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The problem of assessing whether experimental results can be replicated is
becoming increasingly important in many areas of science. It is often assumed
that assessing replication is straightforward: All one needs to do is repeat the
study and see whether the results of the original and replication studies agree.
This article shows that the statistical test for whether two studies obtain the
same effect is smaller than the power of either study to detect an effect in the
first place. Thus, unless the original study and the replication study have
unusually high power (e.g., power of 98%), a single replication study will not
have adequate sensitivity to provide an unambiguous evaluation of replication.

Keywords: educational policy, evaluation, experimental design, meta-analysis, program
evaluation; research methodology, validity/reliability

Introduction

The idea that scientific studies can be replicated is fundamental to the rhetoric
of the scientific method and is part of the logic supporting the notion that science
is self-correcting because replication attempts will identify findings that are
incorrect (see, e.g., McNutt, 2014). During the last decade, the replicability of
scientific findings has been called into question by empirical analyses in medi-
cine (e.g., Collins & Tabak, 2014; Ioannidis, 2005; Perrin, 2014), psychology
(e.g., Open Science Collaborative, 2015), and economics (e.g., Camerer et al.,
2016). Scientists themselves appear to be concerned about replicability in many
disciplines (e.g., Baker, 2016) including psychology (e.g., Pashler & Harris,
2012). This concern has been echoed in the popular press, with articles in News-
week, The Economist, and The Atlantic questioning the replicability of scientific
work. It seems likely that evidence that the findings of scientific research cannot
be replicated may undermine both the credibility of science and enthusiasm for
funding scientific research.
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Because the concept of replication is so important to science, one might
expect that precise definitions of what constitutes a replication, how to design
replication studies, and how to analyze their results would be well known in the
scientific literature. As Schmidt (2009) puts it,

one would expect there to be a large body of literature on replication providing
clear-cut definitions on such matters as “what exactly is a replication experi-
ment?” or “what exactly is a successful replication?” Furthermore, one would
expect to find guidelines on how to conduct a replication or maybe some standard
operating procedures on this issue. . .. The opposite is true. (p. 90)

Much of the existing literature on replication focuses on the definition and
functions of replication not on the design or analysis of replication studies (see,
e.g., Gomez, Juristo, & Vegas, 2010; Lykken, 1968; Sidman, 1960). Schmidt
(2009) argues that previous philosophical and psychological literature on repli-
cation largely makes a distinction between two types of replication. One is direct
replication, which means “Repetition of an experimental procedure” (p. 91). The
other is conceptual replication, which means “Repetition of a test of a hypothesis
or a result of earlier research work with different methods” (p. 91). Schmidt then
goes on to evaluate the types of replication in the social sciences but offers little
discussion of the design or analysis of replication studies.

While the analytical question of how to decide whether the findings from a set
of studies should be regarded as supporting replication has been debated for
many years (see, e.g., Humphreys, 1980), it is hardly settled. For example, the
Open Science Collaboration (2015) conducted one replication of each of a set of
100 published studies in psychology. When analyzing the results of their project,
they claimed, “There is no single standard for evaluating replication success” and
used five different (and in some cases inconsistent) ways of evaluating whether
the studies replicated. The analytic methods they used (and their conclusions)
were almost immediately challenged (see, e.g., Etz & Vandekerckhove, 2016;
Gilbert, King, Pettigrew, & Wilson, 2016; Hartgerink, Wicherts, & van Assen,
2017; van Aert & van Assen, 2017). A replication project in economics similarly
stated that “There are different ways of assessing replication, with no universally
agreed-upon standard of excellence” and also evaluated replicability in several
different ways (Camerer et al., 2016).

It is notable that both of these large, systematic programs of replication studies
were carried out without a specific criterion for what replication would mean (a
precise definition of replication). Moreover, these projects were not designed
using principles that would ensure conclusive results based on any one of the
metrics they used. In contrast, agencies that fund clinical trials or large field
experiments in education, such as the U.S. National Institutes of Health (NIH) or
Institute of Education Sciences (IES), routinely require projects, before they are
funded, to provide precise specification of analyses to be done and power
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calculations to support the claim that the study’s results will be unambiguous.
That is, they require a demonstration that the power of the proposed study will be
high enough that a failure to reject the null hypothesis could be interpreted as a
failure to find an effect of the smallest size that is deemed important. It appears
that no such principles were used to justify that analyses in either of these two
high-profile research efforts would lead to unambiguous conclusions.

The focus on analysis of replication is important because there are pervasive
examples of misinterpretation of replication studies. Suppose Study A finds that
a treatment has a statistically significant effect, but Study B does not, this is often
called a “failure to replicate” and is one criteria used in the articles described
above. Similarly, if studies A and B both find statistically significant (or both find
statistically insignificant) effects, this is often called a “replication.” The fact that
differences in conclusions from statistical significance tests do not necessarily
correspond to differences in study effects but are often interpreted as doing so has
been noted for many years (see, e.g., Gelman & Stern, 2006; Hedges & Olkin,
1985, chapter 1; Humphreys, 1980). It is also true that inference about the overall
results of two or more studies based on the outcomes of statistical significance
tests in each one (i.e., deciding that the overall effect is nonzero based on the
proportion of studies that find a statistically significant result) has remarkably
poor properties as an inference procedure (Hedges & Olkin, 1980).

Despite the lack of apparent consensus on how to statistically evaluate repli-
cation, systematic replication efforts such as those by the Open Science Colla-
boration suggest that scientists generally believe that evaluation of whether a
study’s results replicate is a straightforward process: Simply repeat the experi-
ment (with the same or perhaps an even larger sample size than the original),
compare the results of the two studies, and see if they are “the same.” However,
precisely what is meant by the same, how to assess that definition, and what data
are needed to do so remain somewhat unsettled matters. Note that the problem of
planning a data collection to evaluate whether the results of a study replicate is
fundamentally a research design problem. It specifies a design in the form of an
ensemble of studies (in this case, two studies, the original and the replication
study) and specifies data collection procedures (the same as the original study
with at least the same sample size) for each study in the ensemble.

This article addresses the question of whether an ensemble of two studies (the
original study and a single replication study) can ever be sufficient to obtain
conclusive evidence about whether a result has or has not been replicated. Our
focus is on the types of direct replications conducted so far in the social sciences,
where the goal is to obtain results that might be considered the same across
replication studies. We review the importance of adequately sensitive research
designs for statistical analyses, and their implications in the context of replica-
tion. Using meta-analysis as framework, we clarify subjective notions about
replication (i.e., getting the same results) and describe relevant statistical anal-
yses. We then demonstrate that the statistical uncertainty inherent in comparisons
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between the results of two studies is larger than that of the result of either study
alone. Thus, a single replication study cannot usually lead to unambiguous sta-
tistical conclusions about replication. We conclude that serious statistical
research on the design of ensembles of replication studies is needed to support
scientific efforts to evaluate replication.

Research Design and Statistical Analysis

Research design should be informed by some evaluation of whether the
design is sufficiently sensitive so that the findings from it will be unambiguous.
Statistical analyses are unambiguous only when they are sufficiently sensitive.
The two most frequently used modes of statistical analysis are hypothesis
testing (statistical significance testing) and estimation of effects or effect sizes.
These two modes of analysis are closely related, and each has established
concepts of sensitivity.

For hypothesis testing, sensitivity can be characterized by the statistical power
of the test. Researchers posit well-formed null hypotheses, and the analysis
determines whether the data are sufficient to reject that hypothesis. Typically,
in the context of a single experiment, the null hypothesis is of no (or a negligible)
effect. Rejection of the null hypothesis is conclusive because the test is designed,
so that it will have only a small chance of rejecting the null hypothesis if it is true.
That small chance is called the significance level and is determined a priori by the
investigator.

On the other hand, failure to reject the null hypothesis is more ambiguous,
and this is where the sensitivity of the test becomes important for interpretation.
Statistical power provides a measure of that ambiguity. It is the probability that
the statistical analysis would have detected the smallest real effect that is
deemed nonnegligible (the smallest effect “worth detecting”). This probability
depends on the design and analysis of the investigation, the level of statistical
significance, and the definition of the largest effect that is nonnegligible (worth
detecting). The bigger the smallest effect worth detecting, the higher the sta-
tistical power.

When the statistical analysis has low power, failure to reject the null hypoth-
esis 1s inherently ambiguous: It could mean that the real effect is negligible (or
null), or there could be a nonnegligible real effect that goes undetected due to low
sensitivity. Designing experiments so that they will have high statistical power
reduces the ambiguity of interpreting nonstatistically significant findings. This is
why agencies that fund large-scale clinical trials (e.g., NIH or IES) require power
analyses in proposals for funding of such trials. While there is currently a strong
scientific consensus that significance levels should be set to 5%, there is less of a
consensus on how high statistical power should be, but the idea that 80% power is
adequate has been broadly embraced in the social sciences (Cohen, 1977).
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When estimation is used as the analytic technique, sensitivity can be char-
acterized by the standard error (SE) or the width of the confidence interval for the
estimated effect. There are no firmly established standards for desirable precision
or confidence interval width, but there is a general understanding that precision
should be high and confidence intervals should be narrow relative to the quantity
being estimated.

The virtues of research designs that have high sensitivity have been well
known for some time. However, research designs that have high power or high
precision are generally costly because such sensitivity is usually obtained by
using large sample sizes. Not surprisingly, there is ample evidence that research
studies in medicine and the social sciences are often less sensitive than would be
desirable (see, e.g., Dumas-Mallet, Button, Boraud, Gonon, & Munafo, 2017,
Vankov, Bowers, & Munafo, 2014).

It would seem that sufficiently sensitive designs would be of particular interest
for studying replication. The replicability of findings is central to the idea that they
are scientific, and so evaluations of replicability should be conclusive as part of good
science. In addition, conducting replications will require resources that may other-
wise have been devoted to exploring new questions. And while resolving which
(novel research vs. replication) should be a priority cannot be solved by statistics
alone, at the very least, considerations about design should be used to ensure that
resources are not devoted to replication research that nets ambiguous results.

The Statistical Analysis of Effect Heterogeneity in Meta-Analysis

The most relevant statistical literature for considering the analysis of replica-
tions is that of meta-analysis, which offers methods for statistically combining
results across studies (see, e.g., Cooper, Hedges, & Valentine, 2009; Hedges &
Olkin, 1985). However, meta-analysis has been more concerned with summariz-
ing effect sizes from a set of studies than evaluating whether studies replicate
according to stated criteria. Moreover, meta-analysis is mostly concerned with
problems of summarizing existing studies, not with the problem of designing
ensembles of studies to evaluate replicability. Yet, because meta-analysis is a
widely accepted method of combining evidence in many areas of science, our
approach is in the spirit of meta-analysis and uses meta-analytic methods.

In the meta-analytic framework, a study’s results can be summarized by an
effect parameter 0, which is the result the study would have obtained if there
were no estimation errors due to the sampling of experimental units (e.g., if the
sample size were infinite). The effect size might be a treatment—control mean
difference, a standardized mean difference, a correlation coefficient, log-odds
ratio, or any standard meta-analytic effect size. While the true result of the study
(unperturbed by estimation error) is represented by the effect size parameter 0,
we do not observe this parameter in studies with finite sample size. Instead, we
observe an estimate 7 of 0. For discussions of a variety of effect sizes that are
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often used in education and the social sciences and their properties, see, for
example, chapters 12 and 13 of Cooper, Hedges, and Valentine (2009).

Suppose that two studies are potential replicates of one another. Let 0, and 0,
be the effect size parameters from the studies and let 7; and 75 be the effect size
estimates with known estimation error variances v; and v,. Assume that the effect
size estimates are approximately normally distributed so that

T,'N N(e,-,v,-).

We argue that replication can be described in terms of the effect parameters
since they are the scientific quantities of interest in the analysis of any single
study. If the studies successfully replicate, then 6, and 0, should be similar, and if
they do not successfully replicate, then 0; and 0, must be different. Thus, given
the two modes of statistical analysis, evaluating whether the two studies success-
fully replicate can be done by conducting a hypothesis test about the difference
between 0; and 0, or by estimating the magnitude of that difference. If these
analyses are not sensitive, then analyses about whether a scientific finding is
replicated will be ambiguous.

A primary statistical tool used in meta-analysis to assess differences between
effect parameters is the Q-statistic, and it forms the basis of the analyses
described in this article. The QO-test in meta-analysis is widely used because
it is the likelihood ratio test for heterogeneity under the model described above
and so has certain optimal properties. When there are only two studies, the
O-statistic is given by

0= (T1— 1)*/(vi+ m). (1)

When 0; = 0,, O has a y? distribution with one degree of freedom. Note that
when there are only two studies, the O-statistic is just the square of the difference
between 77 and 7, divided by the SE of the difference (the Wald statistic), so it is
equivalent to the two-sided version of that test.

When 0, # 0,, the distribution of O depends on how we conceive of the effect
parameters (Hedges & Pigott, 2001). Are they the entire population of parameters
of interest, or might we want to make inferences about unobserved (potentially
future) studies? The answer to this question has implications for both the scope of
inference and the properties of the analysis we might do. In general, the way we
frame the question of replication determines the conclusions we can draw and the
analyses that support them. Below, we describe theoretical considerations and
their implications for an analysis of replication.

Theoretical Considerations in Framing an Analysis of Replication
Do the Observed Studies Comprise the Population or a Sample?

The studies available can be considered in either of two different ways: fixed
or random. This determines not only the scope of inference but also the way in
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which we might characterize differences between studies and the properties of
the relevant analyses.

If the studies constitute the entire population of studies relevant to assessing
replication, then inferences about replication are inferences about the effect
parameters in the studies actually observed. This is consistent with the fixed
effects framework in meta-analysis (see, e.g., Hedges & Vevea, 1998). One
might say that conclusions about replication in the fixed-studies framework are
conclusions about how well the observed studies agree. Statistically, this means
that we can define replication directly in terms of the difference between 0,
and 0,. Moreover, when we treat the studies as fixed, the sampling distribution
of O depends on the magnitude of (8; — 0,)” through the noncentrality parameter
A= (0 — 0,)%/(v1 +12) (see below).

If the studies are considered random, then the studies observed are a sample
from a hypothetical population or universe of studies, and their effect parameters
are a sample from a hypothetical universe of effect parameters. Inferences about
replication are inferences about the universe of effect parameters from which the
sample was taken. Thus, the observed studies and their effect parameters are of
interest only in that they provide information about these hypothetical universes
of studies and their effects. This is consistent with the random effects framework
in meta-analysis (see, e.g., Hedges & Vevea, 1998). One might say that conclu-
sions about replication in the random-studies framework are conclusions about
how well findings might agree in a universe of studies, where that universe is one
which might have yielded the observed studies as a random sample.

In statistical terms, the random-studies framework defines replication in
terms of how similar 6; drawn from the same distribution might be. We can
characterize this similarity in terms of the variance of this distribution, rz; a
distribution with a small variance 1> would produce 0, that are similar. It turns
out that the sampling distribution of Q under the random effects model depends
on the magnitude of 2.

The difference between these two frameworks may seem trivial; however,
there are two important differences. The first is that they answer slightly different
questions. The fixed effects model addresses agreement between only the
observed studies, while the random effects approach pertains also to an entire
population of studies including studies not observed. This is why we need dif-
ferent parameters (A and 1?) to describe replication depending on the model.
Second, when there is not perfect agreement in effect parameters across studies,
the QO-statistic has a somewhat different sampling distribution when studies are
considered fixed than when they are considered random. This has implications
for statistical power and constructing tests for approximate replication (see the
following section).

In general, it may seem odd to conduct a random effects analysis on only two
studies. We present random-studies analysis methods here not to advocate their
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use, but rather to describe important issues in analyzing replication studies, as
well as to illustrate the types of considerations required to design them.

The Definition of Replication: Exact Replication or Approximate Replication?

To conduct a statistical analysis of replication, it must be defined precisely.
One possible definition (which is akin to the null hypothesis of the O-test in
meta-analysis) is exact replication: All studies have exactly the same effect
parameter. In the fixed effects model, this would correspond to A = 0, and in
the random effects model, this would imply that > = 0. This is logically appeal-
ing, but it may be too strict to be useful in scientific practice. Even in physics,
there is awareness that even the most careful experiments measuring the same
phenomenon exhibit some heterogeneity of results (see, e.g., Hedges, 1987;
Olive et al., 2014; Rosenfeld, 1975). Therefore, one might argue that some
variation in effects across attempted replication studies might be expected. Small
differences in the magnitude of effects may not change the interpretation of a
finding, and hence, effect parameters that are not identical may still reflect
successful replications.

Thus, replication might be defined as a situation in which effects are “almost
the same” across studies, such that almost the same is defined precisely. We
regard the specific operationalization of almost the same as a matter of scientific
judgment that might well differ across fields. We can define approximate repli-
cation in terms of the parameters A and t° by choosing values that correspond to
negligibly small differences in effect parameters. We offer conventions used in
three scientific areas to show how one might quantify this notion.

To illustrate how almost the same might be defined, consider three conven-
tions that have arisen in different sciences for identifying a negligible value of t°
(or A). In high-energy physics, the Particle Data Group (which has been compil-
ing meta-analyses of high energy physics experiments for over 50 years) con-
cludes that (when there are a total of two studies) a value of O < 1.25 corresponds
to negligible heterogeneity (see Olive et al., 2014). Because the expected value of
O under the studies-fixed model is 1 4+ A and 1 + t%/v under the studies-random
model, this implies that A = 1/4 would be a negligible value of A and that t*/v =
1/4 would be a negligible value of t*/v. In personnel psychology, Hunter and
Schmidt (1990) proposed that when the estimation error variance v is at least
75% as large as the total variance of the effect size estimates (v 4 t2), then the
variance of the effect size parameters ©° could be considered negligible. This
implies that values of A = 1/3 and t%/v = 1/3 correspond to negligible amounts
of heterogeneity in effect size parameters. In medicine, a value of I* = 100% x
/(v 4+ %) 0f 40% or less is considered to be “not important” (see section 9.5.2
of Higgins & Green, 2008). This implies that A = 2/3 and t*/v = 2/3 would be
negligible amounts of heterogeneity. We do not advocate any of these values
but merely use them for illustration.
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Publication Selection

An important assumption in the results of this article is that Study 1 has
already been conducted and (presumably) published. This assumption fixes v,
and poses the question of designing a replication study in terms of the sample size
of Study 2 (and hence v,). However, there is considerable evidence that published
studies often experience selection that favors the publication of those that obtain
statistically significant results (publication selection; see, e.g., Dickersin, 2005
and the references cited therein). Such publication selection leads to bias in the
observed effect size T that can be quite large, as much as 250% in extreme cases
(see Hedges, 1984).

The arguments in this article are structured in terms of the effect size para-
meter 0 in the original study, not the observed effect size estimate 7. But if T
is a biased estimate of 0;, then it would make sense to adjust for that bias in
analyses of replication, and there are several ways to do so. Hedges (1984)
provides a maximum likelihood estimator for the effect size that models the
selection process explicitly, and several variants of the method have been
proposed (McShane, Bockenholt, & Hansen, 2016; Rothstein, Sutton, & Bor-
enstein, 2005). These types of corrections result in a “new” estimate 7" that
has variance v;*. Since these methods typically require estimation of additional
parameters associated with selection, the corrected estimates tend to have a
greater variance, so that vi* > v;. Moreover, adjustments that rely on maxi-
mum likelihood methods, such as Hedges (1984), will result in effect estimates
that are asymptotically normal. Thus, the analysis methods described in this
article can proceed with 7' and v, if there is no publication bias, or with 7 * and
v * if there is.

Later in this article, we show that the sensitivity of analyses of replication
depends on 0; and vy, and sensitivity tends to improve with more precise
estimates of effects (i.e., with smaller v;). Since publication bias corrections
increase the estimation error variance (v;* > vy), analyses that adjust for pub-
lication bias are likely to be less sensitive than analyses of studies not subject to
publication selection.

Hypothesis Tests and the Burden of Proof

In addition to the considerations above (i.e., studies are fixed or random;
replication is exact or approximate; publication bias present in Study 1 or not),
hypothesis tests depend on one additional factor: where the burden of proof is
placed. If the burden of proof is on nonreplication, then the null hypothesis is that
the studies (exactly or approximately) replicate. Rejecting this null hypothesis
would mean that we conclude that the studies failed to replicate. Note that this
test will be conclusive about failures to replicate, but unless the test has high
power, it will be inconclusive about whether studies replicate.
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However, if the goal of conducting a replication is to determine that study
results are similar, then this is the wrong inferential structure. Instead, the burden
of proof should be on replication rather than nonreplication. In this setup, the null
hypothesis is that the studies failed to replicate (i.e., A or t° are at large), and
rejecting the null hypothesis would mean that we conclude that the studies
replicate (i.e., A or T* are small or null).

Given this additional consideration, Hedges and Schauer (2018) show that
there are six different hypothesis tests about replication. These are discussed
below in the context of designs with k£ = 2 studies.

Analyses of Replication and Their Properties

So far, we have outlined a meta-analytic approach to the analysis of replica-
tions. The sections that follow detail these analyses in the context when only two
studies are conducted (an original and one replicate), as in some of the more
high-profile empirical evaluations of replication. We explore the properties of
these analyses for fixed-studies and random-studies hypothesis tests, as well as
with estimation of differences between effects. In particular, we demonstrate that
in many practical situations, the sensitivity of these analyses cannot support
unambiguous conclusions for only two studies.

Fixed Effects Hypothesis Tests for Exact Replication

We can test the null hypothesis of exact replication (Hy: 6; = 0,) using the
standard Q-test in meta-analysis. Recall that when the effect parameters are
identical (so that the studies replicate exactly), O has a y? distribution with one
degree of freedom. So to conduct an a-level test, we compute Q as in Equation 1
and compare it to the critical value

C1—a) :F_l(l - O(|O)v (2)

where F(x | 1) is the cumulative distribution function of the noncentral % dis-
tribution with one degree of freedom and noncentrality parameter A, and c(;_) is
the level 100(1 — o) percent point of the central x> distribution (e.g., for o, =
0.05, c(1_oy = 3.84). If O > ¢(1_y), We reject the null hypothesis and conclude that
the studies do not replicate.

When studies are conceived as fixed, but when 0; # 6,, then Q has the
noncentral y* distribution with one degree of freedom and noncentrality para-
meter (see Hedges & Pigott, 2001), which is given by

A= (01— 02)/(vi +v2). (3)
The statistical power of the studies-fixed test for replication is
I = Fle-o)|(81 = 02)*/(vi + )], (4)
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where F(x | 1) and c(;_, are as in Equation 2. Note that in this fixed-studies
model the sampling distribution (and therefore the statistical properties) of Q is
determined entirely by A.

Designing a replication study for a sufficiently powerful analysis requires
consideration of A; larger values of A mean greater power. If the original study
has already been conducted, v; is fixed. The design decision, then, is how small
to make v, (which often corresponds to how large to make the sample size of
Study 2). We can make v, as small as we like by making the sample size of the
replication study larger. However, as v, tends to be 0, A tends to be

(0, — Oz)z/vl, so the maximum power will be
1= Fequ)(01 — 02)%/v1),

where F(x | L) and ¢(;_, are as in Equation 2. Because there is a limit how large
we can make A and because statistical power is determined by A, there is a limit to
how high the statistical power may be, even if we have an indefinitely large
replication study.

To compute the power of the test for replication, we must decide the smallest
nonnegligible value of |6, — 0,] and the A value corresponding to this
difference: the smallest nonnegligible A. This is equivalent to specifying a
(symmetric) range of 0 values above and below 0; which would constitute a

“negligible” difference between the results of the two studies. The

NEGLIGIBLE DIFFERENCES
e

¢ — Jl P— x
0 0,
larger this range of negligible difference, the larger the smallest value of |6, — 05|
(and A) worth detecting, and thus the higher the statistical power to detect that
difference.

What is the largest this range could be? We would argue that the largest
difference that might be considered negligible is one in which both 6; and 0,
have the same sign (there is no qualitative disagreement between effects in Study
1 and Study 2). For example, if Study 1 found a positive effect (6; > 0), then 6,
must also be positive. It follows that when 0 < 0, < 6;, it must be true that
0, — 0, < 0;. Thus, the largest A value that corresponds to a qualitative replica-
tion (call it Az) must be less than 0,2/(v; + v,).

A test of the null hypothesis that 6; = 0 in Study 1 uses the test statistic
T,? /v1, which has the central Xz distribution if 6; = 0 and the noncentral Xz
distribution if 0, # 0. The power of the test is determined by the (noncentrality)
parameter A; = 0;2/v. Comparing A, to Az, we see that

A < 612/(\/1 +V2) < 912/\/1 = Al
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Thus, the maximum possible power of the test for replication is smaller than the
power of the original study’s (Study 1) test of the null hypothesis of no effect.
However, the maximum possible power may be much lower in theory and almost
certainly will be lower in practice for two reasons.

First, power will be lower if we care about smaller differences between study
effects rather than just disagreement in sign. If the magnitude of the difference
between effects is important, a 6, value that is substantially smaller than 6, but
still positive, might not be considered a replication. In that case, the largest Az
corresponding to a replication can be substantially less than A;. For example,
suppose that a reduction in effect of 50% was considered the largest nonnegli-
gible difference between 0 and 0,. In that case Az = A;/4 and if Study 1 had 80%
power to detect 0; (which occurs if A; = 7.85), then the maximum theoretical
power of the test for exact replication would be only 29%. Note that Ag = 7.85/4
is nearly 3 times the largest value of negligible heterogeneity discussed in the
previous section, so in comparison this would be a very loose definition of
replication.

A second reason that the power of replication tests must be lower than the
theoretical limits above is that the theoretical limits require perfect precision in
the replication study (i.e., v = 0 or an infinite sample size). If Study 2 has the
same sample size as Study 1, so that, for example, v;{ = v,, then the largest
possible noncentrality parameter of the replication study becomes
012/2v; = A1 /2. In this case, if Study 1 had power of 80%, the power of the
test for exact replication would be 51%. Even if Study 1 had power of 90%, that
of the replication test would be only 63%. Study 1 would have to have a power of
98% for the replication test to have 80% power, which is unusual in many
medical or social science contexts.

Additionally, if the analysis corrects 7' for publication bias, then the proce-
dures above involve the corrected estimate 77 * and its variance v;* instead of T}
and v;. However, the power of the test still depends on the noncentrality para-
meter A, which is a function of the estimation error variance of the first study (v,
or vi*). Let A* be the noncentrality parameter after adjusting for publication bias,
and A be the noncentraily parameter with no adjustment. Note that A =
(61 — 0,)%/(vi +v2) > (81 — 0,)*/(vi* 4+ v2) = A" so that the noncentrality
parameter after adjustment is smaller than the noncentrality parameter without
adjustment. This means that the test for exact replication that corrects for pub-
lication bias in Study 1 will be even less powerful than the test when no correc-
tion for publication selection is needed.

The greatest theoretical power we may hope to achieve in a test of exact
replication is the same as the power of Study 1 to detect a nonzero effect as
small as 0. In practice, the power of the test for replication will be smaller and
can be much smaller. Therefore, it may be impossible to design a single replica-
tion study to ensure that the analyses of replication are sufficiently sensitive to be
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conclusive; this is especially true if we consider small differences between study
effects to be meaningful.

Fixed Effects Test for Approximate Replication

The test for approximate replication requires the specification of the largest
difference between the effect in the original study (0;) and that in the replication
(0,) that still qualifies as a replication. Call this difference J, so that the largest
value of the noncentrality parameter that corresponds to replication is

ho = 807/ (vi + v2), (5)

and the null hypothesis of approximate replication is not that A = 0 (as in exact
replication) but

H()I}\,S;\,().

To test this hypothesis at significance level o using the Q-statistic, the reference
distribution is that of Q when A = A, so that the test rejects the null hypothesis
of approximate replication when Q exceeds the 100(1 — o) percentile of the
noncentral ? distribution with one degree of freedom and noncentrality para-
meter A. Call this critical value c(;_4)(Ao) to emphasize that it is a function of
both o and Ay. When A > 0, the noncentral % distribution is stochastically larger
(shifted to the right) compared to the central % distribution, so that when X, > 0,
C(]_u)(x‘o) > C(l—a)(o) = C(1-a)- For example, while C€(1-0.05) = c(l—O.OS)(O) = 384,
C(],0.05)(1/4) = 476, C(],0.05)(1/3) = 503, and C(1,0.05)(2/3) = 6.06.

The statistical power of the level o studies-fixed test for approximate replica-
tion with negligible heterogeneity 2 is,

1= Fleq-a(2o)l(01 = 02)*/(vi + )], (6)

where F(x | 1) is the cumulative distribution function of the noncentral % dis-
tribution with one degree of freedom and noncentrality parameter A. Here, the

noncentrality parameter A = (0, — 0,)*/(v| + v,) is the actual heterogeneity
expected; it serves the same function as the putative effect size in more conven-
tional power analyses. Comparing the expression for statistical power of the test
for approximate replication in Equation 6 with that for the test of exact replica-
tion in Equation 4, we note that the only difference is the critical value used.
Because tests for approximate replication use the same test statistic, but larger
critical values than the test for exact replication, the statistical power of tests for
approximate replication to detect the same amount of real heterogeneity is lower
than that of the test for exact replication. Therefore, if tests for exact replication
based on a single study are insufficiently powerful, tests for approximate replica-
tion (including ones that correct for publication bias) will be even less powerful.
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Fixed Effects Tests for Nonreplication

The tests above will be conclusive about failures to replicate, but not about
replication. If we wish to make conclusive statements about studies successfully
replicating, then the burden of proof should be on replication. In that case, the
null hypothesis would be that the studies do not replicate, and concluding oth-
erwise would require convincing evidence that they do.

Forming a null hypothesis that the studies fail to replicate involves some
consideration of the smallest difference between 0; and 0, that might be consid-
ered nonnegligible. This can be operationalized by the following null hypothesis:

H()Z}\.Z}\,()

Note that this is the opposite of the null hypothesis of the test for approximate
replication in the previous section. Here, the true difference between studies is
characterized by A = 62/(v1 + v,) such that & = 0; — 0,. In this test of non-
replication, the null hypothesis is that this value A is at least as large as a
difference characterized by Ay = 8¢/(vy + v2), where &y corresponds to the
smallest nonnegligible difference between studies (i.e., the smallest value of o
that corresponds with nonreplication).

Hedges and Schauer (2018) show that to test this null hypothesis with level
o, one computes O as in Equation 1 and rejects the null hypothesis if it is /ess
than the critical value c,(A), the 100a percent point of the distribution of QO
when A = A:

co(ho) =F ' (allho), (7)

where F is the ¥ distribution function as in Equation 2.
The power of this test to detect A < A is given by

FIF~! (e 20)|2]. (8)

The power increases as A decreases and is greatest when the studies replicate
exactly so that A = 0. The power is also an increasing function of Ay, which
means that it is higher as we test looser notions of nonreplication. What is the
largest value of Ao we might consider testing (denote it Aor)? One way to
approach this is to use the conventions of negligible heterogeneity described in
this article, so that Agr = 2/3 would be the largest possible value we might test.
Alternatively, we can consider defining Agg in terms of §¢% and v; + v,. As in the
previous sections, we would argue that qualitative disagreement would be an
upper bound for negligible differences between study results, so that 5> < 0;2.
Likewise, we note that v; + v, < v;. Taken together, we see that

7\.01{ = 602/(\/1 +V2) < 612/\11 = 7\‘1.
Note that we might expect A, to be much larger than one, and hence much larger

than the conventions of negligible heterogeneity described in this article. For

556



Hedges and Schauer

instance, if Study 1 had only 50% power, A; = 3.84, nearly 6 times the largest
convention of negligible heterogeneity (Ao = 2/3). Thus, we consider A; to be the
absolute loosest notion of nonreplication (largest Aor) we might consider testing.

Taken together, this would suggest that the most powerful this test can be is
given by

FIF~ (a]2.1)]0]. ©)

This expression, again, depends on A, which determines the power of Study 1 to
detect a nonzero effect. While the maximum power of the test for nonreplication
given in Equation 9 is not strictly bounded by the power of Study 1, it will be /ess
than the power of Study 1 for values of A; < 13 (so scenarios when Study 1 has
less than 95% power). In other words, the maximum power for this test, too, is
often bounded by the design of Study 1. If Study 1 does not have very high
power, then the power of the test for nonreplication will be quite low. For
instance, if Study 1 has 60% power (i.e., A; = 4.90), then the maximum power
of the test given in Equation 9 will be only 44%.

In practice, the power of the test for nonreplication will likely be much smaller
than the power of Study 1 for three reasons. First, the maximum power is
achieved when v, = 0, but Study 2 will have a finite sample size. If Study 1 has
80% power and Study 2 is the same size as Study 1, so that v; = v,, the maximum
power attainable would only be about 32%; even if Study 2 is twice as large as
Study 1, so that v;/2 = v,, the power would still be below 50%.

Second, while qualitative disagreement serves as an upper bound for 8,2, we
might want to test more stringent notions of nonreplication (i.e., smaller 8,2 or
Lo). As an example, suppose Study 1 had 80% power and that we consider a 75%
reduction in the effect (so that 6; = 40,) to be a nonnegligible difference. Then,
the greatest possible power of the test for nonreplication would only be 38%. It is
worth noting that even this more stringent definition of replication (Ao = 4.42) is
still several times larger than the conventions of negligible heterogeneity dis-
cussed in this article (Ay < 2/3), and the power of the test for Ao = 2/3 is never
above 7%.

Third, the maximum power is only achieved when 6; = 0,, so that the studies
replicate exactly. However, getting studies to replicate exactly is far from trivial.
The history of science is marked by just how difficult this can be (see Collins,
1992). Steiner and Wong (2018) lay out the requirements for exact replication
from a causal inference perspective and suggest that it will be very tough to
achieve in practice, even if both studies are conducted simultaneously by the
same investigator.

If the analysis needs to correct the effect size estimate from the first study 7
for publication bias, the resulting estimate 7' * and its variance v * are used in the
analysis. Note that A* (the noncentrality parameter when 77 is used in the
analysis) will be less than A, but the maximum power derived Equation 9 sets
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A = 0, which means that the power of the test that corrects for publication
selection (for the same value of Ay) will be no larger than what is given in
Equation 9. Thus, if the unadjusted tests cannot attain high power, then neither
will the adjusted tests.

Random Effects Test for Exact Replication

The test for exact replication for the random-studies model proceeds identi-
cally to that of the fixed-studies model. Concretely, we compute Q as in Equation
1 and compare it to the same critical value c(;_, as in Equation 2. However, the
nonnull sampling distribution of Q now has a different form. When studies are
conceived as random, but T* > 0, the sampling distribution of Q is equal to that of
a constant times a central x> random variable, so that

B B s T 1 2
<V1+V2+2TZ>Q_ <1+2T2/(V1—|—v2)>Q x1s (10)

(see Hedges & Pigott, 2001). The statistical power of the studies-random test for

replication is
C(1-a)
0)=1-F 0], 11
)= 1-rlme) o

. _F<(V1 +Vv2)e(1-a)
Vi + vy + 212
where F(x | 0) is the cumulative distribution function of the (central) % distri-
bution with one degree of freedom (see Hedges & Pigott, 2001). Note that, in this
studies-random model, the sampling distribution of Q is determined entirely by
©/(vi + v,); larger values of this correspond to greater power.

Consider designing Study 2 (the replicate) to ensure a sufficiently powered
test. As in the studies-fixed case, suppose that we observe Study 1, which has true
effect size 0; > 0 and estimation error variance v,. Because v is fixed, it is clear
that the maximum power of the test is bounded below one for a given (finite) 7.
Letting v, tend to zero so that Study 2 has an indefinitely large sample size, we
see that the maximum power would be

)
1 _F<1+212/v1 O>. (12)

The power in Equation 12 is an increasing function of t°. This means the
highest power this test could have depends on the maximum value of T* (call this
Ty 2) that could be considered negligible. We would argue that ty? is the value of
72 that makes large differences between 0, and 6, unlikely. Let 8% = (0, — 92)2 be
the squared difference between effect parameters, 82 be the largest value of §°
considered negligible, and 1 — ¥ be the probability that 8% < 8¢2. Then, we can
formalize this idea in terms of the following inequality:

P{(0; — 05)* < 82} < 1 —1r. (13)

558



Hedges and Schauer

Assume that O ~ N (u, 12), the usual assumption in the random effects model,
then the corresponding value of Ty? that satisfies Equation 13 is given by

L8
VTR 0)

where F(x | 0) is the ¥* distribution function as in Equation 2. Note that 1% is an
increasing function of 82, and so we may write it as tv2(802). As argued in the

previous sections, we would consider 83 < 0,2, which corresponds with quali-
tative agreement between 0; and 6,, to be an upper bound for a negligible
difference between effect parameters. This would imply that

0]

2
VT2 = o)

is the largest value of 1> we could consider negligible. Substituting this into
Equation 12, we see that the most sensitive design would give a maximum

power of
o) . (14)

Note that Equation 14 increases with the power of Study 1 to detect a nonnull
effect (i.e., 012 /v1). It also decreases with the proportion of studies required to be
qualitatively consistent with 0; (i.e., 1 — 7), since if we require a smaller pro-
portion of replications to be consistent with 0, then we would consider larger
values of 12 to be negligible.

What is a reasonable proportion y? Choosing y = 24%, so that more than 75%
of the 0 values are consistent with 0y, yields 13, = 6,2/2.76. Given that value of
v, the maximum power of the test for replication (i.e., when v, = 0) depends on
the power of Study 1 to find a nonnull effect (via 0,2 /v). If Study 1 has 80%
power to detect a nonnull effect (so 0,2/v; = 7.85), the random effects test for
exact replication will have power less than 45% (assuming v, = 0). If 0,2 /v =

7.85 and Study 2 has a finite sample size such that v, = v; or v, = v{/2, then the
power of the test would be 31% and 37%, respectively. One could choose dif-
ferent values of vy, but no plausible values imply that the test for replication has
higher power than the original study.

It is worth noting that as with the fixed effects tests, random effects tests that
need to adjust for publication selection will be less powerful than tests that do not
need to make such adjustments. This is because the power of the random-studies
tests depends entirely on and is an increasing function of t/(v; + v,). However,
if publication bias corrections are required, then rather than using v, the test now
involves the corrected estimation error variance v{*. Recall that v; < v;*, which

FH 1 —9[0)c(1_y
1 F (1—v| )C(l2 )
F1(1—7]0) + 67 /v,
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means that t*/(v; +v,) > 12/(vi* + v2). Therefore, if the test must account for
publication bias, it will be even less powerful than the one that does not.

Random Effects Test for Approximate Replication

The studies-random test for approximate replication requires the specification
of the largest negligible heterogeneity in terms of the between-studies variance of
effect parameters. Call this variance t¢2. Thus, the null hypothesis of approx-
imate replication is not 19> = 0 (as in exact replication) but

Ho : ‘C2 < T02.

To test this hypothesis at significance level o using the Q-statistic, the reference
distribution is that of O when 1> = 142, so that the test rejects the null hypothesis
of approximate replication when Q exceeds the 100(1 — o) percentile of the
distribution of Q when t* = t§. Call this critical value ¢(;_y) (ré) to emphasize its
dependence on t§. Using Equation 7, the value of ¢(j_q) (ré) can be obtained
from c(;_y) as

com(t) = (14250 15
(1—0o) T())— +V1+V2 Cll-a)> ( )

which is larger than c¢(;_,). Thus, the power of the level a test for approximate
replication under the studies-random model is
o), (16)

| —F< ¢(1-2)(15)
14 212/(vi +v2)
where F(x | 0) is the cumulative distribution function of the (central) X2 distri-
bution with one degree of freedom. The only difference between the expression
for statistical power of the test for approximate replication Equation 16 and that
of the test of exact replication Equation 12 is the critical value each uses. As with
the fixed-studies model, tests for approximate replication will be less powerful
than those of exact replication, and they will be even less powerful if they must
correct for publication bias. Therefore, if tests for exact replication based on a
single study are insufficiently powerful, so are tests for approximate replication.

Random Effects Tests for Nonreplication

The random effects test for nonreplication involves a null hypothesis that the
studies failed to replicate. Operationalizing this requires some idea about the
smallest value of 3 that could be considered nonnegligible. The null hypothesis
is given by Hy : 12 > 1°.

To test Hy, compute Q as in Equation 1 and compare it to cu(rg), the 100a

percent point of the random-studies distribution of Q when 1% = 13:
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212
o) = (1 L )

vi+v

where ¢, is the 100a percentile of the central > distribution with one degree of
freedom. We reject Hy and conclude that the studies replicate if Q is less than
co(T3).

For 12 < 12, the power of this test is given by

o), (17)

where F(x | 0) is the (central) 3 distribution function with one degree of freedom.
Note that the power increases as T> decreases, and attains a maximum at ©° = 0.
Likewise, the power also increases as 13/(v| + v;) increases, and attains a max-
imum when v, tends to be zero (i.e., if Study 2 has an infinite sample size). Thus,
the maximum power of this test is given by

TZ
F|:<1 +2—O>Coc
Vi

An upper bound of t3 worth testing can be obtained using a similar approach

( ca(15)
1+ 2‘52/(\/1 —|—V2)

o} (18)

to the previous section, where we choose a value of 13 that corresponds with a
given percentage (denoted 1 — v) of replications being consistent with 6. Using
Equation 13, we would argue an upper bound of the power of this test would be

A+ S )] = 7 ()

The maximum power in Equation 19 increases with the power of Study 1
(via 0;2/v1) and decreases with the proportion of studies required to be
consistent (1 — 7). If Study 1 has 80% power, then setting y = 25% in
Equation 13 would mean that a quarter of potential replications would be
inconsistent with 0; and would give a test for nonreplication with power less
than 13%. Note that even if Study 1 has 90% power, the power for the test of
nonreplication would be less than 15% for y = 25%. Alternatively, if we use
v = 50%, so that half of the potential replications would be inconsistent with
0;, the maximum power would be below 21% (assuming Study 1 had 80%
power). Indeed, to even approach a maximum power greater than 50% would
require Y = 80%, so that 80% of replications would be inconsistent with 6;;
however, this would seem to be too lax a definition of nonreplication to be
practical.

If the analysis must correct 77 for publication bias, then the test uses v;* the
variance of the corrected estimate instead of v,. Note that the power of the test for
nonreplication given in Equation 17 increases as t%/(v, 4 v,) decreases and that
2 /(vi +v2) > 12/(vi* +v3) > 0. However, the maximum possible power in

o} (19)
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Equation 19 sets t%/(v; + v,) = 0 and thus serves as an upper bound even in the
face of publication bias corrections.

Estimation of Heterogeneity Parameters

An alternative way to assess heterogeneity is to estimate a parameter that
characterizes the difference among the 0;. When studies are considered fixed,
the only 0; relevant to evaluating replication are 0, and 0,, the effect size para-
meters in the observed studies. In this case, an appropriate parameter character-
izing difference among the 0; is some function of 6; — 0,. Recall that the
noncentrality parameter that determines the distribution of Q is

A= (01— 02)*/(vi +v2) = (8, —0,)%/2,

where v = (v + v2)/2 is the average variance. Thus, A has merit as a scale-free
parameter characterizing heterogeneity. Because Q has the noncentral ¥? distri-
bution with one degree of freedom and noncentrality parameter A when 0; # 0,,
and the expected value of Q is 1 + A, it follows that

h=0-1, (20)
is an unbiased estimator of A, with SE

SE{L} = +/2(1 4 2). (21)

Note that the SE is always larger than 1.41 (which occurs when A = 0) and it is an
increasing function of A (e.g., it is 2.45 when A = 1). For the conventions of
negligible heterogeneity, the SE of this estimate is 1.73 (when A = 1/4), 1.83
(when A = 1/3), and 2.16 (when A = 2/3). In other words, the SE of the estimator
afforded by the design involving a single replication study is several times larger
than the true values that are likely to be of interest.

This remains true if the estimate adjusts for publication bias in Study 1. In that
case, the estimator in Equation 20 uses the values of the corrected estimate 77"
and its variance v{* rather than 7} and v;. Since v; < v{*, it follows that A" =
(0, — 02)*/(vi* + v5) is smaller than A = (0; — 0,)>/(v| 4 v2). This means
that if Study 1 is subject to publication selection, both the quantity being esti-
mated A* and its SE will be smaller than if there was no publication selection.
However, the SE will still be very large relative to meaningful values of A* we
would want to estimate precisely. As we saw above, we may want our analysis to
be sensitive to values of A (and hence A*) that are less than one. Standard errors
of estimates of A* in that range are no smaller than 1.41 (which occurs if A* = 0).
Thus, we will be unable to obtain precise estimates of meaningful values of A or
A* with only two studies.

When studies are considered random, the entire distribution of 0, in the
universe from which the observed studies are sampled is relevant to evaluat-
ing replication. In this case, an appropriate parameter to characterize
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differences among the 6; is 1%, technically the variance of the effect size
parameters in the population from which the studies are a sample. There are
several ways to estimate %, but the method most often used in meta-analysis
(the DerSimonian and Laird method) is based on the O-statistic. When k = 2,
that estimate of 1° is

= (00— 1)(vi +m)/2, (22)

which is an unbiased estimate of t> under the model (see, e.g., Hedges & Pigott,
2001). (The estimate can be negative and when this is so, the estimate is usually
truncated to zero.) The variance of the estimate of t* given in Equation 22 is

SE{#*} = V2[(vi +v2)/2 + 1] = V2[v + 1] > 1%, (23)

where v = (v; + v;)/2. If Study 1 is adjusted for publication bias, we can rewrite
Equation 23 using v = v* = (V] + v2)/2, and it remains true that the SE of the
estimate of 1 is greater than 1 itself.

Note however that t° is not necessarily scale-free. It is in the same units as the
effect size 0, and when 0 is not scale-free (e.g., if it is an unstandardized mean
difference), T will not be scale-free. Dividing 1> by v = (v; 4 v,)/2 results in a
scale-free parameter characterizing heterogeneity similar to A with SE given by

SE{%?/v} = V2[1 + t*/v] > 1*/%. (24)

If the effect size in Study 1 must be corrected for publication bias, Equation 24
can be rewritten by substituting v* for v.

Both Equations 23 and 24 show that whether we are interested in estimating >
or 12 /v, the SE afforded by the design of two studies (regardless of whether the
estimate in one of the studies must correct for publication bias) will necessarily
always be greater than the magnitudes that are of interest. Recall that the con-
ventional definitions of negligible heterogeneity that we cited from physics,
personnel psychology, and medicine were fractions t2 /v and the largest fraction

was 2/3. The SE of & or %> /v estimated from two studies is therefore more than
twice as large as the largest of these conventions.

Regardless of whether studies are considered fixed or considered random, the
uncertainty of the heterogeneity parameter being estimated is very large in com-
parison to important values of the parameter itself. Thus, evaluation of replica-
tion via estimation is not sufficiently sensitive to obtain unambiguous
conclusions when there is only a single replication study.

Comparing an Original Study to the Mean of Several Others Does Not
Resolve the Sensitivity Problem

It might seem that, if one replication study is inadequate to yield a statistical
analysis with adequate sensitivity, the obvious solution is to carry out more
replication studies and compare the replication studies to the original study. Such
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analyses (often called subgroup analyses or fitting categorical models to effect
sizes) are standard part of meta-analysis (see chapter 7 of Hedges & Olkin, 1985).
However, such a strategy is mathematically equivalent to combining the esti-
mates from all of the replication studies into one “synthetic study” and comput-
ing an effect size estimate (and its variance) from that synthetic replication study.
The analysis of the difference between the original study and the synthetic
replication study is subject to exactly the same limitations of analyses comparing
two studies that are described in this article.

Greater sensitivity (higher power or greater precision in heterogeneity para-
meter estimates) can be achieved with additional studies, but only by redefining
the focus of the analysis to be on the heterogeneity of all studies (see Hedges &
Schauer, 2018). This means that the original study is not privileged in the inter-
pretation and that differences among the effects of all the studies (original and
replication studies) are treated as equally relevant in evaluating replication.

Such analyses can be carried out using the O-statistic, and experience with
such analyses is the source of the conventions mentioned previously that
emerged in physics, personnel psychology, and medicine. Methods for carrying
out relevant power analyses described here were given by Hedges and Pigott
(2001). Power analysis can be an important tool for use in the design of ensem-
bles of studies to carry out empirical evaluations of replication. Although the
details are slightly different, the power of either fixed or random effects tests
based on the Q-statistic depends on the amount of heterogeneity among para-
meters (e.g., T°), the number of studies (k), and the estimation error variance of
the effects (v, which will typically depend on sample size #, in each study). Given
a fixed amount of heterogeneity (e.g., fixed 1), power can be increased by
increasing k or increasing n (which decreases v). One design problem is how
to choose n and k to produce a design that will be both feasible and sensitive
enough to yield unambiguous conclusions. One might even want to posit a cost
function and attempt to find optimal designs (e.g., designs that obtain a given
power or precision of estimates for the smallest cost).

Alternative Perspectives on Replication

We have argued that the definition of replication ought to focus on the simi-
larity between effect parameters 0, and 0, and that replications should be
designed to support unambiguous conclusions about that definition. However,
this article has shown that it is unlikely that analyses of replication based on only
two studies will be adequately sensitive to differences between 0, and 0,. This is
not necessarily a limitation of the methods. The Q-test is the likelihood ratio test
under the model and is thus the uniformly most powerful unbiased test, meaning
that no other test of the similarity of 0; and 0, will be more powerful.

It would be tempting to view this merely as a limitation of frequentist analysis
methods. While we agree that the Bayesian approach has certain interpretational
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advantages (e.g., it can characterize the probability distribution of 0; — 0,), it
does not obviate the essential problem that two studies, even if conventionally
well powered, do not provide enough information to allow a sensitive analysis of
replication. Bayesian approaches that assess the same operational definition of
replication as the frequentist methods in this article might focus on estimating the
difference between 0; and 6,. One way to conceive of sensitivity of such analyses
is via the width of the 95% posterior credible intervals.

For example, suppose that we assume that 6; — 6, has a normal prior distri-
bution with variance vp. Then, the posterior distribution of 6; — 0, given 7} — 7>
is normal with variance vp(vy + v,)/(vp + vi + V). If we write vp = (v; + w)/a,
then o can be interpreted as the strength of prior information in units of the pair of
studies that provide data. Thus, if the prior information is equivalent to the
observed pair studies, o = 1, if the prior provides less information than the
observed studies, o < 1. The posterior variance 6> reduces to

o7 = vz (25)
o +1

To say that the prior is relatively uninformative is to say that vp > v or that o is
considerably less than one. If the prior had one fifth of the information in the two
studies (o0 = 1/5), the posterior standard deviation would be 91% as large as the
frequentist variance of 7', — T5; if the prior had one tenth as much information as
the two studies, the posterior standard deviation would be 95% as large as the
frequentist variance of 77 — T75. In other words, if the prior is relatively unin-
formative, the length of the corresponding posterior intervals and confidence
intervals would be very similar.

This has important implications for the frequentist performance of the poster-
ior interval. The 95% posterior credible interval is

Ty — T +1.96, /%. (26)

Because 77 — T, is normally distributed with variance v; + v,, if the mean of
T, — T, were actually zero, the probability that the upper credible value U
exceeds any point ¢ would be

c 1.96
P{U>c}=1 (D<\/V1+V2 \/O(H). (27)

One way to evaluate this posterior credible interval is ask how often the upper
credible value U exceeds a nonnegligible value of 6; — 0,. We argued before
that consistency of sign (0 < 8, < ;) was one sensible definition of the largest
negligible difference. If 6; = 0.5, a posterior value of 6; — 6, > 0.5 would
correspond to a nonnegligible difference, and hence, it would be of interest how
probable U was to exceed 0.5. Suppose that Study 1 has a preset level of statis-
tical power, which defines a value of A; = 0,2/v,. Setting ¢ = 0; = /A;v| and
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assuming v; = v,, so that the original and replication study have equal precision

(27) implies that
M 1.96
PlU>0,}=1-0 = — .
{U>01} ( 2 o+ 1)

If the prior is even remotely uninformative, it turns out that U will often
exceed 0. For instance, let o < 0.1 with 6; = 0, and v; = v,, so that both studies
are reasonably well powered and the prior contains about one tenth of the infor-
mation of both studies, then P{U > 6} > 45%. Even if v, = v{/10, so that
Study 2 is 10 times the size as Study 1, P{U > 0,} > 21% for o < 0.1. Greater
precision can be introduced with a more informative prior. But when v; = v,, so
that both studies have 80% power, even when o = 1, so that the prior contains as
much information as both studies, P{U > 0;} > 27%. This suggests that the
posterior credible interval would be unlikely to provide an unambiguous means
of evaluating replication when there are two studies. Like the frequentist meth-
ods, performance would be better if there were more studies or if both individual
studies provided more information (e.g., had larger sample sizes).

Other forms of argumentation have been offered to do analyses about replica-
tion. For example, Hartgerink, Wicherts, and van Assen (2017) formalize how
Fisher’s method can be used to examine potential errors in frequentist determi-
nations about replication, and Simonsohn (2015) proposes assessing the relative
sensitivity of each study. Etz and Vandekerckhove (2016) evaluate the strength
of evidence regarding whether effects are nonzero in the original and replication
studies using Bayes factors. van Aert and van Assen (2017) assume that the
studies replicate exactly and pool information across original and replication
studies.

Each of the methods discussed in the previous paragraph assesses replication
using a fundamentally different operational definition. For instance, seemingly
successful replications in Etz and Vandekerckhove’s analysis involve both the
original and replication studies showing “strong evidence of an effect.” This
would mean that there is convincing evidence that both 6; # 0 and 6, # 0, but
this definition of replication puts no restriction on how different 6, and 6, can be.
Conversely, van Aert and van Assen’s analyses assume that the studies replicated
exactly, so that 6; = 0,. In either case, any gains in information come at the cost
of much looser definitions of replication or in much stronger assumptions. More-
over, precisely what is gained in terms of information (and what is lost in inter-
pretability) for these Bayesian methods does not appear to have been studied,
particularly in relation to design.

Conclusions

It might seem that there is nothing special about the design of a replication
study. If there is an existing study, simply plan one more study so that it will
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provide the required sensitivity in the analysis of replication. We have shown that
an ensemble of two studies (the original and one replicate) typically cannot
provide a test for replication that has high power or an estimate of heterogeneity
parameters with high precision (small SE). This finding is consistent with the
conclusion of Maxwell, Lau, and Howard (2015) that high power tests of repli-
cation are difficult to obtain, but even stronger. A single replication study usually
cannot provide adequate sensitivity to evaluate replication without ambiguity.

The exceptions to this argument would be cases in which the original study
had very high statistical power and was not subject to publication bias. Surveys
of statistical power suggest that very high statistical power is unlikely in most
psychological research (see, e.g., Dumas-Mallet et al., 2017; Vankov et al.,
2014). While the degree of publication bias is difficult to confirm, prospective
studies suggest the widespread existence of publication bias (see, e.g., Dick-
ersin, 2005). The ubiquity of statistically significant results coupled with the
low estimated power of studies in the literature also supports the existence of
publication bias.

The results of this article suggest that the statistical aspects of the design of
(ensembles of) replication studies deserve greater attention than it has received.
In most situations, single replication studies are inadequate to yield sufficiently
sensitive analyses (and therefore unambiguous findings), so designs with more
than one replication study are needed. Methods for testing replication in such
designs and for assessing their sensitivity are available (see Hedges & Schauer,
2018). Although it appears that adequate sensitivity can usually be achieved with
enough replication studies, this statement is not a detailed solution to the design
problem, any more than saying a large enough sample size can usually yield
adequate power is a solution to the problem of design of single experiments.

Finally, while the findings of this article suggest that conducting only a single
replication study is not a sensitive research design that does not mean that a
replication study lacks value. A single replication adds to the total information
there is about an effect and the average of the two effects effect is likely to have
more information (smaller SE) than the estimate from the initial study. It can also
give useful insight into protocol standardization, suggest avenues of future inno-
vation, and provide additional insight for making evidence-based policy. More-
over, a single initial replication may be one effort in a sequence of replications,
and as researchers conduct additional subsequent replications, eventually a pre-
ponderance of evidence will support more sensitive analyses. Finally, the role of
conducting a replication, particularly a conceptual replication, may not even be
to get the same result as an original study, but instead to investigate the how a
finding changes in new settings or under different conditions.
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