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Abstract
In this article we propose the use of Bayesian networks as a potentially promising way to model usable knowledge. Using the 
Classroom Video Analysis (CVA and CVA-M) assessments as a lab model for studying teachers’ usable knowledge, we first 
explored whether we can identify the knowledge (pieces) underlying teachers’ written responses. In the CVA approach we 
ask teachers to respond to short video clips of authentic classroom instruction based on different prompts that are designed 
to simulate common teaching tasks. We then explored the affordances of Bayesian networks to functionally model usable 
knowledge as an interconnected dynamic knowledge system consisting of different knowledge pieces and connected pathways 
weighted by situation-specific relevance and applicability. We explore the implications of these models for studying the 
development and growth of usable knowledge and propose the use of Bayesian networks as a novel and potentially promising 
way to model usable knowledge and for understanding how knowledge is used in teaching.

Keywords  Usable knowledge · Knowledge use · Teacher knowledge · Teaching practice · Knowledge system · Bayesian 
networks

1  Introduction

Although there is widespread agreement that teaching 
requires a great deal of knowledge, we still know little 
about how knowledge becomes usable and how teachers’ 
use their knowledge for instructional decision making (Ball 
& Bass, 2000; Ball, Thames, & Phelps, 2008; Blömeke, 
Gustaffson, & Shavelson, 2015). In this article, we explore 
the Classroom Video Analysis instrument (CVA and CVA-
M), which asks teachers to respond to short video clips 
of authentic classroom instruction as a lab model for how 
teachers use their knowledge in real classroom situations. 
By lab model we mean that teachers engage in the same 
basic cognitive processes when responding to the teaching 
situations shown in the video clips, although in more limited 
ways, that they engage in in their classrooms, and that, there-
fore, teachers’ answers to the CVA or CVA-M instruments 

can be considered good approximations of their situation-
specific usable knowledge. We explore implications of this 
view for understanding usable knowledge and knowledge 
use in teaching. Specifically, we will address two research 
questions:

1.	 Can we identify the knowledge contained in teachers’ 
responses to the CVA or CVA-M?

2.	 What are the affordances of Bayesian networks for mod-
eling the knowledge contained in teachers’ responses to 
the CVA or CVA-M to conceptualize usable knowledge 
and knowledge use in teaching?

Since Shulman’s theoretical analysis of the knowledge 
base required for teaching (Shulman, 1986, 1987), much of 
the research on teacher knowledge has focused on identi-
fying knowledge domains specific to teaching (Ball 2000, 
2003) and on examining their impact on teaching and 
student learning (Hill, Schilling & Ball, 2004; Baumert, 
Kunter, Blum, Brunner et  al., 2010). Building on and 
extending Shulman’s work in the area of mathematics, the 
Mathematics Knowledge for Teaching (MKT) construct 
with its six subdomains and associated items represent 
the most well-known example of this broader effort within 
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the US (Ball, Thames, & Phelps, 2008; Hill, Schilling, & 
Ball, 2004).

Classifying knowledge into different types and measur-
ing them separately—e.g., content knowledge, pedagogical 
content knowledge, pedagogical knowledge, etc.—holds 
obvious benefits for research and measurement purposes, 
but it may divert attention away from important questions 
related to knowledge use. Such classifications also raise 
theoretical and practical questions about distinguishing 
between content and pedagogical content knowledge in a 
teaching context because content knowledge that is applied 
in pedagogically purposeful ways, might be considered 
pedagogical content knowledge (Baumert et al., 2010). 
Furthermore, items on traditional assessments of teacher 
knowledge measure single pieces of knowledge in isola-
tion rather than multiple knowledge pieces in connection 
as they are used in the process of teaching. In the larger 
context, this inadvertently reinforces a modular view of 
knowledge in which different kinds of knowledge and 
knowledge pieces are seen as separate entities. It implicitly 
presumes that if teachers have acquired a sufficient amount 
of knowledge in key knowledge domains, they can flexibly 
apply it while teaching their students.

This approach, however, does little to advance our 
understanding of how teachers access and connect different 
pieces of knowledge as they carry out teaching tasks. As 
Ball, Thames, and Phelps noted (2008, p. 403): “How such 
knowledge is actually used and what features of pedagogi-
cal thinking shape its use, remains tacit and unexamined.’’ 
There is a notable difference between being able to recall 
a specific common student mistake on a multiple-choice 
exam, for example, and effectively addressing that same 
student mistake in an actual classroom situation. In a class-
room, teachers may draw upon combinations of knowledge: 
knowledge of the common student mistakes, foundational 
or supportive content knowledge, and other knowledge to 
decide on the best teaching strategy for a particular learner 
and context.

To date we have not been able to answer the question of 
how teachers activate and flexibly combine knowledge in the 
process of teaching from a functional point of view. Earlier 
models of cognition (Anderson, 1983) have proposed that 
declarative knowledge (knowing what) needs to be converted 
into procedural knowledge (knowing how to) initially through 
basic interpretative processes and through iterative refine-
ment. In Anderson’s model, procedural knowledge consists of 
condition-action (if–then) pairs, called productions, activated 
according to rules relating to a goal structure, for example, 
assessing student thinking. Multiple productions can be com-
bined to carry out complex tasks (Renkl, Mandl, & Gruber. 
1996) thereby connecting knowledge to behavior. Anderson’s 
model appears to suggest that the more declarative knowledge 
teachers have converted into procedural knowledge, the more 

efficiently they can enact their knowledge in the process of 
teaching.

A more recent approach proposed by Blömeke and col-
leagues (2015) hypothesized an intervening construct to link 
knowledge to performance, which they refer to as situation-
specific skills of perceiving, interpreting, and decision-mak-
ing. The model suggests that these situation- specific skills 
may mediate or affect whether teachers are able to apply their 
knowledge in a relevant context. Thus, strengthening teachers 
perceptive and interpretative abilities presumably enables them 
to apply their situation-relevant knowledge more efficiently 
leading to better decision making and more effective teach-
ing performance. The model reconceptualizes the process of 
knowledge conversion from declarative to procedural found 
in the Anderson model as a set of situation-specific skills that 
identify basic cognitive processes, shown to shape actions and 
behaviors, emphasizing the context-bound nature of knowl-
edge use. Both models resolve why teachers may be able to 
produce specific knowledge in an assessment context but not 
in a real classroom situation. For Anderson, declarative knowl-
edge has not yet been “productionized”; for Blömeke and 
colleagues this is due to insufficient or low situation-specific 
skills. Neither model details how knowledge activation can 
be envisioned functionally or how it affects decision making.

In this article we explore questions about knowledge acti-
vation and application as they relate to usable knowledge in 
mathematics teaching. Section 1 addresses research question 1. 
Different from past studies where we assigned scores to teach-
ers’ CVA or CVA-M responses to obtain measures of their 
usable knowledge, here we examine teachers’ responses to the 
CVA and CVA-M to identify the pieces of knowledge that 
underlie teachers’ responses to the teaching situations shown 
in the video clips. In Sect. 2, we explore the affordances of 
Bayesian networks to computationally model the knowledge 
pieces contained in teachers’ responses as a dynamic knowl-
edge network that consists of interconnected pieces of knowl-
edge weighted by situation-specific relevance. We describe 
how the process of activating and connecting different pieces 
of knowledge could be envisioned functionally within such a 
network and describe how such models could be used for pre-
dicting instructional decision-making, thereby linking knowl-
edge to teaching practice. In Sect. 3, we discuss implications 
of using Bayesian networks for research on usable knowledge 
and knowledge use in teaching.

2 � Identifying usable knowledge in teacher 
responses to the classroom video analysis 
instruments (CVA and CVA‑M)

The classroom video-analysis instruments (the original CVA 
and the Common Core-aligned CVA-M) use video clips of 
authentic classroom instruction as stimuli to elicit teachers’ 
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knowledge in concrete teaching situations. Teachers’ view a 
set of video clips of mathematics instruction to approximate 
a real teaching situation and provide written responses to the 
video clips based on different prompts, which simulate com-
mon teaching tasks (Kersting et al., 2016). To obtain meas-
ures of teachers’ usable knowledge, the written responses 
are scored according to reliable rubrics.

In the CVA, the same prompt is associated with each 
of the video clips. The prompt is fairly open-ended, ask-
ing teachers to comment on the mathematics, the teacher, 
and the student(s) and interactions between them. The 
video clips reflect key mathematical ideas in a given con-
tent domain although not a specific content framework. Each 
response is scored along four reliable rubrics (0–2) indicat-
ing whether the response analyzed the mathematics shown 
in the clip (MC), analyzed student thinking and understand-
ing (ST), contained suggestions for improvement (SI), and 
provided an in-depth interpretation (DI). The DI rubric indi-
cates whether the response remained entirely descriptive (0), 
was interpretative in some aspect (1), or whether different 
interpretative ideas formed a coherent argument (2). For 
the three remaining rubrics a score of “0” indicates that a 
response did not address a particular rubric. A score of 1 
indicates that a response addressed a scoring rubric and used 
knowledge descriptively (MC and ST) or pedagogically (SI), 
whereas a score of 2 indicates that a response provided an 
in-depth analysis of the mathematics (MC), the mathemati-
cal understanding of the student (ST), or provided a mathe-
matically-based suggestion for improvement (SI). Given the 
intentional open-endedness of the prompt allowing teachers 
to focus on different aspects of the teaching episodes, the 
CVA captures a wide range of usable knowledge.

In contrast, the CVA-M is more narrowly focused on the 
mathematics. The video clips and scoring rubrics are aligned 
with the Common Core content and practice standards. The 
prompts of the CVA-M are explicitly focused on the math-
ematics and simulate common teaching tasks, such as gener-
ating targeted mathematical questions to help the student(s) 
improve their understanding, diagnosing students’ mathe-
matical thinking, or providing suggestions for improving the 
teaching episode that are specific to the mathematics. Thus, 
different from the CVA scores, which reflect teachers usable 
mathematical and general pedagogical knowledge, teachers’ 
scores on the CVA-M reflect teachers’ usable mathematics 
knowledge for teaching as it connects to the Common Core.

We hypothesized that by using authentic video clips and 
teaching-focused prompts, teachers’ written responses would 
not only reflect their knowledge as it pertains to the video 
clips but also their ability to apply that knowledge in a real 
classroom situation (Kersting et al., 2010). In prior work, 
we have shown that quantifying qualitative differences in 
teachers’ responses to the CVA or CVA-M predicted teach-
ers’ own teaching measured as instructional quality and their 

students learning (Kersting et al., 2010, 2012). We have 
interpreted the empirical evidence to suggest that the CVA 
and CVA-M capture usable knowledge.

To examine what knowledge teachers draw upon and 
how teachers combine different knowledge (pieces) when 
responding to the video clips, we analyze four responses 
to a fractions video clip, each produced by an experienced 
4th or 5th grade classroom teacher, two from the CVA and 
two from the CVA-M. We include example responses from 
both measures in our analysis to understand the feasibility 
of knowledge identification and classification in both kinds 
of responses and to illustrate how different prompts pro-
duce variation in knowledge activation. We purposefully 
selected higher quality responses to show variation in the 
activated knowledge. To identify the mathematics knowl-
edge contained in the responses we use the Common Core 
standards (National Governors Association Center for Best 
Practices, Council of Chief State School Officers 2010). We 
apply the classification of general pedagogical knowledge, 
which includes pedagogical and psychological components, 
suggested by Guerriero (2013).

To provide some context for understanding the teacher 
responses, we first describe the teaching episode. We rec-
ognize that the following description is no substitute for the 
actual visual and auditory input experienced by the teacher 
participants in our study.

In a lesson about fractions, the teacher in the video clip 
posed the following word problem to her students: “If 132 
cupcakes are distributed evenly among 6 containers, how 
many cupcakes would end up in each container?” Students in 
the clip appear confused about how to solve the problem, so 
the teacher brings the class together and invites students to 
give a clue or a hint rather than the answer. One student sug-
gests dividing 132 by 6. The teacher asks the class whether 
the hint is helpful to them, and when there is no response, 
the teacher shifts gears and asks what 1/6 of 132 means. 
When students remain confused, the teacher instructs stu-
dents to talk at their tables and come up with hints on how 
to solve the problem.

After about 1 min during which the teacher circulates 
the classroom and listens into some of the groups, she calls 
the class together and invites one student, Elizabeth, to the 
overhead projector to give a clue. Elizabeth repeats the ear-
lier clue of dividing 132 by 6 and shows her solution on 
the overhead, which shows a tape diagram with six empty 
boxes. Elizabeth explains that she divided 132 by 6, which 
resulted in 22 cupcakes per box, writing 22 in each of the 
six boxes. She then explains that one of the six boxes repre-
sents 1/6 of the 132 cupcakes because there are six boxes in 
total. It is not clear whether Elizabeth understands that the 
132 represents the whole, which is divided into six equal 
parts reflected in the denominator of “6” in the fraction 1/6. 
Although the answer the student provides is correct, it is 
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apparent that most students in the class are still unsure of 
what 1/6 of 132 means. The teaching episode concludes with 
the teacher asking the class if anyone has a question of Eliza-
beth at the overhead.

Different pieces of knowledge, both mathematical and 
general pedagogical,1 could be relevant and activated when 
responding to this teaching episode. Based on our under-
standing, the primary mathematical ideas are interpreting 
the product (a/b) × q as a parts of a partition of q into b 
equal parts (or 1/6 × 132 = 132 ÷ 6) and understanding frac-
tions as division (132/6 = 132 ÷ 6). Supporting mathematical 
knowledge that teachers might draw on includes division and 
multiplication of three-digit numbers, understanding a frac-
tion 1/b as the quantity formed by dividing one whole into 
b equal parts, understanding 132/6 as equivalent to 22/1 or 
22/132 as equivalent to 1/6, or more generally multiplication 
and division as inverse operations such that 132 ÷ 6 = 22 and 
22 × 6 = 132.

General pedagogical knowledge that might be activated 
could include strategies of classroom management and 
assessment, instructional strategies used by the teacher in 
the video that are identified and interpreted from a pedagogi-
cal or psychological learning-process perspective. In addi-
tion, comments about choices of representations (e.g., tape 
diagram) and/or manipulatives would reflect knowledge of 
diverse learners.

Finally, the teaching episode might also activate knowl-
edge of teaching strategies specific to mathematics (math-
ematical practices), such as making sense of problems, 
persevering in solving them, constructing viable arguments 
and critiquing the reasoning of others (National Governors 
Association Center for Best Practices, Council of Chief State 
School Officers 2010).

In what follows, we present two example responses to 
the CVA prompt that asks teachers to make sense of the 
observed teaching episode: “View the clip and explain how 
the teacher and the students interact with the mathematics 
and with each other.” This general prompt allows teach-
ers to choose what to attend to in the teaching episode—a 
choice we hypothesize will be determined by their usable 
knowledge.

2.1 � CVA and CVA‑M example responses

2.1.1 � Example response 1

In the first response, several knowledge pieces can be identi-
fied that reflect the teacher’s general pedagogical and math-
ematical knowledge. The response starts with comments 
focused on pedagogical strategies leading to an assessment 
of Elizabeth’s mathematical understanding and concludes 
with a suggestion for how to solidify students’ understanding 
of the mathematics:

I love the ending of “…how many agree with what 
Elizabeth said.” It doesn’t quite affirm that Elizabeth 
is correct, but it doesn’t contradict it. Just by eliciting 
Elizabeth’s help to come to the overhead to explain, 
there is affirmation of a good answer. I love the way 
the teacher wants the students to help without giving 
away an answer. I think Elizabeth did an excellent job 
of explaining that 22 is one-sixth of 132 by putting 
the 22 in each box. It would have helped if she (or the 
teacher) followed it up by multiplying 22 by 6 to show 
that it equals 132.

The response starts off with three pedagogical observa-
tions, all three focused on strategies the teacher in the video 
uses to create a student-centered classroom that engages all 
students in mathematical work. Specifically, the response 
indicates knowledge of assessment strategies (“…how many 
agree with what Elizabeth said.”), which is interpreted from 
a pedagogical and motivational learning process perspective. 
The other two comments identify teaching strategies, i.e., 
having Elizabeth explain at the overhead, and giving hints 
rather than answers, and demonstrate knowledge of their 
pedagogical value.

The assessment of Elizabeth’s understanding—the 
responding teacher assumes that Elizabeth understood the 
meaning of 1/6 of 132 because she explained why 22 cup-
cakes are in each box—shows relevant mathematical knowl-
edge. We cannot be certain which specific mathematical 
ideas the responding teacher draws on because the response 
summarizes Elizabeth’s explanation. Given the wording in 
the response, it is likely that the mathematical knowledge 
that is activated relates to the primary mathematics in the 
clip, interpreting the 22 cupcakes as the product of 1/6 and 
132 or one part of the whole (132) when it is divided into 
6 equal parts. It is also possible, however, that the respond-
ing teacher applied knowledge of fractions as division 
(132/6 = 132 ÷ 6 = 22) and on the foundational concept of 
fractions as partitions of a whole into equal parts, i.e., under-
standing a fraction 1/b (1/6) as the quantity formed by 1 part 
when a whole (132) is partitioned into b equal parts (6 parts) 
in order to interpret 22 as 1/6 of 132.

1  Instead of differentiating between content and pedagogical con-
tent knowledge, which raises both theoretical and practical issues of 
demarcation (Baumert et al., 2010), we identify both as mathematical 
knowledge.
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The responding teacher’s concluding suggestion of mul-
tiplying 6 by 22 to show that it equals 132 is akin to making 
an instructional decision and aims at solidifying students’ 
understanding of the mathematics. The suggestion uses 
knowledge about the inverse relationship between division 
and multiplication, but by wording it within a whole num-
ber operations context (22 × 6 = 132) rather than a fractions 
context, it is not clear whether the responding teacher is 
aware that this suggestion may lead some students in the 
class to continue to interpret the problem as a division prob-
lem rather than a fraction problem.

The response shows that the responding teacher acti-
vated and connected five or six identifiable pieces of knowl-
edge: Three pieces of pedagogical knowledge (knowledge 
of assessment strategies and knowledge of two teaching 
strategies) followed by one or two pieces of mathematical 
knowledge reflected in the assessment of Elizabeth’s under-
standing, and finally, one additional piece of mathematical 
knowledge underlying the suggestion.

2.1.2 � Example response 2

The second example response shows a similar structure and 
analytic focus. It also shows the use of multiple pieces of 
general pedagogical and mathematical knowledge. Differ-
ent from the first response, this second responding teacher, 
however, makes explicit the question of whether students see 
the relation between division and fractions in the context of 
the mathematics problem:

I liked the way that the teacher encouraged the stu-
dents to “give a clue” rather than to give the entire 
answer. I also appreciated how she wanted the stu-
dents to share something with the entire class, and then 
when they were reluctant, suggested then discussing 
with their small table groups. The students may be 
less intimidated to share a concern with the smaller 
group, then with the entire class. When one student 
suggests “dividing 132 by six” for a clue, that seems 
to demonstrate that they are seeing this as a division 
problem. In this clip, it was not evident if the students 
are then led to see how the division problem is also a 
fraction problem. Perhaps further instruction to show 
that 22/132 is equivalent to 1/6.

This response identifies three teaching strategies “giv-
ing a clue”, “sharing with the class”, and “discussing in 
groups”, which indicates pedagogical knowledge of their 
pedagogical and motivational value on the learning process 
and learning environment. Different from response 1, this 
responding teacher’s attention is firmly placed on students 
mathematical thinking and understanding. Perhaps this is 
why this responding teacher perceives the relevance of the 
first clue “dividing 132 by 6”, given earlier by one of the 

students in the class, but not followed up on by the teacher 
in the video. It is clear the responding teacher interprets the 
student comment as evidence that students might be view-
ing the problem as a division and not as a fraction problem.

The responding teacher’s understanding of the students’ 
primary struggle motivates the concluding suggestions, 
which can be considered the “lab equivalent” to instruc-
tional decision-making. The responding teacher draws on 
two fraction concepts, interpreting fractions as division of 
the numerator by the denominator (a/b = a ÷ b), and knowl-
edge of equivalence, 22/132 = 1/6, to support students in rec-
ognizing that the division problem is also a fraction problem 
and to help them make the connection between dividing by 6 
and 1/6, both identifiable mathematical knowledge.

2.1.3 � Example response 3

Next, we present two example responses to the same video 
clip, only this time teachers answered the teacher question 
(TQ) prompt of the CVA-M, which is more targeted and 
explicitly focused on the mathematics. The prompt asks 
teachers to generate a mathematical question (“If you were 
a teacher in this situation what mathematical question might 
you pose to the students and how would your question help 
improve the students’ mathematical understanding?”). 
Again, we observe differences in the knowledge underlying 
teachers’ responses.

In this example, we can identify two mathematical knowl-
edge pieces in the response, one underlying the question, 
the other underlying the rationale motivating the question:

I would ask them, “What does the denominator repre-
sent in the fraction?” When the students understand the 
concept of how the denominator represents the amount 
of pieces, then we can discuss how fractions are related 
to division, and how the whole is the 132 cupcakes and 
how the sixths are how many pieces or in this case how 
many boxes they want to split the cupcakes into.

The mathematical knowledge reflected in the teacher 
question represents basic meaning of fractions knowledge, 
specifically, the meaning of the denominator as indicating 
the number of fractional parts a whole has been partitioned 
into (i.e., interpreting a fraction 1/b as the quantity formed 
when a whole is partitioned into b equal parts). The teacher 
question is intended to help students make the connection to 
fractions by understanding fractions as division in order to 
interpret the 132 as the whole that is divided into six pieces 
or sixths, which can be identified as mathematical knowl-
edge. By linking meaning of fractions to fraction as divi-
sion knowledge, the response addresses a key mathematical 
idea, that is, that fractions can be interpreted as division 
of the numerator by the denominator (132/6 = 132÷ 6 = 22) 
and that the denominator indicates the number of fractional 
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parts the whole was divided into, thereby allowing students 
to interpret each sixth of the whole as 22 for this problem.

2.1.4 � Example response 4

The teacher in the final example fully articulates the frac-
tion concept that is the learning goal for this math problem: 
Interpreting the product of a unit fraction and whole number 
as the size of one part, which can be found when dividing the 
whole into equal parts. In total, two pieces of mathematical 
knowledge can be identified in the response.

I think the students are not looking at the problem as 
part of a whole. I would ask the students how many 
containers the 132 were divided into (6), then ask them 
if they see that number represented in the fraction 1/6 
(the denominator, 6). I would then ask, “So the whole 
has been divided into how many parts?” (6). Then I 
would circle one box of 22 and ask, “This box rep-
resents how many parts of the 6 boxes?” (1). I would 
then ask them if they see that number represented in 
the fraction 1/6 (the numerator). This would help stu-
dents see that taking a part of a whole is the same as 
dividing the whole into parts.

Different from the prior examples, this response provides 
a sequence of questions and expected answers, which makes 
for straightforward identification of the knowledge used in 
the response. The response starts by identifying students 
struggling to recognize that the problem is a fraction prob-
lem. To address this struggle, the response uses supporting 
knowledge of fractions, specifically understanding a frac-
tion 1/b as the quantity formed by dividing one whole into 
b equal parts to generate a series of three questions to help 
students understand the meaning of 1/6. The response con-
cludes that the sequence of proposed questions would help 
students understand the key fraction concept.

2.2 � Discussion of knowledge identification

In each response, teachers drew upon multiple pieces of 
knowledge and connected this knowledge in pedagogically 
meaningful yet different ways to make sense of the teaching 
situation. These differences in the activated mathematical 
and general pedagogical knowledge influenced the teachers’ 
assessment of student understanding and led to somewhat 
differing interpretations of the teaching situation. Differing 
interpretations in turn led to different suggestions akin to 
instructional decisions these teachers might make if they 
found themselves in the same situation.

We found it to be fairly straightforward to identify and 
categorize the underlying pedagogical and mathemati-
cal knowledge pieces in the responses. Moving forward, 
it would be desirable to use knowledge classifications that 

can be widely agreed upon so that results from such inves-
tigations can be compared across studies. Only example 1 
required us to make some inference about the mathemati-
cal knowledge underlying the response, which might lead 
to some inaccuracies if frequent. Nevertheless, based on 
our analysis of these four example responses, the process 
of knowledge identification and classification in teachers’ 
responses to the CVA or CVA-M appears to be feasible and 
could be formalized for future studies. In the next section, 
we explore the affordances of Bayesian networks as a novel 
analytic approach to model usable knowledge.

3 � Exploring the affordances of Bayesian 
network to functionally model usable 
knowledge

Advances in cognitive science have successfully modeled 
complex decision making from a probabilistic perspective 
using Bayesian networks (Chater, Tenenbaum, & Yuille, 
2006; Gopnik & Tenenbaum, 2007; Griffiths, Chater, Kemp, 
Perfors, & Tenenbaum, 2010; Jacobs & Kruschke, 2011; 
Pouget et al., 2013). Such networks consist of nodes reflect-
ing different variables, and directed edges expressing direct 
and conditional relationships between variables as numerical 
probabilities. The structure and resulting conditional prob-
abilities of such networks are determined by comparing all 
possible combinations (including directionality of depend-
encies) between variables and identifying those through a 
network that most accurately model the data. In this way, 
such models (structure and probabilities) represent approxi-
mations of the observed data, not the actual data.

In the context of modeling usable knowledge, these net-
works then estimate the probabilities of knowledge pieces 
being activated given the activation state (activate or inacti-
vate) of other knowledge pieces. Thus, the variables or nodes 
in a Bayesian network are the knowledge pieces identified in 
teachers’ responses to a specific teaching situation, and the 
directed edges represent causal relationships between them. 
Specifically, the directed edges represent the probabilistic 
relationships between the knowledge pieces, i.e., situation-
specific weights. In this way, the situation-specific nature 
of the knowledge being modeled is an integral part of the 
model itself.

3.1 � Basics relationships of Bayesian networks

There are four basic relationships in Bayesian networks 
(Nagarajan, Scutari, & Lebre, 2013). We describe them in 
the context of usable knowledge as shown in Fig. 1. (a) Two 
knowledge pieces A and B that are marginally independ-
ent—meaning activation of knowledge piece A has no effect 
on activation of knowledge piece B and vice versa—are not 
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connected through directed edges. (b) Two knowledge pieces 
A and B, A → B, are directly dependent or causally related. 
This means that the probability of activation of knowledge 
piece B is altered if knowledge piece A is activated. (c) Two 
direct relationships connecting three knowledge pieces, 
A → B and A → C, causes B and C to become conditionally 
independent if knowledge piece A is activated (divergent 
relationship). Intuitively, this stems from the fact that activa-
tion of knowledge piece A contains all the information that 
determines activation of knowledge pieces B and C. (d) Two 
direct relationships, A → C and B → C, form a convergent 
relationship. If knowledge piece C is activated, A and B 
become conditionally dependent because they are coupled 
by C. The probability of activation of A and B is affected by 
the activation of knowledge piece C but not by each other. 
In other words, if C is activated, we can make inferences 
about activation of A and B, but information about B is not 
needed to make inferences about A and vice versa. A key 
requirement in these networks is that there are no directed 
circles (acyclic).

A strength of Bayesian networks is that once the full 
probability distribution for the causal relationships has been 
approximated through the network, conditional probabilities 
for any combination of connected nodes can be determined. 
Another strength of these models is that they can be used in 
descriptive ways, showing the causal dependencies within 
a knowledge network, in predictive ways, such as predict-
ing instructional decisions or student learning from specific 
patterns of activated knowledge, and explanatory, where 
the usefulness of a theoretically derived usable knowledge 
network (e.g., an ideal answer) can be evaluated against 

empirical data. All three modes, descriptive predictive, and 
explanatory are of great value to study usable knowledge.

3.2 � Simulated Bayesian network model 
of knowledge activation

To illustrate the affordances of Bayesian networks for ana-
lyzing knowledge activation in teacher responses, we ran-
domly sampled with replacement from the original four 
responses to generate a sample of size 500 using the sample 
function in R and the hill-climbing, score-based algorithm 
in the bnlearn package in R (Scutari, 2010) to create the 
Bayesian network shown in Fig. 2. Random sampling with 
replacement produced the following probabilities for each of 
the activated knowledge pieces in our sample: Knowledge of 
teaching methods (0.52), learning processes (0.52), knowl-
edge of fractions as division (0.52) and basic fraction under-
standing (0.48) are contained in about half of the responses, 
knowledge of equivalence (0.27), multiplication of integers 
(0.25), and interpreting taking part of a whole as dividing 
the whole into parts (ABQ; 0.23) in about one-fourth of the 
responses, and knowledge of division of integers is present 
in three quarters of the responses (0.75). Not surprisingly, 
the reported frequencies closely approximate the observed 
knowledge piece frequencies in the original four responses. 
Resampling responses preserved the knowledge relation-
ships we described in Sect. 2, which eases interpretation of 
the network.

In our simulated example, the network consists of eight 
knowledge pieces, the total number of knowledge pieces 
identified across all four responses as shown in Fig. 2. Inter-
preting these graphs, however, is not straight forward (Butz 
et al. 2009).

To interpret the network, we focus on three clusters of 
coactivation dependencies within the network. The coacti-
vation dependencies consists of the basic knowledge activa-
tion relationships described in Sect. 3.1. Figure 3a shows a 
direct dependence of knowledge of learning processes and 
teaching methods, indicating that the activation of teaching 
methods knowledge has a direct effect on the activation of 
learning processes.

In this network, the probability of knowledge of learning 
processes (0.52) increases to 0.92 if knowledge of teach-
ing methods is activated, which reflects the fact that these 
two knowledge pieces cooccurred in the two responses that 
contained knowledge of teaching methods. We further learn 
that activation of learning processes does not affect the acti-
vation of any other knowledge. The example illustrates that 
Bayesian networks can help identify knowledge that may 
have little impact on other knowledge relationships modeled 
in the graph. Substantively, such branches in the graph may 
capture knowledge that may be applicable in a given teach-
ing situation but could be considered supplemental. It would 

Fig. 1   a–d Four types of probabilistic relationships in a Bayesian net-
work
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be impossible to identify such branches in an actual empiri-
cal dataset with the variability in knowledge that arises in 
authentic responses.

Figure 3b highlights three direct relationships, which 
form a convergent relationship. For example, if knowledge 
of division of integers is activated, the probability of activat-
ing fractions as division knowledge (originally 0.52) reduces 
to 0.37. Similarly, activated knowledge of fraction equiva-
lence increases that probability to .83. Further, if fractions 
as division knowledge is activated, knowledge of division 
of integers, equivalence, and basic fraction understanding 
become conditionally dependent. That is, the activation of 
fractions as division knowledge alters the probability of 
activation of any of the three connected knowledge pieces.

For example, if fractions as division knowledge is acti-
vated but division of integers and fractions equivalency are 
not, the probability of activating basic fraction understand-
ing increases from 0.52 to 0.91. This reflects the fact that 
in the original four responses, fractions as division either 
cooccurred with both division of integers and fraction equiv-
alency or basic fraction understanding, but not all together 
or all separately. Alternatively, we can determine that if frac-
tions as division is activated along with division of integers 
and equivalence, a knowledge combination not observed in 

any of the four original responses, the probability of activat-
ing knowledge of division of integers decreases to 0.07. One 
affordance of these networks is that probabilities for any 
combination of knowledge pieces can be obtained once the 
full probability distribution has been determined, regardless 
of whether the relationship was observed in the data.

Finally, Fig. 3c illustrates a divergent relationship. This 
relationship indicates that activation of ABQ makes sup-
porting knowledge of division of integers and basic frac-
tion understanding conditionally independent. This means 
that activation of ABQ provides all the information needed 
to make inferences about either knowledge. For instance, if 
ABQ is activated, the probability of basic fraction under-
standing increases from .52 to .85 regardless of activation 
state of division of integers. Conversely, that probabil-
ity increases to .83 for division of integers, which in turn 
decreases the probability of teaching methods knowledge 
being activated from .52 to .21. This demonstrates that prob-
abilities in these models not only propagate forward but 
also backwards, which is another affordance of Bayesian 
networks.

It is important to remind the reader that the directed 
edges in the knowledge network represent the directional-
ity of the conditional relationships, not the order in which 

Fig. 2   Simulated Bayesian 
network
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knowledge pieces occurred within responses. Therefore, it 
would be incorrect to interpret any top to bottom knowl-
edge sequence to mean that the top knowledge leads to 
activation of the next lower connected knowledge, which 
in turn leads to the next lower connected knowledge and 
so on.

3.3 � Extending the idea of dynamic knowledge 
networks to envision knowledge activation 
in individual teachers

To be clear, the weights in the network we discussed so far 
represent knowledge activation relationships based on the 

Fig. 3   a–c Coactivation dependencies
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sample, not individual teachers. Nevertheless, considering 
this functional mechanism at the individual teacher level can 
provide useful insights into the process of knowledge activa-
tion. If applied to the individual teacher, the weights could 
be envisioned as capturing seemingly automatic activation 
of knowledge and subsequent instructional decisions. The 
processes of knowledge activation might become conscious 
and deliberate when weights to different connected knowl-
edge are highly similar, rendering all knowledge equally 
applicable, or when the situation suggests that the most rel-
evant knowledge, based on weights, is actually not applica-
ble, creating dissonance. As teachers become more efficient 
and experienced the process no longer requires conscious 
activation.

Some situation-specific weights connecting different 
knowledge may initially be learned as part of teacher prepa-
ration courses. More often, however, building on research 
demonstrating the effectiveness of practices such as lesson 
study (Lewis & Perry, 2017) and rehearsal (Kazemi, et al., 
2016; Freese, 1999), we hypothesize situation-specific 
weights are initially created and continuously modified 
based on experience and reflective practice (Santagata & 
Yeh, 2016), which highlights the dynamic nature of usable 
knowledge networks. Like a feedback loop, based on the 
perceived effectiveness of a knowledge piece used in a spe-
cific teaching situation, the weight will be adjusted upward 
or downward. From this perspective, increasing usable 
knowledge implies increasing connections to other knowl-
edge pieces and greater differentiation of and more optimal 
situation-specific weights, in addition to increasing the num-
ber of individual knowledge pieces (Russ, Sherin, & Sherin, 
2016). In the next section, we will discuss implications of 
Bayesian networks for research on usable knowledge and 
knowledge use.

4 � Implications of Bayesian networks 
for research on usable knowledge 
and knowledge use

In this article, we explored the affordances of Bayesian net-
works for modeling usable knowledge and for functional 
conceptualizations of usable knowledge and knowledge use 
in teaching. We considered the CVA and CVA-M measures 
as a lab model for how teachers use their knowledge in the 
process of teaching and identified the knowledge (pieces) 
underlying teachers’ CVA and CVA-M responses. We 
described why Bayesian networks could be useful to model 
knowledge activation and instructional decision making. 
We also showed how such networks support conceptual-
izing usable knowledge from a functional perspective as a 
dynamic knowledge network, where connections between 
different pieces of knowledge represent situation-specific 

weights that inform knowledge activation for instructional 
decision-making. The potential of Bayesian networks we 
have presented in this article has a number of implications 
for research on usable knowledge and knowledge use in 
teaching. In this section, we will discuss four implications, 
we consider theoretically and empirically relevant.

(a)	 Bayesian network models learn from data. To apply 
these models, we need data that are good approxima-
tions of teachers’ usable knowledge. We used our CVA 
and CVA-M responses, but other data sources contain-
ing multiple interconnected knowledge pieces situated 
in a specific teaching context could also be suitable. 
Another, and related consideration is, the quality of 
the data used in these models. Although identification 
and classification of the individual knowledge pieces 
in the four example responses we analyzed, appeared 
to be straightforward, issues related to accuracy and 
reliability need to be investigated and addressed if this 
approach were scaled up. In this article, we used the 
Common Core standards because they encapsulate 
a view of the mathematics as interconnected ideas 
to identify the mathematical knowledge in teach-
ers’ responses. However, other content frameworks 
might work equally well and could be broadly appli-
cable across time. For identifying general pedagogical 
knowledge, we relied on the classification provided by 
Guerriero (2013), but other classifications can be con-
sidered. It would be most effective if there was agree-
ment and validation of knowledge taxonomies within 
the research community to facilitate comparability of 
study results.

(b)	 Connecting usable knowledge and knowledge use. We 
used the CVA and CVA-M responses as a lab model to 
approximate how teachers use their knowledge in the 
process of teaching, which conflates usable knowledge 
and knowledge use. There is, however, a difference 
between usable knowledge and knowledge use. Usable 
knowledge represents a theoretical construct while 
knowledge use represents the enactment of knowledge 
in a classroom. Bayesian networks, if used to predict 
instructional decisions (outputs) from usable knowl-
edge (inputs), provide a simple way with a single model 
to connect usable knowledge to knowledge use in teach-
ing via instructional decisions. One caveat of these 
models is that they cannot account for idiosyncratic 
knowledge, such as knowledge of individual students, 
which in an actual classroom situation might overwrite 
the knowledge relationships predicted by the model. 
This trade-off is outweighed, however, by the benefits 
of generalizability. It is, for example, conceivable to 
identify a set of representative video clips that stimu-
late knowledge activation and use the resulting usable 
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knowledge networks to measure beginning teachers’ 
knowledge in ways that can more accurately capture 
the complexity and demands of classroom teaching.

(c)	 Bayesian network models can offer a novel way to study 
knowledge growth because they efficiently represent 
highly qualitative information in quantified ways. Net-
works can provide detailed information on changes in 
knowledge network structures and weights that cannot 
be captured by scores on traditional teacher knowl-
edge assessments. Therefore, these models might offer 
important complementary information to assessment 
scores. Given that usable knowledge in these models 
is functionally conceptualized as an interconnected 
knowledge network, weighted by situation-specific 
relevance, understandings of knowledge growth can 
move away from conceptions of simply acquiring 
more relevant knowledge pieces to an understanding 
that emphasizes a more differentiated (interconnected 
and optimally weighted) knowledge network.

	   From this functional perspective, pre-service or 
novice teachers’ networks have fewer connections or 
less differentiation in situation-specific weights (mak-
ing all knowledge somewhat equally likely to apply), 
which requires more effort from this group of teachers 
to connect different knowledge in purposeful ways to 
carry out teaching tasks and to decide which knowledge 
might be most relevant for a given situation. Expert 
teachers, on the other hand, can be thought of as hav-
ing developed a highly sophisticated and differentiated 
knowledge network reflecting optimally weighted con-
nections, which allows expert teachers to automatically 
apply the most relevant knowledge in a given teaching 
situation. This understanding of knowledge growth in 
teaching also moves beyond efforts to classify knowl-
edge dimensions and to quantify their impact on teach-
ing and learning.

(d)	 Investigations into knowledge growth. The functional 
modeling of usable knowledge allows for investigations 
into how usable knowledge grows over time, answering 
questions such as why some teachers develop expertise 
over time while others’ teaching practices change little, 
or why teaching practices are difficult to affect at scale. 
If teachers actively reflect on the knowledge they draw 
on when teaching and intentionally activate different, 
more relevant knowledge to be more effective in a spe-
cific teaching situation, slowly with repeated activation 
of the new knowledge pieces new connections get cre-
ated, situation-specific weights get modified and new 
knowledge combinations eventually become the teach-
ers’ go-to routine. As Bjork (1975) wrote: Retrieval 
modifies memory. Teachers who engage in this pro-
cess over time, build more optimal connections, create 

more optimal weights, and develop expertise (Fadde, 
& Klein, 2010).

To be sure, the ideas about functionally modeling usable 
knowledge and knowledge use we advanced in this article 
are based on teachers’ responses to video clips of authen-
tic classroom instruction, not on knowledge use captured 
during the actual process of teaching. Nevertheless, they 
may represent a useful approximation of knowledge acti-
vation and application in a real teaching situation. These 
models add another mode of investigation to already exist-
ing frameworks, which might motivate further research 
(Blömeke et al., 2015). Moving forward, these models could 
potentially be applied to video recordings coded for enacted 
knowledge pieces.

Bayesian networks are a promising approach that can help 
explain a variety of issues related to teacher knowledge and 
its relationships to teaching that have a history of research 
but no definite answers. Among them are how to understand 
knowledge growth in teaching, how to understand knowl-
edge use in teaching, and how to better understand the rela-
tionship between knowledge and changes in teaching prac-
tice. Much work remains to be done, but at the very least, 
the ideas we presented offer a new vantage point from which 
to examine the relationship between teacher knowledge and 
teaching practice.
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