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The problem of assessing whether experimental results can be replicated is

becoming increasingly important in many areas of science. It is often assumed

that assessing replication is straightforward: All one needs to do is repeat the

study and see whether the results of the original and replication studies agree.

This article shows that the statistical test for whether two studies obtain the

same effect is smaller than the power of either study to detect an effect in the

first place. Thus, unless the original study and the replication study have

unusually high power (e.g., power of 98%), a single replication study will not

have adequate sensitivity to provide an unambiguous evaluation of replication.
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Introduction

The idea that scientific studies can be replicated is fundamental to the rhetoric

of the scientific method and is part of the logic supporting the notion that science

is self-correcting because replication attempts will identify findings that are

incorrect (see, e.g., McNutt, 2014). During the last decade, the replicability of

scientific findings has been called into question by empirical analyses in medi-

cine (e.g., Collins & Tabak, 2014; Ioannidis, 2005; Perrin, 2014), psychology

(e.g., Open Science Collaborative, 2015), and economics (e.g., Camerer et al.,

2016). Scientists themselves appear to be concerned about replicability in many

disciplines (e.g., Baker, 2016) including psychology (e.g., Pashler & Harris,

2012). This concern has been echoed in the popular press, with articles in News-

week, The Economist, and The Atlantic questioning the replicability of scientific

work. It seems likely that evidence that the findings of scientific research cannot

be replicated may undermine both the credibility of science and enthusiasm for

funding scientific research.
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Because the concept of replication is so important to science, one might

expect that precise definitions of what constitutes a replication, how to design

replication studies, and how to analyze their results would be well known in the

scientific literature. As Schmidt (2009) puts it,

one would expect there to be a large body of literature on replication providing

clear-cut definitions on such matters as “what exactly is a replication experi-

ment?” or “what exactly is a successful replication?” Furthermore, one would

expect to find guidelines on how to conduct a replication or maybe some standard

operating procedures on this issue. . . . The opposite is true. (p. 90)

Much of the existing literature on replication focuses on the definition and

functions of replication not on the design or analysis of replication studies (see,

e.g., Gomez, Juristo, & Vegas, 2010; Lykken, 1968; Sidman, 1960). Schmidt

(2009) argues that previous philosophical and psychological literature on repli-

cation largely makes a distinction between two types of replication. One is direct

replication, which means “Repetition of an experimental procedure” (p. 91). The

other is conceptual replication, which means “Repetition of a test of a hypothesis

or a result of earlier research work with different methods” (p. 91). Schmidt then

goes on to evaluate the types of replication in the social sciences but offers little

discussion of the design or analysis of replication studies.

While the analytical question of how to decide whether the findings from a set

of studies should be regarded as supporting replication has been debated for

many years (see, e.g., Humphreys, 1980), it is hardly settled. For example, the

Open Science Collaboration (2015) conducted one replication of each of a set of

100 published studies in psychology. When analyzing the results of their project,

they claimed, “There is no single standard for evaluating replication success” and

used five different (and in some cases inconsistent) ways of evaluating whether

the studies replicated. The analytic methods they used (and their conclusions)

were almost immediately challenged (see, e.g., Etz & Vandekerckhove, 2016;

Gilbert, King, Pettigrew, & Wilson, 2016; Hartgerink, Wicherts, & van Assen,

2017; van Aert & van Assen, 2017). A replication project in economics similarly

stated that “There are different ways of assessing replication, with no universally

agreed-upon standard of excellence” and also evaluated replicability in several

different ways (Camerer et al., 2016).

It is notable that both of these large, systematic programs of replication studies

were carried out without a specific criterion for what replication would mean (a

precise definition of replication). Moreover, these projects were not designed

using principles that would ensure conclusive results based on any one of the

metrics they used. In contrast, agencies that fund clinical trials or large field

experiments in education, such as the U.S. National Institutes of Health (NIH) or

Institute of Education Sciences (IES), routinely require projects, before they are

funded, to provide precise specification of analyses to be done and power
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calculations to support the claim that the study’s results will be unambiguous.

That is, they require a demonstration that the power of the proposed study will be

high enough that a failure to reject the null hypothesis could be interpreted as a

failure to find an effect of the smallest size that is deemed important. It appears

that no such principles were used to justify that analyses in either of these two

high-profile research efforts would lead to unambiguous conclusions.

The focus on analysis of replication is important because there are pervasive

examples of misinterpretation of replication studies. Suppose Study A finds that

a treatment has a statistically significant effect, but Study B does not, this is often

called a “failure to replicate” and is one criteria used in the articles described

above. Similarly, if studies A and B both find statistically significant (or both find

statistically insignificant) effects, this is often called a “replication.” The fact that

differences in conclusions from statistical significance tests do not necessarily

correspond to differences in study effects but are often interpreted as doing so has

been noted for many years (see, e.g., Gelman & Stern, 2006; Hedges & Olkin,

1985, chapter 1; Humphreys, 1980). It is also true that inference about the overall

results of two or more studies based on the outcomes of statistical significance

tests in each one (i.e., deciding that the overall effect is nonzero based on the

proportion of studies that find a statistically significant result) has remarkably

poor properties as an inference procedure (Hedges & Olkin, 1980).

Despite the lack of apparent consensus on how to statistically evaluate repli-

cation, systematic replication efforts such as those by the Open Science Colla-

boration suggest that scientists generally believe that evaluation of whether a

study’s results replicate is a straightforward process: Simply repeat the experi-

ment (with the same or perhaps an even larger sample size than the original),

compare the results of the two studies, and see if they are “the same.” However,

precisely what is meant by the same, how to assess that definition, and what data

are needed to do so remain somewhat unsettled matters. Note that the problem of

planning a data collection to evaluate whether the results of a study replicate is

fundamentally a research design problem. It specifies a design in the form of an

ensemble of studies (in this case, two studies, the original and the replication

study) and specifies data collection procedures (the same as the original study

with at least the same sample size) for each study in the ensemble.

This article addresses the question of whether an ensemble of two studies (the

original study and a single replication study) can ever be sufficient to obtain

conclusive evidence about whether a result has or has not been replicated. Our

focus is on the types of direct replications conducted so far in the social sciences,

where the goal is to obtain results that might be considered the same across

replication studies. We review the importance of adequately sensitive research

designs for statistical analyses, and their implications in the context of replica-

tion. Using meta-analysis as framework, we clarify subjective notions about

replication (i.e., getting the same results) and describe relevant statistical anal-

yses. We then demonstrate that the statistical uncertainty inherent in comparisons
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between the results of two studies is larger than that of the result of either study

alone. Thus, a single replication study cannot usually lead to unambiguous sta-

tistical conclusions about replication. We conclude that serious statistical

research on the design of ensembles of replication studies is needed to support

scientific efforts to evaluate replication.

Research Design and Statistical Analysis

Research design should be informed by some evaluation of whether the

design is sufficiently sensitive so that the findings from it will be unambiguous.

Statistical analyses are unambiguous only when they are sufficiently sensitive.

The two most frequently used modes of statistical analysis are hypothesis

testing (statistical significance testing) and estimation of effects or effect sizes.

These two modes of analysis are closely related, and each has established

concepts of sensitivity.

For hypothesis testing, sensitivity can be characterized by the statistical power

of the test. Researchers posit well-formed null hypotheses, and the analysis

determines whether the data are sufficient to reject that hypothesis. Typically,

in the context of a single experiment, the null hypothesis is of no (or a negligible)

effect. Rejection of the null hypothesis is conclusive because the test is designed,

so that it will have only a small chance of rejecting the null hypothesis if it is true.

That small chance is called the significance level and is determined a priori by the

investigator.

On the other hand, failure to reject the null hypothesis is more ambiguous,

and this is where the sensitivity of the test becomes important for interpretation.

Statistical power provides a measure of that ambiguity. It is the probability that

the statistical analysis would have detected the smallest real effect that is

deemed nonnegligible (the smallest effect “worth detecting”). This probability

depends on the design and analysis of the investigation, the level of statistical

significance, and the definition of the largest effect that is nonnegligible (worth

detecting). The bigger the smallest effect worth detecting, the higher the sta-

tistical power.

When the statistical analysis has low power, failure to reject the null hypoth-

esis is inherently ambiguous: It could mean that the real effect is negligible (or

null), or there could be a nonnegligible real effect that goes undetected due to low

sensitivity. Designing experiments so that they will have high statistical power

reduces the ambiguity of interpreting nonstatistically significant findings. This is

why agencies that fund large-scale clinical trials (e.g., NIH or IES) require power

analyses in proposals for funding of such trials. While there is currently a strong

scientific consensus that significance levels should be set to 5%, there is less of a

consensus on how high statistical power should be, but the idea that 80% power is

adequate has been broadly embraced in the social sciences (Cohen, 1977).
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When estimation is used as the analytic technique, sensitivity can be char-

acterized by the standard error (SE) or the width of the confidence interval for the

estimated effect. There are no firmly established standards for desirable precision

or confidence interval width, but there is a general understanding that precision

should be high and confidence intervals should be narrow relative to the quantity

being estimated.

The virtues of research designs that have high sensitivity have been well

known for some time. However, research designs that have high power or high

precision are generally costly because such sensitivity is usually obtained by

using large sample sizes. Not surprisingly, there is ample evidence that research

studies in medicine and the social sciences are often less sensitive than would be

desirable (see, e.g., Dumas-Mallet, Button, Boraud, Gonon, & Munafò, 2017;

Vankov, Bowers, & Munafò, 2014).

It would seem that sufficiently sensitive designs would be of particular interest

for studying replication. The replicability of findings is central to the idea that they

are scientific, and so evaluations of replicability shouldbe conclusive as part of good

science. In addition, conducting replications will require resources that may other-

wise have been devoted to exploring new questions. And while resolving which

(novel research vs. replication) should be a priority cannot be solved by statistics

alone, at the very least, considerations about design should be used to ensure that

resources are not devoted to replication research that nets ambiguous results.

The Statistical Analysis of Effect Heterogeneity in Meta-Analysis

The most relevant statistical literature for considering the analysis of replica-

tions is that of meta-analysis, which offers methods for statistically combining

results across studies (see, e.g., Cooper, Hedges, & Valentine, 2009; Hedges &

Olkin, 1985). However, meta-analysis has been more concerned with summariz-

ing effect sizes from a set of studies than evaluating whether studies replicate

according to stated criteria. Moreover, meta-analysis is mostly concerned with

problems of summarizing existing studies, not with the problem of designing

ensembles of studies to evaluate replicability. Yet, because meta-analysis is a

widely accepted method of combining evidence in many areas of science, our

approach is in the spirit of meta-analysis and uses meta-analytic methods.

In the meta-analytic framework, a study’s results can be summarized by an

effect parameter y, which is the result the study would have obtained if there

were no estimation errors due to the sampling of experimental units (e.g., if the

sample size were infinite). The effect size might be a treatment–control mean

difference, a standardized mean difference, a correlation coefficient, log-odds

ratio, or any standard meta-analytic effect size. While the true result of the study

(unperturbed by estimation error) is represented by the effect size parameter y,
we do not observe this parameter in studies with finite sample size. Instead, we

observe an estimate T of y. For discussions of a variety of effect sizes that are
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often used in education and the social sciences and their properties, see, for

example, chapters 12 and 13 of Cooper, Hedges, and Valentine (2009).

Suppose that two studies are potential replicates of one another. Let y1 and y2
be the effect size parameters from the studies and let T1 and T2 be the effect size

estimates with known estimation error variances v1 and v2. Assume that the effect

size estimates are approximately normally distributed so that

Ti* Nðyi; viÞ:
We argue that replication can be described in terms of the effect parameters

since they are the scientific quantities of interest in the analysis of any single

study. If the studies successfully replicate, then y1 and y2 should be similar, and if

they do not successfully replicate, then y1 and y2 must be different. Thus, given

the two modes of statistical analysis, evaluating whether the two studies success-

fully replicate can be done by conducting a hypothesis test about the difference

between y1 and y2 or by estimating the magnitude of that difference. If these

analyses are not sensitive, then analyses about whether a scientific finding is

replicated will be ambiguous.

A primary statistical tool used in meta-analysis to assess differences between

effect parameters is the Q-statistic, and it forms the basis of the analyses

described in this article. The Q-test in meta-analysis is widely used because

it is the likelihood ratio test for heterogeneity under the model described above

and so has certain optimal properties. When there are only two studies, the

Q-statistic is given by

Q ¼ ðT1 � T2Þ2=ðv1 þ v2Þ: ð1Þ
When y1 ¼ y2, Q has a w2 distribution with one degree of freedom. Note that

when there are only two studies, the Q-statistic is just the square of the difference

between T1 and T2 divided by the SE of the difference (the Wald statistic), so it is

equivalent to the two-sided version of that test.

When y1 6¼ y2, the distribution ofQ depends on how we conceive of the effect

parameters (Hedges & Pigott, 2001). Are they the entire population of parameters

of interest, or might we want to make inferences about unobserved (potentially

future) studies? The answer to this question has implications for both the scope of

inference and the properties of the analysis we might do. In general, the way we

frame the question of replication determines the conclusions we can draw and the

analyses that support them. Below, we describe theoretical considerations and

their implications for an analysis of replication.

Theoretical Considerations in Framing an Analysis of Replication

Do the Observed Studies Comprise the Population or a Sample?

The studies available can be considered in either of two different ways: fixed

or random. This determines not only the scope of inference but also the way in
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which we might characterize differences between studies and the properties of

the relevant analyses.

If the studies constitute the entire population of studies relevant to assessing

replication, then inferences about replication are inferences about the effect

parameters in the studies actually observed. This is consistent with the fixed

effects framework in meta-analysis (see, e.g., Hedges & Vevea, 1998). One

might say that conclusions about replication in the fixed-studies framework are

conclusions about how well the observed studies agree. Statistically, this means

that we can define replication directly in terms of the difference between y1
and y2. Moreover, when we treat the studies as fixed, the sampling distribution

of Q depends on the magnitude of (y1 � y2)
2 through the noncentrality parameter

l ¼ ðy1 � y2Þ2=ðv1 þ v2Þ (see below).

If the studies are considered random, then the studies observed are a sample

from a hypothetical population or universe of studies, and their effect parameters

are a sample from a hypothetical universe of effect parameters. Inferences about

replication are inferences about the universe of effect parameters from which the

sample was taken. Thus, the observed studies and their effect parameters are of

interest only in that they provide information about these hypothetical universes

of studies and their effects. This is consistent with the random effects framework

in meta-analysis (see, e.g., Hedges & Vevea, 1998). One might say that conclu-

sions about replication in the random-studies framework are conclusions about

how well findings might agree in a universe of studies, where that universe is one

which might have yielded the observed studies as a random sample.

In statistical terms, the random-studies framework defines replication in

terms of how similar yi drawn from the same distribution might be. We can

characterize this similarity in terms of the variance of this distribution, t2; a
distribution with a small variance t2 would produce yi that are similar. It turns

out that the sampling distribution of Q under the random effects model depends

on the magnitude of t2.
The difference between these two frameworks may seem trivial; however,

there are two important differences. The first is that they answer slightly different

questions. The fixed effects model addresses agreement between only the

observed studies, while the random effects approach pertains also to an entire

population of studies including studies not observed. This is why we need dif-

ferent parameters (l and t2) to describe replication depending on the model.

Second, when there is not perfect agreement in effect parameters across studies,

the Q-statistic has a somewhat different sampling distribution when studies are

considered fixed than when they are considered random. This has implications

for statistical power and constructing tests for approximate replication (see the

following section).

In general, it may seem odd to conduct a random effects analysis on only two

studies. We present random-studies analysis methods here not to advocate their
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use, but rather to describe important issues in analyzing replication studies, as

well as to illustrate the types of considerations required to design them.

The Definition of Replication: Exact Replication or Approximate Replication?

To conduct a statistical analysis of replication, it must be defined precisely.

One possible definition (which is akin to the null hypothesis of the Q-test in

meta-analysis) is exact replication: All studies have exactly the same effect

parameter. In the fixed effects model, this would correspond to l ¼ 0, and in

the random effects model, this would imply that t2 ¼ 0. This is logically appeal-

ing, but it may be too strict to be useful in scientific practice. Even in physics,

there is awareness that even the most careful experiments measuring the same

phenomenon exhibit some heterogeneity of results (see, e.g., Hedges, 1987;

Olive et al., 2014; Rosenfeld, 1975). Therefore, one might argue that some

variation in effects across attempted replication studies might be expected. Small

differences in the magnitude of effects may not change the interpretation of a

finding, and hence, effect parameters that are not identical may still reflect

successful replications.

Thus, replication might be defined as a situation in which effects are “almost

the same” across studies, such that almost the same is defined precisely. We

regard the specific operationalization of almost the same as a matter of scientific

judgment that might well differ across fields. We can define approximate repli-

cation in terms of the parameters l and t2 by choosing values that correspond to

negligibly small differences in effect parameters. We offer conventions used in

three scientific areas to show how one might quantify this notion.

To illustrate how almost the same might be defined, consider three conven-

tions that have arisen in different sciences for identifying a negligible value of t2

(or l). In high-energy physics, the Particle Data Group (which has been compil-

ing meta-analyses of high energy physics experiments for over 50 years) con-

cludes that (when there are a total of two studies) a value ofQ� 1.25 corresponds

to negligible heterogeneity (see Olive et al., 2014). Because the expected value of

Q under the studies-fixed model is 1 þ l and 1 þ t2/v under the studies-random
model, this implies that l ¼ 1/4 would be a negligible value of l and that t2/v ¼
1/4 would be a negligible value of t2/v. In personnel psychology, Hunter and

Schmidt (1990) proposed that when the estimation error variance v is at least

75% as large as the total variance of the effect size estimates (v þ t2), then the

variance of the effect size parameters t2 could be considered negligible. This

implies that values of l ¼ 1/3 and t2/v ¼ 1/3 correspond to negligible amounts

of heterogeneity in effect size parameters. In medicine, a value of I2 ¼ 100%�
t2/(v þ t2) of 40% or less is considered to be “not important” (see section 9.5.2

of Higgins & Green, 2008). This implies that l ¼ 2/3 and t2/v ¼ 2/3 would be

negligible amounts of heterogeneity. We do not advocate any of these values

but merely use them for illustration.
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Publication Selection

An important assumption in the results of this article is that Study 1 has

already been conducted and (presumably) published. This assumption fixes v1
and poses the question of designing a replication study in terms of the sample size

of Study 2 (and hence v2). However, there is considerable evidence that published

studies often experience selection that favors the publication of those that obtain

statistically significant results (publication selection; see, e.g., Dickersin, 2005

and the references cited therein). Such publication selection leads to bias in the

observed effect size T1 that can be quite large, as much as 250% in extreme cases

(see Hedges, 1984).

The arguments in this article are structured in terms of the effect size para-

meter y1 in the original study, not the observed effect size estimate T1. But if T1
is a biased estimate of y1, then it would make sense to adjust for that bias in

analyses of replication, and there are several ways to do so. Hedges (1984)

provides a maximum likelihood estimator for the effect size that models the

selection process explicitly, and several variants of the method have been

proposed (McShane, Böckenholt, & Hansen, 2016; Rothstein, Sutton, & Bor-

enstein, 2005). These types of corrections result in a “new” estimate T1
� that

has variance v1
�. Since these methods typically require estimation of additional

parameters associated with selection, the corrected estimates tend to have a

greater variance, so that v1
� > v1. Moreover, adjustments that rely on maxi-

mum likelihood methods, such as Hedges (1984), will result in effect estimates

that are asymptotically normal. Thus, the analysis methods described in this

article can proceed with T1 and v1 if there is no publication bias, or with T1
� and

v1
� if there is.

Later in this article, we show that the sensitivity of analyses of replication

depends on y1 and v1, and sensitivity tends to improve with more precise

estimates of effects (i.e., with smaller v1). Since publication bias corrections

increase the estimation error variance ðv1� > v1Þ, analyses that adjust for pub-
lication bias are likely to be less sensitive than analyses of studies not subject to

publication selection.

Hypothesis Tests and the Burden of Proof

In addition to the considerations above (i.e., studies are fixed or random;

replication is exact or approximate; publication bias present in Study 1 or not),

hypothesis tests depend on one additional factor: where the burden of proof is

placed. If the burden of proof is on nonreplication, then the null hypothesis is that

the studies (exactly or approximately) replicate. Rejecting this null hypothesis

would mean that we conclude that the studies failed to replicate. Note that this

test will be conclusive about failures to replicate, but unless the test has high

power, it will be inconclusive about whether studies replicate.

Hedges and Schauer

551



However, if the goal of conducting a replication is to determine that study

results are similar, then this is the wrong inferential structure. Instead, the burden

of proof should be on replication rather than nonreplication. In this setup, the null

hypothesis is that the studies failed to replicate (i.e., l or t2 are at large), and

rejecting the null hypothesis would mean that we conclude that the studies

replicate (i.e., l or t2 are small or null).

Given this additional consideration, Hedges and Schauer (2018) show that

there are six different hypothesis tests about replication. These are discussed

below in the context of designs with k ¼ 2 studies.

Analyses of Replication and Their Properties

So far, we have outlined a meta-analytic approach to the analysis of replica-

tions. The sections that follow detail these analyses in the context when only two

studies are conducted (an original and one replicate), as in some of the more

high-profile empirical evaluations of replication. We explore the properties of

these analyses for fixed-studies and random-studies hypothesis tests, as well as

with estimation of differences between effects. In particular, we demonstrate that

in many practical situations, the sensitivity of these analyses cannot support

unambiguous conclusions for only two studies.

Fixed Effects Hypothesis Tests for Exact Replication

We can test the null hypothesis of exact replication (H0: y1 ¼ y2) using the

standard Q-test in meta-analysis. Recall that when the effect parameters are

identical (so that the studies replicate exactly), Q has a w2 distribution with one

degree of freedom. So to conduct an a-level test, we compute Q as in Equation 1

and compare it to the critical value

cð1�aÞ ¼ F�1ð1� aj0Þ; ð2Þ
where F(x | l) is the cumulative distribution function of the noncentral w2 dis-
tribution with one degree of freedom and noncentrality parameter l, and c(1–a) is
the level 100(1 � a) percent point of the central w2 distribution (e.g., for a ¼
0.05, c(1–a) ¼ 3.84). If Q > c(1–a), we reject the null hypothesis and conclude that

the studies do not replicate.

When studies are conceived as fixed, but when y1 6¼ y2, then Q has the

noncentral w2 distribution with one degree of freedom and noncentrality para-

meter (see Hedges & Pigott, 2001), which is given by

l ¼ ðy1 � y2Þ2=ðv1 þ v2Þ: ð3Þ
The statistical power of the studies-fixed test for replication is

1 � F½cð1�aÞjðy1 � y2Þ2=ðv1 þ v2Þ�; ð4Þ
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where F(x | l) and c(1–a) are as in Equation 2. Note that in this fixed-studies

model the sampling distribution (and therefore the statistical properties) of Q is

determined entirely by l.
Designing a replication study for a sufficiently powerful analysis requires

consideration of l; larger values of l mean greater power. If the original study

has already been conducted, v1 is fixed. The design decision, then, is how small

to make v2 (which often corresponds to how large to make the sample size of

Study 2). We can make v2 as small as we like by making the sample size of the

replication study larger. However, as v2 tends to be 0, l tends to be

ðy1 � y2Þ2=v1, so the maximum power will be

1� Fðcð1�aÞjðy1 � y2Þ2=v1Þ;

where F(x | l) and c(1–a) are as in Equation 2. Because there is a limit how large

we can make l and because statistical power is determined by l, there is a limit to

how high the statistical power may be, even if we have an indefinitely large

replication study.

To compute the power of the test for replication, we must decide the smallest

nonnegligible value of jy1 � y2j and the l value corresponding to this

difference: the smallest nonnegligible l. This is equivalent to specifying a

(symmetric) range of y values above and below y1 which would constitute a

“negligible” difference between the results of the two studies. The

larger this range of negligible difference, the larger the smallest value of jy1 � y2j
(and l) worth detecting, and thus the higher the statistical power to detect that

difference.

What is the largest this range could be? We would argue that the largest

difference that might be considered negligible is one in which both y1 and y2
have the same sign (there is no qualitative disagreement between effects in Study

1 and Study 2). For example, if Study 1 found a positive effect ðy1 > 0Þ, then y2
must also be positive. It follows that when 0 < y2 < y1, it must be true that

y1 � y2 < y1. Thus, the largest l value that corresponds to a qualitative replica-

tion (call it lR) must be less than y12=ðv1 þ v2Þ.
A test of the null hypothesis that y1 ¼ 0 in Study 1 uses the test statistic

T1
2=v1, which has the central w2 distribution if y1 ¼ 0 and the noncentral w2

distribution if y1 6¼ 0. The power of the test is determined by the (noncentrality)

parameter l1 ¼ y12=v1. Comparing l1 to lR, we see that

lR < y12=ðv1 þ v2Þ < y12=v1 ¼ l1:
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Thus, the maximum possible power of the test for replication is smaller than the

power of the original study’s (Study 1) test of the null hypothesis of no effect.

However, the maximum possible power may be much lower in theory and almost

certainly will be lower in practice for two reasons.

First, power will be lower if we care about smaller differences between study

effects rather than just disagreement in sign. If the magnitude of the difference

between effects is important, a y2 value that is substantially smaller than y1, but
still positive, might not be considered a replication. In that case, the largest lR
corresponding to a replication can be substantially less than l1. For example,

suppose that a reduction in effect of 50% was considered the largest nonnegli-

gible difference between y1 and y2. In that case lR¼ l1/4 and if Study 1 had 80%
power to detect y1 (which occurs if l1 ¼ 7.85), then the maximum theoretical

power of the test for exact replication would be only 29%. Note that lR ¼ 7.85/4

is nearly 3 times the largest value of negligible heterogeneity discussed in the

previous section, so in comparison this would be a very loose definition of

replication.

A second reason that the power of replication tests must be lower than the

theoretical limits above is that the theoretical limits require perfect precision in

the replication study (i.e., v2 ¼ 0 or an infinite sample size). If Study 2 has the

same sample size as Study 1, so that, for example, v1 ¼ v2, then the largest

possible noncentrality parameter of the replication study becomes

y12=2v1 ¼ l1=2. In this case, if Study 1 had power of 80%, the power of the

test for exact replication would be 51%. Even if Study 1 had power of 90%, that

of the replication test would be only 63%. Study 1 would have to have a power of

98% for the replication test to have 80% power, which is unusual in many

medical or social science contexts.

Additionally, if the analysis corrects T1 for publication bias, then the proce-

dures above involve the corrected estimate T1
� and its variance v1

� instead of T1
and v1. However, the power of the test still depends on the noncentrality para-

meter l, which is a function of the estimation error variance of the first study (v1
or v1

�). Let l� be the noncentrality parameter after adjusting for publication bias,

and l be the noncentraily parameter with no adjustment. Note that l ¼
ðy1 � y2Þ2=ðv1 þ v2Þ > ðy1 � y2Þ2=ðv1� þ v2Þ ¼ l� so that the noncentrality

parameter after adjustment is smaller than the noncentrality parameter without

adjustment. This means that the test for exact replication that corrects for pub-

lication bias in Study 1 will be even less powerful than the test when no correc-

tion for publication selection is needed.

The greatest theoretical power we may hope to achieve in a test of exact

replication is the same as the power of Study 1 to detect a nonzero effect as

small as y1. In practice, the power of the test for replication will be smaller and

can be much smaller. Therefore, it may be impossible to design a single replica-

tion study to ensure that the analyses of replication are sufficiently sensitive to be
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conclusive; this is especially true if we consider small differences between study

effects to be meaningful.

Fixed Effects Test for Approximate Replication

The test for approximate replication requires the specification of the largest

difference between the effect in the original study ðy1Þ and that in the replication
ðy2Þ that still qualifies as a replication. Call this difference d0, so that the largest

value of the noncentrality parameter that corresponds to replication is

l0 ¼ d02=ðv1 þ v2Þ; ð5Þ

and the null hypothesis of approximate replication is not that l ¼ 0 (as in exact

replication) but

H0 : l � l0:

To test this hypothesis at significance level a using the Q-statistic, the reference

distribution is that of Q when l ¼ l0, so that the test rejects the null hypothesis

of approximate replication when Q exceeds the 100(1 � a) percentile of the

noncentral w2 distribution with one degree of freedom and noncentrality para-

meter l0. Call this critical value c(1–a)(l0) to emphasize that it is a function of

both a and l0. When l > 0, the noncentral w2 distribution is stochastically larger

(shifted to the right) compared to the central w2 distribution, so that when l0 > 0,

c(1–a)(l0) > c(1–a)(0) ¼ c(1–a). For example, while c(1–0.05) ¼ c(1–0.05)(0) ¼ 3.84,

c(1–0.05)(1/4) ¼ 4.76, c(1–0.05)(1/3) ¼ 5.03, and c(1–0.05)(2/3) ¼ 6.06.

The statistical power of the level a studies-fixed test for approximate replica-

tion with negligible heterogeneity l0 is,

1� F½cð1�aÞðl0Þjðy1 � y2Þ2=ðv1 þ v2Þ�; ð6Þ

where F(x | l) is the cumulative distribution function of the noncentral w2 dis-
tribution with one degree of freedom and noncentrality parameter l. Here, the
noncentrality parameter l ¼ ðy1 � y2Þ2=ðv1 þ v2Þ is the actual heterogeneity

expected; it serves the same function as the putative effect size in more conven-

tional power analyses. Comparing the expression for statistical power of the test

for approximate replication in Equation 6 with that for the test of exact replica-

tion in Equation 4, we note that the only difference is the critical value used.

Because tests for approximate replication use the same test statistic, but larger

critical values than the test for exact replication, the statistical power of tests for

approximate replication to detect the same amount of real heterogeneity is lower

than that of the test for exact replication. Therefore, if tests for exact replication

based on a single study are insufficiently powerful, tests for approximate replica-

tion (including ones that correct for publication bias) will be even less powerful.
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Fixed Effects Tests for Nonreplication

The tests above will be conclusive about failures to replicate, but not about

replication. If we wish to make conclusive statements about studies successfully

replicating, then the burden of proof should be on replication. In that case, the

null hypothesis would be that the studies do not replicate, and concluding oth-

erwise would require convincing evidence that they do.

Forming a null hypothesis that the studies fail to replicate involves some

consideration of the smallest difference between y1 and y2 that might be consid-

ered nonnegligible. This can be operationalized by the following null hypothesis:

H0 : l � l0

Note that this is the opposite of the null hypothesis of the test for approximate

replication in the previous section. Here, the true difference between studies is

characterized by l ¼ d2/(v1 þ v2) such that d ¼ y1 � y2. In this test of non-

replication, the null hypothesis is that this value l is at least as large as a

difference characterized by l0 ¼ d0=ðv1 þ v2Þ, where d0 corresponds to the

smallest nonnegligible difference between studies (i.e., the smallest value of d
that corresponds with nonreplication).

Hedges and Schauer (2018) show that to test this null hypothesis with level

a, one computes Q as in Equation 1 and rejects the null hypothesis if it is less

than the critical value ca(l0), the 100a percent point of the distribution of Q

when l ¼ l0:

caðl0Þ ¼ F�1ðajl0Þ; ð7Þ
where F is the w2 distribution function as in Equation 2.

The power of this test to detect l < l0 is given by

F½F�1ðajl0Þjl�: ð8Þ
The power increases as l decreases and is greatest when the studies replicate

exactly so that l ¼ 0. The power is also an increasing function of l0, which
means that it is higher as we test looser notions of nonreplication. What is the

largest value of l0 we might consider testing (denote it l0R)? One way to

approach this is to use the conventions of negligible heterogeneity described in

this article, so that l0R ¼ 2/3 would be the largest possible value we might test.

Alternatively, we can consider defining l0R in terms of d02 and v1 þ v2. As in the

previous sections, we would argue that qualitative disagreement would be an

upper bound for negligible differences between study results, so that d02 < y12.
Likewise, we note that v1 þ v2 < v1. Taken together, we see that

l0R ¼ d02=ðv1 þ v2Þ < y12=v1 ¼ l1:

Note that we might expect l1 to be much larger than one, and hence much larger

than the conventions of negligible heterogeneity described in this article. For
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instance, if Study 1 had only 50% power, l1 ¼ 3.84, nearly 6 times the largest

convention of negligible heterogeneity (l0 ¼ 2/3). Thus, we consider l1 to be the
absolute loosest notion of nonreplication (largest l0R) we might consider testing.

Taken together, this would suggest that the most powerful this test can be is

given by

F½F�1ðajl1Þj0�: ð9Þ

This expression, again, depends on l1, which determines the power of Study 1 to

detect a nonzero effect. While the maximum power of the test for nonreplication

given in Equation 9 is not strictly bounded by the power of Study 1, it will be less

than the power of Study 1 for values of l1 < 13 (so scenarios when Study 1 has

less than 95% power). In other words, the maximum power for this test, too, is

often bounded by the design of Study 1. If Study 1 does not have very high

power, then the power of the test for nonreplication will be quite low. For

instance, if Study 1 has 60% power (i.e., l1 ¼ 4.90), then the maximum power

of the test given in Equation 9 will be only 44%.

In practice, the power of the test for nonreplication will likely be much smaller

than the power of Study 1 for three reasons. First, the maximum power is

achieved when v2 ¼ 0, but Study 2 will have a finite sample size. If Study 1 has

80% power and Study 2 is the same size as Study 1, so that v1¼ v2, the maximum

power attainable would only be about 32%; even if Study 2 is twice as large as

Study 1, so that v1/2 ¼ v2, the power would still be below 50%.

Second, while qualitative disagreement serves as an upper bound for d02, we
might want to test more stringent notions of nonreplication (i.e., smaller d02 or
l0). As an example, suppose Study 1 had 80% power and that we consider a 75%
reduction in the effect (so that y1 ¼ 4y2) to be a nonnegligible difference. Then,

the greatest possible power of the test for nonreplication would only be 38%. It is

worth noting that even this more stringent definition of replication (l0 ¼ 4.42) is

still several times larger than the conventions of negligible heterogeneity dis-

cussed in this article (l0 � 2/3), and the power of the test for l0 ¼ 2/3 is never

above 7%.

Third, the maximum power is only achieved when y1 ¼ y2, so that the studies
replicate exactly. However, getting studies to replicate exactly is far from trivial.

The history of science is marked by just how difficult this can be (see Collins,

1992). Steiner and Wong (2018) lay out the requirements for exact replication

from a causal inference perspective and suggest that it will be very tough to

achieve in practice, even if both studies are conducted simultaneously by the

same investigator.

If the analysis needs to correct the effect size estimate from the first study T1
for publication bias, the resulting estimate T1

� and its variance v1� are used in the
analysis. Note that l* (the noncentrality parameter when T1

� is used in the

analysis) will be less than l, but the maximum power derived Equation 9 sets
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l ¼ 0, which means that the power of the test that corrects for publication

selection (for the same value of l0) will be no larger than what is given in

Equation 9. Thus, if the unadjusted tests cannot attain high power, then neither

will the adjusted tests.

Random Effects Test for Exact Replication

The test for exact replication for the random-studies model proceeds identi-

cally to that of the fixed-studies model. Concretely, we computeQ as in Equation

1 and compare it to the same critical value c(1–a) as in Equation 2. However, the

nonnull sampling distribution of Q now has a different form. When studies are

conceived as random, but t2 > 0, the sampling distribution of Q is equal to that of

a constant times a central w2 random variable, so that

v1 þ v2
v1 þ v2 þ 2t2

� �
Q ¼ 1

1þ 2t2=ðv1 þ v2Þ
� �

Q*w2
1; ð10Þ

(see Hedges & Pigott, 2001). The statistical power of the studies-random test for

replication is

1� F
ðv1 þ v2Þcð1�aÞ
v1 þ v2 þ 2t2

����0
� �

¼ 1� F
cð1�aÞ

1þ 2t2=ðv1 þ v2Þ

����0
� �

; ð11Þ

where F(x | 0) is the cumulative distribution function of the (central) w2 distri-
bution with one degree of freedom (see Hedges & Pigott, 2001). Note that, in this

studies-random model, the sampling distribution of Q is determined entirely by

t2/(v1 þ v2); larger values of this correspond to greater power.

Consider designing Study 2 (the replicate) to ensure a sufficiently powered

test. As in the studies-fixed case, suppose that we observe Study 1, which has true

effect size y1 > 0 and estimation error variance v1. Because v1 is fixed, it is clear

that the maximum power of the test is bounded below one for a given (finite) t2.
Letting v2 tend to zero so that Study 2 has an indefinitely large sample size, we

see that the maximum power would be

1� F
cð1�aÞ

1þ 2t2=v1

����0
� �

: ð12Þ

The power in Equation 12 is an increasing function of t2. This means the

highest power this test could have depends on the maximum value of t2 (call this
tN 2) that could be considered negligible. We would argue that tN 2 is the value of

t2 that makes large differences between y1 and y2 unlikely. Let d
2¼ (y1� y2)

2 be

the squared difference between effect parameters, d02 be the largest value of d
2

considered negligible, and 1 � g be the probability that d2 < d02. Then, we can
formalize this idea in terms of the following inequality:

Pfðy1 � y2Þ2 < d02g < 1� g: ð13Þ
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Assume that y*N ðm; t2Þ, the usual assumption in the random effects model,

then the corresponding value of tN 2 that satisfies Equation 13 is given by

t2N ¼ d20
2F�1ð1� gj0Þ ;

where F(x | 0) is the w2 distribution function as in Equation 2. Note that t2N is an

increasing function of d20, and so we may write it as tN 2ðd02Þ. As argued in the

previous sections, we would consider d20 < y12, which corresponds with quali-

tative agreement between y1 and y2, to be an upper bound for a negligible

difference between effect parameters. This would imply that

t2N ¼ y21
2F�1ð1� gj0Þ ;

is the largest value of t2 we could consider negligible. Substituting this into

Equation 12, we see that the most sensitive design would give a maximum

power of

1� F
F�1ð1� gj0Þcð1�aÞ

F�1ð1� gj0Þ þ y21=v1

����0
 !

: ð14Þ

Note that Equation 14 increases with the power of Study 1 to detect a nonnull

effect (i.e., y12=v1). It also decreases with the proportion of studies required to be
qualitatively consistent with y1 (i.e., 1 � g), since if we require a smaller pro-

portion of replications to be consistent with y1, then we would consider larger

values of t2 to be negligible.

What is a reasonable proportion g? Choosing g¼ 24%, so that more than 75%

of the y values are consistent with y1, yields t2N ¼ y12=2:76. Given that value of
g, the maximum power of the test for replication (i.e., when v2 ¼ 0) depends on

the power of Study 1 to find a nonnull effect (via y12=v1). If Study 1 has 80%

power to detect a nonnull effect (so y12=v1 ¼ 7:85), the random effects test for

exact replication will have power less than 45% (assuming v2 ¼ 0). If y12=v1 ¼
7:85 and Study 2 has a finite sample size such that v2 ¼ v1 or v2 ¼ v1/2, then the

power of the test would be 31% and 37%, respectively. One could choose dif-

ferent values of g, but no plausible values imply that the test for replication has

higher power than the original study.

It is worth noting that as with the fixed effects tests, random effects tests that

need to adjust for publication selection will be less powerful than tests that do not

need to make such adjustments. This is because the power of the random-studies

tests depends entirely on and is an increasing function of t2/(v1 þ v2). However,

if publication bias corrections are required, then rather than using v1, the test now

involves the corrected estimation error variance v1
�. Recall that v1 < v1

�, which
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means that t2=ðv1 þ v2Þ > t2=ðv1� þ v2Þ. Therefore, if the test must account for

publication bias, it will be even less powerful than the one that does not.

Random Effects Test for Approximate Replication

The studies-random test for approximate replication requires the specification

of the largest negligible heterogeneity in terms of the between-studies variance of

effect parameters. Call this variance t02. Thus, the null hypothesis of approx-

imate replication is not t02 ¼ 0 (as in exact replication) but

H0 : t2 � t02:

To test this hypothesis at significance level a using the Q-statistic, the reference

distribution is that of Q when t2 ¼ t02, so that the test rejects the null hypothesis
of approximate replication when Q exceeds the 100(1 � a) percentile of the

distribution ofQwhen t2 ¼ t20. Call this critical value cð1�aÞðt20Þ to emphasize its

dependence on t20. Using Equation 7, the value of cð1�aÞðt20Þ can be obtained

from cð1�aÞ as

cð1�aÞðt20Þ ¼ 1þ 2t20
v1 þ v2

� �
cð1�aÞ; ð15Þ

which is larger than cð1�aÞ. Thus, the power of the level a test for approximate

replication under the studies-random model is

1� F
cð1�aÞðt20Þ

1þ 2t2=ðv1 þ v2Þ

����0
� �

; ð16Þ

where F(x | 0) is the cumulative distribution function of the (central) w2 distri-
bution with one degree of freedom. The only difference between the expression

for statistical power of the test for approximate replication Equation 16 and that

of the test of exact replication Equation 12 is the critical value each uses. As with

the fixed-studies model, tests for approximate replication will be less powerful

than those of exact replication, and they will be even less powerful if they must

correct for publication bias. Therefore, if tests for exact replication based on a

single study are insufficiently powerful, so are tests for approximate replication.

Random Effects Tests for Nonreplication

The random effects test for nonreplication involves a null hypothesis that the

studies failed to replicate. Operationalizing this requires some idea about the

smallest value of t20 that could be considered nonnegligible. The null hypothesis

is given by H0 : t2 � t02:
To test H0, compute Q as in Equation 1 and compare it to caðt20Þ, the 100a

percent point of the random-studies distribution of Q when t2 ¼ t20:
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caðt20Þ ¼ 1þ 2t20
v1 þ v2

� �
ca;

where ca is the 100a percentile of the central w2 distribution with one degree of

freedom. We reject H0 and conclude that the studies replicate if Q is less than

caðt20Þ.
For t2 < t20, the power of this test is given by

F
caðt20Þ

1þ 2t2=ðv1 þ v2Þ

����0
� �

; ð17Þ

where F(x | 0) is the (central) w2 distribution function with one degree of freedom.

Note that the power increases as t2 decreases, and attains a maximum at t2 ¼ 0.

Likewise, the power also increases as t20=ðv1 þ v2Þ increases, and attains a max-

imum when v2 tends to be zero (i.e., if Study 2 has an infinite sample size). Thus,

the maximum power of this test is given by

F 1þ 2
t20
v1

� �
ca

����0
� �

: ð18Þ

An upper bound of t20 worth testing can be obtained using a similar approach

to the previous section, where we choose a value of t20 that corresponds with a

given percentage (denoted 1 � g) of replications being consistent with y1. Using
Equation 13, we would argue an upper bound of the power of this test would be

F 1þ y21
v1

1

Fð1� gj0Þ
� �

ca

����0
� �

¼ F 1þ l1

Fð1� gj0Þ
� �

ca

����0
� �

: ð19Þ

The maximum power in Equation 19 increases with the power of Study 1

(via y12=v1) and decreases with the proportion of studies required to be

consistent (1 � g). If Study 1 has 80% power, then setting g ¼ 25% in

Equation 13 would mean that a quarter of potential replications would be

inconsistent with y1 and would give a test for nonreplication with power less

than 13%. Note that even if Study 1 has 90% power, the power for the test of

nonreplication would be less than 15% for g ¼ 25%. Alternatively, if we use

g ¼ 50%, so that half of the potential replications would be inconsistent with

y1, the maximum power would be below 21% (assuming Study 1 had 80%
power). Indeed, to even approach a maximum power greater than 50% would

require g ¼ 80%, so that 80% of replications would be inconsistent with y1;
however, this would seem to be too lax a definition of nonreplication to be

practical.

If the analysis must correct T1 for publication bias, then the test uses v1
� the

variance of the corrected estimate instead of v1. Note that the power of the test for

nonreplication given in Equation 17 increases as t2/(v1 þ v2) decreases and that

t2=ðv1 þ v2Þ > t2=ðv1� þ v2Þ > 0. However, the maximum possible power in
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Equation 19 sets t2/(v1 þ v2) ¼ 0 and thus serves as an upper bound even in the

face of publication bias corrections.

Estimation of Heterogeneity Parameters

An alternative way to assess heterogeneity is to estimate a parameter that

characterizes the difference among the yi. When studies are considered fixed,

the only yi relevant to evaluating replication are y1 and y2, the effect size para-
meters in the observed studies. In this case, an appropriate parameter character-

izing difference among the yi is some function of y1 � y2. Recall that the
noncentrality parameter that determines the distribution of Q is

l ¼ ðy1 � y2Þ2=ðv1 þ v2Þ ¼ ðy1 � y2Þ2=2�v;
where �v ¼ ðv1 þ v2Þ=2 is the average variance. Thus, l has merit as a scale-free

parameter characterizing heterogeneity. Because Q has the noncentral w2 distri-
bution with one degree of freedom and noncentrality parameter l when y1 6¼ y2,
and the expected value of Q is 1 þ l, it follows that

l̂ ¼ Q� 1; ð20Þ
is an unbiased estimator of l, with SE

SEfl̂g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2lÞ

p
: ð21Þ

Note that the SE is always larger than 1.41 (which occurs when l¼ 0) and it is an

increasing function of l (e.g., it is 2.45 when l ¼ 1). For the conventions of

negligible heterogeneity, the SE of this estimate is 1.73 (when l ¼ 1/4), 1.83

(when l ¼ 1/3), and 2.16 (when l¼ 2/3). In other words, the SE of the estimator

afforded by the design involving a single replication study is several times larger

than the true values that are likely to be of interest.

This remains true if the estimate adjusts for publication bias in Study 1. In that

case, the estimator in Equation 20 uses the values of the corrected estimate T1
�

and its variance v1
� rather than T1 and v1. Since v1 < v1

�, it follows that l� ¼
ðy1 � y2Þ2=ðv1� þ v2Þ is smaller than l ¼ ðy1 � y2Þ2=ðv1 þ v2Þ. This means

that if Study 1 is subject to publication selection, both the quantity being esti-

mated l* and its SE will be smaller than if there was no publication selection.

However, the SE will still be very large relative to meaningful values of l* we

would want to estimate precisely. As we saw above, we may want our analysis to

be sensitive to values of l (and hence l*) that are less than one. Standard errors

of estimates of l* in that range are no smaller than 1.41 (which occurs if l*¼ 0).

Thus, we will be unable to obtain precise estimates of meaningful values of l or

l* with only two studies.

When studies are considered random, the entire distribution of yi in the

universe from which the observed studies are sampled is relevant to evaluat-

ing replication. In this case, an appropriate parameter to characterize
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differences among the yi is t2, technically the variance of the effect size

parameters in the population from which the studies are a sample. There are

several ways to estimate t2, but the method most often used in meta-analysis

(the DerSimonian and Laird method) is based on the Q-statistic. When k ¼ 2,

that estimate of t2 is

t̂2 ¼ ðQ� 1Þðv1 þ v2Þ=2; ð22Þ
which is an unbiased estimate of t2 under the model (see, e.g., Hedges & Pigott,

2001). (The estimate can be negative and when this is so, the estimate is usually

truncated to zero.) The variance of the estimate of t2 given in Equation 22 is

SEft̂2g ¼
ffiffiffi
2

p
½ðv1 þ v2Þ=2þ t2� ¼

ffiffiffi
2

p
½�vþ t2� > t2; ð23Þ

where �v ¼ ðv1 þ v2Þ=2. If Study 1 is adjusted for publication bias, we can rewrite
Equation 23 using �v � �v� ¼ ðv�1 þ v2Þ=2, and it remains true that the SE of the

estimate of t2 is greater than t2 itself.
Note however that t2 is not necessarily scale-free. It is in the same units as the

effect size y, and when y is not scale-free (e.g., if it is an unstandardized mean

difference), t2 will not be scale-free. Dividing t2 by �v ¼ ðv1 þ v2Þ=2 results in a

scale-free parameter characterizing heterogeneity similar to l with SE given by

SEft̂2=�vg ¼
ffiffiffi
2

p
½1þ t2=�v� > t2=�v: ð24Þ

If the effect size in Study 1 must be corrected for publication bias, Equation 24

can be rewritten by substituting �v� for �v.
Both Equations 23 and 24 show that whether we are interested in estimating t2

or t2=�v, the SE afforded by the design of two studies (regardless of whether the

estimate in one of the studies must correct for publication bias) will necessarily

always be greater than the magnitudes that are of interest. Recall that the con-

ventional definitions of negligible heterogeneity that we cited from physics,

personnel psychology, and medicine were fractions t2=v and the largest fraction

was 2/3. The SE of l̂ or t̂2=�v estimated from two studies is therefore more than

twice as large as the largest of these conventions.

Regardless of whether studies are considered fixed or considered random, the

uncertainty of the heterogeneity parameter being estimated is very large in com-

parison to important values of the parameter itself. Thus, evaluation of replica-

tion via estimation is not sufficiently sensitive to obtain unambiguous

conclusions when there is only a single replication study.

Comparing an Original Study to the Mean of Several Others Does Not

Resolve the Sensitivity Problem

It might seem that, if one replication study is inadequate to yield a statistical

analysis with adequate sensitivity, the obvious solution is to carry out more

replication studies and compare the replication studies to the original study. Such
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analyses (often called subgroup analyses or fitting categorical models to effect

sizes) are standard part of meta-analysis (see chapter 7 of Hedges & Olkin, 1985).

However, such a strategy is mathematically equivalent to combining the esti-

mates from all of the replication studies into one “synthetic study” and comput-

ing an effect size estimate (and its variance) from that synthetic replication study.

The analysis of the difference between the original study and the synthetic

replication study is subject to exactly the same limitations of analyses comparing

two studies that are described in this article.

Greater sensitivity (higher power or greater precision in heterogeneity para-

meter estimates) can be achieved with additional studies, but only by redefining

the focus of the analysis to be on the heterogeneity of all studies (see Hedges &

Schauer, 2018). This means that the original study is not privileged in the inter-

pretation and that differences among the effects of all the studies (original and

replication studies) are treated as equally relevant in evaluating replication.

Such analyses can be carried out using the Q-statistic, and experience with

such analyses is the source of the conventions mentioned previously that

emerged in physics, personnel psychology, and medicine. Methods for carrying

out relevant power analyses described here were given by Hedges and Pigott

(2001). Power analysis can be an important tool for use in the design of ensem-

bles of studies to carry out empirical evaluations of replication. Although the

details are slightly different, the power of either fixed or random effects tests

based on the Q-statistic depends on the amount of heterogeneity among para-

meters (e.g., t2), the number of studies (k), and the estimation error variance of

the effects (v, which will typically depend on sample size n, in each study). Given

a fixed amount of heterogeneity (e.g., fixed t2), power can be increased by

increasing k or increasing n (which decreases v). One design problem is how

to choose n and k to produce a design that will be both feasible and sensitive

enough to yield unambiguous conclusions. One might even want to posit a cost

function and attempt to find optimal designs (e.g., designs that obtain a given

power or precision of estimates for the smallest cost).

Alternative Perspectives on Replication

We have argued that the definition of replication ought to focus on the simi-

larity between effect parameters y1 and y2 and that replications should be

designed to support unambiguous conclusions about that definition. However,

this article has shown that it is unlikely that analyses of replication based on only

two studies will be adequately sensitive to differences between y1 and y2. This is
not necessarily a limitation of the methods. The Q-test is the likelihood ratio test

under the model and is thus the uniformly most powerful unbiased test, meaning

that no other test of the similarity of y1 and y2 will be more powerful.

It would be tempting to view this merely as a limitation of frequentist analysis

methods. While we agree that the Bayesian approach has certain interpretational
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advantages (e.g., it can characterize the probability distribution of y1 � y2), it
does not obviate the essential problem that two studies, even if conventionally

well powered, do not provide enough information to allow a sensitive analysis of

replication. Bayesian approaches that assess the same operational definition of

replication as the frequentist methods in this article might focus on estimating the

difference between y1 and y2. One way to conceive of sensitivity of such analyses
is via the width of the 95% posterior credible intervals.

For example, suppose that we assume that y1 � y2 has a normal prior distri-

bution with variance vP. Then, the posterior distribution of y1 � y2 given T1� T2
is normal with variance vP(v1 þ v2)/(vP þ v1 þ v2). If we write vP ¼ (v1 þ v2)/a,
then a can be interpreted as the strength of prior information in units of the pair of

studies that provide data. Thus, if the prior information is equivalent to the

observed pair studies, a ¼ 1, if the prior provides less information than the

observed studies, a < 1. The posterior variance s2 reduces to

s2 ¼ v1 þ v2
a þ 1

: ð25Þ

To say that the prior is relatively uninformative is to say that vP > v or that a is

considerably less than one. If the prior had one fifth of the information in the two

studies (a ¼ 1/5), the posterior standard deviation would be 91% as large as the

frequentist variance of T1 � T2; if the prior had one tenth as much information as

the two studies, the posterior standard deviation would be 95% as large as the

frequentist variance of T1 � T2. In other words, if the prior is relatively unin-

formative, the length of the corresponding posterior intervals and confidence

intervals would be very similar.

This has important implications for the frequentist performance of the poster-

ior interval. The 95% posterior credible interval is

T1 � T2+1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1 þ v2
aþ 1

r
: ð26Þ

Because T1 � T2 is normally distributed with variance v1 þ v2, if the mean of

T1 � T2 were actually zero, the probability that the upper credible value U

exceeds any point c would be

PfU > cg ¼ 1� F cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1 þ v2

p � 1:96ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 1

p
� �

: ð27Þ

One way to evaluate this posterior credible interval is ask how often the upper

credible value U exceeds a nonnegligible value of y1 � y2. We argued before

that consistency of sign ð0 < y2 < y1Þ was one sensible definition of the largest

negligible difference. If y1 ¼ 0:5, a posterior value of y1 � y2 � 0:5 would

correspond to a nonnegligible difference, and hence, it would be of interest how

probable U was to exceed 0.5. Suppose that Study 1 has a preset level of statis-

tical power, which defines a value of l1 ¼ y12=v1. Setting c ¼ y1 ¼
ffiffiffiffiffiffiffiffiffiffi
l1v1

p
and
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assuming v1 ¼ v2, so that the original and replication study have equal precision

(27) implies that

PfU > y1g ¼ 1� F

ffiffiffiffiffi
l1

2

r
� 1:96ffiffiffiffiffiffiffiffiffiffiffiffi

aþ 1
p

� �
:

If the prior is even remotely uninformative, it turns out that U will often

exceed y1. For instance, let a � 0.1 with y1 ¼ y2 and v1 ¼ v2, so that both studies

are reasonably well powered and the prior contains about one tenth of the infor-

mation of both studies, then PfU > y1g > 45%. Even if v2 ¼ v1/10, so that

Study 2 is 10 times the size as Study 1, PfU > y1g > 21% for a � 0.1. Greater

precision can be introduced with a more informative prior. But when v1 ¼ v2, so

that both studies have 80% power, even when a ¼ 1, so that the prior contains as

much information as both studies, PfU > y1g > 27%. This suggests that the

posterior credible interval would be unlikely to provide an unambiguous means

of evaluating replication when there are two studies. Like the frequentist meth-

ods, performance would be better if there were more studies or if both individual

studies provided more information (e.g., had larger sample sizes).

Other forms of argumentation have been offered to do analyses about replica-

tion. For example, Hartgerink, Wicherts, and van Assen (2017) formalize how

Fisher’s method can be used to examine potential errors in frequentist determi-

nations about replication, and Simonsohn (2015) proposes assessing the relative

sensitivity of each study. Etz and Vandekerckhove (2016) evaluate the strength

of evidence regarding whether effects are nonzero in the original and replication

studies using Bayes factors. van Aert and van Assen (2017) assume that the

studies replicate exactly and pool information across original and replication

studies.

Each of the methods discussed in the previous paragraph assesses replication

using a fundamentally different operational definition. For instance, seemingly

successful replications in Etz and Vandekerckhove’s analysis involve both the

original and replication studies showing “strong evidence of an effect.” This

would mean that there is convincing evidence that both y1 6¼ 0 and y2 6¼ 0, but

this definition of replication puts no restriction on how different y1 and y2 can be.
Conversely, van Aert and van Assen’s analyses assume that the studies replicated

exactly, so that y1 ¼ y2. In either case, any gains in information come at the cost

of much looser definitions of replication or in much stronger assumptions. More-

over, precisely what is gained in terms of information (and what is lost in inter-

pretability) for these Bayesian methods does not appear to have been studied,

particularly in relation to design.

Conclusions

It might seem that there is nothing special about the design of a replication

study. If there is an existing study, simply plan one more study so that it will
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provide the required sensitivity in the analysis of replication. We have shown that

an ensemble of two studies (the original and one replicate) typically cannot

provide a test for replication that has high power or an estimate of heterogeneity

parameters with high precision (small SE). This finding is consistent with the

conclusion of Maxwell, Lau, and Howard (2015) that high power tests of repli-

cation are difficult to obtain, but even stronger. A single replication study usually

cannot provide adequate sensitivity to evaluate replication without ambiguity.

The exceptions to this argument would be cases in which the original study

had very high statistical power and was not subject to publication bias. Surveys

of statistical power suggest that very high statistical power is unlikely in most

psychological research (see, e.g., Dumas-Mallet et al., 2017; Vankov et al.,

2014). While the degree of publication bias is difficult to confirm, prospective

studies suggest the widespread existence of publication bias (see, e.g., Dick-

ersin, 2005). The ubiquity of statistically significant results coupled with the

low estimated power of studies in the literature also supports the existence of

publication bias.

The results of this article suggest that the statistical aspects of the design of

(ensembles of) replication studies deserve greater attention than it has received.

In most situations, single replication studies are inadequate to yield sufficiently

sensitive analyses (and therefore unambiguous findings), so designs with more

than one replication study are needed. Methods for testing replication in such

designs and for assessing their sensitivity are available (see Hedges & Schauer,

2018). Although it appears that adequate sensitivity can usually be achieved with

enough replication studies, this statement is not a detailed solution to the design

problem, any more than saying a large enough sample size can usually yield

adequate power is a solution to the problem of design of single experiments.

Finally, while the findings of this article suggest that conducting only a single

replication study is not a sensitive research design that does not mean that a

replication study lacks value. A single replication adds to the total information

there is about an effect and the average of the two effects effect is likely to have

more information (smaller SE) than the estimate from the initial study. It can also

give useful insight into protocol standardization, suggest avenues of future inno-

vation, and provide additional insight for making evidence-based policy. More-

over, a single initial replication may be one effort in a sequence of replications,

and as researchers conduct additional subsequent replications, eventually a pre-

ponderance of evidence will support more sensitive analyses. Finally, the role of

conducting a replication, particularly a conceptual replication, may not even be

to get the same result as an original study, but instead to investigate the how a

finding changes in new settings or under different conditions.
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