve the interpretability of FDEmodels, Angstmann, Henry, andMcGann [1,2] proposed a
framework to develop fractional compartment models by analyzing the underlying physical process.
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This framework was further applied in [3]. Following a similar idea, Graef, Ho, Kong, and Wang [5]
investigated the bike share system. The inventory of a bike station, ui, was described by

u′
i = qi(t) − ωi(t)ui − �i(t)a−αi

i D1−αi
0+

(
ui
�i

)
, t > 0, (3)

where qi represents the arrival flux at a station, ωi(t)ui represents a Markov removal process that is
independent of the history, and �i(t)a−αi

i D1−αi
0+ (ui/�i) represents a non-Markov removal process

that relates to the bike waiting time at a station with

�i(t) = �i(t, 0) = exp
(

−
∫ t

0
ω(s) ds

)
.

The reader is referred to [5] for the details of the terms.

Remark 1.1: When the fractional term is ignored, Equation (3) becomes a first order ordinary
DE model and qi(t) − ωi(t)ui in (3) represents the net change determined by the current sta-
tus, i.e. the arrival flux and the Markov removal process. The inclusion of the fractional term
�i(t)a−αi

i D1−αi
0+ (ui/�i) in (3) integrates the additional historical information, i.e. the waiting

time, into the inventory model. Moreover, it is clear that D1−αi
0+ (ui/�i) → ui/�i as αi → 1 and

D1−αi
0+ (ui/�i) → (ui/�i)

′ asαi → 0. Therefore, Equation (3) offersmore degrees of freedom than the
traditional integer order DEmodels by adjusting the parameterαi. The inclusion of extra information
and degrees of freedom ensures the flexibility, superiority, and practicality of FDE models.

One interesting question regarding model (3) is its resilience, i.e. under what circumstances the
inventory will restore to certain level at time t1 > 0 without extra interference. This question is
equivalent to study the existence of solutions of the boundary value problem (BVP) consisting of
Equation (3) and the periodic BC

ui(0) = ui(t1), i = 1, . . . ,N. (4)

It is notable that a special case of BVP (3), (4) when ω ≡ 0 and N = 1 has been considered by Lam
and Wang [12]. For the general case, by a change of variable (see [5, Theorem 3.1]) and rescaling
[0, t1] to [0, 1], BVP (3), (4) can be transformed to an equivalent BVP

v′
i = t1Qi(t1t) − a−αi

i D1−αi
0+ vi,

vi(0) = exp
(

−
∫ t1

0
ωi(s) ds

)
vi(1),

0 < t < 1, i = 1, . . . ,N, (5)

with

Qi(t) = exp
(∫ t

0
ωi(s) ds

)
qi(t).

Clearly BVP (1), (2) covers BVP (5) as a special case whenN = 1. By Remark 1.1 as well as the relation
between (3) and (5), the nonlinear term f in (1)may be interpreted as the net change due to the current
compartment status after certain appropriate transform, and the fractional term aDα

0+u in (1) may
be interpreted as the impact of the historical information to the rate of change of the compartment.

Because of the relation between BVP (1), (2) and BVP (5), the study of BVP (1), (2) will benefit the
bike share system inventory management. Since model (3) can also find applications in other areas
by appropriate modifications on the assumptions, the findings on BVP (1), (2) will contribute to the
resilience problems in many areas. Therefore, there is a practical need to investigate BVP (1), (2).
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Fractional BVPs have been an active research area for decades. The reader is referred to [12–17]
and references therein for some recent advances. Onemajor approach to study the existence, unique-
ness, and multiplicity of solutions of the BVPs is the fixed point theory. The associated Green’s
functions play a crucial role in constructing the functional operators needed in this approach. Due
to the unique feature of fractional calculus, the derivation of Green’s functions for fractional BVPs is
not trivial. In addition, it is challenging to prove the Green’s functions’ positivity, which is essential to
many theorems on the existence of positive solutions. In this paper, we will follow an idea developed
in [12] to construct the Green’s function associated with BVP (1), (2). The positivity of the Green’s
function will be proved by leveraging the properties of Mittag–Leffler function. Because of the wide
representation of BVP (1), (2), our results will benefit both theoretical research and applications.

Due to the measurement and data limitations in real life, the errors are inevitable when identify-
ing the model parameters from the data. It is necessary to understand the impact of the parameter
variation to the model performance. Parameter sensitivity analysis (SA) has been extensively applied
to evaluate such impacts, see for example [11,18] and references therein. It is notable that in most
existing literature, the underlying models are initial value problems (IVPs). The resulting sensitivity
equations (SEs) are IVPs as well. On the other hand, the SE associated with BVP (1), (2) will be a
fractional BVP, which is relatively rare. So our work will be supplementary to the exisiting works.

In this paper, we will study the existence and uniqueness of solutions to BVP (1), (2), as well as
the SA with respect to the parameter a. The paper is organized as follows: after this introduction,
the results on the uniqueness and existence of solutions are stated in Section 2. The SA is performed
in Section 3. Two examples are given in that section as well. All the proofs are given in Section 4.
Section 5 contains the conclusions and final discussions.

2. Existence and uniqueness of solutions

We first study the associated linear BVP

u′ + aDα
0+u = h(t), 0 < t < 1, (6)

with BC (2).

Theorem 2.1: Assume bEα(−a) �= 1. For any h ∈ C[0, 1], BVP (6), (2) has a unique solution given by

u(t) =
∫ 1

0
G(t, s)h(s) ds,

with G : [0, 1] × [0, 1] → R defined by

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩
bEα(−a(1 − s)α)Eα(−atα)

1 − bEα(−a)
+ Eα(−a(t − s)α), 0 ≤ s ≤ t ≤ 1,

bEα(−a(1 − s)α)Eα(−atα)

1 − bEα(−a)
, 0 ≤ t < s ≤ 1,

(7)

where Eα(t) is the Mittag-Leffler function defined by

Eα(t) =
∞∑
n=0

tn

�(nα + 1)
.

Remark 2.1: It is easy to see that G defined by (7) is the Green’s function for the BVP consisting of

u′ + aDα
0+u = 0, 0 < t < 1,

and BC (2).
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The following bounds of G are needed in our proofs. Define

G = b + 1 − bEα(−a)
1 − bEα(−a)

and G = b[Eα(−a)]2

1 − bEα(−a)
. (8)

Theorem 2.2: Let G, G, and G be defined by (7) and (8) respectively. Assume bEα(−a) < 1. For any
(t, s) ∈ [0, 1] × [0, 1], we have

0 < G < G(t, s) ≤ G. (9)

Remark 2.2: By (8), it is clear that G and G are continuous functions with respect to the
parameter a.

Now we are ready to study the nonlinear BVP (1), (2). Without further mentioning, we assume
bEα(−a) < 1 in the remaining of this paper.

The first result is on the uniqueness of solutions.

Theorem 2.3: Let G be defined by (8). Assume f (x, t) satisfies the Lipschitz condition in x with κ ∈
[0,G−1

), i.e. there exists κ ∈ [0,G−1
) such that for any x1, x2 ∈ R and t ∈ [0, 1],

|f (x1, t) − f (x2, t)| ≤ κ|x1 − x2|. (10)

Then BVP (1), (2) has a unique solution.

Motivated by the applications, we are particularly interested in the positive solutions of
BVP (1), (2). Next, we consider the existence and multiplicity of positive solutions. Define

γ = G
G

= b[Eα(−a)]2

b + 1 − bEα(−a)
. (11)

By (9), we have 0 < γ < 1.
For u ∈ C[0, 1], we denote by ‖u‖ the standard maximum norm of u. The next theorem is a result

on the existence of positive solutions of BVP (1), (2).

Theorem 2.4: If there exist 0 < r∗ < r∗ [respectively, 0 < r∗ < r∗], such that

f (x, t) ≤ G−1r∗ for all (x, t) ∈ [γ r∗, r∗] × [0, 1] (12)

and

f (x, t) ≥ G−1r∗ for all (x, t) ∈ [γ r∗, r∗] × [0, 1]. (13)

Then BVP (1), (2) has at least one positive solution u with r∗ ≤ ‖u‖ ≤ r∗ [respectively, r∗ ≤ ‖u‖
≤ r∗].

By applying Theorem 2.4 multiple times, it is easy to see the following results hold.
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Corollary 2.5: Let {ri}Ni=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · < rN. Assume either

(a) f satisfies (12) with r = ri when i is odd, and satisfies (13) with r = ri when i is even; or
(b) f satisfies (12) with r = ri when i is even, and satisfies (13) with r = ri when i is odd.

Then BVP (1), (2) has at least N−1 positive solutions ui with ri < ‖ui‖ < ri+1, i = 1, 2, . . . ,N − 1.

Corollary 2.6: Let {ri}∞i=1 ⊂ R such that 0 < r1 < r2 < r3 < · · · . Assume either

(a) f satisfies (12) with r∗ = ri when i is odd, and satisfies (13) with r∗ = ri when i is even; or
(b) f satisfies (12) with r∗ = ri when i is even, and satisfies (13) with r∗ = ri when i is odd.

Then BVP (1), (2) has an infinite number of positive solutions.

Remark 2.3: By [1–3,5], the term f (x, t) in model (1) represents the flux entering the compartment.
Theorems 2.3 and 2.4, and Corollaries 2.5 and 2.6 provide the criteria on f for the existence, unique-
ness, and multiplicity of solutions or positive solutions. Appropriate policies may be made to adjust
the flux to meet the conditions in these results. Therefore, our results may be used as references for
resilience policy making.

3. Sensitivity analysis of parameter a

In this section, we study the impact of the parameter a to the solution of BVP (1), (2). We denote the
solution as u(t; a) to emphasize that it relies on the parameter a and define

‖u(·; a)‖ = max
t∈[0,1]

|u(t; a)|,

‖u(·; a1) − u(·; a0)‖ = max
t∈[0,1]

|u(t; a1) − u(t; a0)|.

Our first result is on the continuous dependence of solution of BVP (1), (2) with respect to the
parameter a.

Definition 3.1: Let u(t; a0) be a solution of BVP (1), (2) with respect to a0. The solution is said to
be continuously dependent on a at a0 if for any ε > 0, there exists δ > 0 such that for any a> 0 with
|a − a0| < δ, ‖u(·; a) − u(·; a0)‖ < ε.

By (7) and (8), it is clear thatG,G, andG depend on a. Hence wemay treatG = G(a) as a function
of a. Therefore, the range of the Lipschitz constant κ in (10) also relies on a. In the sequel, by “(10)
holds when a = a0” we mean that there exists κ ∈ [0, 1/G(a0)) such that (10) holds.

Theorem 3.2: Assume (10) holds when a = a0. Then the solution of BVP (1), (2) is continuously
dependent on a at a0.

Next, we derive the SE associated with BVP (1), (2).

Theorem 3.3: Assume (10) holds at a. Let f (x, t) be continuous in (x, t) and have continuous first
partial derivative with respect to x, for all (x, t) ∈ R × [0, 1]. Then u(t; a) is continuously differentiable
with respect to a. Let ua = ∂u(t; a)/∂a. Then ua satisfies the SE

u′
a + aDα

0+ua = fu(u, t)ua − Dα
0+u, 0 < t < 1,

ua(0) = bua(1),
(14)

where fu(u, t) denotes the partial derivative of f with respect to the first variable u.



6 M. WANG

Figure 1. Solutions of BVP (15) with respect to various values of a.

Remark 3.1: (a) By (10), it is easy to see that |fu(u, t)| ∈ [0, 1/G(a)), t ∈ (0, 1).
(b) Theorem 3.3 provides an effective approach to estimate model performance variations due to

the errors caused by parameter fitting.

We will conclude this section with two examples to demonstrate the applications of our results.

Example 3.4: Consider the linear BVP

u′ + aDα
0+u = 100 sin

(
t
π

)
,

u(0) = bu(1),
(15)

where α = 0.9, b = 1.2, a = 0.3, 0.8, 3. By Theorem 2.1, BVP (15) has a unique solution for each
a. The plots of the solutions are given in Figure 1. The figure shows a decreasing trend with
respect to a.

By Theorem 3.3, the associated SE is

u′
a + aDα

0+ua = −Dα
0+u,

ua(0) = bua(1).
(16)

The SE is solved for each a and the plots of u and ua are given in Figures 2–4. These figures show
that ua < 0 on [0, 1]. This is consistent to the decreasing trend observed in Figure 1. In addition, by
studying themagnitudes of ua in these figures, it is clear that u is more sensitive to awhen a is close to



APPLICABLE ANALYSIS 7

Figure 2. u and ua when a = 0.3.

Figure 3. u and ua when a = 0.8.

0, and for fixed a, u is more sensitive when t is close to 0. These observations help us better understand
the impact of a to the solutions.

Example 3.5: Consider the nonlinear BVP

u′ + aDα
0+u = 1

2
tanh(u) + e−t ,

u(0) = bu(1),
(17)

where α = 0.5, b = 0.8, and a = 4, 5, 6. It is easy to verify that all the conditions of Theorem 2.3 are
satisfied. Therefore, BVP (17) has a unique solution for every a. The solutions are plotted in Figure 5.
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Figure 4. u and ua when a = 3.

Figure 5. Solutions of BVP (17) with respect to various values of a.

By Theorem 3.3, the associated SE is

u′
a + aDα

0+ua = 1
2
sech2(u)ua − Dα

0+u,

ua(0) = bua(1).
(18)

By Theorem 2.3, SE (18) has a unique solution as well. The plots of u and ua for each a are given in
Figures 6–8 respectively. Similar conclusions to BVP (15) can be drawn from these figures.
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Figure 6. u and ua when a = 4.

Figure 7. u and ua when a = 5.

4. Proofs

We give all the proofs in this section.

Proof of Theorem 2.1: The proof is in the same way as the proof of [12, Theorem 2.1]. We omit the
details. �

Proof of Theorem 2.2: Similar to the proof of [12, Lemma 3.2], by taking ∂G/∂s, we can show that
for any t ∈ [0, 1],

Eα(−atα)

1 − bEα(−a)
≤ G(t, s) ≤ bEα(−a(1 − t)α)Eα(−atα)

1 − bEα(−a)
+ 1, 0 ≤ s ≤ t,
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Figure 8. u and ua when a = 6.

bEα(−a(1 − t)α)Eα(−atα)

1 − bEα(−a)
< G(t, s) ≤ bEα(−atα)

1 − bEα(−a)
, t < s ≤ 1.

Note that

b[Eα(−a)]2 ≤ bEα(−a(1 − t)α)Eα(−atα) ≤ b.

Then (9) follows immediately. �

We will use the fixed point theory to prove the existence and uniqueness of solutions of the
nonlinear BVP (1), (2). The following operator plays an important role.

Let G be defined by (7). Define an operator T : C[0, 1] → C[0, 1] by

(Tu)(t) =
∫ 1

0
G(t, s)f (u(s), s) ds, t ∈ [0, 1]. (19)

By Theorem 2.1, it is easy to see that u is a solution of BVP (1), (2) if and only if u is a fixed point
of T.

Define a cone K in C[0, 1] by

K =
{
u ∈ C[0, 1] | u(t) ≥ 0, t ∈ [0, 1]and min

t∈[0,1]
u(t) ≥ γ ‖u‖

}
(20)

with γ defined by (11). Then by the same argument as [12, Lemma 3.3], we can show

Lemma 4.1: T(K) ⊂ K and T is completely continuous.

Theorems 2.3 and 2.4 can be proved by the standard procedure using contraction mapping
theorem and Krasnosel’skii’s fixed point theorem, see for example [12,19]. We omit the details.
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Proof of Theorem 3.2: By Theorem 2.3, BVP (1), (2) has a unique solution u(t; a0) when a = a0 and
0 ≤ κGa0

< 1, where Ga0 is the upper bound defined by (8) with respect to a0. By Remark 2.2, there
exists δ1 > 0 such that when |a1 − a0| < δ1,

0 ≤ κGa1
< 1, (21)

whereGa1 is the upper bound of the Green’s functionGwith respect to a1. Without lose of generality,
we assume a0 < a1. Then for any t ∈ [0, 1],

|u(t; a1) − u(t; a0)| =
∣∣∣∣
∫ 1

0
G(t, s; a1)f (u(s; a1), s) ds −

∫ 1

0
G(t, s; a0)f (u(s; a0), s) ds

∣∣∣∣
=

∣∣∣∣
∫ 1

0
G(t, s; a1)f (u(s; a1), s) ds −

∫ 1

0
G(t, s; a1)f (u(s; a0), s) ds

+
∫ 1

0
G(t, s; a1)f (u(s; a0), s) ds −

∫ 1

0
G(t, s; a0)f (u(s; a0), s) ds

∣∣∣∣
≤

∫ 1

0
G(t, s; a1)

∣∣f (u(s; a1), s) − f (u(s; a0), s)
∣∣ ds

+
∫ 1

0
|G(t, s; a1) − G(t, s; a0)| |f (u(s; a0), s)| ds

≤
∫ 1

0
G(t, s; a1)κ |u(s; a1) − u(s; a0)| ds

+
∫ 1

0
|G(t, s; a1) − G(t, s; a0)| |f (u(s; a0), s)| ds

≤ κGa1‖u(·; a1) − u(·; a0)‖

+
∫ 1

0
|G(t, s; a1) − G(t, s; a0)| f ds, (22)

where

f = max
(x,t)∈[0,‖u(·;a0)‖]×[0,1]

|f (x, t)|.

By (7), for any (t, s) ∈ [0, 1] × [0, 1], there exists ξ ∈ (a0, a1) such that

|G(t, s; a1) − G(t, s; a0)| =
∣∣∣∣∣ ∂G
∂a

∣∣∣∣
ξ

(a1 − a0)

∣∣∣∣∣ ≤ Ga|a1 − a0| (23)

with

Ga := max
(t,s,a)∈[0,1]×[0,1]×[a0,a1]

∣∣∣∣∂G(t, s; a)
∂a

∣∣∣∣ .
Therefore, by (22), (21), and (23),

‖u(·; a1) − u(·; a0)‖ ≤ κGa1‖u(·; a1) − u(·; a0)‖ + Ga |a1 − a0| f ,

or

‖u(·; a1) − u(·; a0)‖ ≤ Gaf
1 − κGa1 |a1 − a0| . (24)
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Therefore, for any ε > 0, let

δ = min

{
δ1,

1 − κGa1

2Gaf
ε

}
.

By (24), we have

‖u(·; a1) − u(·; a0)‖ < ε

when |a1 − a0| < δ. Hence u(t; a) is continuously dependent on a at a0. �

The following lemma is needed to prove Theorem 3.3.

Lemma 4.2: Let

G̃(t, s) =

⎧⎪⎨
⎪⎩

1
1 − b

, 0 ≤ s ≤ t ≤ 1,
b

1 − b
, 0 ≤ t ≤ s ≤ 1.

(25)

For any h ∈ C[0, 1], BVP

u′ = h(t),

u(0) = bu(1),
(26)

has a unique solution given by

u(t) =
∫ 1

0
G̃(t, s)h(s) ds, t ∈ [0, 1]. (27)

Proof: It is easy to see that BVP (26) is a special case of BVP (6), (2) when a = 0. Then the conclusion
follows immediately from (7) with a = 0. �

Proof of Theorem 3.3: By Lemma 4.2, the solution of BVP (1), (2) must satisfy

u(t) =
∫ T

0
G̃(t, s)

[
f (u(s), s) − aDα

0+u(s)
]
ds. (28)

Since f and its partial derivative with respect to u are continuous in (u, t), we have

ua(t) =
∫ T

0
G̃(t, s)

[
fu(u(s), s)ua − aDα

0+ua(s) − D1−αi
0+ u(s)

]
ds. (29)

This is equivalent to SE (14). �

5. Conclusion and discussion

In this paper, we consider a type of fractional BVPsmotivated by the resilience problems of fractional
compartment models. A series of results on the existence, uniqueness, and multiplicity of solutions
or positive solutions of the fractional BVP (1), (2) are obtained. Then sensitivity analysis for the
model parameter a is conducted as well. The obtained results will contribute to the study of resilience
of fractional compartment models and model calibration. Due to the extensive applications of the
compartment models, our results may find broad impacts in many areas.
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