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Abstract

In this article we propose the use of Bayesian networks as a potentially promising way to model usable knowledge. Using the
Classroom Video Analysis (CVA and CVA-M) assessments as a lab model for studying teachers’ usable knowledge, we first
explored whether we can identify the knowledge (pieces) underlying teachers’ written responses. In the CVA approach we
ask teachers to respond to short video clips of authentic classroom instruction based on different prompts that are designed
to simulate common teaching tasks. We then explored the affordances of Bayesian networks to functionally model usable
knowledge as an interconnected dynamic knowledge system consisting of different knowledge pieces and connected pathways
weighted by situation-specific relevance and applicability. We explore the implications of these models for studying the
development and growth of usable knowledge and propose the use of Bayesian networks as a novel and potentially promising

way to model usable knowledge and for understanding how knowledge is used in teaching.

Keywords Usable knowledge - Knowledge use - Teacher knowledge - Teaching practice - Knowledge system - Bayesian

networks

1 Introduction

Although there is widespread agreement that teaching
requires a great deal of knowledge, we still know little
about how knowledge becomes usable and how teachers’
use their knowledge for instructional decision making (Ball
& Bass, 2000; Ball, Thames, & Phelps, 2008; Blomeke,
Gustaffson, & Shavelson, 2015). In this article, we explore
the Classroom Video Analysis instrument (CVA and CVA-
M), which asks teachers to respond to short video clips
of authentic classroom instruction as a lab model for how
teachers use their knowledge in real classroom situations.
By lab model we mean that teachers engage in the same
basic cognitive processes when responding to the teaching
situations shown in the video clips, although in more limited
ways, that they engage in in their classrooms, and that, there-
fore, teachers’ answers to the CVA or CVA-M instruments
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can be considered good approximations of their situation-
specific usable knowledge. We explore implications of this
view for understanding usable knowledge and knowledge
use in teaching. Specifically, we will address two research
questions:

1. Can we identify the knowledge contained in teachers’
responses to the CVA or CVA-M?

2. What are the affordances of Bayesian networks for mod-
eling the knowledge contained in teachers’ responses to
the CVA or CVA-M to conceptualize usable knowledge
and knowledge use in teaching?

Since Shulman’s theoretical analysis of the knowledge
base required for teaching (Shulman, 1986, 1987), much of
the research on teacher knowledge has focused on identi-
fying knowledge domains specific to teaching (Ball 2000,
2003) and on examining their impact on teaching and
student learning (Hill, Schilling & Ball, 2004; Baumert,
Kunter, Blum, Brunner et al., 2010). Building on and
extending Shulman’s work in the area of mathematics, the
Mathematics Knowledge for Teaching (MKT) construct
with its six subdomains and associated items represent
the most well-known example of this broader effort within
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the US (Ball, Thames, & Phelps, 2008; Hill, Schilling, &
Ball, 2004).

Classifying knowledge into different types and measur-
ing them separately—e.g., content knowledge, pedagogical
content knowledge, pedagogical knowledge, etc.—holds
obvious benefits for research and measurement purposes,
but it may divert attention away from important questions
related to knowledge use. Such classifications also raise
theoretical and practical questions about distinguishing
between content and pedagogical content knowledge in a
teaching context because content knowledge that is applied
in pedagogically purposeful ways, might be considered
pedagogical content knowledge (Baumert et al., 2010).
Furthermore, items on traditional assessments of teacher
knowledge measure single pieces of knowledge in isola-
tion rather than multiple knowledge pieces in connection
as they are used in the process of teaching. In the larger
context, this inadvertently reinforces a modular view of
knowledge in which different kinds of knowledge and
knowledge pieces are seen as separate entities. It implicitly
presumes that if teachers have acquired a sufficient amount
of knowledge in key knowledge domains, they can flexibly
apply it while teaching their students.

This approach, however, does little to advance our
understanding of how teachers access and connect different
pieces of knowledge as they carry out teaching tasks. As
Ball, Thames, and Phelps noted (2008, p. 403): “How such
knowledge is actually used and what features of pedagogi-
cal thinking shape its use, remains tacit and unexamined.”’
There is a notable difference between being able to recall
a specific common student mistake on a multiple-choice
exam, for example, and effectively addressing that same
student mistake in an actual classroom situation. In a class-
room, teachers may draw upon combinations of knowledge:
knowledge of the common student mistakes, foundational
or supportive content knowledge, and other knowledge to
decide on the best teaching strategy for a particular learner
and context.

To date we have not been able to answer the question of
how teachers activate and flexibly combine knowledge in the
process of teaching from a functional point of view. Earlier
models of cognition (Anderson, 1983) have proposed that
declarative knowledge (knowing what) needs to be converted
into procedural knowledge (knowing how to) initially through
basic interpretative processes and through iterative refine-
ment. In Anderson’s model, procedural knowledge consists of
condition-action (if-then) pairs, called productions, activated
according to rules relating to a goal structure, for example,
assessing student thinking. Multiple productions can be com-
bined to carry out complex tasks (Renkl, Mandl, & Gruber.
1996) thereby connecting knowledge to behavior. Anderson’s
model appears to suggest that the more declarative knowledge
teachers have converted into procedural knowledge, the more
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efficiently they can enact their knowledge in the process of
teaching.

A more recent approach proposed by Blomeke and col-
leagues (2015) hypothesized an intervening construct to link
knowledge to performance, which they refer to as situation-
specific skills of perceiving, interpreting, and decision-mak-
ing. The model suggests that these situation- specific skills
may mediate or affect whether teachers are able to apply their
knowledge in a relevant context. Thus, strengthening teachers
perceptive and interpretative abilities presumably enables them
to apply their situation-relevant knowledge more efficiently
leading to better decision making and more effective teach-
ing performance. The model reconceptualizes the process of
knowledge conversion from declarative to procedural found
in the Anderson model as a set of situation-specific skills that
identify basic cognitive processes, shown to shape actions and
behaviors, emphasizing the context-bound nature of knowl-
edge use. Both models resolve why teachers may be able to
produce specific knowledge in an assessment context but not
in a real classroom situation. For Anderson, declarative knowl-
edge has not yet been “productionized”; for Blomeke and
colleagues this is due to insufficient or low situation-specific
skills. Neither model details how knowledge activation can
be envisioned functionally or how it affects decision making.

In this article we explore questions about knowledge acti-
vation and application as they relate to usable knowledge in
mathematics teaching. Section 1 addresses research question 1.
Different from past studies where we assigned scores to teach-
ers’ CVA or CVA-M responses to obtain measures of their
usable knowledge, here we examine teachers’ responses to the
CVA and CVA-M to identify the pieces of knowledge that
underlie teachers’ responses to the teaching situations shown
in the video clips. In Sect. 2, we explore the affordances of
Bayesian networks to computationally model the knowledge
pieces contained in teachers’ responses as a dynamic knowl-
edge network that consists of interconnected pieces of knowl-
edge weighted by situation-specific relevance. We describe
how the process of activating and connecting different pieces
of knowledge could be envisioned functionally within such a
network and describe how such models could be used for pre-
dicting instructional decision-making, thereby linking knowl-
edge to teaching practice. In Sect. 3, we discuss implications
of using Bayesian networks for research on usable knowledge
and knowledge use in teaching.

2 Identifying usable knowledge in teacher
responses to the classroom video analysis
instruments (CVA and CVA-M)

The classroom video-analysis instruments (the original CVA
and the Common Core-aligned CVA-M) use video clips of
authentic classroom instruction as stimuli to elicit teachers’
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knowledge in concrete teaching situations. Teachers’ view a
set of video clips of mathematics instruction to approximate
areal teaching situation and provide written responses to the
video clips based on different prompts, which simulate com-
mon teaching tasks (Kersting et al., 2016). To obtain meas-
ures of teachers’ usable knowledge, the written responses
are scored according to reliable rubrics.

In the CVA, the same prompt is associated with each
of the video clips. The prompt is fairly open-ended, ask-
ing teachers to comment on the mathematics, the teacher,
and the student(s) and interactions between them. The
video clips reflect key mathematical ideas in a given con-
tent domain although not a specific content framework. Each
response is scored along four reliable rubrics (0-2) indicat-
ing whether the response analyzed the mathematics shown
in the clip (MC), analyzed student thinking and understand-
ing (ST), contained suggestions for improvement (SI), and
provided an in-depth interpretation (DI). The DI rubric indi-
cates whether the response remained entirely descriptive (0),
was interpretative in some aspect (1), or whether different
interpretative ideas formed a coherent argument (2). For
the three remaining rubrics a score of “0” indicates that a
response did not address a particular rubric. A score of 1
indicates that a response addressed a scoring rubric and used
knowledge descriptively (MC and ST) or pedagogically (SI),
whereas a score of 2 indicates that a response provided an
in-depth analysis of the mathematics (MC), the mathemati-
cal understanding of the student (ST), or provided a mathe-
matically-based suggestion for improvement (SI). Given the
intentional open-endedness of the prompt allowing teachers
to focus on different aspects of the teaching episodes, the
CVA captures a wide range of usable knowledge.

In contrast, the CVA-M is more narrowly focused on the
mathematics. The video clips and scoring rubrics are aligned
with the Common Core content and practice standards. The
prompts of the CVA-M are explicitly focused on the math-
ematics and simulate common teaching tasks, such as gener-
ating targeted mathematical questions to help the student(s)
improve their understanding, diagnosing students’ mathe-
matical thinking, or providing suggestions for improving the
teaching episode that are specific to the mathematics. Thus,
different from the CVA scores, which reflect teachers usable
mathematical and general pedagogical knowledge, teachers’
scores on the CVA-M reflect teachers’ usable mathematics
knowledge for teaching as it connects to the Common Core.

We hypothesized that by using authentic video clips and
teaching-focused prompts, teachers’ written responses would
not only reflect their knowledge as it pertains to the video
clips but also their ability to apply that knowledge in a real
classroom situation (Kersting et al., 2010). In prior work,
we have shown that quantifying qualitative differences in
teachers’ responses to the CVA or CVA-M predicted teach-
ers’ own teaching measured as instructional quality and their

students learning (Kersting et al., 2010, 2012). We have
interpreted the empirical evidence to suggest that the CVA
and CVA-M capture usable knowledge.

To examine what knowledge teachers draw upon and
how teachers combine different knowledge (pieces) when
responding to the video clips, we analyze four responses
to a fractions video clip, each produced by an experienced
4th or 5th grade classroom teacher, two from the CVA and
two from the CVA-M. We include example responses from
both measures in our analysis to understand the feasibility
of knowledge identification and classification in both kinds
of responses and to illustrate how different prompts pro-
duce variation in knowledge activation. We purposefully
selected higher quality responses to show variation in the
activated knowledge. To identify the mathematics knowl-
edge contained in the responses we use the Common Core
standards (National Governors Association Center for Best
Practices, Council of Chief State School Officers 2010). We
apply the classification of general pedagogical knowledge,
which includes pedagogical and psychological components,
suggested by Guerriero (2013).

To provide some context for understanding the teacher
responses, we first describe the teaching episode. We rec-
ognize that the following description is no substitute for the
actual visual and auditory input experienced by the teacher
participants in our study.

In a lesson about fractions, the teacher in the video clip
posed the following word problem to her students: “If 132
cupcakes are distributed evenly among 6 containers, how
many cupcakes would end up in each container?”” Students in
the clip appear confused about how to solve the problem, so
the teacher brings the class together and invites students to
give a clue or a hint rather than the answer. One student sug-
gests dividing 132 by 6. The teacher asks the class whether
the hint is helpful to them, and when there is no response,
the teacher shifts gears and asks what 1/6 of 132 means.
When students remain confused, the teacher instructs stu-
dents to talk at their tables and come up with hints on how
to solve the problem.

After about 1 min during which the teacher circulates
the classroom and listens into some of the groups, she calls
the class together and invites one student, Elizabeth, to the
overhead projector to give a clue. Elizabeth repeats the ear-
lier clue of dividing 132 by 6 and shows her solution on
the overhead, which shows a tape diagram with six empty
boxes. Elizabeth explains that she divided 132 by 6, which
resulted in 22 cupcakes per box, writing 22 in each of the
six boxes. She then explains that one of the six boxes repre-
sents 1/6 of the 132 cupcakes because there are six boxes in
total. It is not clear whether Elizabeth understands that the
132 represents the whole, which is divided into six equal
parts reflected in the denominator of “6” in the fraction 1/6.
Although the answer the student provides is correct, it is
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apparent that most students in the class are still unsure of
what 1/6 of 132 means. The teaching episode concludes with
the teacher asking the class if anyone has a question of Eliza-
beth at the overhead.

Different pieces of knowledge, both mathematical and
general pedagogical,' could be relevant and activated when
responding to this teaching episode. Based on our under-
standing, the primary mathematical ideas are interpreting
the product (a/b) X g as a parts of a partition of ¢ into b
equal parts (or 1/6 X 132 =132+ 6) and understanding frac-
tions as division (132/6 =132 +6). Supporting mathematical
knowledge that teachers might draw on includes division and
multiplication of three-digit numbers, understanding a frac-
tion 1/b as the quantity formed by dividing one whole into
b equal parts, understanding 132/6 as equivalent to 22/1 or
22/132 as equivalent to 1/6, or more generally multiplication
and division as inverse operations such that 132+6=22 and
22x6=132.

General pedagogical knowledge that might be activated
could include strategies of classroom management and
assessment, instructional strategies used by the teacher in
the video that are identified and interpreted from a pedagogi-
cal or psychological learning-process perspective. In addi-
tion, comments about choices of representations (e.g., tape
diagram) and/or manipulatives would reflect knowledge of
diverse learners.

Finally, the teaching episode might also activate knowl-
edge of teaching strategies specific to mathematics (math-
ematical practices), such as making sense of problems,
persevering in solving them, constructing viable arguments
and critiquing the reasoning of others (National Governors
Association Center for Best Practices, Council of Chief State
School Officers 2010).

In what follows, we present two example responses to
the CVA prompt that asks teachers to make sense of the
observed teaching episode: “View the clip and explain how
the teacher and the students interact with the mathematics
and with each other.” This general prompt allows teach-
ers to choose what to attend to in the teaching episode—a
choice we hypothesize will be determined by their usable
knowledge.

! Instead of differentiating between content and pedagogical con-
tent knowledge, which raises both theoretical and practical issues of
demarcation (Baumert et al., 2010), we identify both as mathematical
knowledge.
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2.1 CVA and CVA-M example responses
2.1.1 Example response 1

In the first response, several knowledge pieces can be identi-
fied that reflect the teacher’s general pedagogical and math-
ematical knowledge. The response starts with comments
focused on pedagogical strategies leading to an assessment
of Elizabeth’s mathematical understanding and concludes
with a suggestion for how to solidify students’ understanding
of the mathematics:

I love the ending of “...how many agree with what
Elizabeth said.” It doesn’t quite affirm that Elizabeth
is correct, but it doesn’t contradict it. Just by eliciting
Elizabeth’s help to come to the overhead to explain,
there is affirmation of a good answer. I love the way
the teacher wants the students to help without giving
away an answer. I think Elizabeth did an excellent job
of explaining that 22 is one-sixth of 132 by putting
the 22 in each box. It would have helped if she (or the
teacher) followed it up by multiplying 22 by 6 to show
that it equals 132.

The response starts off with three pedagogical observa-
tions, all three focused on strategies the teacher in the video
uses to create a student-centered classroom that engages all
students in mathematical work. Specifically, the response
indicates knowledge of assessment strategies (““...how many
agree with what Elizabeth said.” ), which is interpreted from
a pedagogical and motivational learning process perspective.
The other two comments identify teaching strategies, i.e.,
having Elizabeth explain at the overhead, and giving hints
rather than answers, and demonstrate knowledge of their
pedagogical value.

The assessment of Elizabeth’s understanding—the
responding teacher assumes that Elizabeth understood the
meaning of 1/6 of 132 because she explained why 22 cup-
cakes are in each box—shows relevant mathematical knowl-
edge. We cannot be certain which specific mathematical
ideas the responding teacher draws on because the response
summarizes Elizabeth’s explanation. Given the wording in
the response, it is likely that the mathematical knowledge
that is activated relates to the primary mathematics in the
clip, interpreting the 22 cupcakes as the product of 1/6 and
132 or one part of the whole (132) when it is divided into
6 equal parts. It is also possible, however, that the respond-
ing teacher applied knowledge of fractions as division
(132/6 =132 + 6=22) and on the foundational concept of
fractions as partitions of a whole into equal parts, i.e., under-
standing a fraction 1/b (1/6) as the quantity formed by 1 part
when a whole (132) is partitioned into b equal parts (6 parts)
in order to interpret 22 as 1/6 of 132.
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The responding teacher’s concluding suggestion of mul-
tiplying 6 by 22 to show that it equals 132 is akin to making
an instructional decision and aims at solidifying students’
understanding of the mathematics. The suggestion uses
knowledge about the inverse relationship between division
and multiplication, but by wording it within a whole num-
ber operations context (22 X 6 = 132) rather than a fractions
context, it is not clear whether the responding teacher is
aware that this suggestion may lead some students in the
class to continue to interpret the problem as a division prob-
lem rather than a fraction problem.

The response shows that the responding teacher acti-
vated and connected five or six identifiable pieces of knowl-
edge: Three pieces of pedagogical knowledge (knowledge
of assessment strategies and knowledge of two teaching
strategies) followed by one or two pieces of mathematical
knowledge reflected in the assessment of Elizabeth’s under-
standing, and finally, one additional piece of mathematical
knowledge underlying the suggestion.

2.1.2 Example response 2

The second example response shows a similar structure and
analytic focus. It also shows the use of multiple pieces of
general pedagogical and mathematical knowledge. Differ-
ent from the first response, this second responding teacher,
however, makes explicit the question of whether students see
the relation between division and fractions in the context of
the mathematics problem:

I liked the way that the teacher encouraged the stu-
dents to “give a clue” rather than to give the entire
answer. I also appreciated how she wanted the stu-
dents to share something with the entire class, and then
when they were reluctant, suggested then discussing
with their small table groups. The students may be
less intimidated to share a concern with the smaller
group, then with the entire class. When one student
suggests “dividing 132 by six” for a clue, that seems
to demonstrate that they are seeing this as a division
problem. In this clip, it was not evident if the students
are then led to see how the division problem is also a
fraction problem. Perhaps further instruction to show
that 22/132 is equivalent to 1/6.

This response identifies three teaching strategies “giv-
ing a clue”, “sharing with the class”, and “discussing in
groups”, which indicates pedagogical knowledge of their
pedagogical and motivational value on the learning process
and learning environment. Different from response 1, this
responding teacher’s attention is firmly placed on students
mathematical thinking and understanding. Perhaps this is
why this responding teacher perceives the relevance of the
first clue “dividing 132 by 6”, given earlier by one of the

students in the class, but not followed up on by the teacher
in the video. It is clear the responding teacher interprets the
student comment as evidence that students might be view-
ing the problem as a division and not as a fraction problem.

The responding teacher’s understanding of the students’
primary struggle motivates the concluding suggestions,
which can be considered the “lab equivalent” to instruc-
tional decision-making. The responding teacher draws on
two fraction concepts, interpreting fractions as division of
the numerator by the denominator (a/b=a + b), and knowl-
edge of equivalence, 22/132 = 1/6, to support students in rec-
ognizing that the division problem is also a fraction problem
and to help them make the connection between dividing by 6
and 1/6, both identifiable mathematical knowledge.

2.1.3 Example response 3

Next, we present two example responses to the same video
clip, only this time teachers answered the teacher question
(TQ) prompt of the CVA-M, which is more targeted and
explicitly focused on the mathematics. The prompt asks
teachers to generate a mathematical question (“If you were
a teacher in this situation what mathematical question might
you pose to the students and how would your question help
improve the students’ mathematical understanding?”).
Again, we observe differences in the knowledge underlying
teachers’ responses.

In this example, we can identify two mathematical knowl-
edge pieces in the response, one underlying the question,
the other underlying the rationale motivating the question:

I would ask them, “What does the denominator repre-
sent in the fraction?”” When the students understand the
concept of how the denominator represents the amount
of pieces, then we can discuss how fractions are related
to division, and how the whole is the 132 cupcakes and
how the sixths are how many pieces or in this case how
many boxes they want to split the cupcakes into.

The mathematical knowledge reflected in the teacher
question represents basic meaning of fractions knowledge,
specifically, the meaning of the denominator as indicating
the number of fractional parts a whole has been partitioned
into (i.e., interpreting a fraction 1/b as the quantity formed
when a whole is partitioned into b equal parts). The teacher
question is intended to help students make the connection to
fractions by understanding fractions as division in order to
interpret the 132 as the whole that is divided into six pieces
or sixths, which can be identified as mathematical knowl-
edge. By linking meaning of fractions to fraction as divi-
sion knowledge, the response addresses a key mathematical
idea, that is, that fractions can be interpreted as division
of the numerator by the denominator (132/6 =132+ 6=22)
and that the denominator indicates the number of fractional
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parts the whole was divided into, thereby allowing students
to interpret each sixth of the whole as 22 for this problem.

2.1.4 Example response 4

The teacher in the final example fully articulates the frac-
tion concept that is the learning goal for this math problem:
Interpreting the product of a unit fraction and whole number
as the size of one part, which can be found when dividing the
whole into equal parts. In total, two pieces of mathematical
knowledge can be identified in the response.

I think the students are not looking at the problem as
part of a whole. I would ask the students how many
containers the 132 were divided into (6), then ask them
if they see that number represented in the fraction 1/6
(the denominator, 6). I would then ask, “So the whole
has been divided into how many parts?” (6). Then I
would circle one box of 22 and ask, “This box rep-
resents how many parts of the 6 boxes?” (1). I would
then ask them if they see that number represented in
the fraction 1/6 (the numerator). This would help stu-
dents see that taking a part of a whole is the same as
dividing the whole into parts.

Different from the prior examples, this response provides
a sequence of questions and expected answers, which makes
for straightforward identification of the knowledge used in
the response. The response starts by identifying students
struggling to recognize that the problem is a fraction prob-
lem. To address this struggle, the response uses supporting
knowledge of fractions, specifically understanding a frac-
tion //b as the quantity formed by dividing one whole into
b equal parts to generate a series of three questions to help
students understand the meaning of 1/6. The response con-
cludes that the sequence of proposed questions would help
students understand the key fraction concept.

2.2 Discussion of knowledge identification

In each response, teachers drew upon multiple pieces of
knowledge and connected this knowledge in pedagogically
meaningful yet different ways to make sense of the teaching
situation. These differences in the activated mathematical
and general pedagogical knowledge influenced the teachers’
assessment of student understanding and led to somewhat
differing interpretations of the teaching situation. Differing
interpretations in turn led to different suggestions akin to
instructional decisions these teachers might make if they
found themselves in the same situation.

We found it to be fairly straightforward to identify and
categorize the underlying pedagogical and mathemati-
cal knowledge pieces in the responses. Moving forward,
it would be desirable to use knowledge classifications that
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can be widely agreed upon so that results from such inves-
tigations can be compared across studies. Only example 1
required us to make some inference about the mathemati-
cal knowledge underlying the response, which might lead
to some inaccuracies if frequent. Nevertheless, based on
our analysis of these four example responses, the process
of knowledge identification and classification in teachers’
responses to the CVA or CVA-M appears to be feasible and
could be formalized for future studies. In the next section,
we explore the affordances of Bayesian networks as a novel
analytic approach to model usable knowledge.

3 Exploring the affordances of Bayesian
network to functionally model usable
knowledge

Advances in cognitive science have successfully modeled
complex decision making from a probabilistic perspective
using Bayesian networks (Chater, Tenenbaum, & Yuille,
2006; Gopnik & Tenenbaum, 2007; Griffiths, Chater, Kemp,
Perfors, & Tenenbaum, 2010; Jacobs & Kruschke, 2011;
Pouget et al., 2013). Such networks consist of nodes reflect-
ing different variables, and directed edges expressing direct
and conditional relationships between variables as numerical
probabilities. The structure and resulting conditional prob-
abilities of such networks are determined by comparing all
possible combinations (including directionality of depend-
encies) between variables and identifying those through a
network that most accurately model the data. In this way,
such models (structure and probabilities) represent approxi-
mations of the observed data, not the actual data.

In the context of modeling usable knowledge, these net-
works then estimate the probabilities of knowledge pieces
being activated given the activation state (activate or inacti-
vate) of other knowledge pieces. Thus, the variables or nodes
in a Bayesian network are the knowledge pieces identified in
teachers’ responses to a specific teaching situation, and the
directed edges represent causal relationships between them.
Specifically, the directed edges represent the probabilistic
relationships between the knowledge pieces, i.e., situation-
specific weights. In this way, the situation-specific nature
of the knowledge being modeled is an integral part of the
model itself.

3.1 Basics relationships of Bayesian networks

There are four basic relationships in Bayesian networks
(Nagarajan, Scutari, & Lebre, 2013). We describe them in
the context of usable knowledge as shown in Fig. 1. (a) Two
knowledge pieces A and B that are marginally independ-
ent—meaning activation of knowledge piece A has no effect
on activation of knowledge piece B and vice versa—are not
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Fig. 1 a—d Four types of probabilistic relationships in a Bayesian net-
work

connected through directed edges. (b) Two knowledge pieces
A and B, A — B, are directly dependent or causally related.
This means that the probability of activation of knowledge
piece B is altered if knowledge piece A is activated. (c) Two
direct relationships connecting three knowledge pieces,
A — B and A— C, causes B and C to become conditionally
independent if knowledge piece A is activated (divergent
relationship). Intuitively, this stems from the fact that activa-
tion of knowledge piece A contains all the information that
determines activation of knowledge pieces B and C. (d) Two
direct relationships, A— C and B — C, form a convergent
relationship. If knowledge piece C is activated, A and B
become conditionally dependent because they are coupled
by C. The probability of activation of A and B is affected by
the activation of knowledge piece C but not by each other.
In other words, if C is activated, we can make inferences
about activation of A and B, but information about B is not
needed to make inferences about A and vice versa. A key
requirement in these networks is that there are no directed
circles (acyclic).

A strength of Bayesian networks is that once the full
probability distribution for the causal relationships has been
approximated through the network, conditional probabilities
for any combination of connected nodes can be determined.
Another strength of these models is that they can be used in
descriptive ways, showing the causal dependencies within
a knowledge network, in predictive ways, such as predict-
ing instructional decisions or student learning from specific
patterns of activated knowledge, and explanatory, where
the usefulness of a theoretically derived usable knowledge
network (e.g., an ideal answer) can be evaluated against

empirical data. All three modes, descriptive predictive, and
explanatory are of great value to study usable knowledge.

3.2 Simulated Bayesian network model
of knowledge activation

To illustrate the affordances of Bayesian networks for ana-
lyzing knowledge activation in teacher responses, we ran-
domly sampled with replacement from the original four
responses to generate a sample of size 500 using the sample
function in R and the hill-climbing, score-based algorithm
in the bnlearn package in R (Scutari, 2010) to create the
Bayesian network shown in Fig. 2. Random sampling with
replacement produced the following probabilities for each of
the activated knowledge pieces in our sample: Knowledge of
teaching methods (0.52), learning processes (0.52), knowl-
edge of fractions as division (0.52) and basic fraction under-
standing (0.48) are contained in about half of the responses,
knowledge of equivalence (0.27), multiplication of integers
(0.25), and interpreting taking part of a whole as dividing
the whole into parts (ABQ; 0.23) in about one-fourth of the
responses, and knowledge of division of integers is present
in three quarters of the responses (0.75). Not surprisingly,
the reported frequencies closely approximate the observed
knowledge piece frequencies in the original four responses.
Resampling responses preserved the knowledge relation-
ships we described in Sect. 2, which eases interpretation of
the network.

In our simulated example, the network consists of eight
knowledge pieces, the total number of knowledge pieces
identified across all four responses as shown in Fig. 2. Inter-
preting these graphs, however, is not straight forward (Butz
et al. 2009).

To interpret the network, we focus on three clusters of
coactivation dependencies within the network. The coacti-
vation dependencies consists of the basic knowledge activa-
tion relationships described in Sect. 3.1. Figure 3a shows a
direct dependence of knowledge of learning processes and
teaching methods, indicating that the activation of teaching
methods knowledge has a direct effect on the activation of
learning processes.

In this network, the probability of knowledge of learning
processes (0.52) increases to 0.92 if knowledge of teach-
ing methods is activated, which reflects the fact that these
two knowledge pieces cooccurred in the two responses that
contained knowledge of teaching methods. We further learn
that activation of learning processes does not affect the acti-
vation of any other knowledge. The example illustrates that
Bayesian networks can help identify knowledge that may
have little impact on other knowledge relationships modeled
in the graph. Substantively, such branches in the graph may
capture knowledge that may be applicable in a given teach-
ing situation but could be considered supplemental. It would
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Fig.2 Simulated Bayesian

network Interpret

a
>Xqasa

Basic Fraction

partition of g
into b parts

Division of
Integers

be impossible to identify such branches in an actual empiri-
cal dataset with the variability in knowledge that arises in
authentic responses.

Figure 3b highlights three direct relationships, which
form a convergent relationship. For example, if knowledge
of division of integers is activated, the probability of activat-
ing fractions as division knowledge (originally 0.52) reduces
to 0.37. Similarly, activated knowledge of fraction equiva-
lence increases that probability to .83. Further, if fractions
as division knowledge is activated, knowledge of division
of integers, equivalence, and basic fraction understanding
become conditionally dependent. That is, the activation of
fractions as division knowledge alters the probability of
activation of any of the three connected knowledge pieces.

For example, if fractions as division knowledge is acti-
vated but division of integers and fractions equivalency are
not, the probability of activating basic fraction understand-
ing increases from 0.52 to 0.91. This reflects the fact that
in the original four responses, fractions as division either
cooccurred with both division of integers and fraction equiv-
alency or basic fraction understanding, but not all together
or all separately. Alternatively, we can determine that if frac-
tions as division is activated along with division of integers
and equivalence, a knowledge combination not observed in
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any of the four original responses, the probability of activat-
ing knowledge of division of integers decreases to 0.07. One
affordance of these networks is that probabilities for any
combination of knowledge pieces can be obtained once the
full probability distribution has been determined, regardless
of whether the relationship was observed in the data.

Finally, Fig. 3c illustrates a divergent relationship. This
relationship indicates that activation of ABQ makes sup-
porting knowledge of division of integers and basic frac-
tion understanding conditionally independent. This means
that activation of ABQ provides all the information needed
to make inferences about either knowledge. For instance, if
ABQ is activated, the probability of basic fraction under-
standing increases from .52 to .85 regardless of activation
state of division of integers. Conversely, that probabil-
ity increases to .83 for division of integers, which in turn
decreases the probability of teaching methods knowledge
being activated from .52 to .21. This demonstrates that prob-
abilities in these models not only propagate forward but
also backwards, which is another affordance of Bayesian
networks.

It is important to remind the reader that the directed
edges in the knowledge network represent the directional-
ity of the conditional relationships, not the order in which
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knowledge pieces occurred within responses. Therefore, it
would be incorrect to interpret any top to bottom knowl-
edge sequence to mean that the top knowledge leads to
activation of the next lower connected knowledge, which
in turn leads to the next lower connected knowledge and

SO on.
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3.3 Extending the idea of dynamic knowledge
networks to envision knowledge activation
in individual teachers

To be clear, the weights in the network we discussed so far
represent knowledge activation relationships based on the
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sample, not individual teachers. Nevertheless, considering
this functional mechanism at the individual teacher level can
provide useful insights into the process of knowledge activa-
tion. If applied to the individual teacher, the weights could
be envisioned as capturing seemingly automatic activation
of knowledge and subsequent instructional decisions. The
processes of knowledge activation might become conscious
and deliberate when weights to different connected knowl-
edge are highly similar, rendering all knowledge equally
applicable, or when the situation suggests that the most rel-
evant knowledge, based on weights, is actually not applica-
ble, creating dissonance. As teachers become more efficient
and experienced the process no longer requires conscious
activation.

Some situation-specific weights connecting different
knowledge may initially be learned as part of teacher prepa-
ration courses. More often, however, building on research
demonstrating the effectiveness of practices such as lesson
study (Lewis & Perry, 2017) and rehearsal (Kazemi, et al.,
2016; Freese, 1999), we hypothesize situation-specific
weights are initially created and continuously modified
based on experience and reflective practice (Santagata &
Yeh, 2016), which highlights the dynamic nature of usable
knowledge networks. Like a feedback loop, based on the
perceived effectiveness of a knowledge piece used in a spe-
cific teaching situation, the weight will be adjusted upward
or downward. From this perspective, increasing usable
knowledge implies increasing connections to other knowl-
edge pieces and greater differentiation of and more optimal
situation-specific weights, in addition to increasing the num-
ber of individual knowledge pieces (Russ, Sherin, & Sherin,
2016). In the next section, we will discuss implications of
Bayesian networks for research on usable knowledge and
knowledge use.

4 Implications of Bayesian networks
for research on usable knowledge
and knowledge use

In this article, we explored the affordances of Bayesian net-
works for modeling usable knowledge and for functional
conceptualizations of usable knowledge and knowledge use
in teaching. We considered the CVA and CVA-M measures
as a lab model for how teachers use their knowledge in the
process of teaching and identified the knowledge (pieces)
underlying teachers’ CVA and CVA-M responses. We
described why Bayesian networks could be useful to model
knowledge activation and instructional decision making.
We also showed how such networks support conceptual-
izing usable knowledge from a functional perspective as a
dynamic knowledge network, where connections between
different pieces of knowledge represent situation-specific

@ Springer

weights that inform knowledge activation for instructional
decision-making. The potential of Bayesian networks we
have presented in this article has a number of implications
for research on usable knowledge and knowledge use in
teaching. In this section, we will discuss four implications,
we consider theoretically and empirically relevant.

(a) Bayesian network models learn from data. To apply
these models, we need data that are good approxima-
tions of teachers’ usable knowledge. We used our CVA
and CVA-M responses, but other data sources contain-
ing multiple interconnected knowledge pieces situated
in a specific teaching context could also be suitable.
Another, and related consideration is, the quality of
the data used in these models. Although identification
and classification of the individual knowledge pieces
in the four example responses we analyzed, appeared
to be straightforward, issues related to accuracy and
reliability need to be investigated and addressed if this
approach were scaled up. In this article, we used the
Common Core standards because they encapsulate
a view of the mathematics as interconnected ideas
to identify the mathematical knowledge in teach-
ers’ responses. However, other content frameworks
might work equally well and could be broadly appli-
cable across time. For identifying general pedagogical
knowledge, we relied on the classification provided by
Guerriero (2013), but other classifications can be con-
sidered. It would be most effective if there was agree-
ment and validation of knowledge taxonomies within
the research community to facilitate comparability of
study results.

(b) Connecting usable knowledge and knowledge use. We
used the CVA and CVA-M responses as a lab model to
approximate how teachers use their knowledge in the
process of teaching, which conflates usable knowledge
and knowledge use. There is, however, a difference
between usable knowledge and knowledge use. Usable
knowledge represents a theoretical construct while
knowledge use represents the enactment of knowledge
in a classroom. Bayesian networks, if used to predict
instructional decisions (outputs) from usable knowl-
edge (inputs), provide a simple way with a single model
to connect usable knowledge to knowledge use in teach-
ing via instructional decisions. One caveat of these
models is that they cannot account for idiosyncratic
knowledge, such as knowledge of individual students,
which in an actual classroom situation might overwrite
the knowledge relationships predicted by the model.
This trade-off is outweighed, however, by the benefits
of generalizability. It is, for example, conceivable to
identify a set of representative video clips that stimu-
late knowledge activation and use the resulting usable
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(©)

(d)

knowledge networks to measure beginning teachers’
knowledge in ways that can more accurately capture
the complexity and demands of classroom teaching.
Bayesian network models can offer a novel way to study
knowledge growth because they efficiently represent
highly qualitative information in quantified ways. Net-
works can provide detailed information on changes in
knowledge network structures and weights that cannot
be captured by scores on traditional teacher knowl-
edge assessments. Therefore, these models might offer
important complementary information to assessment
scores. Given that usable knowledge in these models
is functionally conceptualized as an interconnected
knowledge network, weighted by situation-specific
relevance, understandings of knowledge growth can
move away from conceptions of simply acquiring
more relevant knowledge pieces to an understanding
that emphasizes a more differentiated (interconnected
and optimally weighted) knowledge network.

From this functional perspective, pre-service or
novice teachers’ networks have fewer connections or
less differentiation in situation-specific weights (mak-
ing all knowledge somewhat equally likely to apply),
which requires more effort from this group of teachers
to connect different knowledge in purposeful ways to
carry out teaching tasks and to decide which knowledge
might be most relevant for a given situation. Expert
teachers, on the other hand, can be thought of as hav-
ing developed a highly sophisticated and differentiated
knowledge network reflecting optimally weighted con-
nections, which allows expert teachers to automatically
apply the most relevant knowledge in a given teaching
situation. This understanding of knowledge growth in
teaching also moves beyond efforts to classify knowl-
edge dimensions and to quantify their impact on teach-
ing and learning.

Investigations into knowledge growth. The functional
modeling of usable knowledge allows for investigations
into how usable knowledge grows over time, answering
questions such as why some teachers develop expertise
over time while others’ teaching practices change little,
or why teaching practices are difficult to affect at scale.
If teachers actively reflect on the knowledge they draw
on when teaching and intentionally activate different,
more relevant knowledge to be more effective in a spe-
cific teaching situation, slowly with repeated activation
of the new knowledge pieces new connections get cre-
ated, situation-specific weights get modified and new
knowledge combinations eventually become the teach-
ers’ go-to routine. As Bjork (1975) wrote: Retrieval
modifies memory. Teachers who engage in this pro-
cess over time, build more optimal connections, create

more optimal weights, and develop expertise (Fadde,
& Klein, 2010).

To be sure, the ideas about functionally modeling usable
knowledge and knowledge use we advanced in this article
are based on teachers’ responses to video clips of authen-
tic classroom instruction, not on knowledge use captured
during the actual process of teaching. Nevertheless, they
may represent a useful approximation of knowledge acti-
vation and application in a real teaching situation. These
models add another mode of investigation to already exist-
ing frameworks, which might motivate further research
(Blomeke et al., 2015). Moving forward, these models could
potentially be applied to video recordings coded for enacted
knowledge pieces.

Bayesian networks are a promising approach that can help
explain a variety of issues related to teacher knowledge and
its relationships to teaching that have a history of research
but no definite answers. Among them are how to understand
knowledge growth in teaching, how to understand knowl-
edge use in teaching, and how to better understand the rela-
tionship between knowledge and changes in teaching prac-
tice. Much work remains to be done, but at the very least,
the ideas we presented offer a new vantage point from which
to examine the relationship between teacher knowledge and
teaching practice.
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