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Abstract: The concept of replication is fundamental to the logic and rhetoric of science, including the argument that science is self-correcting.
Yet there is very little literature on the methodology of replication. In this article, I argue that the definition of replication should not require
underlying effects to be identical, but should permit some variation in true effects to be allowed. I note that different possible analyses could
be used to determine whether studies replicate. Finally, I argue that a single replication study is almost never adequate to determine whether a
result replicates. Thus, methodological work on the design of replication studies would be useful.
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The concept of replication is central to the logic and rhetoric
of science. The principle that scientific studies can be repli-
cated by other scientists is part of the logic that science is
self-correcting, because attempted replications will identify
findings that cannot be replicated and are thus incorrect
(see e.g., McNutt, 2014). It is therefore surprising that
empirical evidence has called the replicability of evidence
in medical sciences (e.g., Ioannidis, 2005; Perrin, 2014;
Prinz, Schlange, & Asadullah, 2011). Empirical evidence
brings into question the replicability of research in psychol-
ogy (e.g., Open Science Collaborative, 2016), economics
(e.g., Camerer et al., 2016), the social sciences generally
(Camerer et al., 2018), and machine learning (Hutson,
2018). Moreover, scientists in many disciplines seem to be
concerned about replicability (e.g., Baker, 2016; Bollen,
Cacioppo, Kaplan, Krosnick, & Olds, 2015) including
psychology (e.g., Pashler & Harris, 2012). Articles raising
questions about the replicability of scientific findings have
also begun to appear in the popular press, including The
Economist, Newsweek, and The New Yorker.

Recent concerns about replicability have led to responses
from the scientific research community intended to enhance
replicability (see e.g., Collins & Tabak, 2014; McNutt, 2014).
In the biomedical research community, the emergence of
registration for clinical trials has been an important response
(see e.g., International Committee of Medical Journal
Editors, 2004), an approach that has also been advocated
in the social sciences (see e.g., Hedges, 2018).

An important distinction is that between reproducibility
and replicability. Reproducibility concerns whether another
investigator can obtain the same results when given the first
investigator’s research report and their data (and possibly
the computer code they used to analyze the data). Replica-
bility concerns whether another investigator can obtain the

same results when they obtain their own (new) data by
attempting to repeat the study that was carried out by the
first investigator. A key difference between reproducibility
and replicability is that the former involves whether two
investigators can obtain the same answers when given the
same data, but replicability involves whether two investiga-
tors can obtain the same answers from two different
datasets. Replicability is more demanding than repro-
ducibility. Moreover, in many cases, replicability will be
more ambiguous than reproducibility. If statistical analyses
involve deterministic computations (e.g., computing a test
statistic based on an algebraic formula), then reproducibil-
ity can rest on exact agreement of the results of computa-
tions. Results are either reproduced exactly or not. In the
case of replicability, the results of analyses of two different
datasets will each involve statistical uncertainty. For exam-
ple, estimates of treatment effects will each have a standard
error reflecting the statistical error of estimation. We can-
not expect estimates to be identical even if the underlying
treatment effect parameters are identical, so some statisti-
cal inference will be necessary, and with it the inherent
ambiguity of such inferences.

Because the concept of replication is so central to the
logic and rhetoric of science, we might expect an estab-
lished body of work on the topic:

“. . . one would expect there to be a large body of lit-
erature on replication providing clear-cut definitions
on such matters as ‘what exactly is a replication
experiment?’ or ‘what exactly is a successful replica-
tion?’ Furthermore, one would expect to find guideli-
nes on how to conduct a replication or maybe some
standard operating procedures on this issue. . . . The
opposite is true.” (Schmidt, 2009, p. 90)
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There is some literature on replication, but much of it
(e.g., Lykken, 1968) focuses on the definition and functions
of replication, not on the analysis of replications (see
Schmidt, 2009). Note that the kind of replication that is
the focus of this article is what Schmidt would call direct
replication, which involves the “replication of an experi-
mental procedure.” (p. 91) as opposed to what he calls con-
ceptual replication, which involves the “repetition . . . of
earlier research work with different methods” (p. 91). While
the concepts of direct and conceptual replications are clear,
it is not always easy to distinguish between these two types
of replication, as they are carried out in scientific practice.
Sometimes, the intent of researchers is reasonably clear
however, as it is in the programs of preregistered replica-
tions such as the many labs project (Klein et al., 2014),
but other times it is not.

Part I: Background

Defining Replication in Terms of Study
Conclusions

Some treatments of replication have defined replication in
terms of the conclusions obtained by studies (e.g., did
both studies conclude that the treatment effect positive,
or not; Humphreys, 1980). This may appear to be a sensible
definition of replication. It also is consistent with the ways
in which scientists talk informally about replication. For
example, one might say that investigator Smith found an
effect (by which we mean that Smith obtained a statistically
significant positive treatment effect) while investigator
Jones failed to replicate (meaning that Jones did not obtain
a statistically significant positive treatment effect).
While this definition of replication may be in accord with
common language usage, it is not useful as a scientific
definition of replication for both conceptual and statistical
reasons.

This definition says the conclusion about whether Study 1
and Study 2 replicate one another can be reached entirely
on the basis of the significance tests in the two studies,
which is inconsistent with current thinking about the use
of statistics in science. The third principle in the American
Statistical Association’s Statement on Statistical Signifi-
cance and p-values is that “Scientific conclusions and busi-
ness or policy decisions should not be based only on
whether a p-value passes a specific threshold” (Wasserstein
& Lazar, 2016, p. 132).

The ASA statement goes on to say that methods that
emphasize estimation (e.g., effect sizes) that “more directly

address the size of an effect (and its associated uncertainty)”
are a good supplement or even replacement for p-values.
A similar recommendation is given in the American
Psychological Association’s Task Force on Statistical Infer-
ence, who say that “Reporting and interpreting effect sizes
in the context of previously reported effects is essential to
good research” (Wilkinson & The Task Force on Statistical
Inference, 1999, p. 599).

The same principle is embedded in the American
Educational Research Association’s standards for reporting
on empirical social science, which says that “It is important
to report the results of analyses that are critical for interpre-
tation of findings in ways that capture the magnitude as
well as the statistical significance of those results” (AERA,
2006, p. 37).

Putting aside issues of inference, that is, supposing that
the conclusion drawn about the treatment effect in a study
are always correct, a definition of replication that says Study
1 and Study 2 replicate one another if the treatment effect
parameters are both positive (or both negative) would imply
that a treatment effect of θ = 0.01 and a treatment effect of
θ = 1,000,000 are considered to be “the same” result.
A science that did not distinguish between effects that differ
by eight orders of magnitude would seem to be very
theoretically or empirically impoverished. It would have
very limited practical applications because practical
applications always involve at least implicit considerations
of cost-effectiveness tradeoffs.

The inference properties of using individual study con-
clusions to draw conclusions about replication are problem-
atic. Consider the situation in which there is a real effect
of exactly the same magnitude θ > 0 in each of two studies.
Then if the power of the significance test in each study is η,
the probability that the significance test in the two
studies obtain the same result (both significant or both non-
significant) is

p Agreementf g ¼ η2 þ ð1� ηÞ2:

Note that this function has a minimum of 0.50 at η = 0.5
and increases for both η < 0.5 and for η > 0.5. This means
that when both studies have exactly the same effect param-
eter, agreement is high when the statistical power is low
(since in that case both studies make the incorrect inference
by failing to reject the null hypothesis), agreement decreases
as power increases to η = 0.5, then increases again as
increases above 0.5. However, for conventional levels of
power, agreement is not exceptionally high. For example,
when power of both studies is η = 0.80, a value often used
a benchmark for adequate power (see Cohen, 1977), the
probability of agreement is only 68% (.64 + .04).

Methodology (2019), 15(Suppl.), 3–14 �2019 Hogrefe Publishing Distributed under the
Hogrefe OpenMind License http://doi.org/10.1027/a000001

4 L. V. Hedges, Statistics of Replication

 h
ttp

s:/
/e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
73

 - 
La

rry
 V

. H
ed

ge
s <

l-h
ed

ge
s@

no
rth

w
es

te
rn

.e
du

> 
- M

on
da

y,
 N

ov
em

be
r 0

4,
 2

01
9 

10
:1

5:
50

 A
M

 - 
IP

 A
dd

re
ss

:1
29

.1
05

.4
8.

18
2 



Statistical Background

Because best scientific practice is that decisions about
replication, like other decisions should be based on effect
sizes, and because replication involves comparisons of study
results that include estimation error, the assessment of
replications necessarily involves statistical inference. Meta-
analysis is the branch of statistics that addresses statistical
inference from several studies simultaneously. Conse-
quently, I apply ideas from meta-analysis to the analysis of
replication.

Consider experimental studies that are analyzed by
focusing on the effect of a treatment. Statistical inference
in a single study is about the underlying treatment effect
parameter. For example, it might estimate, create a confi-
dence interval (CI) for, or test hypotheses about that treat-
ment effect parameter. Because inference is about the
treatment effect parameter, that parameter is conceptually
is the result of the experiment: Although the exact value of
the treatment effect parameter is not known, it is the object
of inference. Of course, we do not observe the treatment
effect parameter, only estimates of it, and that is why we
need statistical inference about the results of the
experiment.

In evaluating replication, it is crucial that the effect size
estimate is estimating the same parameter in each study.
Artifacts such as reliability, restriction of range, or measure-
ment invalidity can influence some effect size measures
(e.g., standardized mean differences or correlation coeffi-
cients). Similarly, choice of analytic strategy can also
influence effect size measures (see e.g., McGaw & Glass,
1980). It is important that any evaluation of replication take
any differential effects of these artifacts across studies into
account.

Let θ1, . . ., θk be the effect parameters, T1, . . ., Tk be the
effect estimates, and let ν1, . . ., νk be the estimation error
variances from k independent studies. Assume that the
effect size estimates are approximately normally distributed
with known variances so that Ti � N (θi, νi).

When effects are identical (homogeneous across studies)
θ1 ¼ � � � ¼ θk. The Q-statistic, which is used in testing for
heterogeneity of effects across studies in meta-analysis, is
defined by

Q ¼
Xk

i¼1

Ti � Tð Þ2=νi; ð1Þ

where T� is the inverse variance weighted mean of the Ti

given by

T� ¼
Pk

i¼l

Pk

i¼l
1=νi

;

(see e.g., Hedges & Olkin, 1985). When

H0 : θ1 ¼ � � � ¼ θk

is true, Q has the chi-squared distribution with k � 1
degrees of freedom.

The assumption that the variance is known is often not
exactly true, but it is often a useful modeling assumption
in both the social and physical sciences. The impact
of uncertainty in the variances on the distribution of the
Q-statistic can be taken into account using higher order
expansions to the distribution of Q, which approximate
the distribution of Q as a chi-squared with reduced degrees
of freedom (see Kulinskaya, Dollinger, & Bjorkestol, 2011).
Nonparametric approaches to testing heterogeneity are also
available (see Mahlzahn, Böhning, & Holling, 2000).

When studies are conceived as fixed, but when

H0 : θ1 ¼ � � � ¼ θk;

is false, then Q has the noncentral chi-squared distribu-
tion with k � 1 degrees of freedom and noncentrality
parameter

λ ¼
Xk

i¼l

θi � θ�ð Þ2
νi

; ð2Þ

where θ� is the weighted mean of the θi given by

θ� ¼
Pk

i¼l
θi=νi

Pk

i¼l
1=νi

ð3Þ

(see e.g., Hedges & Pigott, 2001). Note that the distribu-
tion of Q when the null hypothesis of exact homogeneity
is false is determined only by k, the number of studies,
and the noncentrality parameter λ and that when λ = 0,
the noncentral chi-squared distribution reduces to the
usual (central) chi-squared distribution.

The noncentrality parameter λ is a natural way to
characterize heterogeneity when studies are assumed to
be fixed, but there are alternatives, particularly when the
studies themselves are considered a random sample from
a universe of studies – the so called random effects model
for meta-analysis (see e.g., Hedges & Vevea, 1998). If stud-
ies are a random sample from a universe of studies, so
that their effect parameters are also a sample from a uni-
verse of effect parameters with mean μ and variance τ2,
then τ2 (the between-studies variance component of
effects) is a natural way to characterize heterogeneity of
effects. When τ2 = 0, it follows that λ = 0, but when
τ2 > 0, these two characterizations seem rather differ-
ent. However, when ν1 = . . . = νk = ν (as they are likely to
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be, at least approximately, when studies are attempting to
replicate one another) then

λ ¼
Xk

i¼1

θi � �θ
� �2

ν
¼ k� 1ð Þ

Xk

i¼1

θi � �θ
� �2

k� 1ð Þν ¼ k� 1ð Þτ̂2=ν;

ð4Þ
where the symbol τ̂2 is used to emphasize that this quantity
is an (unobservable) estimate of the variance τ2 in the
entire universe of studies from which the k observed stud-
ies are a sample. Thus, in a crude sense, λ = (k � 1)τ2/ν
when estimation error variances are similar. In general
meta-analysis (not just analyses of studies intended to be
direct replications), it would be unreasonable to assume
that all the estimation error variances are equal, yet
this assumption is the starting point for defining statistics
such as I2 which characterize the relative amount of
heterogeneity.

Part II: How Should Replication
Be Defined?

It is logical to think of defining replication across studies as
corresponding to the case when all of the effect parameters
are identical, that is, when θ1 = � � � = θk or equivalently when
λ = 0, or when τ2 = 0. This situation might be characterized
as exact replication.

It is also possible to think of that if the θi are quite similar,
but not identical then the results of the studies replicate
“approximately.” When the value of λ (or τ2) is “small
enough,” that is, smaller than some negligible value λ0
(or τ0

2), we might conclude that the studies approximately
replicate. Of course defining the magnitude of negligible dif-
ferences in effects (λ0 or τ0

2) is an important consideration
in assessments of replication.

Scientific Studies in Established Sciences
Often Fail to Replicate Exactly

Because replication is a concern of essentially all sciences, it
is possible to examine empirical evidence about replication
in various sciences to provide a context for understanding
replication in the social sciences. The example of physics
is particularly illuminating because it is among the most
respected sciences and because it has a long tradition of
examining empirical evidence about replication (see e.g.,
Mohr, Newell, & Taylor, 2016; Rosenfeld, 1975). Interest-
ingly, physicists developed some of the methods that are
essentially the same as those developed independently
for meta-analysis in the social sciences, including the
Q-statistic (see Birge, 1932; Hedges, 1987).

Historical Values
The Speed of Light
Determining the values of the so-called fundamental con-
stants of mathematical physics is a continuing interest in
physics. Theory suggests that the speed of light in a vacuum
is a universal constant and there has been a considerable
amount of empirical work to determine its value. Figure 1
shows the values of the studies estimating the speed of light
from 1870 to 1973. The year of the determination is on the
horizontal axis and the value of the speed of light is on the
vertical axis. Each determination is given by a dot
surrounded by one standard error bars (68% CI) for the
estimate. It is clear that, while many of the CIs overlap,
the estimates differ by more than would be expected by
chance due to their estimation error. In fact, the Q-statistic
is Q = 36.92 with a p-value of less than .01. You might also
observe that values appear to become consistent after about
1940, but this is an illusion of scale. The insert to Figure 1
shows values from 1945 to 1958 on a different scale, which
shows that variation that continues to be large in compar-
ison with the statistical uncertainty of the values.

You might notice a seeming time trend with the values of
the speed of light up to about 1940. There were serious
physicists suggesting that perhaps the speed of light was
actually decreasing over time (DeBray, 1934a, 1934b), but
newer values seemed to disconfirm that hypothesis (see
Birge, 1941).

Five Other Fundamental Constants
One might imagine that the speed of light is an exception in
physics, being very difficult to estimate, and that there are
few other historical parallels. Figure 2 shows the values of
estimates of five other fundamental constants of physics:
the inverse of the fine structure constant, Plank’s constant,
the electron charge, the electron mass, and Avogadro’s
number. Although the uncertainty of all of the estimates
is smaller among more recent estimates, the estimates of
all of the constants exhibit variation that is substantially
greater than would be consistent with their statistical uncer-
tainty using tests based on the Q-statistic.

Contemporary Values
One might object that these historical comparisons are not
fair because methods improve over time and that if we look
at the most contemporary studies, the consistency would be
much better. The next few examples involve relatively
contemporary values (e.g., those used in determining
contemporary values of the fundamental values). They
show that contemporary values are also more variable than
would be expected given their estimation errors.

The Mass of the Proton
Figure 3 shows the values of the mass of the proton
obtained from four high accuracy experiments between
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1960 and 1975. This example actually comes from the Par-
ticle Data Group and was used to illustrate the poor consis-
tency of individual studies, even those intended to have
high accuracy (Rosenfeld, 1975).

The Universal Gravitation Constant
Another important physical constant is the universal gravi-
tation constant. The values that were used in a recent deter-
mination of this constant (Mohr et al., 2016) are shown in
Figure 4, but not in chronological order and with the values
of the estimates on the horizontal axis. These values exhibit
much more variation than would be expected given their
statistical uncertainties. In fact, Q = 319 with 13 degrees
of freedom so that p < .001.

Plank’s Constant
The values that were used in the most recent determination
of Plank’s constant (Mohr et al., 2016) are shown in
Figure 5. They also exhibit inconsistency than would be
expected on the basis of their estimation errors.

The Particle Data Group
The Particle Data Group is an international collaboration
that carries out a program of meta-analyses (they just call

them reviews) of all the high-energy physics experiments
worldwide to estimate values of constants important to par-
ticle physics since 1957. Although they use several proce-
dures to evaluate and harmonize data (including omitting
over a third of the estimates), they routinely find estimates
that vary by more than would be expected due to estima-
tion errors (see e.g., Olive et al., 2014; Rosenfeld, 1975).

Other Physical Sciences
Although the examples above are all from physics, there are
many examples from other physical sciences such as
physical chemistry (Zwolinski & Chao, 1972), materials
science (Touloukian, 1972), and thermodynamics (Ho,
Powell, & Liley, 1972). For other examples see Hedges
(1987) or Draper et al. (1993).

How Have Physicist Interpreted These
Data?

As the historical data for individual constants suggests, sci-
entists have understood the need to improve estimates and
have generally sought to improve accuracy of their esti-
mates. However, the general understanding is also that
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Figure 1. Historical values of the speed of light from 1875 to 1958 with 2014 horizontal line for the recommended value.

�2019 Hogrefe Publishing Distributed under the
Hogrefe OpenMind License http://doi.org/10.1027/a000001

Methodology (2019), 15(Suppl.), 3–14

L. V. Hedges, Statistics of Replication 7

 h
ttp

s:/
/e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
73

 - 
La

rry
 V

. H
ed

ge
s <

l-h
ed

ge
s@

no
rth

w
es

te
rn

.e
du

> 
- M

on
da

y,
 N

ov
em

be
r 0

4,
 2

01
9 

10
:1

5:
50

 A
M

 - 
IP

 A
dd

re
ss

:1
29

.1
05

.4
8.

18
2 



experimental determinations are difficult and that scientists
probably underestimate the true uncertainty of their esti-
mates. For example, Flowers and Pentley (2001), in com-
menting about the changes between recommended values
of physical constants between 1973 and 1998 say that a
“better (safer) measure of standard uncertainties would
have been obtained by approximately doubling the esti-
mated uncertainties” (p. 1240).

This has led to an understanding that reasonable scien-
tific practice should be to tolerate a small amount of hetero-
geneity in estimates as negligible for scientific purposes.
The Particle Data Group is quite explicit about this.
They say that heterogeneity corresponding to Q/(k � 1) �
1.25 is negligible heterogeneity regardless of the statistical
significance (see Olive et al., 2014). Moreover, this criterion
is applied after over a third of the studies are omitted from
consideration (partially on the basis of the inconsistency of
their findings with others). Note that the expected value of
Q under the studies fixed model is

E Qf g ¼ k� 1ð Þ þ λ

and the expected value of Q under the studies random
model is

EfQg ¼ ðk� 1Þð1 þ τ2=νÞ:
Therefore, this convention for negligible heterogeneity cor-
responds to defining a negligible value of heterogeneity to
be λ0 = (k � 1)/4 or τ0

2/ν = (k � 1)/4.
The question of what heterogeneity means scientifically

is somewhat speculative. There is generally little question
among physicists that the fundamental constants are
indeed constant (except for brief periods like that in the
1930s when a genuine anomaly with respect to the speed
of light seemed to be emerging). Apparent heterogeneity
is usually attributed to underestimation of estimation error
variances and/or the presence of uncontrolled biases in
experiments, which would lead to apparent heterogeneity
(see Rosenfeld, 1975). In a statistical sense, uncontrolled
biases would be real heterogeneity inducing differences
among the θi even if they were not a consequence of real
differences in the physical world. For example, because
the experiments that estimate the universal gravitation
constant were conducted in different geographical loca-
tions, it is necessary to perform complex adjustments to
the estimates to adjust for confounding effects of geography
– adjustments that give rise to biases if they are not be quite
right. In social and psychological experiments, such biases
are clearly a major threat.

The principle used to arrive at an acceptable level of
heterogeneity in physics is that competent experimenters
attempt to reduce the biases in their experiments to a point
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Figure 2. Historical values of the inverse of the fine structure
constant, Plank’s constant, the electron change, the electron mass,
and Avogadro’s number.
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that they are small compared to the estimation errors. Thus
the variation due to biases (τ2) is small in relation to vari-
ance due to estimation errors (ν). This principle suggests
a criterion that is a multiple of τ2/ν, but the judgment of
which particular multiple is a matter of scientific consensus.

Other Sciences

There has been a considerable amount of experience with
meta-analysis in medicine. In medicine, a value of I2 =
100% � τ2/(ν + τ2) of 40% or less is considered to be
“not important” (see Section 9.5.2 of Higgins & Green,
2008). This implies that a negligible amount of heterogene-
ity would be λ0 = 2(k � 1)/3 or τ0

2/ν = 2/3.
In personnel psychology, Hunter and Schmidt (1990)

proposed a “75% rule,” which says that when the estima-
tion error variance ν is at least 75% as large as the total

variance of the effect size estimates (ν + τ2), then the
variance of the effect size parameters τ2 could be consid-
ered negligible. This implies that τ0

2/ν = 1/3 and λ0 =
(k� 1)/3 correspond to negligible amounts of heterogeneity
in effect parameters.

These three conventions in physics, medicine, and per-
sonnel psychology provide a range of definitions of negligi-
ble heterogeneity from λ0 = (k � 1)/4 to λ0 = 2(k � 1)/3 or
alternatively, τ0

2/ν = 1/4 to τ0
2/ν = 2/3. Note that all of

these definitions of negligible heterogeneity are social con-
ventions among a group of scientists as all conventions for
interpretation must be.

The conventions described above have the advantage that
they are scale free. However, one weakness of conventions
defined in terms of λ or τ2/ν is that they are inversely
proportional to ν, which is itself inversely proportional to
the within-study sample size. This means that large values
of these parameters can be obtained either if study sample
size is large (so that the estimation error variance is small)
or if the amount of effect size heterogeneity is large. For
approaches to defining similar parameters (analogues to
I2) that are less sensitive to the absolute size of ν see Holling,
Böhning, Masoudi, Böhning, and Sangnawakij (2019).

Conclusion About Defining Replication

The definition of replication is more complex that it first
appears. While exact replication is logically appealing, it is
too strict to be useful, even in well-established sciences like
physics, chemistry, or medicine. Approximate replication
has proven more scientifically useful in these sciences
and in personnel psychology. However, it requires estab-
lishment of conventions of negligible heterogeneity among

Figure 4. Recent estimates of the universal gravitation constant from
Mohr et al. (2016).

Figure 5. Recent estimates of the Planck’s constant from Mohr et al.
(2016).
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Figure 3. Recent values of estimates of the mass of the proton from
Rosenfeld (1975).
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groups of scientists. The fact that conventions have been
established in these sciences shows that it is possible to
do so. The fact that conventions of approximate replication
have been established in terms of quantities like λ0 or τ0

2/ν
suggests that there is value in doing so in ways that are also
comparable to the established values in these sciences.

Part III: Statistical Analysis
of Replication

The statistical test for heterogeneity typically used in meta-
analysis using the Q-statistic given by (1) provides the basis
for tests of replication in terms of effect size parameters.
However, the details of the statistical approaches to
studying replication depend on three considerations that
are largely conceptual: How the hypotheses are structured
(whether the burden of proof lies with replication or with
failure to replicate), how replication is defined (as exact
or approximate replication), and whether the studies are
conceived as a fixed set or a random sample from a
universe of studies (Hedges & Schauer, 2019).

Studies Fixed or Random

The Q statistic has the same sampling distribution
when there is exact replication regardless of whether
studies are fixed or random, but it has a different distribu-
tion when exact replication does not hold. Therefore,
evaluation of the sensitivity (e.g., statistical power) of tests
based on Q is somewhat different when studies are
considered fixed than when they are considered random
(Hedges & Schauer, 2019). Moreover, critical values for
tests of approximate replication will be somewhat different
when studies are considered fixed than when they are con-
sidered random.

If the studies are fixed, then inferences about replication
are inferences about the effect parameters in the studies
actually observed (see e.g., Hedges & Vevea, 1998). One
might say that conclusions about replication in the fixed
studies framework are conclusions about how well the
observed studies agree.

If the studies are considered random, then the studies
observed are a sample from a hypothetical universe of
studies and their effect parameters are a sample from a
hypothetical universe of effect parameters. Inferences
about replication are inferences about the universe of effect
parameters from which the sample of effect parameters
were taken. Thus, the observed studies and their effect
parameters are of interest only in that they provide infor-
mation about this hypothetical universe of study effects
(see e.g., Hedges & Vevea, 1998). One might say that

conclusions about replication in the random studies frame-
work are conclusions about how well the studies agree in a
universe of studies from which the observed studies are a
random sample.

Definition of Replication

Replication among the results of k studies might be defined
as exact (i.e., λ = 0 or τ2 = 0) or approximate (i.e., λ < λ0 or
τ2 < τ0

2 for some convention λ0 or τ0
2). Regardless of

whether replication is defined as exact or approximate,
the hypothesis test would have a similar form.

For exact replication regardless of whether studies are
fixed or random, we reject H0: λ = 0 (or τ2 = 0) at level α
if Q exceeds the 100(1 � α) percent point of the (central)
chi-squared distribution with k � 1 degrees of freedom.

For approximate replication with studies fixed, we reject
H0: λ < λ0 at level α if Q exceeds the 100(1 � α) percent
point of the noncentral chi-squared distribution with non-
centrality parameter λ0 and k � 1 degrees of freedom.
For approximate replication with studies random, we reject
H0: τ

2 < τ0
2 at level α if Q exceeds the 100(1 � α) percent

point of the distribution of Q when τ2 = τ0
2. If all of the

studies have the same estimation error variance ν (e.g., they
have the same sample size) then the noncentral distribution
of Q is (1 + τ0

2/ν) times a (central) chi-squared distribution
with k � 1 degrees of freedom. If the estimation error
variances are not all equal then the noncentral distribution
of Q has a more complex form (a mixture of central
chi-squares) but it can be well approximated (see Hedges
& Pigott, 2001).

Note that the distribution of Q when λ > 0 (or τ2 > 0) is
stochastically larger (the distribution is shifted to the right).
Thus tests of approximate replication have the same test
statistic Q, but larger critical values than tests of exact
replication and, therefore, have lower statistical power.
For example, when k = 2, the test for exact replication uses
a critical value of 3.94, but the test for approximate replica-
tion using λ0 = 1/4 has a critical value of 4.76, that using
λ0 = 1/3 has a critical value of 5.03, and using λ0 = 2/3
has a critical value of 6.06.

Burden of Proof

Note that whether studies are fixed or random and whether
replication is exact or approximate, the form of the hypoth-
esis test is the same. Rejection of the null hypothesis of
exact or approximate replication is conclusive, but failure
to reject is not. Thus the burden of proof is on failure to
replicate. In such a situation, the results of the analysis
can only be conclusive if the test has high power to detect
meaningful amounts of heterogeneity. The inherent
problem with this formulation is that concluding that
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studies replicate involves accepting the null hypothesis, yet
this is exactly the opposite of conventional hypothesis test-
ing procedures.

A different way to structure the test is to alter the burden
of proof so that it lies on replication (not failure to
replicate). This is possible for tests of approximate replica-
tion. The test placing the burden of proof on replication
uses the Q statistic but unlike the test placing the burden
of proof on failure to replicate (which rejects for large
values of Q), this test rejects for small values of Q. That
is we structure the null hypotheses as:

H0 : λ � λ0 or τ2 � τ20
� �

;

so that rejection of the null hypothesis leads to the (con-
clusive) decision that studies replicate.

If studies are fixed, we reject H0: λ � λ0 at level α if Q is
less than the 100(1 � α) percent point of the noncentral
chi-squared distribution with noncentrality parameter λ0
and k � 1 degrees of freedom. If studies are random we
reject H0: τ

2 � τ0
2 at level α if Q exceeds the 100(1 � α)

percent point of the distribution of Q when τ2 = τ0
2.

Conclusion About Statistical Analyses
for Replication

There are several possible statistical analyses of replication
for any definition of replication. Each of these analyses is a
valid way to explore a slightly different hypothesis about
replication. The major conclusion about testing hypotheses
about replication is that different tests are possible and the
choice among them is not automatic, but a principled
analytic decision that requires some care.

Part IV: Design of Replication
Studies

The design of an ensemble of two or more studies to inves-
tigate replication might seem straightforward, but quite dif-
ferent designs have been used with little justification of why
that design was appropriate. For example, the Open Science
Collaborative (2016) and Camerer et al. (2018) chose to use
a total of k = 2 studies (the original and one replication),
while the Many Labs Project (Klein et al., 2014) used as
many as k = 36 studies (the original and 35 replications)
of each result. One might ask which, if either design is ade-
quate and why.

While it may not be the only requirement of a sound
design, a fundamental requirement of any research design
is that it should lead to a statistical analysis that is suffi-
ciently sensitive to detect the smallest effect deemed scien-
tifically (or practically) important. If the analysis is a

hypothesis test, then sensitivity could be measured by sta-
tistical power. Thus, a fundamental requirement of any
design for studying replication using a hypothesis testing
approach is that it leads to analyses that have sufficient
power to detect the smallest amount of variation in results
that is scientifically meaningful.

Evaluating Replication via a Single
Replication Study

The simplest conception of the design to test whether
Study 1 can be replicated is to simply repeat the study,
so that the ensemble is two studies (Study 1 and Study 2).
This is essentially the design used in Open Science Collab-
orative (2016) and Camerer et al. (2018). When k = 2, the
Q-statistic becomes

Q ¼ T1 � T2ð Þ2=ðν1 þ ν2Þ:

If we consider studies to be fixed, then the power of the
test based on Q is determined by the noncentrality
parameter

λ ¼ θ1 � θ2ð Þ2=ðν1 þ ν2Þ:

Consider the power of the test for exact replication. To eval-
uate the statistical power we must identify smallest non-
negligible value of λ for the replication test, which, will
depend on (θ1 � θ2)

2. Call this smallest non-negligible value
λR. Power is an increasing function of λR, so the bigger the
λR, the higher the power. Thus the largest value that λR
could reasonably take will correspond to the maximum
power.

It seems reasonable that if the effects in the two studies
had different signs, they could not be considered to repli-
cate one another because the results would be qualitatively
inconsistent. To guarantee that θ2 has the same sign as θ1, it
must be true that (θ1 � θ2)

2 < θ1
2, since any larger value of

(θ1 � θ2)
2 would be consistent with non-positive values of

θ2. Therefore,

λR < θ2
2=ðν1 þ ν2Þ:

However, a test of the null hypothesis that θ1 = 0 in Study 1
uses the test statistic T1

2/ν1, which has the central chi-
square distribution if θ1 = 0 and the noncentral chi-squared
distribution if θ1 6¼ 0. The power of the test is determined
by the (noncentrality) parameter λ1 = θ1

2/ν1. Comparing λ1
to λR, we see that

λR < θ2
1=ðν1 þ ν2Þ < θ2

1=ν1 ¼ λ1:

Thus the maximum possible power of the test for replication
is smaller than the power of the original study’s (Study 1’s)
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test of the null hypothesis of no effect. Moreover, the max-
imum possible power may be much lower in theory, and
almost certainly will be lower in practice.

The theoretical limit requires perfect precision in the
replication study (i.e., ν2 = 0 or an infinite sample size). If
Study 2 has the same sample size as Study 1, so that, for
example, ν1 = ν2, then the largest possible noncentrality
parameter of the replication study becomes θ1

2/2ν1 = λ1/
2. In this case, if Study 1 had power of 80% (which occurs
if λ1 = 7.85), the power of the test for exact replication would
be 51%. Even if Study 1 had power of 90%, that of the repli-
cation test would be only 63%. Study 1 would have to have
a power of 98% for the replication test to have 80% power
if ν1 = ν2. Such high power is unusual in most medical or
social science contexts.

Note that the same logic applies regardless of which
study is labeled as Study 1. The statistical power of a test
for replication based on a total of k = 2 studies is limited
by the study with the least statistical power. This means
that it will be virtually impossible to achieve a high power
test of replication unless both studies have very high power.
Moreover, this analysis was based on a test for exact repli-
cation. Test for approximate replication have lower power
than the corresponding test for exact replication, so they
would have even lower power in this situation than a test
for exact replication.

Evaluating Replication Using More Than
Two Replication Studies

Statistical power of an analysis using the Q-statistic can be
increased by using more than two studies. Methods for
assessing the power of the test based on Q are available
(see Hedges & Pigott, 2001). Adequate sensitivity can usu-
ally be achieved with enough replication studies. Extensive
computations of statistical power of tests based on Q are
given in Hedges and Schauer (2019). But important ques-
tions about design remain to be resolved. For example, in
designing an ensemble of replication studies, how should
one compromise between a greater number of studies
and a larger sample size within each study? Rules of thumb
and research on optimal allocations would be useful to aid
in rational planning of replication studies.

Sometimes the object of the replication study is to deter-
mine whether an original study (already conducted) can be
replicated. In that case, one design that might seem appeal-
ing is to use several replication studies (i.e., more than one
replication of the original), and then to compare the results
of replication studies (as a group) to the original study. Such
analyses are often called subgroup analyses or fitting
categorical models to effect sizes in meta-analysis (see
Chapter 7 of Hedges & Olkin, 1985).

However, such a strategy is mathematically equivalent to
combining the estimates from all of the replication studies
into one “synthetic study” and computing an effect size
estimate (and its variance) for that synthetic replication
study. The analysis of the difference between the original
study and the synthetic replication study is subject to
exactly the same limitations of analyses comparing two
studies that are described in this article. In other words,
the sensitivity of that analysis is limited by the least sensi-
tive of the two studies being compared (which will usually
be the original study). Thus, no matter how many replica-
tion studies are conducted, it may be impossible to obtain
a design of this type with adequate sensitivity.

This design is made even more problematic if the original
study is from the published literature, was unregistered,
and therefore was possibly subject to publication bias (see
e.g., Dickersin, 2005). If the original study was subject to
publication bias, the estimate of its effect would be biased
upward in absolute magnitude (see Hedges, 1984), and
the use of the uncorrected estimate would bias the test
for replication by introducing heterogeneity as an artifact
of publication bias. If the effect size estimate from the orig-
inal study was corrected for publication bias (e.g., using
maximum likelihood estimation under a selection model)
then the estimate might be (approximately) unbiased, but
variance of the corrected estimate would be even larger
than that of uncorrected estimate (see Hedges, 1984),
further reducing the statistical power of tests for replication.

Conclusion About Design of Replication
Studies

Despite its obvious appeal, an ensemble of k = 2 studies
(e.g., and original and a replication attempt) will almost
never be an adequately sensitive design for an investigation
of replication. More sensitive designs are possible, but the
sensitivity of any design needs to be evaluated in conjunc-
tion with the choice of the definition of replication and the
statistical analysis used to analyze the data. There has been
rather little work on these kinds of design problems, but
they are conceptually similar to the problem of designing
studies of heterogeneity of treatment effects using multi-
level models. Research on design and optimal design in
those related models would be useful.

Part V: Overall Conclusions

Scientists have often approached the concept of replication
as if its definition, appropriate analysis, and design of inves-
tigation of replication were straightforward. I have argued
that none of these is the case and that methodological work
is needed on all three issues.
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Exact replication is logically appealing, but appears to be
too strict a definition to be satisfied even in the most
mature sciences like physics or medicine. Approximate
replication is a more useful concept, but requires the devel-
opment of social conventions in each area of science. More-
over, tests of approximate replication are less powerful than
those of exact replication, leading to lower sensitivity in
analyses of approximate replication.

For any particular definition of (exact or approximate)
replication, several different, but perfectly valid, analyses
are possible. They differ depending on whether a studies-
fixed or studies-random framework is used and whether
the burden of proof is imposed on failure to replicate
(so that rejection of the null hypothesis leads to rejection
of replication) or on replication (so that rejection of the null
hypothesis leads to rejection of failure to replicate).

Finally there have been unappreciated problems in the
design of a replication investigation (an ensemble of studies
to study replication). The sensitivity of an ensemble of two
studies is limited by the least sensitive of the studies, so that
an ensemble of two studies will almost never be adequate
to evaluate replication. Greater sensitivity can be obtained
with more studies, but even then only with the appropriate
analysis.

One might fault this article for arguing that interpretation
of whether studies replicate should be based on effect sizes
and then focusing on hypothesis testing and statistical
power to evaluate replication designs. An alternative
approach would be to focus on estimating a heterogeneity
parameter (such as λ or τ2), in which case sensitivity would
be evaluated by the precision (e.g., variance or standard
error) of the estimate. The standard error of estimates of
λ and τ2 from two studies will be larger than unity, large
in comparison of values of interest (e.g., the conventional
parameter values indicating negligible heterogeneity in phy-
sics, personnel psychology, or medicine are less than unity
for k = 2). Thus, the conclusion that an ensemble of k = 2
studies is virtually always inadequately sensitive to evaluate
replication would also hold if estimation was the focus of
the analysis (see Hedges & Schauer, 2019). However, the
details of design planning would be different if the object
of the analysis were estimation. The details of how design
recommendations might differ if the focus were on estima-
tion, rather than testing, merits further research.
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