0 < o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Journal of Computer Security 0 (0) 1 1
IOS Press

Synthesizing DNA Molecules with
Identity-based Digital Signatures to Prevent
Malicious Tampering and Enabling Source
Attribution

Diptendu Mohan Kar ® Indrajit Ray * * Jenna Gallegos ® Jean Peccoud ™** Indrakshi Ray ?

4 Department of Computer Science, Colorado State University, Fort Collins, Colorado, USA
E-mails: diptendu.kar @ colostate.edu, indrakshi.ray @ colostate.edu

b Department of Chemical and Biological Engineering, Colorado State University, Fort Collins,
Colorado, USA

E-mails: jenna.gallegos@colostate.edu, jean.peccoud @ colostate.edu

¢ GenoFAB, Inc., Fort Collins, Colorado, USA

E-mails: jenna.gallegos @ colostate.edu, jean.peccoud @ colostate.edu

Abstract. The area of synthetic biology has seen rapid progress in recent years. Commercial DNA synthesis is increasingly
used to create new biological organisms that do not exist in the natural world. A major concern in this domain is that a malicious
actor can potentially tweak with a benevolent synthesized DNA molecule and create a harmful organism [1] or create a DNA
molecule with malicious properties. To detect if a synthesized DNA molecule has been modified from the original version
created in the laboratory, the authors in [2] had proposed a digital signature protocol for creating a signed DNA molecule. It
uses an identity-based signatures and error correction codes to sign a DNA molecule and then physically embed the digital
signature in the molecule itself. However there are several challenges that arise in more complex molecules because of various
forms of DNA mutations as well as size restrictions of the molecule itself that determine its properties. In this work, we
extend the work in several directions to address these problems. A second major concern with synthesized DNA is that it is
an intellectual property. In order to allow its use by third parties, an annotated document of the molecule needs also to be
distributed. However, since the molecule and document are two different entities, one being a physical product and the other
being a digital one, ensuring that both are distributed correctly together without tampering is challenging. Additionally, there
may be portions in the documents that the creator of the molecule may not want to share. In this work, we also address this
problem by transforming the document into a DNA molecule and embedding it within the original molecule together with the
signature.

Keywords: Cyber-Bio Security, Identity-Based Signatures, Reed-Solomon Codes, Compression, Approximate String Matching,
Pairing-Based Cryptography, Synthetic DNA

1. Introduction

Synthesizing DNA molecules in the laboratory is quite common these days. Such a synthetic DNA
molecule is often a licensed intellectual property. DNA samples are shared between academic laborato-
ries, ordered from DNA synthesis companies and manipulated for a variety of purposes, for example, to
create new biochemicals, reduce the burden of diseases, improve agricultural yields or simply to study

0926-227X/0-1900/$35.00 (© 0 — IOS Press and the authors. All rights reserved

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

mailto:diptendu.kar@colostate.edu
mailto:indrakshi.ray@colostate.edu
mailto:jenna.gallegos@colostate.edu
mailto:jean.peccoud@colostate.edu
mailto:jenna.gallegos@colostate.edu
mailto:jean.peccoud@colostate.edu

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

the DNA’s properties and improve upon them. There have also been instances of new biological or-
ganisms that do not exist in the natural world being created using synthesized DNA [1]. While the vast
majority of such activities are pursued for beneficial purposes, there are concerns that malicious users can
use the technology malevolently, for example, to make harmful biochemicals, or render existing bacteria
more dangerous [1]. Recently, a DNA-based security exploit was demonstrated as a proof-of-concept,
where a synthesized DNA was used to attack a DNA sequencer that has been deliberately modified with
a vulnerability [3]. Preventing such malicious use of synthesized DNA is beyond the scope of this current
work. However, attribution of a physical DNA sample and establishing proof of origin can contribute
significantly to deter such malicious activities.

Following the anthrax attack of 2001, there is an increased urgency to employ microbial forensic
techniques to trace and track agent inventories. For instance, it has been proposed that unique watermarks
be inserted in the genome of infectious agents to increase their traceability [4]. The synthetic genomics
community has demonstrated the feasibility of this approach by inserting short watermarks into DNA
without introducing significant perturbation to genome function [5-8]. The use of watermarks has also
been proposed in order to identify genetically modified organisms (GMOs) or proprietary strains. Heider
et al. [9], for example describe DNA-based watermarks using DNA-Crypt algorithm. This technique is
applicable to provide proof of origin to a DNA molecule. However, there is a major shortcoming with
all watermark based approaches. The watermark in all these works is generated from an arbitrary binary
data and added to the original sequence, and so is independent of the original sequence and provides no
integrity of the actual DNA sequence.

To enable effective trace back and eliminate the limitation of watermark-based approaches, Kar et al.
[2] had proposed a scheme to create digital signatures of DNA molecules in living cells. The main idea is
as follows: Take a DNA molecule and sequence it. The result is a string over the alphabet A, C, G, and T,
representing the four nucleotide building blocks of DNA. The output of the sequencer is stored in what is
called a FASTA file. For interpretability reasons, the FASTA file is annotated by the researcher to create
another file called the GenBank file. The authors then use Shamir’s identity-based signature scheme
[10], Reed-Solomon error-correction codes [11, 12] and the 16 digits Open Researcher and Contributor
ID (ORCID - https://orcid.org) of the researcher to create a digital signature of the string in the FASTA
file. The resulting signature is in the form of a DNA sequence which is now synthesized as a physical
molecule. Finally, the signature molecule is inserted into the original DNA molecule using DNA editing
tools to obtain a signed DNA molecule. When this signed molecule is shared, a receiver can sequence the
signed molecule to verify that it was shared by an authentic sender and that the sequence of the original
molecule has not been altered or tampered with.

However, there are significant challenges related to the placement of the signature within the molecule
and various types of mutations in more complex molecules that Kar et al. do not address (discussed in
more details in Section 2). The current work improves the previous scheme to address these problems
(Sections 4 and 5). Moreover, we would like to shorten the size of the signature sequence as much as
possible without impacting security. While biologists believe that the size of the DNA has a correlation
with its properties within certain bounds, they still do not know by how much a DNA molecule can be
expanded without changing the properties of interest. The current work explores other cryptographic
algorithms towards this end as well as signature compression schemes (Section 6).

In order to verify a signature, the verfier needs to first identify which part of a signed message is the
signature. There are three choices - before the actual message, after it or within it. If the signature is
placed within the message, identifying the signature becomes problematic and needs to be addressed
during the signature placement time. (The other two cases when the signature is placed before or after

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

the message, are easily addressed by using a counting-length approach.) Unfortunately, when working
with DNA molecules, it may not always be possible to place the signature at the end or the beginning
of the message. This is because there can be a feature present at these locations. The possible places to
place the signature are most likely to be somewhere within the original sequence. For this reason the
file that documents the DNA molecule needs to be also accessible to the receiver. Now, these molecule
documentation files are created using gene editors that maintain databases of DNA molecule properties.
It is conceivable that the databases are updated with location of signature in the molecule. However,
these databases may not be consistent across different editors in the sense that receiver’s gene editor
may not have all the information about the same set of molecules that the sender’s gene editor has. In
addition, there is no universal file format used by gene editors, unlike the FASTA file format.

The document is needed not only to identify and retrieve the signature but also to address the problem
of sequence alignment. Thus, we recommend sending the document created by the creator of molecule be
also sent to the receiver. This is described in [2]. The updated algorithm described in section 4 takes into
account for any circular or double helix permutations, and the verifiers sequence need not be in perfect
alignment with the senders sequence. The purpose of sharing the digital file is not just limited to aligning
sequences at the receivers end. The digital file contains descriptions about the physical DNA. There are
gene editing software such as Snapgene which can be used to generate documentations or annotations
about a sequence. A user can sequence a DNA, provide the FASTA file containing just the raw sequences
to the software. The software searches its database for descriptions matching any subsequence within
the FASTA file and generates a genbank file which contains the descriptions (from the database) and the
original sequence. Refer to Figure 6 and Figure 5, the genbank file is generated from the FASTA file,
the keyword "ORIGIN" separates the actual sequence and the descriptions. Although the software like
Snapgene can generate documentation for some sequences, it cannot describe what is not present in its
database. For this, the software have the flexibility of user addition, deletion and update. The user can
add more descriptions, can delete wrong descriptions populated by Snapgene, and update a description
to include or exclude information.

When a DNA sample is shared, the receiver can only generate the descriptions that the software
can generate using its database. The extra descriptions written by the sender cannot be obtained by
the receiver unless the digital file is shared. For this reason the digital file also needs to be shared
with the receiver along with the physical sample. However, this file, being a separate entity from the
DNA molecule, is not strongly tied to the molecule. Sending it separately from the molecule can result
in the receiver using a different document file from the one that creator generated. Thus, we propose
embedding the document in the DNA molecule itself and sending the whole signed and documented
molecule to the receiver. Only this way would the receiver be obtain all the descriptions which the
sender intended to share. However, note that placing the document within the molecule brings up the
same issue of locating it as the signature. In this work, we develop the necessary techniques to generate,
embed, retrieve and validate signatures as well as document in/from the molecule. The details of these
procedures are explained in Sections 4, 5 and 8.

We would like to note here that there can sometimes be reasons why the originator may not want
to share the entire document file. While the creator may be willing to divulge the properties of the
synthesized DNA as a whole, s/he may not be willing to divulge properties of some sub-sequences
because of reasons related to protecting intellectual properties or preventing mal-actors from exploiting
some of the properties for nefarious purposes. Sending the entire document file may jeopardize these
confidentiality needs. However, we do not address these concerns in the current work but is left as

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

a future topic. We assume that if and when the creator is willing to share the document (may be by
encrypting parts that cannot be revealed to the receiver) it is embedded in the molecule.

2. Limitations of Earlier Work and Current Contributions
2.1. Cyclic shifts and reverse complement

In [2], the signer is required to send the GenBank file along with the physical DNA sample to the
receiver. This is because the GenBank file is needed to align the FASTA file (which is the output of
a DNA sequencer) in the same order as during the signature generation. Plasmid DNA is cyclic and
double-stranded. Following DNA sequencing, any cyclic permutation of the DNA structure is possible.
A sequence represented in a FASTA file, and consequently the GenBank file, is thus one of several
possible linear representations of a circular structure. For example, in a FASTA file if the sequence was
“ACGGTAA”, and the same sample is sequenced again, the FASTA file might read as “TAAACGG”.

Moreover, since DNA is composed of two complementary, anti-parallel strands, a DNA sequencer can
read a sample in both the “sense” or “antisense” direction. The sequence may be represented in a FASTA
file in either direction. When the sample is sequenced again, the output might be in the other direction,
or what is known as the reverse complement. The reverse complement of “A” is “T” and vice-versa,
and the reverse complement of “C” is “G” and vice-versa. The DNA molecule has a polarity with one
end represented as 5’ and the other represented as 3’ . One strand adheres to its reverse complement
in an anti-parallel fashion. So if the sequence is - “5’ ~ACGGTAA-3’”, the reverse complement is
“37 -TGCCATT-5"". The FASTA file will represent one strand of the DNA sequence in the 5’ to 3’
direction; so the FASTA file could read as “ACGGTAA” or “TTACCGT”. Thus, by combining these two
properties, for a DNA that contains N number of bases, the possible number of correct representations
of the same sample is 2N: N cyclic permutations plus each reverse complement.

Let us now consider the implications of this characteristic of DNA on the signature generation and
verification. The sender has a sequence say “ACCGTT". The sender synthesizes the sequence and sends
it to the receiver. The receiver after sequencing with an automated DNA sequencer may not have exactly
“ACCGTT". It can be “TTACCG" which is a cyclic permutations. The receiver can also get something
like “AACGGT" which is the reverse complement of “ACCGTT". Owing to such domain challenges, the
signature verification procedure is not as simple as in digital messages.

Let us assume the signature sequence is “TTAA". (The actual signature length is 512 base pairs). In
[2], the authors had defined a start and an end tag which served as delimiters for the signature. Let
“ACGC" and “GTAT" be the start and end tags. For this discussion, we will use the term message to
denote some linear representation of the sequence generated by a DNA sequencer. There can be three
cases for including the signature sequence in the DNA sequence:

(1) Append the signature after the message: In this case, the sender’s message with the signa-
ture embedded looks like - “ACCGTT ACGC TTAA GTAT". The receiver, after sequenc-
ing the signed DNA sample may get something like — “GTT ACGCTTAA GTAT AcCC"
or something else depending on which base position the sequencer considers as the beginning
of the sequence. In the permutation, the DNA sequencer assumed the 4” base from the left as
the start of the sequence. The message is split but the delimiters and signature are intact. The
simplest way to extract the message and signature is to append the extracted sequence to itself.
With the permutation, this becomes “GTT ACGC TTAA GTAT ACC || GTT ACGC

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

TTAA GTAT ACC". Now we can extract the message which will be contained between two
“ACGC TTAA GTAT" when the string is wrapped around. The receiver reconstructs the message
which is “ACCGTT". The receiver can then invoke the verification. Note that this scheme works no
matter which position the sequence considers as the start of the sequence.

(2) Append the signature before the message: In this case, the sender’s message with signature looks
like - “ACGC TTAA GTAT ACCGTT". The receiver after sequencing the DNA might get
something like - “AA GTAT ACCGTT ACGC TT". We observe that this is the same as
the previous case. We can append the extracted sequence to itself — “AA GTAT ACCGTT
ACGC TT || AA GTAT ACCGTT ACGC TT. Thus we can extract the message us-
ing the same procedure as above and then invoke the verification.

(3) Append the signature between the message: In this case, the sender’s message with signature
might look like - “ACC ACGC TTAA GTAT GTT”. The receiver after sequencing the
DNA might get something like “ACGC ~ TTAA GTAT GTT ACC". The problem occurs
in this scenario. Even if we append the extracted sequence, we will not be able to recover the mes-
sage. After appending the sequence we get “ACGC ~ TTAA GTAT GTT ACC || ACGC
TTAA GTAT GTT ACC". We can observe that the sequence contained by the two “ACGC
TTAA GTAT"is “GTTACC”. This is not the message the sender signed. The sender signed the
message on “ACCGTT”. But the receiver has no way of knowing this and hence the verification will
fail since the message is not the same even though there is no modification to either the message or
the signature.

The problem of recovering the message only occurs when the signature is placed within the message.
The other two cases when the signature is placed before or after the message works perfectly fine.
However, when working with DNA molecules, it may not always be possible to place the signature at
the end or the beginning of the message. This is because there can be a feature present at that location.
The possible places to place the signature are most likely to be within the original sequence. For this
reason the GenBank file needed to be shared. Only this way would the receiver be able to align the
sequence in the same order that the sender had when he signed.

There are several reasons why we may not want to share the GenBank file. The GenBank file is
created by the originator of the DNA molecule using a gene editor. Its only purpose is to annotate the
DNA sequence. If the DNA is an intellectual property, then the creator of the DNA will be annotating
the DNA’s GenBank file with different features of different subsequences of the DNA. While the creator
may be willing to divulge the property of the synthesized DNA as a whole, s/he may not be willing to
divulge properties of various subsequences. Sending the GenBank file jeopardizes the latter. Moreover,
gene editors maintain databases of DNA molecule properties. However, these databases may not be
consistent across different editors in the sense that receivers gene editor may not have all the information
about the same set of molecules that the sender’s gene editor has. Finally, the GenBank file format is not
the only format used by gene editors, unlike the FASTA file format. In order to not share the GenBank
file with the receiver, we have changed the signature generation procedure in this work, such that the
verification is not dependent on where the signer placed the signature. The details of the new signature
generation procedure are explained in section 4.

2.2. Mutations in identifying tags

In our previous work, we defined two identifying tags to demarcate the signature. The start tag was
chosen as “ACGCTTCGCA” and the end tag as “GTATCCTATG". These two delimiters were chosen

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

not just randomly but for very specific reasons. First biologists typically have some idea about what
DNA sequence will not occur in their specific project. Thus they can choose delimiters from these non-
occurring sequence. Second, from these possible delimiters, they will choose the ones that are simple
to synthesize and assemble since DNA synthesis is expensive. Finally, they will choose a sequence that
are easy to identify visually, are unlikely to develop secondary structures and have a balanced number of
“A, C, G and T”s.Our domain experts selected these delimiters for this project. We also used error
correction code to tolerate mutations within the DNA. However, we assumed that the start and end tag
do not mutate. If they do, our previous work will fail to locate the signature and consequently, it will not
be possible to verify the signature.

To overcome this limitation, in this work we propose using partial matching techniques such that the
start and end tag can be located approximately. This is used in conjunction with error correction codes.
Note that since the start and end tags are fixed, we know what we are searching for in the DNA molecule.
For example, we may want to look for strings similar to “ACGCTTCGCA” such as “GCGCTTCGCG”. The
different techniques we use for achieving this are discussed in section 5. It has to be noted that the error-
correction code that is used can only tolerate substitution errors, whereas the partial matching technique
can work for any type of errors.

2.3. Signature length

The length of the signature plays a very important role in this biology domain. Shorter signatures im-
ply less cost of synthesizing the signature into a physical DNA molecule. Shorter signatures will also be
less likely to impact the existing functionality and stability of the plasmid during signature embedding.
Previously, we used 1024 bit keys and that resulted in 512 base-pair signature. However, 1024 bit keys
are no longer considered very strong and not recommended in practice for digital signatures. Generally,
2048 bit keys are used. In our domain, this would result in a 1024 base pair signatures. This length
has a higher probability of affecting the characteristics and stability of the plasmid. Furthermore, when
synthesizing the signature, presently with a 512 base pair signature the cost is $46.08 - 512 base pairs
at $0.09 per base pair. With a 1024 base pair signature, even if the plasmid remains stable and func-
tional, the cost of synthesizing the signature would be $92.16. The new signature scheme with a shorter
signature is described in section 6.

3. Overview of the DNA Signature Workflow

We begin by providing an overview of the DNA signature workflow to give the reader a general idea
of the biological ecosystem that is involved. We also discuss the threat model that we assume for the rest
of the work.

Our biology-related experiments have used plasmid DNA and in the following we use “plasmid” to
refer to physical DNA molecules that are being created, used or modified in the laboratory. We use
the term “sequence” to mean the digital representation of the DNA molecule order after it has been
sequenced by a DNA sequencer. Note that in the biology domain the term “sequence” is used to imply
the order of nucleotides in a DNA molecule. It can mean both in the bilogical sense or the physical sense.
Bilogical operations on DNA molecules are conducted on both on the physical DNA molecule sequence
as well as the digital sequence (domain of bio-informatics/computational biology). For this work, we
limit the term “sequence” to mean the digital representation. The documentation, digital signing and

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

verification processes in this work are all conducted on the sequence. The document as well as signature
are digital sequences that are converted back to physical molecules and embedded in the DNA molecule.

The DNA signature workflow is presented in Figure 1. There are seven major entities that are involved
in the workflow: (1) Alice, the Originator, creates a plasmid and its sequence using a sequencer. Alice
also creates a plasmid from a given sequence (which, in our case, will be a document of a plasmid
and a signature). Alice uses two services (which can be local processes) - Doc creator and Signer.
(2) Doc creator service prepares a document of a sequence. The output is also a sequence. (3) Signer
creates a identity-based digital signature of a sequence. (4) Ellen, the User, obtains a plasmid for her use.
The plasmid is received via a out-of-band physical communication channel. As needed Ellen creates a
sequence of the received plasmid. (5) Verifier verifies a signed signature and returns Pass/Fail depending
whether the verification is successful or not. If Fail, verifier also provides explanation of failure. (6) Doc
user retrieves document from a sequence and converts it to a form understandable by a biologist. (7) An
identity-based signature (IBS) key authority is a trusted entity that creates and distributes keys needed
for an identity-based signature scheme from an ORCID id. We assume an out-of-band secure channel
for such key distribution.

We assume that Alice has also created the plasmid in her lab and in that sense is the originator.
When the sequence document and signature is ready, Alice modifies the original plasmid to embed the
document and signature. 2) Ellen, the User/Verifier needs to use the plasmid. Ellen obtains the signed
plasmid and uses the signature to verify if the DNA sequence offered by Alice has remained unchanged
after signing and the sequence did indeed originate from Alice. In addition, Ellen extracts the documen-
tation of the DNA sequence from the plasmid and uses it as needed. 3) A central authority that provides
the signer with a token that is associated with the signer’s identity. We assume that the central authority
is secure and trusted by all participants in the system.

The steps of the DNA sign-share-verify workflow is shown in Figure 1. Alice creates a plasmid in her
laboratory, submits her ORCID and the plasmid ID to the IBS Authority and gets a corresponding IBS
token that is provided to the Signer. She also creates a sequence for this plasmid (FASTA file) . Next
she uses the Doc creator to create a documentation of the sequence (a GENBANK file). She uses the
signature generating service, Signer, to create a DNA signature sequence that she will add to her design.
This sequence is the digital signature and the documentation about the plasmid. It is generated using the
signature algorithm described in section 4 and the documentation algorithm described in section 8. The
digital signature and documentation is then inserted in the sequence between two demarcating sequences
used to identify the signature from the rest of the original plasmid’s sequence. We rely on the biological
properties of the DNA molecule to determine what is the best position within the molecule where the
signature-documentation sequence can be inserted.

Biologists have observed that there are segments within a DNA molecule that do not contribute to
the properties of the molecule that are of interest — the so called “junk DNA”. (In fact, one of the roles
that the DNA documentation plays is to identify what are the segments that contribute to the biological
properties.) Note that this is not to say that the “junk DNA” does not contribute any properties. It is just
that those properties are not of interest to the biologist. The signature-documentation sequence is inserted
around such segments. We would like to emphasize two points here: (i) No segment is removed from
the original molecule. This means that when the signature-documentation sequence is inserted there is
an expansion in the size of the DNA molecule (see Figure 2). Biologists have experimentally observed
that DNA molecules can tolerate some expansion in size without affecting the properties of interest. The
tolerable fraction of increase is a function of the size of the original molecule. However, since we do not
know the exact fraction of expansion that can be tolerated, a significant focus of this work is in reducing

O 0 J o U w N

W W W W W W W wWw NN DD NDNDDNDDND NP P P PR R R R
~N o U W NP O VW oY U W NN RO YW 0Ty W NN PR O

38
39
40
41
42
43
44
45
46

O 0 J o U w N

e e e s e e
w J o U W N O

19
2
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

o

the size of the signature-docmentation sequence. Most of the effort has been spent on experimentally
determining what works. We urge the reader to keep this context in mind while reading this paper. (ii)
It is possible that some DNA molecule does not allow any expansion in the size. In such cases, no
signature-documentation sequence can be inserted and this work is not relevant for such molecules. For
the rest of the paper, we assume that we are guaranteed to find a spot within the molecule where the
signature-documentation sequence can be inserted. If not, the process exits.

Once the signature-documentation sequence is inserted, the Signer returns another sequence in the
form of a GENBANK file which contains the original plasmid sequence combined with the signature and
documentation sequence. Alice then creates a new plasmid (probably by getting the service from a gene
synthesis company) corresponding to this signature and documentation sequence. Alice communicates
about the original plasmid by using the plasmid ID used to identify the plasmid in the signature and
claims ownership of it using her ORCID. When requested she sends the signed plasmid to the User
through some physical means (In the biology domain, plasmids are shared. for example, as bio-solutions
in test tubes).

Services can be Services can be
co-located co-located
or co-hosted or co-hosted

— - — — - —
Alice Doc. Signer oS Kgy Verifier Doc. Ellen
Creator 9 Authority User

————— ORCID & plasmid ID ——————p

Token for
Creates “* Alices’ ORCID
Sequence
— Sequence —P
— Document
<— Signed sequence with doc
Creates <«——— ORCID of Al
signed DNA of Alice
molecule
DNA molecule with embedded document and signature >
Sequences
signed DNA
molecule
<€¢—— Signed sequence
Original
— Sequence —P>
& Doc

Failure reason ——»

Fig. 1. DNA sign-share-validate workflow

Ellen gets the plasmid from some source (may or may not be directly from Alice). Ellen has limited
confidence in the plasmid because it came in a hand-labeled tube. So, she decides to get it sequenced
completely before doing anything with it. She uploads this sequence of the signed plasmid to the Verifier
to verify the plasmid signature. This uploaded file is a FASTA file. The signature validation service in

O 0 J o U w N

L e e e
P G N N S =)

18

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

9

the Verifier identifies the signature inserted between the two signature tags. The Verifier will proceed
with the signature validation as discussed in Section 4. If the signature is correct, indicated by a PASS
response from the Verifier, Ellen will know that the plasmid was signed by Alice and that the physical
sequence of the received plasmid corresponds exactly to Alice’s design. Also after successful validation,
the Verifier sends the genbank file containing the descriptions and signature that Alice embedded within
the plasmid to the Doc user, which reveals the original sequence and the corresponding sequence (as
allowed by Alice).

Alternatively, the validation service might have determined that the signature was invalid. Several hy-
potheses could lead to this situation. It is possible that Alice was sloppy and did not manage to assemble
the plasmid corresponding to the sequence she had designed. It may have maliciously changed. One
could also not rule out the possibility of spontaneous mutations or a labeling error. In this situation,
Ellen may decide to proceed with the plasmid based on the similarity of the plasmid sequence and the
information available as discussed in Section 5.

For the curious reader we show in Figure 2 the two sequenced versions of the pUC19 plasmid that we
used in our work, both before the plasmid being signed (figure 2(a)) and after (figure 2(b)). The figures
were created via the SnapGene editor that used as input the sequenced versions of both the un-signed and
signed molecules. Note in Figure 2(b), the increased size of the DNA molecule because of the embedded
signature.

4. DNA Signature Generation and Verification Procedure

In our DNA sign-share-validate workflow, there are three players: (i) The DNA signer will create the
DNA signature and sign a DNA sequence. (ii) The verifier will use the signature to verify whether the
received DNA sequence was sent by the appropriate sender and was unchanged after signing. (iii) A
central authority, which is trusted, provide the signer with an encrypted token that is associated with the
signer’s identity. The token contains the signer’s private key.

Trust model: For this work, we assume a polynomial-time adversary, Mallory, who is trying to forge
the signature of a reputed synthesized DNA molecule creator, Alice. Alice is trying to protect her IP
rights/reputation as she distributes DNA molecules synthesized by her to researcher Bob. If the attacker,
Mallory, is able to forge the signature of Alice then: (a) Mallory can replace the actual DNA created by
Alice with her own but keep the signature intact. (b) Mallory can create her own DNA molecule and
masquerade as Alice to sign it. (c) Mallory can modify parts of the signed DNA molecule created by
Alice.

Use of error correction in DNA signature: In the digital domain, the digital signature on a message
can be used to detect integrity violations. If a violation is detected, the sender can always re-transmit the
signed message without incurring much extra cost. However, in the DNA world, we are primarily ship-
ping physical DNA samples. This implies that if a DNA signature identifies that there is an error in the
signature validation, then the sample needs to be physically transported and/or synthesized again. This
incurs significant cost. DNA mutation is a very natural and common phenomenon. Thus, there is a good
likelihood that signature validation will fail. Moreover, associated with the problem of mutation lies the
problem of sequencing. When the DNA is processed by an automated DNA sequencer, the output is not
always one hundred percent correct. It is dependent on the depth of sequencing, and increased sequenc-
ing depth means higher costs. Sequencing a small plasmid to sufficient depth is relatively inexpensive,
but for larger sequences, sequencing errors can be an issue. In order to overcome these limitations, we

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

0 < o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

10

(2675) Eco01091 Pfol (46)
(2621) AatIl Ndel (184)
(2619) Zral BStAPI (185)
(2503) SspI KasI (235)

Narl (236)
Sfol (237)
PIUTI (239)

ApoI - EcoRI (396)
Eco53kI (404)
BanlI - Sacl (406)
Acc65I (408)
Aval - BsoBI - KpnI - TspMI - Xmal (412)
BmeT110I (413)
Smal (414)
BamHI (417)
Xbal (423)
Sall (429)
AccI (430)
HincIT (431)
PstI - SbfI (439)
BfuAI - BspMI (442)
SphI (445)
2686 bp HindIII (447)

BspQI - SapI (690)

(2298) XmnI

(2179) Scal

(2098) Tsol

AfIIII - Pl (806)
(1847) NmeAIIl
(1779) BsrFI
(1769) BpmI
(1760) Bsal
(1699) AhdI

BseYI (1110)
PspFI (1114)

AWNI (1222)

(a) Unsigned pUC19 (annotated)

pUC19-Signed
3250 bp

lac operato

(b) Signed pUC19 showing embedded signature

Fig. 2. View of sequenced pUC19 plasmid in SnapGene editor before and after signing

use block-based error correction codes, such as a Reed-Solomon code [11], together with signatures.
The presence of error correction codes helps the receiver to locate a limited number of errors (as set by
the signer) in the sequenced DNA as well as correct them. The position of the errors and the corrected
values are conveyed to the verifier. The verifier can then decide if the errors are in any valuable feature
of the DNA or not. If a valuable feature has been corrupted, the verifier can ask for a new shipment,
else if the error was in a non-valuable area in the DNA, the verifier can disregard the error and continue
to work with it. Generally, there are three types of mutations that occur within a DNA - substitution,
insertion and deletion. The error-correction code that is used here only deals with substitution errors.

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

11

Algorithm 1: DNA Signature Algorithm Accommodating Cyclic Shifts, Reverse Complement
and Mutating Tags

4

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

25
26

Input: The GenBank (.gb) file: file, ORCID: a 16 digit number in XXxX-XXXX-XXxX-Xxxxx format,

Plasmid ID: a 6 digit number, Location of signature placement: number, Error tolerance
limit: number (can be 0 meaning no error tolerance)

Output: Signed GenBank (.gb) and FASTA (.fa) file: file

1 Input checks e.g. correct file extension, ORCID format, integers etc.

2 Parse GenBank file. Split content and sequence based on keyword ORIGIN. Parse content to get
the list of feature locations.

3 if Location of signature placement NOT within a feature then

else

L

Make the position as start of the sequence and wrap everything before the location to the end.

If position is O or length of sequence - no wrap is needed.
Generate hash (SHA-256) of this sequence.
Generate signature on the hash.
Convert the signature bytes, ORCID and Plasmid_ID to ACGT sequence. Create the
following string by concatenating parts :
BESN+ORCID+Plasmid_ID+SIN+EDSN
if error tolerance NOT 0 then
Append MSG (shifted sequence) before BESN+ORCID+PLASMID_ID+SIN+EDSN.
Pass SEQUENCE+BESN+ORCID+PLASMID_ID+SIN+EDSN to Reed-Solomon
Encoder. (Here SEQUENCE is the shifted msg. Can be any shifts e.g. QUENCESE)
Convert the parity bytes to ACGT. (call this ECC)
Signature_Sequence = BESN+ORCID+PLASMID_ID+SIN+ECC+EDSN.

else
L Signature_Sequence = BESN+ORCID+PLASMID_ID+SIN+EDSN.

if signature placement location is start of the original sequence then
L Final_Sequence = SEQUENCE+Signature_Sequence

else if signature placement location is end of the original sequence then
L Final_Sequence = Signature_Sequence+SEQUENCE

else
part]l = prefix of SEQUENCE of length n — 1 (where signature is to be placed at location
n
part2 = suffix of SEQUENCE of length len(S EQUENCE) —n + 1
Final_Sequence = part1+Signature_Sequence+part2

Write the Final_Sequence to a new GenBank file and FASTA file.

Alert user about collision. Allow user to input new location. Go to step 3 with new location.

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

12

We now describe our new DNA signature scheme. The steps are shown in Algorithm 1 (for signing)
and Algorithm 2 (for verification). To avoid confusion we use the following conventions. The term
sample is used to indicate the physical DNA molecule. The term sequence is used to signify the digital
counterpart of a DNA molecule. This is generated by sequencing a sample in a DNA sequencer. The
raw sequence (output of sequencing) is stored in a FASTA file. The annotated sequence is stored in a
GenBank file. The signer creates a physical DNA sample from the signed sequence and sends the sample
(only) to the verifier. The verifier sequences this sample to get another sequence that is then verified.

For ease of understanding, we denote the sequence to be signed by the string SEQUENCE, the signature
by SIN, the begin and end tags as BESN and EDSN and the error correction code as ECC. Each of
these strings is really a sequence of bases that can be synthesized into a physical DNA molecule and
embedded in the sample. Any location reference in SEQUENCE for subsequence discussion is specific
to the location within the sequence. For instance, location 3 in the string contains character Q. However,
in the real sequence, the subsequence denoted by Q may occur in position 350 (for example) depending
on how many bases constitute S and E.

Signature generation: The signature generation procedure begins by scanning the GenBank file for
the keyword ORIGIN and locating the actual DNA sequence. Let there exists a feature from location 1
to 3 in the sequence, which corresponds to SEQ. Next, the location of the signature placement speci-
fied by the signer is checked. If the location collides with a feature, the user is alerted to change the
location. In our example, if the user had provided 2, the algorithm will alert the user that there is al-
ready a feature SEQ there and ask for a new location. If the user chooses 4 which is after Q, it will
be allowed. Next, the ORCID and Plasmid ID (which are integers) are converted to the correspond-
ing ACGT sequence by the following conversion method — [0 -AC, 1-AG, 2-AT, 3-CA,
4-CG, 5-CT, 6-GA, 7-GC, 8-GT, 9-TA].Thereason for choosing this conversion type
is that if any ORCID or Plasmid ID has repetitions e.g. if ORCID is 0000-0001-4578-9987, the con-
verted sequence will not have a long run of a single base. Long runs of a single nucleotide can result
in errors during sequencing. Let the converted ORCID and Plasmid ID sequences be ORCID and PID
respectively.

To account for the problem of placing the signature within the sequence mentioned earlier in section
2, the signature is generated on the hash of a tweaked version of the sequence. We left rotate a copy
of the sequence by n — 1 where # is the location within the sequence where the signature needs to be
placed. For this example, the sender wants to place the signature after Q. The sequence will be shifted
as — UENCESEQ. The signature is generated on the hash of the left rotated sequence UENCESEQ. The
signature bits are then converted to A C G T sequence. Let this signature sequence be SIN. Let the start
tag be BESN and end tag be EDSN. The signature sequence is concatenated with ORCID and PID and
then placed between the start and end tags as BESNORCIDPID SINEDSN. This entire string is then
placed at the position specified by the user. We chose 4 in our example. Hence, the signed sequence
looks like - SEQ BESNORCIDPID SINEDSN UENCE.

Next, this sequence is passed into the error correction encoder. According to the number of toler-
able errors specified by the user, the error correcting parity bits are generated. These parity bits are
then converted to some A CGT sequence. Let this sequence be ECC. When the encoder output is
generated, the sequence would look like — SEQ BESNORCIDPID SINEDSNUENCE ECC. Next, the
ECC is separated and is placed before the signature and end tag. So the final output sequence is -
SEQBESNORCIDPID SINECCEDSNUENCE. Note that the error correction code is generated after
generating the signature sequence and combining with original sequence. Hence any error in that string
can be corrected provided it is within the tolerable limit. For instance, if we put 2 as our error tolerance

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

13

limit, then any 2 errors within the string SEQ BESNORCIDPID SINECC EDSNUENCE can be toler-
ated. If there is 1 error in SEQ and 1 error in SIN, or 2 errors in SIN, or 1 error in SIN and 1 error
in ECC, these can be corrected. But if there are more than two errors it cannot be corrected. The final
output sequence - SEQ BESNORCIDPID SINECC EDSN UENCE is written into another GenBank file.
The descriptions are updated i.e. the locations of the signature, start, end, ecc are added and if there
were features after location 4 in the original DNA, the locations of these features are also updated. This
GenBank file is for reference of the sender. It is not required for signature verification and there is no
need to share it with the receiver unless there are other reasons. The output sequence is now synthesized
into the signed DNA sample.

Signature verification: The signature verification procedure is described below in Algorithm 2.

The receiver sequences the shared DNA using an automated DNA sequencer. The sequence in the
FASTA file might not be the in the same order when the sender signed it. That is, after sequencing the
shared DNA, the FASTA file may look like - ORCID PID SINECC EDSN UENCE SEQ BESN which is a
cyclic permutation of the sender’s sequence.

The first step in the verification procedure is to extract the BESN and EDSN tags. If they are
not mutated they are retrieved directly. If the tags cannot be located directly, we use Algorithm 3
to retrieve their closest matches and use them as BESN and EDSN tags. We defer the discussion
on Algorithm 3 to section 2.2. The verification step now will concatenate the FASTA sequence -
ORCIDPID SINECCEDSNUENCE SEQBESN + ORCIDPID SINECCEDSNUENCE SEQ
BESN.

Now, it looks for 2 BESN tags and extracts the content between them. After obtaining the start tag,
32 bases are counted, this is the ORCID sequence, next 12 bases are counted, this is the plasmid ID
sequence, then 512 bases are counted, this is the signature sequence. Next the substring after this signa-
ture sequence to the EDSN tag is retrieved, this is the error correction sequence. Finally, the substring
between EDSN and BESN is the message for signature verification.

Until this point, we have retrieved UENCESEQ, ORCID, PID, SIN, and ECC. The UENCESEQ,
ORCID and SIN is used for signature verification. With our previous signature generation method,
since the message signed by the sender was SEQUENCE and the message retrieved by the verifier is
ENCESEQ the hashes will be different and the validation would fail. With the new procedure, we can
see that the although the sender’s file contained the sequence SEQUENCE, the signature was actually
generated on the shifted UENCESEQ. Due to this shift, the retrieved sequence and the sender’s sequence
will always be the same under any rotations. We have shifted the message of the sender to make the
signature placement at the start of the message. We call this new generation scheme as force shift 0.

If the FASTA file contains the reverse complement of the sender’s DNA sequence, the entire FASTA
file is reverse complemented and then we look for the BESN and EDSN tags. If there is a match, we
arrive at the conclusion that the FASTA file contains the reverse complement. Then we start the same
verification steps on the reverse complemented FASTA sequence.

5. Allowing Mutations in Start and End Tags

The approximate matching technique, shown in Algorithm 3, breaks the entire string in which we are
looking for the result into substrings of the length of the input string. Each of the broken substring in the
larger string is assigned a score based on how similar it is to the input string. A match is inferred using
the highest score. Now in the real DNA, we are looking for sequences of A, C, G, and T. So there might

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

14

Algorithm 2: New signature verification procedure

Input: A FASTA file generated from sequencing the DNA sample received
Output: Prompt - Signature Valid or Invalid.

1 Input checks: file extension and only ACGT content.

2 Parse FASTA file and create reverse complement of the file

3 Use Algorithm 3 to get the BESN and EDSN tags.

4 if (file contains BESN or EDSN) OR (reverse contains BESN or EDSN) then

5 if file contains BESN or EDSN then

6 Create content string by appending FASTA file content thrice.

7 Get the sequence between two BESN tags. Create the following parts by counting:
ORCID = first 32 chars; PLASMID _ID = next 12 chars; SIN = next 512 chars; ECC =
chars between SIN and END (may be empty); MSG = chars from END to end of string.

8 else

/+ When input FASTA file is in reverse complement form. */

9 Create content string by appending reverse complement of FASTA file content thrice.

10 Same as Step 6. i.e. get the parts from reverse complement.

1 Generate hash (SHA-256) of MSG

12 Invoke signature verification

13 if signature is valid then

14 L Alert user about success.

15 else

16 Alert user about failure and start error correction procedure.

17 if ECC length is O then

18 L Alert user there is no ECC and correction not possible.

19 else

20 Create the following string from the parts:
SEQUENCE+BESN+ORCID+PID+EDSN+ECC and send to Reed-Solomon
decoder.

21 if decoder outputs null or same as input then

22 L Alert user errors are more than tolerable limit.

23 else

24 Get the corrected parts and re-invoke verification.

25 if re-verification is success then

26 L Alert user that verification succeeded after error correction. Compare the parts

before and after error correction and display the errors.

27 else

28 L Alert user that verification failed even after successful correction.

29 else

30 L Alert user that BESN and EDSN tags are not present.

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

15

be a case that there are multiple close matches which means that there are multiple starts (or end) tags.
In those cases, we use the end tags (or start tags respectively) to narrow our results. The following steps
describe how the approximate matching technique works. There can be a total of four scenarios:

(1) Case 1: No mutation in either start or end tags. - In this case, we can find the exact locations
of the tags and hence approximate matching techniques are not needed. There can be mutations in
any other place which will be handled by the error correction code.

(2) Case 2: Mutation in BESN tag only. - In this case, the EDSN tag is found directly. The algorithm
looks for the closest match to BESN. If there is a single match with the highest score, then we
can be quite certain that the BESN tag has been located correctly. However, there can be multiple
matches with close scores, i.e., there is no single stand out high score. In that case, we use the EDSN
tag for further elimination of choices. We already know that the content within the start tag and the
end tag is more than 556 base pairs. Hence we choose only those potential BESN tags which are at
distance of 556 base pairs/characters or more away from the EDSN tag. The logic is set to 556 or
more because the length of the error correction can be 0 if the user chooses no error correction.

(3) Case 3: Mutation in EDSN tag only. - In this case, the BESN tag is found directly. The tool looks
for the closest match to EDSN. As in case 2, if there is a single match with the highest score then
we can be quite certain that the EDSN tag has been located correctly. For multiple matches with
close scores, we use the same logic as described in case 2 above, using the distance between the
BESN and EDSN tags to be more than or equal to 556 base pairs.

(4) Case 4: Mutation in both BESN and EDSN tags. - In this case, we try to locate the closest matches
for both tags. If there is a single match with the highest score for both of them then we can be pretty
certain that we have located them both correctly. Also, we invoke the criteria of length more than
or equal to 556 between them for more certainty. In case of multiple potential BESN and EDSN
tags, we employ the length counting criteria for each BESN and EDSN tag pair possible from the
obtained results and narrow down the results.

5.1. Experimentally Determining Most Suitable Distance Measures for String Matching

Various techniques exist to handle matching of similar strings. These methods measure the distance be-
tween strings using a distance equation. One of the most important works in this field is the Levenshtein
distance [13]. Other notable algorithms are Damerau-Levenshtein[13—-15], Optimal String Alignment
variant of Damerau-Levenshtein (sometimes called the restricted edit distance) [15], Jaro-Winkler edit
distance [16], and Jaccard index [17, 18].

We used all these five algorithms for the approximate start and end tag matching. One of the reasons
for using all of the above was that we wanted to find out which would be most suited to the DNA domain.
For testing, the FASTA file is taken as input and the start and end tag within the FASTA file are manually
changed. Next, we search for the location of the defined start and end tags within the mutated FASTA
file. The results for each algorithm are summarized on a case by case basis in Figure 3. As can be seen
from the figure, the Jaro algorithm was fairly inaccurate with an average accuracy of only 35.12 %. The
Jaccard algorithm fared much better but was still imperfect with an average accuracy of only 95.18 %.
All of the three Levenshtein variants were perfectly accurate in their assessment. These results indicate
that if accuracy was the chief concern, either of the three Levenshtein variants would be ideal choices.

Another important consideration in algorithm selection was speed. While an algorithm may be per-
fectly accurate in its selection of the closest match to a string it would not help much in practice if the

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

16

Algorithm 3: Approximate matching of tags

1
2
3

=

® N & W

10

11
12
13
14
15

16
17
18
19
20
21

22
23
24
25
26

27
28

29
30

31
32

33

Input: Content of FASTA file: String
Output: BESN and EDSN tags: 2 Strings

begin = ACGCTTCGCA; end = GTATCCTATG /+ hardcoded *x/

revcomp = reverse complement of input string
if input contains (begin and end) then
| BESN=Dbegin; EDSN =end

else if input contains end and NOT begin then
EDSN = end; Split input into substrings of length 10
foreach substring do
L Calculate score with begin; Store each substring and score. Sort by score.

if single highest score then
L BESN = highest score substring

else if multiple high scores then
Calculate distance between each substring to end.
BESN = substring where distance > 556
if multiple pairs with distance > 556. then
L Alert user about failure to extract tags. Exit

else if input contains begin and NOT end then
BESN = begin; Split input into substrings of length 10
Same as step 7 and 8. Replace begin with end
Same as step 9. Set EDSN = highest score substring as in step 10.
Same as step 11. Replace end with begin in step 12. Set EDSN as in step 13.
Same as step 14 and 15.

else if input does NOT contain begin and end then
Split input into substrings of length 10
foreach substring do
Calculate score with both begin and end;
L Store each substring and score for both. Sort by score.

if single highest score in both then
L BESN = highest score substring;EDSN = highest score substring;

else if multiple high scores in both then
Calculate distance between each pair of substrings. Set BESN and EDSN where distance
> 556.
if multiple pairs with distance > 556. then
L Alert user about failure to extract tags. Exit

Repeat the same four conditions as in step 3, 5, 16 and 22 with revcomp instead of input. e.g.
revcomp contains (begin and end)

34 return BESN and EDSN

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

17

100.00% B Jaro
B Jaccard
B Levenshtein
75.00% B Damerau-Levenshtein
B Optimal Alignment
50.00% ‘
25.00%
0.00%
& &
S AT LY - LY O - R @Gih
A a8 & & = S
o 2 I o N & o b & o
& 9 F F o F F FF W
o o A M o
, - - Q‘(’b
ey

Fig. 3. Accuracy of algorithms per case as a percentage.

algorithm has an unacceptably long run time. Towards this end, the execution time of the algorithms
were also compared. To accomplish this each method was used to compare a series of one million ran-
dom strings of a set length. A graph of the time in milliseconds (ms) for each algorithm is given in Figure
4.

Run-time Comparison of String Matching Algorithms

200000 == Damerau-Levenshtein
== Jaccard

== | evenshtein

150000 _ _
== (Optimal Alignment
= Jaro

100000

Time in Milliseconds

50000

20 40 60 80 100
Number Of Characters
Fig. 4. Runtime analysis of various algorithms in milliseconds

As can be seen from Figure 4, the Jaro-Winkler and Optimal String Alignment algorithms were the
quickest, each growing at very slow rates with Jaro-Winkler being slightly faster overall. Taking both

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

18

of these factors into consideration, we chose the Optimal String Alignment variant of the Damerau-
Levenshtein algorithm [15] as our preferred method for string matching.

6. New Identity-based Signature Scheme with Shorter Signature Size

There are several identity-based digital signature schemes using pairings. Some of the notable schemes
are: Sakai-Kasahara [19], Sakai-Ohgishi-Kasahara [20), Paterson [21], Cha-Cheon [22], and Xun Yi
[23]. The Sakai-Kasahara scheme described two types of identity-based signatures. One is El-Gamal
type and the other is Schnorr type. To identify the most appropriate scheme we first implemented all the
above schemes using the Java Pairing Based Cryptography library jPBC) [24]. We then investigated the
signature lengths based on different types of curves that can be used. The time to generate and validate
a signature depends on the type of the curve used. We evaluated both aspects: time to sign and verify,
and the size of the signature using this algorithm for all the different types of curves present in the jPBC
library.

Based on the signature size and the computation cost of signature generation and verification, we
identified the best scheme to be the Sakai-Kasahara Schnorr type. We now describe the Sakai-Kasahara
Schnorr type identity-based signature scheme. It has four steps: setup, extract, sign and verify.

Setup: The setup generates the curve parameters. The different curves provided in the jPBC library
can be used to load the parameters. Let g; be the generator of G1, g2 be the generator of G2. A random
x € Zy is chosen to be the master secret. Two public keys P; and Ps are calculated as - Py = x - g1 and
Py = x - go. An embedding function H is chosen such that H(0,1)* — Gj.

Extract: Takes as input the curve parameters, the master secret key x, and a user’s identity and returns
the users identity-based secret key. This step is performed by the central authority for each user A with
identity IDg.

(1) For an identity IDg4, calculate C4 = H(ID,). That is map the identity string to an element of G.
(2) Calculate V4 = x - Cy.

User A’s secret key is (Cqa, V,4) and is sent to the user via a secure channel.
Sign: To sign a message m, a user A with the curve parameters and the secret key (Cy4, V,4) does the
following:

(1) Choose arandom r € Z}. Compute Z4 = r - go.

(2) Compute e = ¢,(Ca,Zy), where e, is the pairing operation.

(3) Compute h = Hi(m || e), where H; is a secure cryptographic hash function such as SHA-256 and
|| is the concatenation operation.

(4) Compute S = hV4 +1rCy .

A’s signature for the message m is - (h, S)
Verify: The verification procedure is as follows:

(1) Compute w = €,(S, g2) * €,(Ca, —hP2)
(2) Check Hy(m || w) = h

The above equation works because:

e =e,(Ca,Zs) = ey(Ca,r- g2) = €,(Ca,82)"

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

19

w=e, S’g2) * en(CAa 7hp2)
= e,(hVs + rCa, g2) * €,(Ca, —hx - g2)

€n (hx + I’) : CAa g?) * en(CA’ g2)7hx

hx—+r —hx

€ CA,gZ) *en(CA,g2)

(
(
= e,(hx - Cy +1Ca, 82) * €4(Ca, g2) ™™
(
(
(

en(Ca, 82)"

Hence, h = Hi(m || e) = Hi(m || w).

The signature is a tuple (h, S) where # is the result of a hash function and is dependent on the choice
of the hash function. If /2 is SHA-1, then length is 20 bytes, if & is SHA-256, the length is 32 bytes. The
value S is an element of the group G;. Hence its length will be dependent on the curve type and the
length of the prime. There are six types of curves in the jPBC library namely — a, at, d, e, f, and g. The
different types of curves and their parameters are provided in the library as “properties” files. Table 1
summarizes the comparison of the signature length using the different curves.

Table 1
Signature size using different curves for the Sakai-Kasahara scheme.

Curve Name Signature Size using SHA-1 | Signature Size using SHA-256

(Bytes)

(Bytes)

a.properties

(20, 128) = 148

(32, 128) = 160

al.properties

(20, 260) = 280

(32, 260) =292

d159.properties (20, 40) = 60 (32,40)=72
d201.properties (20,52)=72 (32,52)=84
d224.properties (20, 56) =176 (32,56) =88
e.properties (20, 256) =276 (32, 256) = 288
f.properties (20, 40) = 60 (32,40)=72
g149.properties (20,38) =58 (32,38)=70

Based on the signature size, the best performance is provided by the d159, f, and g149 curves. How-
ever, the length of the primes are a bit different and also the embedding degree is different. In the d159
curve, the prime is 159 bits and the embedding degree is 6. In the f curve, the prime is 158 bits and
the embedding degree is 12. In the g149 curve, the prime is 149 bits and the embedding degree is 10.
Keeping in view the small difference in signature sizes and the security related to each type, the better
choice is the f curve.

The time to generate the signature and verify also depends on the type of the curve because of their
properties. Table 2 summarizes the time to sign and verify using the different types of curves.

From the speed perspective, the a type curve is the fastest for generating and verifying the signature.
But the size of the signature is way larger. The short signature size generating curves i.e. d159, f and
g149 take a bit more time. It is, therefore, a matter of priority - signature size over speed. If we need to
sign and verify a lot of messages and not care about the signature size then type A curve is a good choice.
However, if the size of the signature is more important than speed like in our application, the f type curve
is a better option. Also, the f type curve offers the best security among the three as its embedding degree
is higher. Using this Sakai-Kasahara scheme we have reduced the signature size from 512 base pairs to

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

20

Table 2
Average time taken to sign and verify for different types of curves for the Sakai-Kasahara scheme.

Curve Name Average time to sign | Average time to verify

(ms) (ms)

a.properties 56 60
al.properties 594 448

d159.properties 102 98
d201.properties 121 138
d224 properties 129 131
e.properties 262 214
f.properties 133 251
g149.properties 170 219

288 base pairs. The only thing it affects in our earlier algorithms is determination of BESN and EDSN in
Section 5 when these tags mutate and we need to rely on counting base pairs to locate those tags.

Security of scheme. : Since we use well-known signature schemes that assume that no polynomial-time
adversary can forge a genuine signature without knowing the secret used to sign, it trivially follows that
our scheme is also secure.

7. Compressing the Signature to Reduce Molecule Size

The Sakai-Kasahara scheme mentioned above generates the shortest signature size among the known
identity-based signature schemes. The signature is a tuple (4, S), where # is a hash function and S is an
element in the group G of the curve.

Now, the elements in the group G are points on the elliptic curve. They have two subcomponents
the X-coordinate and the Y-coordinate which are packed together. In the JPBC library, the elements are
assigned and computed using the class “Element". The fields are generated from the pairing curves i.e.
the properties files. When we print the “Element" from the group G1, we can observe that it contains the
two coordinates. The following syntax is used to generate a random element in Gy -

Pairing pairing = PairingFactory.getPairing(“f.properties");

PairingFactory.getInstance().setUsePBCWhenPossible(true);

Field G1 = pairing.getG1();

Element gl = G1.newRandomElement().getimmutable();

System.out.println("g1 - "+g1);

System.out.println("G1 bytes = "+g1.toBytes().length);

The code produces the following output -

gl - 1850050205405678718762488884335150904922997774,
55999770258652075328012601245471415805643870392,0
G1 bytes =40

In order to extract the X and Y coordinate separately, the Element class needs to be converted to a byte
array. In that array, half of the array contains the X coordinate the other half contains the Y coordinate.
We can then separate the two arrays and convert them to the Biglnteger class.

Now every elliptic curve and consequently every pairing curve is defined by an equation of the form

y? = x3 4+ ax + b. Hence, the Y coordinate can be calculated from the X coordinate. We do not need to

O 0 J o U w N

BwWw W w W wwwwwwNDNDNDND DD R R R R R R
O W W J o U W N O W 0 J o U W NN RO W o d oY U W NN RO

41
42
43
44
45
46

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

21

store the Y coordinate in the signature. The Y coordinate can be calculated from the X coordinate during
verification. But it has to be noted that when we plug in the value of X, there will be two solutions for
the Y coordinate and the square root is modulo prime. For this reason, the way to distinguish between
which value of Y to keep, there needs to be some more data about the Y coordinate. The convention to
do this is to add one extra byte that will denote if the Y coordinate is odd or even. When we discard the Y
coordinate we can do a modulo 2 and if Y is odd, we append the byte 02 before X value. If Y is odd we
append 03. Using this point compression technique, it can be observed that a signature which contains
an element of G and has a size of 2n bytes(assuming each X and Y are n bytes), can be compressed to
a size of (n + 1) bytes.

This technique can only be applied to signature schemes where the signature contains an element
in G;. We are not sure if the elements of G2 and Gy can be compressed. So for all of the schemes
that are implemented already and the schemes that we described above can utilize this compression.
Also, the Sakai-Kasahara Schnorr analog scheme contains a hash value in one of the tuple. Recall that
the Sakai-Kasahara signature was (4, S), where /4 is a hash function like SHA-256. Along with the
point compression, the hash value can also be shortened using the techniques that are used to generate
Ethereum[25] or Bitcoin [26] addresses. In Ethereum, the public key is hashed using keccak 256 hash
algorithm. Then instead of taking the entire 32 bytes (64 bytes in hex representation), the Ethereum
blockchain takes only the last 20 bytes (40 bytes in hex) and generates the wallet address. Each wallet
address is 40 hex bytes but the hash generates 64 hex bytes. There is also another way of doing the same
hash compression. When computing the verification step - e,(Ca, —hP2). Here —h is the negative hash
value integer and we perform a scalar multiplication with the point Ps. There is only one integer group
involved and that is Z, where r is the order of the curve. So when performing that scalar multiplication
—h - P2, JPBC internally converts the hash value to an element of Z, by modulo r. Hence, instead of
writing the signature as (h,S) we can rewrite that as (R,S) where R = h mod r. This implies our
signature is now of the form (R, S'), where R is an element of the group Z,. But this method will not be
efficient for curves which have large orders like the elements in the type al curve are 128 bytes.

In order to recover the Y coordinate during verification we need to do point decompression i.e. retrieve
Y using X and the extra byte. The X value is plugged in the equation and the square root modulo prime
is calculated. The two values of Y are obtained. Then using the extra byte we know if we should keep
the odd Y or the even Y. Note that every curve has a different equation so the decompression method
needs to consider the curve and the coefficients a and b. Also, there exists a very easy way to compute
the square root modulo prime when the prime modulo 4 equals 3. If prime = 3 mod 4 -

Ycoordinate = (YQ)IWZ+1 mod prime.

However if prime = 1 mod 4, then there is no one line way to calculate the square root. The f type
curve will be faster in this approach as the prime in that curve parameters is 3 mod 4. The code for point
decompression is provided in the Appendix 3. This point compression method is not present in the JPBC
library by default.

Using these compression methods the signature size which was (32, 40) bytes totalling 72 bytes can
be reduced to (20, 21) totalling 41 bytes. Hence the size can be reduced from 288 base pairs (72 * 4) to
164 base pairs (41 * 4).

8. Self Documenting Plasmids

In the context of DNA sharing, the receiver gets a physical DNA molecule, which he/she can pass
through an automated DNA sequencer and obtain the sequences present within the molecule. The se-

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

22

quence is in the form of a FASTA file which can be used to verify the signature within the molecule. The
FASTA file contains just the raw sequences refer to fig 5.

>pUC19.gb(2686bp)
tcgegegtttcggtgatgacggtgaaaacctctgacacatgecagctcccggagacggtcacagettgtctgtaageggatgeccgggagcagacaageccgtcagggegegtcag
cgggtgttggegggtgtcggggetggettaactatgeggcatcagagcagattgtactgagagtgecaccatatgeggtgtgaaataccgecacagatgegtaaggagaaaatacc
gcatcaggcgccattcgecattcaggetgegecaactgttgggaagggegatcggtgegggectcttcgetattacgeccagetggegaaagggggatgtgetgecaaggegattaa
gttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgaattcgageteggtacccggggatcctctagagtcgacctgecaggecatgcaagettggeg
taatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagectggggtgecctaatgagtgagetaa
ctcacattaattgcgttgecgctcactgeccgetttccagtcgggaaacctgtegtgeccagetgecattaatgaatcggccaacgegeggggagaggeggtttgegtattgggege
tcttccgettectegetcactgactegetgegeteggtegtteggetgeggegageggtatcagetcactcaaaggeggtaatacggttatccacagaatcaggggataacgea
ggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggecgegttgetggegtttttccataggetccgeccccctgacgagcatcacaaaaatcgacge
tcaagtcagaggtggcgaaacccgacaggactataaagataccaggegtttccccctggaagetccctegtgegetctectgtteccgaccctgecgettaccggatacctgtec
gectttctecccttecgggaagegtggegetttctcatagetcacgetgtaggtatctcagtteggtgtaggtcgttcgetccaagetgggetgtgtgcacgaaccccccgttcag
cccgaccgetgegecttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgecactggecagcageccactggtaacaggattagcagagegaggtatgta
ggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgegetctgetgaageccagttaccttcggaaaaagagttggtage
tcttgatccggcaaacaaaccaccgetggtageggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacgggg
tctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaa
agtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagecgatctgtctatttcgttcatccatagttgectgactccccgtcgtgtag
ataactacgatacgggagggcttaccatctggccccagtgetgecaatgataccgecgagacccacgetcaccggetccagatttatcagcaataaaccagccagecggaagggec
gagcgcagaagtggtcctgecaactttatccgectccatccagtctattaattgttgeccgggaagctagagtaagtagttcgeccagttaatagtttgegcaacgttgttgecatt
gctacaggecatcgtggtgtcacgectegtegtttggtatggettcattcagecteccggttcccaacgatcaaggegagttacatgatcccccatgttgtgcaaaaaageggttage
tccttcggtectccgategttgtcagaagtaagttggeccgeagtgttatcactcatggttatggecagcactgecataattctcttactgtcatgecatccgtaagatgettttct
gtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgecccggegtcaatacgggataataccgecgeccacatagcagaactttaaaa
gtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgetgttgagatccagttcgatgtaacccactcgtgecacccaactgatcttcagecatctttt
actttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattat
tgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgecgcacatttccccgaaaagtgecacctgacgtc
taagaaaccattattatdatgacattaacctataaaaataggcgtatcacgaggccctttcgtc

Fig. 5. Sample fasta (.fasta) file

However, the receiver has no description about the molecule. Sequence manipulation software such
as SnapGene can be used to convert a GENBANK file to a FASTA file and vice versa. When a FASTA
file is converted to a GENBANK file, the software searches its database for common annotations. The
generated annotations may not be complete or correct every time. Hence, the user has the flexibility to
manually add additional annotations that may be required to describe the sample sequence. These manu-
ally added annotations are only available to the creator. When the same sample is sent to others, they will
sequence it and obtain the FASTA file but the GENBANK file will contain only those annotations that
can be automatically generated. In order for the receiver to extract all the feature information for a given
sample, the creator would need to share the GENBANK file containing the manually added annotations.

Hence in order to establish a strong tie between the shared GENBANK file and the shared physical
sample, the use of dual signature was proposed in [2]. Using a dual signature, it can be verified that the
shared GENBANK file containing the descriptions is indeed meant to describe the shared sample and
not for any other sample. But having a large set of GENBANK files and a large set of physical samples,
it will be difficult to match a sample with its related GENBANK description, i.e. all the samples needs
to be tested for the dual signature match.

A sample GENBANK file is shown below in two parts Fig 6 and Fig 7. This file corresponds to the
FASTA file shown above. The GENBANLK file is displayed in two parts due to its length.

The keyword “ORIGIN" demarcates the annotations / descriptions about the molecule and the actual
sequence. The keyword “FEATURES" describes the location of the different features that this sample
contains and their location within the sequence. Also it denotes the total number of base pairs in the
sample under “source".

As we are already embedding a digital signature within a molecule, it is also possible to embed the
descriptions within it as well. If the descriptions about the molecule can be embedded within itself then

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

LOCUS Exported 2686 bp ds-DNA circular SYN 24-NOV-2013
DEFIMNITION Standard E. coli vector with a multiple cloning site (MCS) for DHNA
cloning. The MCS is reversed in puCi1s.
ACCESSION
VERSION
KEYWORDS pucie
SOURCE synthetic DNA construct
ORGANISM synthetic DNA construct
REFERENCE 1 (bases 1 to 2686)
AUTHORS Yanisch-Perron C, Vieira J, Messing 3J.
TITLE Improved M13 phage cloning vectors and host strains: nucleotide
sequences of the M13mpl8 and puci9 vectors.
JOURNAL Gene 1985;33:103-19.
PUBMED 2985470
REFERENCE 2 (bases 1 to 2686)
AUTHORS New England Biolabs
TITLE Direct Submission
JOURNAL Exported Nov 1@, 2017 from SnapGene 4.1.0
http://www.snapgene.com
COMMENT See also GenBank accession L@9137.
FEATURES Location/Qualifiers
source 1..2686
/organism="synthetic DNA construct”
/lab_host="Escherichia coli™
/mol_type="other DNA"
CDS complement(146..469)
/codon_start=1
/gene="lacz"
/product="LacZ-alpha fragment of beta-galactosidase"
/label=lacz-alpha
/translation="MTMITPSLHACRSTLEDPRVPSSNSLAVVLQRRDWENPGVTQLNR
LAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRLMRYFLLTHLCGISHRIWCTLSTICS
DAA™
primer_bind 379..395

/label=M13 fwd

/note="common sequencing primer, one of multiple similar

variants™

misc_feature 396,.452

/label=MCS
/note="puUC19 multiple cloning site"

primer_bind complement(465..481)

/label=M13 rev

Fig. 6. Sample GENBANK (.gb) file - part 1

23

there is no need to share the GENBANK file and the physical sample is self documented. The descrip-
tions are text and it can be easily converted to bytes and from bytes to ACGT. But there is a limit to
how much information can be put inside a molecule such that it is stable and retains its original func-
tionality. For this criteria, we explored lossless text compression techniques and encode the compressed
bytes as ACGT instead of the original text bytes. While unpacking the original text can be recovered

0 J o 0w N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

24

CDS complement(1626..2486)

/codon_start=1

/gene="bla"

/product="beta-lactamase"

/label=AmpR

/note="confers resistance to ampicillin, carbenicillin, and
related antibiotics"
Jtranslation="MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYI
ELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRIDAGQEQLGRRIHYSQNDLVEYS
PVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRW
EPELNEAIPNDERDTTMPVAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSA
LPAGWFIADKSGAGERGSRGITAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGAS
LIKHW"

complement(2487..2591)

/gene="bla"

promoter

ORIGIN
1
61
121
181
241
a1
361
421
481
541
601
661
721
781
841
901
961
1021
1081
1141
1201
1261
1321

tecgegegttt
cagcttgtcet
ttggegeets
accatatgcg
attcgccatt
tacgccagcet
tttcccagtce
cctctagagt
gtgtgaaatt
aaagcctggg
gctttccagt
agaggcggtt
gtcgttcggc
gaatcagggs
cgtaaaaagg
aaaaatcgac
tttccccctg
ctgtecegect
ctcagttcgg
cccgaccget
ttatcgccac
gctacagagt
atctgecgectce

/label=AmpR promoter

cggtgatgac
gtaagcggat
tcgggacteg
gtgtgaaata
caggctgegc
ggcgaaaggsg
acgacgttgt
cgacctgcag
gttatccgct
gtgcctaatg
cgggaaacct
tgcgtattgg
tgcggegagc
ataacgcagg
ccgegttget
gctcaagtca
gaagctccct
ttctcecttce
tgtaggtcgt
gcgecttatce
tggcagcagc
tcttgaagtg
tgctgaagcc

ggtgaaaacc
gccgggagea
cttaactatg
ccgcacagat
aactgttggg
ggatgtgcty
aaaacgacgg
gcatgcaagc
cacaattcca
agtgagctaa
gtcgtgccag
gecgetettec
ggtatcagct
aaagaacatg
ggcgtttttc
gaggtggcga
cgtgegetcet
gggaagcgty
tcgctccaag
cggtaactat
cactggtaac
gtggcctaac
agttaccttc

tctgacacat
gacaagcccg
cggcatcaga
gcgtaaggag
aagggcgatc
caaggcgatt
ccagtgaatt
ttggcgtaat
cacaacatac
ctcacattaa
ctgcattaat
gcttectege
cactcaaagg
tgagcaaaag
cataggctcc
aacccgacag
cctgtteccga
gcgctttetce
ctgggctgty
cgtcttgagt
aggattagca
tacggctaca
ggaaaaagag

gcagctcccg
tcagggcgeg
gcagattgta
aaaataccgc
ggtgegggcc
aagttgggta
cgagctcggt
catggtcata
gagccggaag
ttgegttacg
gaatcggcca
tcactgactc
cggtaatacg
gccagcaaaa
gccecccctga
gactataaag
ccctgecget
atagctcacg
tgcacgaacc
ccaacccggt
gagcgaggta
ctagaagaac
ttggtagctc

Fig. 7. Sample GENBANK (.gb) file - part 2

gagacggtca
tcagcgegts
ctgagagtgc
atcaggcgcc
tcttegetat
acgccagggt
acccggggat
getgtttect
cataaagtgt
ctcactgecc
acgcgcgegs
gctgegeteg
gttatccaca
ggccaggaac
cgagcatcac
ataccaggcg
taccggatac
ctgtaggtat
ccccgttcag
aagacacgac
tgtaggcggt
agtatttggt
ttgatccggce

and the exact same GENBANK file can be reproduced. Some of the compression algorithms we ex-
plored were zip, bzip, 1zma, |1z4, snappy, and deflate. Our main focus was compression size rather than
time. We observed that the best algorithm in terms of compression size was deflate with the parameter
BEST_COMPRESSION. (Deflater compressedtext = new Deflater(BEST_COMPRESSION);)

For the sample GENBANK file, the length of the descriptions (i.e. all text before the keyword “ORI-
GIN" in Figures 6 and 7) is 3675 bytes. After compression it shrinks to 1493 bytes. Consequently it is a
better choice to encode the compressed annotations instead of the actual text. At the time of inserting the

O 0 J o U w N

B N N S A O R O R O R O e O O N O L O L O L B S S O S L T e e T e T e T T]
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

25

annotations, the same challenges we faced for signature insertion and verification because of the circular
and double stranded nature of DNA, also appears.

To explain the process, we consider a small example. Let the sample have the following sequence -
AAA CCC GGG TTT. Also, let us consider that this sample has 2 features - AAA is feature X and GGG
is feature Y. The GENBANK file for this sample will look somewhat the following:

LOCUS. ..

FEATURES
source 1 .. 12
featureX 1 .. 3
featureY 7 .. 9

ORIGIN

1 aaacccgggt tt

Let us assume that when the annotations are compressed and encoded into sequence, it is ACGCTC.
As discussed before we need two identifiers. Let GCG and ATA be the identifiers for this example. This
will be inserted into the original content. The location is chosen by the user and it cannot collide with an
existing feature. Let us assume that the chosen location is 4 i.e. after AAA. The sequence now becomes
AAA GCG ACGCTC ATA CCC GGG TTT.

When this is shared with the receiver and sequenced it might come outas ATA CCC GGG TTT AAA
GCG ACGCTC. The identifiers will aid in locating the annotations. We can identify ACGCTC convert to
bytes and decompress to get the actual text. Recall the annotations had featureX 1..3 and featureY 7..9.
But as per this sequence AAA is not at 1..3 as also GGG is not at 7..9. The source can always be over-
written with the new count. But the problem is with locating the features and generating the GENBANK
file with the actual location of the features. We can permute the sequence such that it always starts with
the identifier after locating i.e. ATA CCC GGG TTT AAA GCG ACGCTC can be rewritten as GCG
ACGCTC ATA CCC GGG TTT AAA. In this way, the original content which was shared can be lo-
cated. But still there is a mismatch with the feature location. In the original AAA was in position 1..3,
here it is CCC. As we mentioned, before this would not happen if the sender selects the first position or
the last position of the sequence as the annotation insertion point. But there is no guarantee that there
will be no feature at the start or end. Hence in order to generalize this, we changed the procedure to
annotation placement similar to the signature placement strategy discussed in section 4. To explain it
briefly, before inserting the signature at the chosen location, the original sequence is shifted such that
it becomes the dummy start. In the example, AAA CCC GGG TTT was the original sequence and 4
was the chosen location. The original sequence is shifted to CCC GGG TTT AAA and the new feature
location are calculated based on this i.e the features are now updated as featureX 10..12 and featureY
4..6. Then this annotation is compressed and encoded to ACGT and then put into the location. Let this
annotation sequence be CAGATA. Note that this is not the same as the annotations in the original file.
Since we shifted the sequence internally, the compression sequence will not be the same as the previous
example. The final sequence is therefore AAA GCG CAGATA ATA CCC GGG TTT, At the receiver’s
end, the result might come up as GGG TTT AAA GCG CAGATA ATA CCC. Like before we can look
for the delimiters and then permute the sequence as GCG CAGATA ATA CCC GGG TTT AAA. But
the decompressed text now will be expanded as featureX 10..12 and featureY 4..6. This matches with
the annotations precisely if we consider the start of the sequence as after the end delimiter ATA. The
final generated GENBANK will contain an offset of the length of start delimiter compressed annotation

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

26

length and the end delimiter length. So for this example, it will be updated as featureX - 10+12..12+12
and featureY - 4+12..6+12. The length of offset - [en(GCGCAGATAATA) = 12. It can be verified that GCG
CAGATA ATA CCC GGG TTT AAA contains the featureX which was AAA at position 22..24 and fea-
tureY which was GGG at position 16..18. The algorithms for generating a self documented plasmid and
reading the plasmid to get back the annotations are described in Algorithm 4 and 5.

Algorithm 4: A self documenting plasmid generation algorithm

Input: The GenBank (.gb) file: file, Plasmid ID: a 6 digit number, Location of annotation
placement: number, Error tolerance limit: number (hard coded as 2 errors)
Output: Annotated GenBank (.gb) and FASTA (.fa) file: file
1 Input checks e.g. correct file extension, Plasmid ID format, integers etc.
2 Parse GenBank file. Split content and sequence based on keyword ORIGIN. Parse content to get
the list of feature locations.
3 if Location of annotation placement NOT within a feature then

4 Make the position as start of the sequence and wrap everything before the location to the end.
If position is O or length of sequence - no wrap is needed.
5 Update the annotations by considering the placement location as 0 .

Compress the annotations.

Convert the compressed annotation bytes, Plasmid_ID to ACGT sequence. Create the
following string by concatenating parts :

BESN+Plasmid_ID+ANNOTATION+EDSN

Append MSG (shifted sequence) after BESN+PLASMID_ID+ANNOTATION+EDSN.

10 Generate a checksum e.g. crc32 on the appended sequence

BESN+PLASMID_ID+ANNOTATION+EDSN+MSG. Let this be CRC

11 Put the CRC sequence between ANNOTATION AND EDSN.

BESN+PLASMID_ID+ANNOTATION+CRC+EDSN

12 . Pass BESN+PLASMID_ID+ANNOTATION+CRC+EDSN+MSG to Reed-Solomon

Encoder.

13 Convert the parity bytes to ACGT. (call this ECC)

14 Annotated_Sequence = BESN+PLASMID_ID+ANNOTATION+CRC+ECC+EDSN.

15 if annotation placement location is start of the original sequence then

16 L Final_Sequence = SEQUENCE+Annotated_Sequence

17 else if annotation placement location is end of the original sequence then

18 L Final_Sequence = Annotated_Sequence+SEQUENCE

19 else

20 partl = prefix of SEQUENCE of length n — 1 (where annotation is to be placed at
location n

21 part2 = suffix of SEQUENCE of length len(S EQUENCE) —n+ 1

22 Final_Sequence = partl+Annotated_Sequence+part2

3 | Write the Final_Sequence to a new GenBank file and FASTA file.

24 else

25 L Alert user about collision. Allow user to input new location. Go to step 3 with new location.

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O W ®Jd oS W RO WO Jd o0 s W N P O W ®doUs W N R O

27
8.1. Encrypting parts of the annotations for controlled dissemination

As mentioned earlier, the creator of the DNA molecule may not always be willing to share all informa-
tion in the DNA document. One simple approach to do this is to encrypt some features of the annotations
such that the receiver can only read parts of the annotations. Only the annotations that needs to be read
by everyone will be kept in plaintext and encoded as mentioned above. For this approach, there can
be several different ways each with its own advantages and disadvantages. Since we are already using
identity-based signature, the obvious technique is to use its counterpart identity-based encryption. There
are already existing schemes such as Boneh-Franklin IBE scheme [27], Sakai-Kasahara IBE scheme
[19] etc., that can be used to accomplish this. However, note that all of the IBE schemes generate the
encrypted message as a tuple. The size of the message is doubled. Unfortunately, in this domain we need
to keep the message or annotations as short as possible. To what extent we can allow the expansion of a
molecule without affecting properties is largely unknown. However, biologists believe that it depends on
the size of the original DNA molecule where we would include the annotations. If that sample is large
then it is very likely that IBE schemes can be used. One issue with IBE schemes is that it is meant to
be decrypted by exactly one particular user. The user’s ORCID which is used to encrypt the annotation
will only be able to read the annotations. In cases where we would like to have a selected group of users
read an annotation IBE schemes cannot be used.

Another possible method is by using symmetric key encryption like AES. One advantage is that the
message size will not expand. But the sender and receiver need to agree on a shared key. This key can
be sent to other selected users who will be allowed to read the annotations. But this also implies that a
different key is needed for each DNA. Attribute-based encryption techniques is worth exploring in this
regard. As of now we have not yet implemented these schemes and is left as a future work.

9. Conclusion and Future Work

In this work, we improve the previous DNA signing scheme [2] in several directions. First, we remove
the need to share the genbank file by eliminating the requirement of alignment at the sample receiver’s
end. The new signature generation procedure is independent of where the signer wants to place the
signature. Notwithstanding any cyclic shifts or reverse complements that the receiver may get during
sequencing, the signature can still be verified. To account for DNA mutations, we use error correction
codes in the signature protocol to correct errors within pre-specified tolerable limits. Our second im-
provement is a way to locate mutated tags using approximate string matching techniques. This allows
us to overcome mutation in the identifying tags and hence we can correctly recover the error correction
code. This was a major problem in previous scheme.

Our third improvement is the reduction of signature size. We used pairing based cryptography to
improve the previous signature scheme which generated 512 base pair signature to the Sakai-Kasahara
scheme which generates 288 base pair signature. Then we further compressed that to 164 base pairs.
It will be worth exploring the lattice-based schemes to check if those can be used to generate a shorter
signature size than 164 base pairs.

We also explored the possibility of encoding the documentation or annotation about the sample within
the sample itself. For just the signature scheme we had removed the need to share any digital file along
with the physical sample. But still the receiver after validating the correctness of the sample would have
limited knowledge about the description of the sample and the features it has. Previously, we had to share

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

B s D D D W W W W W W W W W W DNNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W RO WO Jd o s W N P O WO doUs W N R O

28

Algorithm 5: A self documented plasmid reading algorithm

5
6
7

10

11
12
13
14
15

16

17
18
19

20
21

22
23
24
25

26
27

28
29

Inp

ut: A FASTA file generated from sequencing the DNA sample received

Output: A GENBANK file with annotations and the sequence

1 Input checks: file extension and only ACGT content.

2 Parse FASTA file and create reverse complement of the file

3 Use Algorithm 3 to get the BESN and EDSN tags.

4 if (file contains BESN or EDSN) OR (reverse contains BESN or EDSN) then

else

L

if file contains BESN or EDSN then

Create content string by appending FASTA file content thrice.

Get the sequence between two BESN tags. Create the following parts by counting:
PLASMID_ID = first 12 chars; ECC = 32 chars before EDSN; CRC = 32 chars before
ECC; ANNOTATION = chars between PLASMID_ID and CRC; MSG = chars from
EDSN to end of string.

else

/+ When input FASTA file is in reverse complement form. */
Create content string by appending reverse complement of FASTA file content thrice.
Same as Step 6. i.e. get the parts from reverse complement.

Generate the following string BESN+PLASMID_ID+ANNOTATION+EDSN+MSG

Invoke checksum validation

if checksum is valid then

Alert user about success. Convert ANNOTATION to bytes and decompress.

Generate the original text and offset the original feature locations by the length of
len(BESN+PLASMID_ID+ANNOTATION+CRC+ECC+EDSN).

Write the sequence as
BESN+PLASMID_ID+ANNOTATION+CRC+ECC+EDSN+MSG.

else

Alert user about failure and start error correction procedure.

Send BESN+PLASMID_ID+ANNOTATION+CRC+EDSN+MSG to Reed-Solomon
decoder.

if decoder outputs null or same as input then

else
Get the corrected parts and re-invoke checksum verification.
if re-verification is success then
L Alert user that verification succeeded after error correction. Follow Step 14 to 16.

else
L Alert user that verification failed even after successful correction.

Alert user that BESN and EDSN tags are not present.

L Alert user that errors are more than tolerable limit. Cannot generate Genbank and exit.

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

O 0 J o U w N

BB W W wwwWw W W w NN NN R R
P O W W J o Ubhd W N P O W 00 J o U W N EFE O W o J o U W NN e O

42
43
44
45
46

29

the digital file but included a dual signature such that the receiver can strictly tie one digital file with
exactly one physical sample. If we can encode the documentation about the sample also within it, there
will be no need to share any extra information and the physical sample will the self validating and self
documenting. As of now, the signature and the self documenting parts are implemented as two different
modules. In future they will be combined to generate signatures and annotations together.

One of the future directions in this work would involve signing and verifying the same DNA molecule
multiple times by different users. Alice signs and sends a DNA sample to Bob and Bob validate Alice’s
DNA. Then Bob continues to modify it, then signs it and sends it to Eve. Can Eve only verify Bob’s
signature, or is there a way for Eve to track the entire pathway starting from Alice? It would be interesting
to see if the concept of aggregate signatures can be applied in these scenarios.

Another direction to be explored is signing a part of the DNA. In this work, we have only applied
signatures on plasmids and the entire plasmid sequence. Plasmids are relatively smaller in size than
genomes ranging from 2.5 - 25 kilobases, and hence sequencing a plasmid without any errors is feasible.
But as we move from plasmids to genomes, the sheer size of the DNA makes it almost impossible to
produce and error free sequencing. The error correction code can be used to tolerate some errors but
it might not be the optimal solution. It can be a better solution to sign a part of the DNA rather than
the entire DNA sequence for example a particular protein sequence. In that way, we can ensure that the
protein sequence is unchanged although there might be some errors in rest of the DNA sequence.

Also, it would be interesting to see if we put a signature on top of an existing signature whether the
characteristic of the DNA molecule changes or not. If it does not, how many signatures can be inserted
before the characteristics of the original DNA molecule begin to change? If we cannot put multiple
signatures within the same DNA molecule, how do we remove the signature that was present before
signing it again? Does removing the signature also alter the property of the DNA molecule? These are
some future directions that we plan to explore further.

Acknowledgment

This work was partly supported by the U.S. National Science Foundation’s award #1934573 “EA-
GER: Development of a tool-chain to write and read self-documenting plasmids”, and award #1832320
“EAGER: Modeling DNA Manufacturing Processes Using Extensible Attribute Grammars”, and by the
Colorado State University’s Office of the Vice President for Research Catalyst for Innovative Partner-
ships Program. The work of Indrajit Ray was performed while serving as Program Director at the U.S.
National Science Foundation (NSF) and supported by the foundation’s Independent Research and De-
velopment program for staff. Research findings presented here and opinions expressed are solely that of
the authors, and in no way reflect the opinion of the NSF, other federal agencies or the Office of the Vice
President for Research of Colorado State University.

References

[1] Biodefense in the Age of Synthetic Biology, National Academies of Sciences, Engineering and Medicine, 2018.

[2] D.M. Kar, L. Ray, J. Gallegos and J. Peccoud, Digital Signatures to Ensure the Authenticity and Integrity of Synthetic
DNA Molecules, in: Proceedings of the New Security Paradigms Workshop, NSPW 18, ACM, Windsor, UK, 2018,
pp. 110-122.

[3] P. Ney, K. Koscher, L. Organick, L. Ceze and T. Kohno, Computer Security, Privacy, and DNA Sequencing: Compro-
mising Computers with Synthesized DNA, Privacy Leaks, and More, in: Proc. of the 26th USENIX Security Symposium,
Vancouver, Canada, 2017.

O 0 J o U w N

BB B R R DR W WWWWwWw W W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O VU oY U WD RO VW oYy W NN O

O 0 J o U w N

=
=)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

30

(4]
(3]

(6]

(7]

(8]

(9]
[10]

[11]
[12]
[13]
[14]

[15]
[16]

[17]
(18]
[19]
[20]

[21]
(22]

(23]
[24]

[25]

[26]
(27]

D.C. Jupiter, T.A. Ficht, J. Samuel, Q.-M. Qin and P. de Figueiredo, DNA Watermarking of Infectious Agents: Progress
and Prospects, PLOS Pathogens 6(6) (2010), 1-3.

C.A. Hutchison, R.-Y. Chuang, V.N. Noskov, N. Assad-Garcia, T.J. Deerinck, M.H. Ellisman, J. Gill, K. Kannan,
B.J. Karas, L. Ma, J.F. Pelletier, Z.-Q. Qi, R.A. Richter, E.A. Strychalski, L. Sun, Y. Suzuki, B. Tsvetanova, K.S. Wise,
H.O. Smith, J.I. Glass, C. Merryman, D.G. Gibson and J.C. Venter, Design and Synthesis of a Minimal Bacterial Genome,
Science 351(6280) (2016).

D.G. Gibson, J.I. Glass, C. Lartigue, V.N. Noskov, R.-Y. Chuang, M.A. Algire, G.A. Benders, M.G. Montague, L. Ma,
M.M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E.A. Denisova,
L. Young, Z.-Q. Qi, T.H. Segall-Shapiro, C.H. Calvey, P.P. Parmar, C.A. Hutchison, H.O. Smith and J.C. Venter, Creation
of a Bacterial Cell Controlled by a Chemically Synthesized Genome, Science 329(5987) (2010), 52-56.

S.M. Richardson, L.A. Mitchell, G. Stracquadanio, K. Yang, J.S. Dymond, J.E. DiCarlo, D. Lee, C.L.V. Huang, S. Chan-
drasegaran, Y. Cai, J.D. Boeke and J.S. Bader, Design of a Synthetic Yeast Genome, Science 355(6329) (2017), 1040—
1044.

M. Liss, D. Daubert, K. Brunner, K. Kliche, U. Hammes, A. Leiherer and R. Wagner, Embedding Permanent Watermarks
in Synthetic Genes, PLOS ONE 7(8) (2012), 1-10.

D. Heider and A. Barnekow, DNA-based Watermarks Using the DNA-Crypt Algorithm, BMC Bioinformatics 8(1) (2007).

A. Shamir, Identity-Based Cryptosystems and Signature Schemes, in: Advances in Cryptology, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, 1984, pp. 47-53.

I.S. Reed and G. Solomon, Polynomial Codes Over Certain Finite Fields, Journal of the Society for Industrial and Applied
Mathematics 8(2) (1960), 300-304.

J.S. Plank et al., A Tutorial on Reed-Solomon Coding for Fault-tolerance in RAID-like Systems, Software Practice and
Experience 27(9) (1997), 995-1012.

V.I. Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions, and Reversals, Soviet physics doklady 10(8)
(1966), 707-710.

F.J. Damerau, A Technique for Computer Detection and Correction of Spelling Errors, Communications of ACM 7(3)
(1964), 171-176.

Damerau — Levenshtein Distance, 2019.

M.A. Jaro, Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida, Jour-
nal of the American Statistical Association 84(406) (1989), 414-420.

P. Jaccard, Etude De La Distribution Florale Dans Une Portion Des Alpes Et Du Jura, Bulletin de la Societe Vaudoise des
Sciences Naturelles 37(142) (1901), 547-579.

P. Jaccard, Distribution De La Flore Alpine Dans Le Bassin Des Dranses Et Dans Quelques Régions Voisines., Bulletin
de la Societe Vaudoise des Sciences Naturelles 37(140) (1901), 241-72.

R. Sakai and M. Kasahara, ID Based Cryptosystems with Pairing on Elliptic Curve, IJACR Cryptology ePrint Archive
(2003).

R. Sakai, K. Ohgishi and M. Kasahara, Cryptosystems Based on Pairing, in: Proceedings of the 2000 Symposium on
Cryptography and Information Security, Okinawa, Japan, 2000.

K.G. Paterson, ID-based Signatures from Pairings on Elliptic Curves, Electronics Letters 38(18) (2002), 1025-1026.

J.C. Choon and J. Hee Cheon, An Identity-Based Signature from Gap Diffie-Hellman Groups, in: Public Key Cryptogra-
phy — PKC 2003, Y.G. Desmedt, ed., Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2002, pp. 18-30.

X. Yi, An Identity-based Signature Scheme from the Weil Pairing, IEEE Communications Letters 7(2) (2003), 76-78.

A. De Caro and V. Iovino, jPBC: Java Pairing Based Cryptography, in: Proceedings of the 16th IEEE Symposium on
Computers and Communications, ISCC 2011, IEEE, Kerkyra, Corfu, Greece, June 28 - July 1, 2011, pp. 850-855.

G. Wood et al., Ethereum: A secure decentralised generalised transaction ledger, Ethereum project yellow paper 151
(2014), 1-32.

S. Nakamoto et al., Bitcoin: A peer-to-peer electronic cash system (2008).

D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, in: Annual international cryptology confer-
ence, Springer, 2001, pp. 213-229.

O 0 J o U w N

BB B R R DR W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNN R R R R R R R R
o U w DR O VW 0oy U WD O VW oY UWw D RO VW oYy W NP O

	Introduction
	Limitations of Earlier Work and Current Contributions
	Cyclic shifts and reverse complement
	Mutations in identifying tags
	Signature length

	Overview of the DNA Signature Workflow
	DNA Signature Generation and Verification Procedure
	Allowing Mutations in Start and End Tags
	Experimentally Determining Most Suitable Distance Measures for String Matching

	New Identity-based Signature Scheme with Shorter Signature Size
	Compressing the Signature to Reduce Molecule Size
	Self Documenting Plasmids
	Encrypting parts of the annotations for controlled dissemination

	Conclusion and Future Work
	Acknowledgment
	References

