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Abstract

The study of polarity in computation has revealed that an “ideal” programming language com-
bines both call-by-value and call-by-name evaluation; the two calling conventions are each ideal
for half the types in a programming language. But this binary choice leaves out call-by-need
which is used in practice to implement lazy-by-default languages like Haskell. We show how the
notion of polarity can be extended beyond the value/name dichotomy to include call-by-need
by only adding a mechanism for sharing and the extra polarity shifts to connect them, which is
enough to compile a Haskell-like functional language with user-defined types.
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1 Introduction

Finding a universal intermediate language suitable for compiling and optimizing both strict
and lazy functional programs has been a long-sought holy grail for compiler writers. First
there was continuation-passing style (CPS) [19, 2], which hard-codes the evaluation strategy
into the program itself. In CPS, all the specifics of evaluation strategy can be understood
just by looking at the syntax of the program. Second there were monadic languages [13, 17],
that abstract away from the concrete continuation-passing into a general monadic sequencing
operation. Besides moving away from continuations, making them an optional rather than
mandatory part of sequencing, they make it easier to incorporate other computational e�ects
by picking the appropriate monad for those e�ects. Third there were adjunctive languages
[10, 23, 14], as seen in polarized logic and call-by-push-value ⁄-calculus, that mix both call-by-
name and -value evaluation inside a single program. Like the monadic approach, adjunctive
languages make evaluation order explicit within the terms and types of a program, and
can easily accommodate e�ects. However, adjunctive languages also enable more reasoning
principles, by keeping the advantages of inductive call-by-value data types, as seen in their
denotational semantics. For example, the denotation of a list is just a list of values, not a
list of values interspersed with computations that might diverge or cause side e�ects.

Each of these developments have focused only on call-by-value and -name evaluation,
but there are other evaluation strategies out there. For example, to e�ciently implement
laziness, the Glasgow Haskell Compiler (GHC) uses a core intermediate language which is
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21:2 Beyond Polarity

call-by-need [4] instead of call-by-name: the computation of named expressions is shared
throughout the lifetime of their result, so that they need not be re-evaluated again. This may
be seen as merely an optimization of call-by-name, but it is one that has a profound impact
on the other optimizations the compiler can do. For example, full extensionality of functions
(i.e., the ÷ law) does not apply in general, due to issues involving divergence and evaluation
order. Furthermore, call-by-need is not just a mere optimization but a full-fledged language
choice when e�ects are introduced [3]: call-by-need and -name are observationally di�erent.
This di�erence may not matter for pure functional programs, but even there, e�ects become
important during compilation. For example, it is beneficial to use join points [12], which is a
limited form of jump or goto statement, to optimize pure functional programs.

So it seems like the quest for a universal intermediate language is still ongoing. To
handle all the issues involving evaluation order in modern functional compilers, the following
questions, which have been unanswered so far, should also be addressed:

(Section 3) How do you extend polarity with sharing (i.e., call-by-need)? For example,
how do you model the Glasgow Haskell Compiler (GHC) which mixes both call-by-need
for ordinary Haskell programs and call-by-value for unboxed [18] machine primitives?
(Section 4) What does a core language need to serve as a compile target for a general
functional programming language with user-defined types? What are the shifts you need
to convert between all three calling conventions? While encoding data types is routine,
what do you need to fully encode co-data types [9]?
(Section 5) How do you compile that general functional language to the core intermediate
sub-language? And how do you know that it is robust when e�ects are added?

This paper answers each of these questions. The formal relationship between our intermediate
language and both polarity and call-by-push-value (Appendix A). To test the robustness
of this idea, we extend it in several directions in the appendix. We generalize to a dual
sequent calculus framework that incorporates more calling conventions (specifically, the dual
to call-by-need) and connectives not found in functional languages (Appendices B and C).

2 Polarity, data, and co-data

To begin, let’s start with a basic language which is the ⁄-calculus extended with sums, as
expressed by the following types and terms:

A,B,C ::= X | A æ B | A ü B

M,N,P ::= x | ⁄x.M | M N | ÿ1M | ÿ2M | caseM of{ÿ1x.N | ÿ2y.P}

As usual, an abstraction ⁄x.M is a term of a function type A æ B and an injection ÿiM is a
term of a sum type AüB. Terms of function and sum types are used via application (M N)
and case analysis, respectively. Variables x can be of any type, even an atomic type X.

To make this a programming language, we would need to explain how to run programs
(say, closed terms of a sum type) to get results. But what should the calling convention be?
We could choose to use call-by-value evaluation, wherein a function application (⁄x.M) N is
reduced by first evaluating N and then plugging its value in for x, or call-by-name evaluation,
wherein the same application is reduced by immediately substituting N for x without further
evaluation. We might think that this choice just impacts e�ciency, trading o� the cost of
evaluating an unneeded argument in call-by-value for the potential cost of re-evaluating the
same argument many times in call-by-name. However, the choice of calling convention also
impacts the properties of the language, and can a�ect our ability to reason about programs.
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Functions are a co-data type [7], so the extensionality law for functions, known as ÷,
expands function terms into trivial ⁄-abstractions as follows:

(÷æ) M : A æ B = ⁄x.M x (x /œ FV (M))

But once we allow for any computational e�ects in the language, this law only makes sense
with respect to call-by-name evaluation. For example, suppose that we have a non-terminating
term � (perhaps caused by general recursion) which never returns a value. Then the ÷æ
law stipulates that � = ⁄x.� x. This equality is fine – it does not change the observable
behavior of any program – in call-by-name, but in call-by-value, (⁄z.5) � loops forever and
(⁄z.5) (⁄x.� x) returns 5. So the full ÷æ breaks in call-by-value.

In contrast, sums are a data type, so one sensible extensionality law for sums, which
corresponds to reasoning by induction on the possible cases of a free variable, is expressed by
the following law stating that if x has type A ü B then it does no harm to case on x first:

(÷ü) M = casexof{ÿ1y.M [ÿ1y/x] | ÿ2z.M [ÿ2z/x]} (x : A ü B)

Unfortunately, this law only makes sense with respect to call-by-value evaluation once we have
e�ects. For example, consider the instance where M is ÿ1x. In call-by-value, variables stand
for values which are already evaluated because that is all that they might be substituted for.
So in either case, when we plug in something like ÿi5 for x, we get the result ÿ1(ÿi5) after
evaluating the right-hand side. But in call-by-name, variables range over all terms which
might induce arbitrary computation. If we substitute � for x, then the left-hand side results
in ÿ1� but the right-hand side forces evaluation of � with a case, and loops forever.

How can we resolve this conflict, where one language feature “wants” call-by-name
evaluation and the other “wants” call-by-value? We just could pick one or the other as the
default of the language, to the detriment of either functions or sums. Or instead we could
integrate the two to get the best of both worlds, and polarize the language so that functions
are evaluated according to call-by-name, and sums according to call-by-value. That way,
both of them have their best properties in the same language, even when e�ects come into
play. Since functions and sums are already distinguished by types, we can leverage the type
system to make the call-by-value and -name distinction for us. That is to say, a type A might
classify either a call-by-value term, denoted by A+, or a call-by-name term, denoted by A≠.
Put it all together, we get the following polarized typing rules for our basic ⁄-calculus:

A,B,C ::= A+ | A≠ A≠, B≠ ::= X
≠ | A+ æ B≠ A+, B+ ::= X

+ | A+ ü B+

�, x : A „ x : A Var
�, x : A+ „ M : B≠

� „ ⁄x.M : A+ æ B≠
æI

� „ M : A+ æ B≠ � „ N : A+

� „ M N : B≠
æE

� „ M : A+

� „ ÿ1M : A+ ü B+
üI1

� „ M : B+

� „ ÿ2M : A+ ü B+
üI2

� „ M : A+ ü B+ �, x : A+ „ N : C �, y : B+ „ P : C
� „ caseM of{ÿ1x.N | ÿ2y.P} : C üE

Note that, with this polarization, injections are treated as call-by-value, in ÿiM the term M

is evaluated before the tagged value is returned. More interestingly, the function call M N

has two parts: the argument N is evaluated before the function is called as in call-by-value,
but this only happens once the result is demanded as in call-by-name.

But there’s a problem, just dividing up the language into two has severely restricted
the ways we can compose types and terms. We can no longer inject a function into a sum,
because a function is negative but a sum can only contain positive parts. Even more extreme,
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21:4 Beyond Polarity

the identity function ⁄x.x : A æ A no longer makes sense: the input must be a positive
type and the output a negative type, and A cannot be both positive and negative at once.
To get around this restriction, we need the ability to shift polarity between positive and
negative. That way, we can still compose types and terms any way we want, just like before,
and have the freedom of making the choice between call-by-name or -value instead of having
the language impose one everywhere.

If we continue the data and co-data distinction that we had between sums and functions
above, there are di�erent ways of arranging the two shifts in the literature, depending on the
viewpoint. In Levy’s call-by-push-value [10] the shift from positive to negative « (therein
called F ) can be interpreted as a data type, where the sequencing operation is subsumed
by the usual notion of a case on values of that data type, and the reverse shift » (therein
called U) can be interpreted as co-data type:1

A≠, B≠ ::= . . . | «A+

A+, B+ ::= . . . | »A≠

� „ M : A+

� „ valM : «A+
«I

� „ M : «A+ �, x : A+ „ N : C
� „ caseM of{val x.N} : C «E

� „ M : A≠

� „ ⁄enter.M : »A≠
»I � „ M : »A≠

� „ M.enter : A≠
»E

M.enter can be seen as sending the request enter to M , and ⁄enter.M as waiting for that
request. In contrast, Zeilberger’s calculus of unity [22] takes the opposite view, where the
shift ø from positive to negative is co-data and the opposite shift ¿ is data:

A≠, B≠ ::= . . . | øA+

A+, B+ ::= . . . | ¿A≠

� „ M : A+

� „ ⁄eval.M : øA+
øI � „ M : øA+

� „ M.eval : A+
øE

� „ M : A≠

� „ box M : ¿A≠
¿I

� „ M : ¿A≠ �, x : A≠ „ N : C
� „ caseM of{box x.N} : C ¿E

Here, we do not favor one form over the other and allow both forms to coexist. In turns out
that with only call-by-value and -name evaluation, the two pairs of shifts amount to the
same thing (more formally, we will see in Section 5 that they are isomorphic). But we will
see next in Section 3 how extending this basic language calls both styles of shifts into play.

With the polarity shifts between positive and negative types, we can express every
program that we could have in the original unpolarized language. The di�erence is that
now since both call-by-value and -name evaluation is denoted by di�erent types, the types
themselves signify the calling convention. For call-by-name, this encoding is:

JXK≠ = X
≠ JA æ BK≠ = (¿JAK≠) æ JBK≠ JA ü BK≠ = «((¿JAK≠) ü (¿JBK≠))

JxK≠ = x

JM NK≠ = JMK≠(box JNK≠) J⁄x.MK≠ = ⁄y. case y of{box x.JMK≠}

JÿiMK≠ = val(ÿi(box JMK≠)) JcaseM of{ÿixi.Ni}K≠ = case JMK≠ of{val(ÿi(box xi)).JNiK≠}

1 Note that this «E rule is an extension of the elimination rule for F in call-by-push-value [10], which
restricts C to be only a negative type. The impact is that, unlike call-by-push-value, this language
allows for non-value terms of positive types, similar to SML. The extension is conservative, because
the interpretation of A+ values is identical to call-by-push-value, whereas the interpretation of a
non-value term of type A+ would be shifted in call-by-push-value as the computation type «A+. This
interpretation also illustrates how to compile the extended calculus to the lower-level call-by-push-value
by «-shifting following the standard encoding of call-by-value, where positive non-value terms have an
explicit val wherever they may return a value. More details can be found in Appendix A.
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where the nested pattern val(ÿi(box xi)) is expanded in the obvious way. It converts every
type into a negative one, and amounts to boxing up the arguments of injections and function
calls. The call-by-value encoding is:

JXK+ = X
+ JA æ BK+ = »(JAK+ æ (øJBK+)) JA ü BK+ = JAK+ ü JBK+

JxK+ = x

JM NK+ = ((JMK+.enter) JNK+).eval J⁄x.MK+ = ⁄enter.⁄x.⁄eval.JMK+

JÿiMK+ = ÿiJMK+ JcaseM of{ÿixi.Ni}K+ = case JMK+ of{ÿixi.JNiK+}

It converts every type into a positive one. As such, sum types do not have to change (because,
like SML, we have not restricted positive types to only classifying values as in [14]). Instead,
the shifts appear in function types: to call a function, we must first enter the abstraction,
perform the call, then evaluate the result.

At a basic level, these two encodings make sense from the perspective of typability
(corresponding to provability in logic) – by inspection, all of the types line up with their
newly-assigned polarities. But programs are meant to be run, so we care about more than
just typability. At a deeper level, the encodings are sound with respect to equality of terms:
if two terms are equal, then their encodings are also equal. We have not yet formally defined
equality, so we will return to this question later in Section 5.1.

3 Polarity and sharing

So far we have considered only call-by-value and -name calculi. What about call-by-need,
which models sharing and memoization for lazy computation; what would it take to add
that, too? The shifts we have are no longer enough: to complete the picture we also require
shifts between call-by-need and the other polarities. We need to be able to shift into and
out of the positive polarity in order for call-by-need to access data like the sum type. And
we also need to be able to shift into and out of the negative polarity for call-by-need to be
able to access co-data like the function type. That is a total of four more shifts to connect
the ordinary polarized language to the call-by-need world. The question is, how do we align
the four di�erent shifts that we saw previously? Since call-by-need only needs access to the
positive world for representing data types, we use the data forms of shifts between those two.
Dually, since call-by-need only needs access to the negative world for representing co-data
types, we use the co-data forms of shifts between those two. We will also need a mechanism
for representing sharing. The traditional representation [4] is with let-bindings, and so we
will do the same. In all, we have:

CSL 2018



21:6 Beyond Polarity

A,B,C ::= A+ | A≠ | Aı A≠, B≠ ::= X
≠ | A+ æ B≠ | «A+ | øA+ | øı Aı

Aı, Bı ::= X
ı | ı«A+ | ı»A≠ A+, B+ ::= X

+ | A+ ü B+ | »A≠ | ¿A≠ | ¿ıAı

� „ M : Aı

� „ ⁄evalı.M : øı Aı
øI � „ M : øı Aı

� „ M.evalı : Aı
øE

� „ M : Aı

� „ boxı M : ¿ıAı
¿I

� „ M : ¿ıAı �, x : Aı „ N : C
� „ caseM of{boxı x.N} : C ¿E

� „ M : A+

� „ valı M : ı«A+
«I

� „ M : ı«A �, x : A+ „ N : C
� „ caseM of{valı x.N} : C «E

� „ M : A≠

� „ ⁄enterı.M : ı»A≠
»I � „ M : ı»A≠

� „ M.enterı : A≠
»E

� „ M : A �, x : A „ N : C
� „ letx = M inN : C Let

Now, how can a call-by-need ⁄-calculus with functions and sums be encoded into this
polarized setting? We e�ectively combine both the call-by-name and -value encodings, where
a shift is used for call-by-need whenever one is used for either of the other two.

JXKı = X
ı JA æ BKı = ı»((¿ıJAKı) æ (øı JBKı)) JA ü BKı = ı«((¿ıJAKı) ü (¿ıJBKı))

JxKı = x

JM NKı = ((JMKı
. enterı) (boxı JNKı)). evalı

J⁄x.MKı = ⁄enterı.⁄y. case y of{boxı x.⁄evalı.JMKı}
JÿiMKı = valı(ÿi(boxı JMKı))

JcaseM of{ÿixi.Ni}Kı = case JMKı of{valı(ÿi(boxı xi)).JNiKı}

The key thing to notice here is what is shared and what is not, to ensure that the encoding
correctly aligns with call-by-need evaluation. Both the shifts into ı, the data type ı«A+
and co-data type ı»A≠, result in terms that can be shared by a let. But the shifts out of ı

are di�erent: the content M of boxı M : ¿ıAı is still shared, like a data structure, but the
content M of ⁄evalı.M : øı Aı is not, like a ⁄-abstraction. Therefore, the encoding of an
injection JÿiMKı shares the computation of JMKı throughout the lifetime of the returned
value, as for the argument of a function call:

Jcase ÿiM of{ÿixi.Ni}Kı = letxi = JMKı in JNiKı J(⁄x.M)NKı = letx = JNKı in JMKı

Whereas, the encoding of a function J⁄x.MKı, being a value, re-computes JMKı every time
the function is used, which is formalized by the equational theory in Section 4.4.

4 A multi-discipline intermediate language

So far, we have only considered how sharing interacts with polarity in a small language with
functions and sums, but programming languages generally have more than just those two
types. For example, both SML and Haskell have pairs so we should include those, too, but
when do we have enough of a “representative” basis of types that serves as the core kernel
language for the general source language? To define our core intermediate language, we will
follow the standard practice (as in CPS) of first defining a more general source language,
and then identifying the core sub-language that the entire source can be translated into.
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The biggest issue is that faithfully encoding types of various disciplines into a core set of
primitives is more subtle than it may at first seem. For example, using Haskell’s algebraic
data type declaration mechanism, we can define both a binary and ternary sum:

data Either a bwhere
Left : a æ Either a b

Right : b æ Either a b

data Either3 a b cwhere
Choice1 : a æ Either3 a b c

Choice2 : b æ Either3 a b c

Choice3 : c æ Either3 a b c

But Either a (Either b c) does not faithfully represent Either3 a b c in Haskell, even though it
does in SML. The two types are convertible:

nest(Choice1x) = Leftx

nest(Choice2 y) = Right(Left y)
nest(Choice3 z) = Right(Right z)

unnest(Leftx) = Choice1x

unnest(Right(Left y)) = Choice2 y

unnest(Right(Right z)) = Choice3 z

but they do not describe the same values. Either a (Either b c) types both the observably
distinct terms � and Right� – which can be distinguished by pattern matching – but
conversion to Either3 a b c collapses them both to �. This is not just an issue of needing
nary tuples and sums, the same issue arises when pairs and sums are nested with each other.

To ensure that we model a general enough source language, we will consider one that is
extensible (i.e., allows for user-defined types encompassing many types found in functional
languages) and multi-discipline (i.e., allows for programs that mix call-by-value, -name, and
-need evaluation). These two features interact with one another: user-defined types can
combine parts with di�erent calling conventions. But even though users can define many
di�erent types, there is still a fixed core set of types, F , capable of representing them all.
For example, an extensible and multi-discipline calculus encompasses both the source and
target of the three encodings showed previously in Sections 2 and 3. We now look at the full
core intermediate language F , and how to translate general source programs into the core F .

4.1 The functional core intermediate language: F
Our language allows for user-defined data and co-data types. A data type introduces a
number of constructors for building values of the type, a co-data type introduces a number
of observers for observing or interacting with values of the type. Figure 1 presents some
important examples that define a core set of types, F . The calculus instantiated with just the
F types serves as our core intermediate language, as it contains all the needed functionality.

The data and codata declarations for ü and æ correspond to the polarized sum and
function types from Section 2, with a slight change of notation: we write X : + instead of
X

+. The data declaration of ü defines its two constructors ÿ1 and ÿ2, and dually the co-data
declaration for æ defines its one observer call. The terms of the resulting sum type are
exactly as they were presented in Section 2. The function type uses a slightly more verbose
notation than the ⁄-calculus for the sake of regularity: instead of ⁄x.M we have ⁄{callx.M}
and instead of M N we have M.callN . That is, dual to a case matching on the pattern of a
data structure, a ⁄-abstraction matches on the co-pattern of a co-data observation like callx.
Besides changing notation, the meaning is the same [7].

There are some points to notice about these two declarations. First, disciplines can be
mixed within a single declaration, which is used to define the polarized æ function space
that accepts a call-by-value (+) input and returns a call-by-name (≠) result, but other
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Simple (co-)data types
data (X:+) ü (Y :+) : +where

ÿ1 : (X:+ „ X ü Y )
ÿ2 : (Y :+ „ X ü Y )

data (X:+) ¢ (Y :+) : +where
( , ) : (X:+, Y :+ „ X ¢ Y )

data 0 : +where

data 1 : +where () : ( „ 1)

codata (X:≠) & (Y :≠) : ≠where
fi1 : ( | X & Y „ X:≠)
fi2 : ( | X & Y „ Y :≠)

codata€ : ≠where codata (X:+) æ (Y :≠) : ≠where
call : (X:+ | X æ Y „ Y :≠)

Quantifier (co-)data types

data ÷k(X:kæ+) : +where
pack : (X Y :+ „Y :k ÷kX)

codata ’k(X:kæ≠) : ≠where
spec : ( | ’kX „Y :k

X Y :≠)

Polarity shift (co-)data types

data ¿S(X:S) : +where
boxS : (X:S „ ¿SX)

data S«(X:+) : Swhere
valS : (X:+ „ S«X)

codata øS (X:S) : ≠where
evalS : ( | øS X „ X:S)

codata S»(X:≠) : Swhere
enterS : ( | S»X „ X:≠)

Figure 1 The F functional core set of (co-)data declarations.

combinations are also possible. Second, instead of the function type arrow notation to assign
a type to the constructors and observers, we use the turnstyle („) of a typing judgement.
This avoids the issue that a function type arrow already dictates the disciplines for the
argument and result, limiting our freedom of choice.

The rest of the core F types exercise all the functionality of our declaration mechanism.
The nullary version of sums (0) has no constructors and an empty caseM of{}. We have
binary and nullary tuples (¢, 1), which have terms of the form (M,N) and () and are used by
caseM of{(x, y).M} and caseM of{().M}, respectively. We also have binary and nullary
products (&, €), with two and zero observers, respectively. The terms of binary products
have the form ⁄{fi1.M |fi2.N} and can be observed as M.fii, and the nullary product has the
term ⁄{} which cannot be observed in any way. The shifts are also generalized to operate
generically over the choice of call-by-name (≠), call-by-value (+), and call-by-need (ı), which
we denote by S. The pair of shifts between + (¿S , S«) and ≠ (øS , S») for each S has the
same form as in Section 3, where we omit the annotation S when it is clear from the context.

The last piece of functionality is the ability to introduce locally quantified types in a
constructor or observer. These quantified type variables are listed as a superscript to the
turnstyle, and allow user-defined types to perform type abstraction and polymorphism.
Two important examples of type abstraction shown in Figure 1 are the universal (’k) and
existential (÷k) quantifiers, which apply to a type function ⁄X:k.A. We will use the shorthand
’X:k.A for ’k(⁄X:k.A) and ÷X:k.A for ÷k(⁄X:k.A). The treatment of quantified types is
analogous to System FÊ, where types appear in terms as parameters. For example, the
term ⁄{specY :k.M} : ’Y :k.A abstracts over the type variable Y in M , and a polymorphic
M : ’Y :k.A can be observed via specialization as M.specB : A[B/Y ]. Dually, the term
packB M : ÷Y :k.A hides the type B in the term M : A[B/Y ], and an existential M : ÷Y :k.A
can be unpacked by pattern matching as caseM of{pack (Y :k) (x:A).N}.

4.2 Syntax

The syntax of our extensible and multi-discipline ⁄-calculus is given in Figure 2. We refer
to each of the three kinds of types (+, ≠ and ı) as a discipline which is denoted by the
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A,B,C ::= X | F | ⁄X.A | A B X ::= X:k k, l ::= S | k æ l R,S, T ::= + | ≠ | ı

decl ::= data F(X:k).. : SwhereK : (A:T .. „X..
FX..)..

| codataG(X:k).. : SwhereO : (A:T .. | GX.. „X..
B:R)..

p ::= KX..y.. q ::= OX..y.. x,y, z ::= x:A
M,N ::= x | letx = M inN | M.OB..N.. | KB..M.. | ⁄{qi.Mi i..} | caseM of{pi.Mi i..}

Figure 2 Syntax of a total, pure functional calculus with (co-)data.

meta-variables R, S, and T . A data declaration has the general form

data F(X1:k1)..(Xn:kn) : SwhereK1 : (A11 : T11..A1n : T1n „ FX1..Xn)
..

Km : (Am1 : Tm1..Amn : Tmn „ FX1..Xn)

which declares a new type constructor F and value constructors K1 . . .Km. The dual co-data
declaration combines the concepts of functions and products, having the general form

codataG(X1:k1)..(Xn:kn) : SwhereO1 : (A11 : T11..A1n : T1n | GX1..Xn „ B1 : R1)
..

Om : (Am1 : Tm1..Amn : Tmn | GX1..Xn „ Bm : Rm)

Since an observer is dual to a constructor, the signature is flipped around: the signature for
O1 above can be read as “given parameters of types A11 to A1n, O1 can observe a value of
type GX1..Xn to obtain a result of type B1.”2

Notice that we can also declare types corresponding to purely call-by-value, -name, and
-need versions of sums and functions by instantiating S with +, ≠, and ı, respectively:

data (X:S) üS (Y :S) : Swhere
ÿ
S
1 : (X:S „ X ü Y )
ÿ
S
2 : (Y :S „ X ü Y )

codata (X:S) Sæ (Y :S) : Swhere
call

S: (X:S | X Sæ Y „ Y :S)

So the extensible language subsumes all the languages shown in Sections 2 and 3.

4.3 Type System

The kind and type system is given in Figure 3. In the style of system FÊ, the kind system
is just the simply-typed ⁄-calculus at the level of types – so type variables, functions,
and applications – where each connective is a constant of the kind declared in the global
environment G. It also includes the judgement (� „�

F ) ctx for checking that a typing context
is well-formed, meaning that each variable in � is assigned a well-kinded type with respect
to the type variables in � and global environment G.

The typing judgement for terms is � „�
G M : A : S, where G is a list of declarations,

� = X : k.. assigns kinds to type variables, and � = x : A : S.. assigns explicitly-kinded
types to value variables. The interesting feature of the type system is the use of the two-level

2 Both of these notions of data and co-data correspond to finitary types, since declarations allow for a
finite number of constructors or observers for all data and co-data types, respectively. We could just
as well generalize declarations with an infinite number of constructors or observers to also capture
infinitary types at the usual cost of having infinite branching in cases and ⁄s. Since this generalization
is entirely mechanical and does not enhance the main argument, we leave it out of the presentation.
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�, X : k „G A : l
� „G ⁄X:k.A : k æ l

� „G A : k æ l � „G B : k
� „G A B : l �, X : k „G X : k

(� „G A : T )..
(x : A : T .. „�

G ) ctx
(� „�

G ) ctx � „G A : S
�, x : A : S „�

G x : A : S
� „�

G M : A : S �, x : A : S „�
G N : C : R

� „�
G letx:A = M inN : C : R

� „�
G M : A : S A =—÷ B

� „�
G M : B : S

Given data F(X:k).. : SwhereKi : (Aij : Tij
j.. „Yij :lij j..

F(X..)) i.. œ G, we have the rules:

� „G F : k æ ..S
(� „�

G ) ctx � „G FC.. : S (� „G Bj : lij)j.. (� „�
G Mj : Aij [C/X.., Bj/Yij

j..] : Tij)j..

� „�
G Ki Bj

j.. Mj
j.. : FC.. : S

FIi

� „G C : R � „�
G M : FB.. : S (�, xij : Aij [B/X..] : Tij

j.. „�,Yij :lij j..
G Ni : C : R) i..

� „�
G caseM of{(Ki Yij :lij j.. xij :Aij

j..).Ni i..} : C : R
FE

Given codataG(X:k).. : SwhereOi : (Aij : Tij
j.. | G(X..) „Yij :lij j..

Bi : Ri) i.. œ G, we have the rules:

� „G G : k æ ..S
� „�

G M : GC
Õ
.. : S (� „G Cj : lij)j.. (� „�

G Nj : Aij [CÕ
/X.., Cj/Yij

j..] : Tij)j..

� „�
G M.Oi Cj

j.. Nj
j.. : Bi : Ri

GEi

(� „�
G ) ctx � „G GC.. : S (�, xij : Aij [C/X..] : Tij

j.. „�,Yij :lij j..
G Ni : Bi : Ri) i..

� „�
G ⁄

)
(Oi Yij :lij j.. xij :Aij

j..).Ni i..

*
: GC.. : S

GI

Figure 3 Type system for the pure functional calculus.

judgement M : A : S, which has the intended interpretation that “M is of type A and A is of
kind S.” The purpose of this compound statement is to ensure that the introduction rules do
not create ill-kinded types by mistake. This maintains the invariant that if � „�

G M : A : S
is derivable then so is (� „�

G ) ctx and � „G A : S.
For example, in the F environment from Figure 1, a type like A ¢ B requires that both

A and B are of kind +, so the ¢ introduction rule for closed pairs of closed types is:
„F M : A : + „F N : A : +

„F (M,N) : A ¢ B : + ¢I

The constraint that A : + and B : + in the premises to ¢I ensures that A ¢ B is indeed a
type of +. This idea is also extended to variables introduced by pattern matching at a specific
type by placing a two-level constraint on the variables. For example, the æ introduction
rule for closed function abstractions is:

x : A : + „F M : B : ≠
„F ⁄{call(x:A).M} : A æ B : ≠ æI

Notice how when the variable x is added to the environment, it has the type assignment
x : A : + because the declared argument type of æ must be some call-by-value type. If the
premise of æI holds, then A : + and B : ≠, so A æ B is a well-formed type of ≠.

Finally, we also need to check that a global environment G is well-formed, written „ G,
which amounts to checking that each declaration is in turn like so:

(X : k.., Y : l.. „G A : T )..
G „ data F(X:k).. : SwhereK : (A : T .. „Y :l..

FX..)..
(X : k.., Y : l.. „G A : T ).. (X : k.., Y : l.. „G B : R)..

G „ codataG(X:k).. : SwhereO : (A : T .. | GX.. „Y :l..
B : R)..
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V ::= VS :A :S V+ ::= x | KB..V .. | ⁄{qi.Mi | i..} V≠ ::= M Vı ::= V+

F ::= ⇤.OB..V .. | case⇤of{pi.Mi i..} | letx:A:+ = ⇤ inM | letx:A:ı = ⇤ inH[E[x]]
E ::= ⇤ | F [E] U ::= letx:A:ı = M in⇤ H ::= ⇤ | U [H]
T ::= letx = M in⇤ | caseM of{pi.⇤ | i..}

(—let) letx = V inM ≥ M [V/x]
(—O) ⁄{..|(OY ..x..).M |..}.OB.. N.. ≥ letx = N.. inM [B/Y ..]
(—K) caseKB..N..of{..|(KY ..x..).M |..} ≥ letx = N.. inM [B/Y ..]
(÷let) letx:A = M inx ≥ M

(÷G) ⁄{qi.(x.qi) | i..} ≥ x

(÷F) caseM of{pi.pi | i..} ≥ M

(ŸF ) F [T [Mi i..]] ≥ T [F [Mi] i..]
(‰S) let y:B:S = letx:A:S = M1 inM2 inN ≥ letx:A:S = M1 in let y:B:S = M2 inN

� „�
G M : A : S M ≥ M

Õ � „�
G M

Õ : A : S
� „�

G M = M
Õ : A : S

plus compatibility, reflexivity, symmetry, transitivity

Figure 4 Equational theory for the pure functional calculus.

And we say that GÕ extends G if it contains all declarations in G.

4.4 Equational Theory

The equational theory, given in Figure 4, equates two terms of the same type that behave the
same in any well-typed context.The axioms of equality are given by the relation ≥, and the
typed equality judgement is � „�

G M = N : A : S. Because of the multi-discipline nature of
terms, the main challenge is deciding when terms are substitutable, which controls when the
—let axiom can fire. For example, letx = M inN should immediately substitute M without
further evaluation if it is a call-by-name binding, but should evaluate M to a value first
before substitution if it is call-by-value. And we need the ability to reason about program
fragments (i.e., open terms of any type) wherein a variable x acts like a value in call-by-value
only if it stands for a value, i.e., we can only substitute values and not arbitrary terms for a
call-by-value variable. Thus, we link up the static and dynamic semantics of disciplines: each
base kind S is associated with a di�erent set of substitutable terms VS called values. The set
of values for + is the most strict (including only variables, ⁄-abstractions, and constructions
p[fl] built by plugging in values for the holes in a pattern), ≠ is the most relaxed (admitting
every term as substitutable), and ı shares the same notion of value as +. A true value, then,
is a term VS belonging to a type of kind S, i.e., VS : A : S. This way, the calling convention
is aligned in both the static realm of types are and dynamic realm of evaluation.

The generic —let axiom relies on the fact that the left-hand side of the axiom is well-typed
and every type belongs to (at most) one kind; given letx:A = V inM , then it must be that
A : S and V is of the form VS : A : S (both in the current environment). So if x : A&B : ≠,
then every well-typed binding is subject to substitution via —let , but if x : A¢B : + then only
a value V+ in the sense of call-by-value can be substituted. The corresponding extensionality
axiom ÷let eliminates a trivial let binding.

The —
K
and —

O
axioms match against a constructor K or observer O, respectively, by
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21:12 Beyond Polarity

selecting the matching response within a case or ⁄-abstraction and binding the parameters
via a let. Special cases of these axioms for a sum injection and function call are:

case ÿiM of{ÿ1x1.N1 | ÿ2x2.N2} ≥—ÿi
letxi = M inNi

⁄{callx.N}.callM ≥—
call
letx = M inN

The corresponding extensionality axioms ÷
G
and ÷

F
apply to each co-data type G and data

type F to eliminate a trivial ⁄ and case, respectively, and again rely on the fact that the
left-hand side of the axiom is well-typed to be sensible. The special cases of these axioms for
the sum (ü) and function (æ) connectives of F are:

caseM of{ÿ1x:A.ÿ1x | ÿ2y:B.ÿ2y} ≥÷ü
M ⁄{call y:A.(x.call y)} ≥÷æ x

The ŸF axiom implements commutative conversions which permute a frame F of an
evaluation context (E) with a tail context T , which brings together the frame with the
return result of a block-style expression like a let or case. Frames represent the building
blocks of contexts that demand a result from their hole ⇤. The cases for frames are an
observation parameterized by values (⇤.OB..V ..), case analysis (case⇤of{. . . }), a call-by-
value binding (letx:A:+ = ⇤ inM), or a call-by-need binding which is needed in its body
(letx:A:ı = ⇤ inH[E[x]]). As per call-by-need evaluation, variable x is needed when it
appears in the eye of an evaluation context E, in the context of a heap H of other call-by-need
bindings for di�erent variables. Tail contexts point out where results are returned from
block-style expressions, so the body of any let (letx = M in⇤) or the branches of any case
(caseM of{p.⇤..}). Since a case can have zero or more branches, a tail context can have
zero or more holes.

Finally, the ‰
S axiom re-associates nested let bindings, so long as the discipline of their

bindings match. The restriction to matching disciplines is because not all combinations are
actually associative [14]; namely the following two ways of nesting call-by-value and -name
lets are not necessarily the same when M1 causes an e�ect:

(let y:B:≠ = (letx:A:+ = M1 inM2) inN) ”= (letx:A:+ = M1 in let y:B:≠ = M2 inN)

In the above, the right-hand side evaluates M1 first, but the left-hand side first substitutes
letx:A:+ = M1 inM2 for y, potentially erasing or duplicating the e�ect of M1. For example,
when M1 is the infinite loop � and N is a constant result z which does not depend on y,
then the right-hand side loops forever, but the left-hand side just returns z. But when the
disciplines match, re-association is sound. In particular, notice that the ‰

≠ instance of the
axiom is derivable from —let, and the ‰

+ instance of the axiom is derivable from ŸF . The
only truly novel instance of re-association is for call-by-need, which generalizes the special
case of ŸF when the outer variable y happens to be needed.

Some of the axioms of this theory may appear to be weak, but nonetheless they let us
derive some useful equalities. For example, the ⁄-calculus’ full ÷ law for functions

� „�
F M : A æ B : ≠ x /œ �

� „�
F ⁄{callx:A.(M.callx)} = M : A æ B : ≠

is derivable from ÷æ and —let . Furthermore, the sum extensionality law from Section 2, and
nullary version for the void type 0

�, x : A1 ü A2 : + „�
F M = casexof{ÿi(yi:Ai).M [ÿiyi/x] i..} : C : R

�, x : 0 : + „�
F M = casexof{} : C : R
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are derived from the ÷ü, ÷0, ŸF , and —let axioms. So typed equality of this strongly-
normalizing calculus captures “strong sums” (à la [15]). Additionally, the laws of monadic
binding [13] (bind-and-return and bind reassociation) and the F functor of call-by-push-value
[10] are instances of the generic —÷Ÿ laws for the shift data type S«A:

� „�
F case boxS V of{boxS x.M} =—

S« —let
M [V/x] : C : R

� „�
F caseM of{boxS(x:A).boxS x} =÷p

M : S«A : S

� „�
F case (caseM of{boxS x.N})of{boxT y.N Õ}

=ŸF
caseM of{boxS x.caseN of{boxT y.N Õ}}

: C : R

Note that in the third equality, commuting conversions can reassociate S«A and T«B
bindings for any combination of S and T , including ≠ and ı, because a case is always strict.

Note that, as usual, the equational theory collapses under certain environments and types
due to the nullary versions of some connectives: we saw above that with a free variable
x : 0 : + all terms are equal, and so too are any two terms of type € via ÷€ (the nullary form
of product in F). Even still, there are many important cases where the equational theory is
coherent. One particular sanity check is that, in the absence of free variables, the two sum
injections ÿ1() and ÿ2() are not equal, as inherited from contextual equivalence.

I Theorem 1 (Closed coherence). For any global environment „ G extending F , the equality
„G ÿ1() = ÿ2() : 1 ü 1 : + is not derivable.

4.5 Adding e�ects

So far, we have considered only a pure functional calculus. However, one of the features
of polarity is its robustness in the face of computational e�ects, so let’s add some. Two
particular e�ects we can add are general recursion, in the form of fixed points, and control in
the form of µ-abstractions from Parigot’s ⁄µ-calculus [16]. To do so, we extend the calculus
with the following syntax:

M,N ::= . . . | ‹x.M | µ–.J J ::= ÈM ||–Í –,—,“ ::= –:A

Fixed-point terms ‹x:A.M bind x to the result of M inside M itself. Because fixed points
must be unrolled before evaluating their underlying term, their type is restricted to A : ≠.
Control extends the calculus with co-variables –,—, . . . that bind to evaluation contexts
instead of values, letting programs abstract over and manipulate their control flow. The
evaluation context bound to a co-variable – of any type A can be invoked (any number of
times) with a term M : A via a jump ÈM ||–Í that never returns a result, and the co-variable
– of type A can be bound with a µ-abstraction µ–:A.J .

To go along with the new syntax, we have some additional type checking rules:

�, x : A : ≠ „�
G M : A : ≠ | �

� „�
G ‹x:A.M : A : ≠ | �

J : (� „�
G – : A : S,�)

� „�
G µ–:A.J : A : S | �

� „�
G M : A : S | – : A : S,�

ÈM ||–Í : (� „�
G – : A : S,�)

The judgements in other typing rules from Figure 3 are all generalized to � „�
G M : A : S | �.

There is also a typing judgement for jumps of the form J : (� „�
F �), where �, �, and

� play the same roles; the only di�erence is that J is not given a type for its result.
Unlike terms, jumps never return. As in the ⁄µ-calculus, the environment � is placed
on the right because co-variables represent alternative return paths. For example, a term

CSL 2018



21:14 Beyond Polarity

x : X : ≠, y : Y : + „X:≠,Y :+
F M : Y : ≠ | — : Y : + could return an X via the main path, as

in M = x, or a Y via — by aborting the main path, as in M = µ–:X.Èy||—Í.
And finally, the equational theory is also extended with the following equality axioms:

(‹) ‹x.M ≥ M [‹x.M/x]
(—–

µ ) Èµ–.J ||—Í ≥ J [—/–] (—F
µ ) F [µ–.J ] : B ≥ µ—:B.J [ÈF ||—Í/È⇤||–Í]

(÷µ) µ–:A.ÈM ||–Í ≥ M (Ÿµ) T [µ–.ÈMi||—Í i..] ≥ µ–.ÈT [Mi i..]||—Í

The ‹ axiom unrolls a fixed point by one step. The two —µ axioms are standard generalizations
of the ⁄µ-calculus: —

–
µ substitutes one co-variable for another, and —

F
µ captures a single

frame of a µ-abstraction’s evaluation context via a structural substitution that replaces one
context with another. The Ÿµ is the commuting conversion that permutes a µ-abstraction
with a tail context T .

5 Encoding user-defined (co-)data types into F

Equipped with both the extensible source language and the fixed F target language, we
are now able to give an encoding of user-defined (co-)data types in terms of just the core
F connectives from Figure 1. Intuitively, each data type is converted to an existential ü-
sum-of-¢-products and each co-data type is converted to a universal &-product-of-functions,
both annotated by the necessary shifts in and out of + and ≠, respectively. The encoding is
parameterized by a global environment G so that we know the overall shape of each declared
connective. Given that G contains the following data declaration of F, the encoding of F is:

Given data F(X:k).. : SwhereKi : (Aij : Tij j.. „Yij :lij j..
F(X..)) i.. œ G

JFKFG , ⁄X:k...S«((÷Yij :lij . j..((¿TijAij) ¢ j..1)) ü i..0)

Dually, given that G contains the following co-data declaration of G, the encoding of G is:

Given codataG(X:k).. : SwhereOi : (Aij : Tij j.. | G(X..) „Yij :lij j..
Bi : Ri) i.. œ G

JGKFG , ⁄X:k...S»((’Yij :lij . j..((¿TijAij) æ j..(øRi Bi))) & i..€)

However, the previous encodings for call-by-name, -value, and -need functions and sums
from Sections 2 and 3 are not exactly the same when we take the corresponding declarations
of functions and sums from Section 4; the call-by-name and -value encodings are missing
some of the shifts used by the generic encoding, and they all elide the terminators (0, 1, and
€). Does the di�erence matter? No, because the encoded types are still isomorphic.

I Definition 2 (Type Isomorphism). An isomorphism between two open types of kind k,
written � ✏G A ¥ B : k, is defined by induction on k:

� ✏G A ¥ B : k æ l when �, X : k ✏G A X ¥ B X : l, and
� ✏G A ¥ B : S when, for any x and y, there are terms x : A : S „�

G N : B : S
and y : B : S „�

G M : A : S such that x:A:S „�
G (let y:B = N inM = x) : A : S and

y:B:S „�
G (letx:A = M inN = y) : B : S.

Notice that this is an open form of isomorphism: in the base case, an isomorphism between
types with free variables is witnessed uniformly by a single pair of terms. This uniformity in
the face of polymorphism is used to make type isomorphism compatible with the ’ and ÷
quantifiers. With this notion of type isomorphism, we can formally state how some of the
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specific shift connectives are redundant. In particular, within the positive (+) and negative
(≠) subset, there are only two shifts of interest since the two di�erent shifts between ≠ and
+ are isomorphic, and the identity shifts on + and ≠ are isomorphic to an identity on types.

I Theorem 3. The following isomorphisms hold (under ✏F) for all „ A : + and „ B : ≠

ø+A ¥ ≠«A ¿≠B ¥ +»B ¿+A ¥ A ¥ +«A ø≠ B ¥ B ¥ ≠»B

But clearly the shifts involving ı are not isomorphic, since none of them even share the same
kind. Recognizing that sometimes the generic encoding uses unnecessary identity shifts, and
given the algebraic properties of polarized types [6], the hand-crafted encodings JAK+, JAK≠,
and JAKı are isomorphic to JAKF .

5.1 Correctness of encoding

Type isomorphisms give us a helpful assurance that the encoding of user-defined (co-)data
types into F is actually a faithful one. In every extension of F with user-defined (co-)data
types, all types are isomorphic to their encoding.

I Theorem 4. For all „ G extending F and � „G A : k, � ✏G A ¥ JAKFG : k.

Note that this isomorphism is witnessed by terms in the totally pure calculus (without fixed
points or µ-abstractions); the encoding works in spite of recursion and control, not because of
it. Because of the type isomorphism, we can extract a two-way embedding between terms of
type A and terms of the encoded type JAKFG from the witnesses of the type isomorphism. By
the properties of isomorphisms, this embedding respects equalities between terms; specifically
it is a certain kind of adjunction called an equational correspondence [20].

I Theorem 5. For all isomorphic types � ✏G A ¥ B : S, the terms of type A (i.e., � „�
G M :

A : S | �) are in equational correspondence with terms of type B (i.e., � „�
G N : B : S | �).

This means is that, in the context of a larger program, a single sub-term can be encoded
into the core F connectives without the rest of the program being able to tell the di�erence.
This is useful in optimizing compilers for functional languages which change the interface of
particular functions to improve performance, without hampering further optimizations.

The possible application of this encoding in a compiler is as an intermediate language:
rather than encoding just one sub-term, exhaustively encoding the whole term translates
from a source language with user-defined (co-)data types into the core F connectives. The
essence of this translation is seen in the way patterns and co-patterns are transformed; given
the same generic (co-)data declarations listed in Figure 3, the encodings of (co-)patterns are:

JKi Y .. x..KFG , valS
!
ÿ
i
2 (ÿ1 (packY .. (boxT x, ..())))

"

JOi Y .. x..KFG , enterS .fi
i
2.fi1.specY ...callx...evalRi

where ÿ
i
2 denotes i applications of the ÿ2 constructor, and fi

i
2 denotes i projections of the fi2

observer. Using this encoding of (co-)patterns, we can encode (co-)pattern-matching as:

JcaseM of{pi.Ni i..}KFG , case JMKG of{JpiKG .JNiKG i..} J⁄{qi.Mi i..}KFG , ⁄
)
JqiKG .JMiKG i..

*

as well as data structures and co-data observations:

Jp[B/Y ..,M/x..]KFG , JpKFG [JBKFG /Y .., JMKFG /x..]
JM.(q[B/Y .., N/x..])KFG , JMKFG .(JqK

F
G [JBKFG /Y .., JNKFG /x..])
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Note that in the above translation, arbitrary terms are substituted instead of just values as
usual. This encoding of terms with user-defined (co-)data types G into the core F types is
sound with respect to the equational theory (where � and � are encoded pointwise).

I Theorem 6. If the global environment „ G extends F and � „�
G M = N : A | � then

J�KFG „�
F JMKFG = JNKFG : JAKFG | J�KFG .

Since the extensible, multi-discipline language is general enough to capture call-by-value,
-name, and -need functional languages – or any combination thereof – this encoding establishes
a uniform translation from both ML-like and Haskell-like languages into a common core
intermediate language: the polarized F .

6 Conclusion

We have showed here how the idea of polarity can be extended with other calling conventions
like call-by-need, which opens up its applicability to the implementation of practical functional
languages. In particular, we would like to extend GHC’s already multi-discipline intermediate
language with the core types in F . Since it already has unboxed types [18] corresponding to
positive types, what remains are the fully extensional negative types. Crucially, we believe
that negative function types would lift the idea of call arity – the number of arguments a
function takes before “work” is done – from the level of terms to the level of types. Call
arity is used to optimize curried function calls, since passing multiple arguments at once
is more e�cient that computing intermediate closures as each argument is passed one at a
time. No work is done in a negative type until receiving an eval request or unpacking a val,
so polarized types compositionally specify multi-argument calling conventions.

For example, a binary function on integers would have the type Int æ Int æ ø Int, which
only computes when both arguments are given, versus the type Int æ øı ı»(Int æ ø Int) which
specifies work is done after the first argument, breaking the call into two steps since a closure
must be evaluated and followed. This generalizes the existing treatment of function closures
in call-by-push-value to call-by-need closures. The advantage of lifting this information into
types is so that call arity can be taken advantage of in higher order functions. For example,
the zipWith function takes a binary function to combine two lists, pointwise, and has the
type ’X:ı.’Y :ı.’Z:ı.(X æ Y æ Z) æ [X] æ [Y ] æ [Z] The body of zipWith does not
know the call arity of the function it’s given, but in the polarized type built with negative
functions: ’X:ı.’Y :ı.’Z:ı.»(¿X æ ¿Y æ øZ) æ ¿[X] æ ¿[Y ] æ ø[Z] the interface in the
type spells out that the higher-order function uses the faster two-argument calling convention.
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A Related Work

There have been several polarized languages [10, 23, 14], each with subtly di�erent and
incompatible restrictions on which programs are allowed to be written. The most common
such restriction corresponds to focusing in logic [1]; focusing means that the parameters to
constructors and observers must be values. Rather than impose a static focusing restriction
on the syntax of programs, we instead imply a dynamic focusing behavior – evaluate the
parameters of constructors and observers before (co-)pattern matching – during execution.
Both static and dynamic notions of focusing are two sides of the same coin [8].

Other restrictions vary between di�erent frameworks. First, where computation can
happen? In Levy’s call-by-push-value (CBPV) [10], value types (corresponding to positive
types) only describe values and computation can only occur at computation types (corre-
sponding to negative types), but in Munch-Maccagnoni’s system L [14] computation can
occur at any type. Zeilberger’s calculus of unity (CU) [22], which is based on the classical
sequent calculus, isolates computation in a separate syntactic category of statements which
do not have a return type. But both CU and CBPV only deal with substitutable entities,
to the exclusion of named computations which may not be duplicated or deleted. Second,
what types can variables have? In CBPV variables always have positive types, but in CU
variables have negative types or positive atomic types (and dually co-variables have positive
types or negative atomic types). These restrictions explain why the two frameworks chose
their favored shifts: « introduces a positive variable and ¿ introduces a negative one, and in
the setting of the sequent calculus » introduces a negative co-variable and ø introduces a
positive one. They also explain CU’s pattern matching: if there cannot be positive variables,
then pattern matching must continue until it reaches something non-decomposable like a
⁄-abstraction. In contrast, system L has no restrictions on the types of (co-)variables.

In both of these ways, the language presented here is spiritually closest to system L.
One reason is that call-by-need forces more generality into the system: if there is neither
computation nor variables of call-by-need types, then there is no point of sharing work.
However, the call-by-value and -name sub-language can still be reduced down to the more
restrictive style of CBPV and CU. We showed here that the two styles of positive and
negative shifts are isomorphic, so the only di�erence is reduction to the appropriate normal
form. Normalizing the dynamic focusing reductions – originally named Î [21] – along with
commuting conversions (Ÿ) and let substitution (—let) is a transformation into a focused term
of negative type (where a shift can be applied for positive terms). Negative variables x:A:≠
are eliminated by substituting y.enter for x where y:»A:+, and the (co-)variables forbidden
in CU can be eliminated by type-directed ÷-expansion into nested (co-)patterns.

The data and co-data mechanism used here extends the “jumbo” connectives of Levy’s
jumbo ⁄-calculus [11] to include a treatment of call-by-need as well the move from mono-
discipline to multi-discipline. Our notion of (co-)data is also similar to Zeilberger’s [23]
definition of types via (co-)patterns, which is fully dual, extended with sharing.

http://dx.doi.org/10.1016/j.apal.2008.01.001
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Simple (co-)data types
data (X:+) ü (Y :+) : +where

ÿ1 : (X:+ „ X ü Y )
ÿ2 : (Y :+ „ X ü Y )

data 0 : +where

data (X:+) ¢ (Y :+) : +where
( , ) : (X:+, Y :+ „ X ¢ Y )

data 1 : +where
() : ( „ 1)

codata (X:≠) & (Y :≠) : ≠where
fi1 : ( | X & Y „ X:≠)
fi2 : ( | X & Y „ Y :≠)

codata€ : ≠where

codata (X:≠)` (Y :≠) : ≠where
[ , ] : ( | X ` Y „ X : ≠, Y : ≠)

codata‹ : ≠where
[] : ( | ‹ „ )

data°(X:≠) : +where
cont : ( „ °X | X : ≠)

codata¬(X:+) : ≠where
throw : (X : + | ¬X „ )

Quantifier (co-)data types
data ÷k(X:kæ+) : +where

pack : (X Y :+ „Y :k ÷kX)
codata ’k(X:kæ≠) : ≠where

spec : ( | ’kX „Y :k
X Y :≠)

Polarity shift (co-)data types
data ¿S(X:S) : +where

boxS : (X:S „ ¿SX)
data S«(X:+) : Swhere

valS : (X:+ „ S«X)

codata øS (X:S) : ≠where
evalS : ( | øS X „ X:S)

codata S»(X:≠) : Swhere
enterS : ( | S»X „ X:≠)

Figure 5 The D dual core set of (co-)data declarations.

B A dual multi-discipline sequent calculus

So far, we have seen how the extensible functional calculus enables multi-discipline pro-
gramming and can represent many user-defined types with mixed disciplines via encodings.
The advantage of this calculus is that it’s close to an ordinary core calculus for functional
programs, but the disadvantage is its incomplete symmetries. Most F types have a dual
counterpart (& and ü, ’ and ÷, etc., ) but types like ¢ and æ do not. The disciplines + and
≠ represent opposite calling conventions, but the opposite of call-by-need (ı) is missing. To
complete the picture, we now consider a fully dual calculus, which is based on the symmetric
setting of the classical sequent calculus.

B.1 The dual core intermediate language: D

In contrast with functional (co-)data declarations, dual calculus allows for symmetric data
and co-data type declarations that are properly dual to one another: they can have multiple
inputs to the left (of „) and multiple outputs to the right (of „). This dual notion of (co-)data
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A,B,C ::= X | F | ⁄X.A | A B X,Y ,Z ::= X:k k, l ::= S | k æ l R,S, T ::= + | ≠ | ıı | ı

decl ::= data FX:k.. : SwhereK : (A : T .. „Y ..
FX.. | B : R..)

| codataGX:k.. : SwhereO : (A : T .. | GX.. „Y ..
B : R..)

c ::= Èv||eÍ
v ::= x | µ–.c | ‹x.v | ⁄{qi.ci | i..} | KA..e..v.. p ::= KY ..–..x.. x,y, z ::= x:A
e ::= – | µ̃x.c | ‹̃–.e | ⁄̃{pi.ci | i..} | OA..v..e.. q ::= OY ..x..–.. –,—, ” ::= –:A

Figure 6 Syntax of the dual calculus.

is strictly more expressive, and lets us declare the new connectives like so:

codata (X:≠)` (Y :≠) : ≠where
[ , ] : ( | X ` Y „ X : ≠, Y : ≠)

codata‹ : ≠where
[] : ( | ‹ „ )

data°(X:≠) : +where
cont : ( „ °X | X : ≠)

codata¬(X:+) : ≠where
throw : (X : + | ¬X „ )

Note how these types rely on the newfound flexibility of having zero outputs (for ‹ and ¬)
and more than one output (for ` and °). These four types generalize F , and decompose
function types into the more primitive negative disjunction and negation types, analogous to
the encoding of functions in classical logic: A æ B ¥ (¬A)`B. The full set of dual core D
connectives is given in Figure 5.

B.2 Syntax

The syntax of the dual calculus is given in Figure 6 which is split in two: dual to terms (v)
which give an answer are co-terms (e) which ask a question. Each of the features from the
functional language are divided into one of two camps. Variables x, µ-abstractions µ–.c, fixed
points ‹x.v, objects of co-data types ⁄{. . .}, and data structures like ÿiv are all terms. Dually,
co-variables –, µ̃-abstractions µ̃x.c (analogous to let and dual to µ), co-fixed points ‹̃–.e,
case analysis of data structures ⁄̃{. . .} (dual to co-data objects) and co-data observations
like fiie (dual to data structures) are all co-terms. A command c is analogous to a jump, and
puts together an answer (v) with a question (e). The dual calculus can be seen as inverting
elimination forms to the other side of a jump ÈM ||–Í, expanding the role of –. By giving a
body to observations themselves, co-patterns q introduce names for all sub-components of
observations dual to patterns p: for example, the co-pattern of a projection fii[–:Ai] : A1&A2
is perfectly symmetric to the pattern of an injection ÿi(x:Ai) : A1 ü A2.

In types, there is a dual set of disciplines and connectives. The base kind ıı signifies
the dual to call-by-need (ı); it shares delayed questions the same way call-by-need shares
delayed answers. The negative co-data type constructors ` and ‹ of D are dual to the
positive connectives ¢ and 1, respectively: they introduce a co-pair [e, eÕ] : A`B, which is a
pair of co-terms e : A and e

Õ : B accepting inputs of type A and B, and the co-unit [] : ‹.
Objects of co-data types respond to observations by inverting their entire structure and then
running a command. For & this looks like ⁄{fi1[–:A].c1 | fi2[—:B].c2} : A&B and for ` like
⁄{[x:A,—:B].c} : A`B. In lieu of a non-symmetric function type, we instead have two dual
negations: the data type constructor ° : ≠ æ + and the co-data type constructor ¬ : + æ ≠
which introduce the (co-)patterns cont(–:A) : °A and throw[x:A] : ¬A. These particular
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�, X : k „G A : l
� „G ⁄X:k.A : k æ l

� „G A : k æ l � „G B : k
� „G A B : l �, X:k „G X : k

(� „G A : T ).. (� „G B :R)..
(x :A.. „�

G — :B..) ctx

� „�
D v :A | � � „ A :S � | e :A „�

D �
Èv||eÍ : (� „�

D �)
Cut

�, x :A „�
D x :A | �

VR
c : (� „�

D – :A,�)
� „�

D µ–:A.c :A | �
AR

‘
c : (�, x :A „�

D �)
� | µ̃x:A.c :A „�

D �
AL

� „�
D – :A | – :A,�

VL

�, x :A „�
D v :A | � � „D A :≠

� „�
D ‹x:A.v :A | �

RR
� | e :A „�

D – :A,� � „D A : +
� | ‹̃–:A.e :A „�

D �
RL

� | e :A „�
D � � „D A=—÷B :S
� | e :B „�

D �
TCR

� „�
D v :A | � � „D A=—÷B :S

� „�
D v :B | �

TCL

Given data F(X:k).. :SwhereKi : (Aij : Tij
j.. „Yij :lij j..

F(X..) | Bij :Rij
j..) i.. œ G, we have the rules:

� „G F : k.. æ S
(� „G Cj : lij)j.. (� | ej :Bij [CÕ

/X.., Cj/Yij
j..] „�

G �)j.. (� „�
G vj :Aij [CÕ

/X.., Cj/Yij
j..] | �)j..

� „�
G Ki Cj

j.. ej
j.. vj

j.. :FC
Õ
.. | �

FRi

ci : (�, xij :Aij [C/X..]j.. „�,Yij : lij j..
G –ij :Bij [C/X..]j..,�) i..

� | ⁄̃

)
(Ki Yij :lij j.. xij :Aij

j.. xij :Aij
j..).ci i..

*
:FC.. „�

G �
FL

Given codataG(X:k).. :SwhereOi : (Aij : Tij
j.. | G(X..) „Yij :lij j..

Bij :Rij
j..) i.. œ G, we have the rules:

� „G G : k.. æ S
(� „G Cj : lij)j.. (� „�

G vj :Aij [CÕ
/X.., Cj/Yij

j..] | �)j.. (� | ej :Bij [CÕ
/X.., Cj/Yij

j..] „�
G �)j..

� | Oi Cj
j.. vj

j.. ej
j.. :FC

Õ
.. „�

G �
GLi

ci : (�, xij :Aij [C/X..]j.. „�,Yij : lij j..
G –ij :Bij [C/X..]j..,�) i..

� „�
G ⁄

)
[Oi Yij :lij j.. xij :Aij

j.. –ij :Bij
j..].ci i..

*
:GC.. | �

GR

Figure 7 Type system for the dual calculus.

forms of negation are chosen because they are involutive up to isomorphism (as defined next
in Appendix C); their two compositions are identities on types: °(¬A) ¥ A and ¬(°B) ¥ B

for any A : + and B : ≠. Function types can be faithfully represented as A æ B ¥ (¬A)`B.

B.3 Type system

The type system of D is given in Figure 7. One change from the functional calculus’ type
system is the use of the single-level typing judgement v : A instead of the two-level M : A : S.
This is possible because of the sequent calculus’ sub-formula property – Cut is the only
inference rule that introduces arbitrary new types in the premises. By just checking that
the type of a Cut makes sense in the current environment, well-formedness can be separated
from typing: if the conclusion of a derivation is well-formed (i.e., (� „�

D �) ctx), then
every judgement in the derivation is too. There is also a typing judgement for co-terms;
� | e : A „�

D � means that e works with a term of type A in the environments �, �, �.

CSL 2018



21:22 Beyond Polarity

V+ ::= x | KB..E..V .. | ⁄{q.c..} Vıı ::= V+ | µ–.H[ÈVıı ||–Í] V≠ ::= v Vı ::= V+

E≠ ::= – | OB..V ..E.. | ⁄̃{p.c..} Eı ::= E≠ | µ̃x.H[Èx||EıÍ] E+ ::= e Eıı ::= E≠

H ::= ⇤ | Èv||µ̃x:A:ı.HÍ | Èµ–:A:ıı .H||eÍ

(—µ) Èµ–.c||EÍ ≥ c[E/–] (÷µ̃) µ̃x:A.Èx||eÍ ≥ e (‹) ‹x.v ≥ v[‹x.v/x]
(—µ̃) ÈV ||µ̃x.cÍ ≥ c[V/x] (÷µ) µ–:A.Èv||–Í ≥ v (‹̃) ‹̃–.e ≥ e[‹–.e/–]
(—O) È⁄{.. | [OY ..x..–..].c | ..} ||OB..v..e..Í ≥ Èv..||µ̃x...Èµ–...c[B/Y ..]||e..ÍÍ
(—K) ÈOB..e..v..||⁄̃{.. | (OY ..–..x..).c | ..}Í ≥ Èµ–...Èv..||µ̃x...c[B/Y ..]Í||e..Í
(÷G) ⁄{qi.Èx||qiÍ i..} ≥ x (‰ı) Èµ–:A:ı.Èv||µ̃y:B:ı.cÍ||eÍ ≥ Èv||µ̃y:B:ı.Èµ–:A:ı.c||eÍÍ

(÷F) ⁄̃{pi.Èpi||–Í i..} ≥ – (‰ıı ) Èv||µ̃y:B:ıı .Èµ–:A:ıı .c||eÍÍ ≥ Èµ–:A:ıı .Èv||µ̃y:B:ıı .cÍ||eÍ

ci : (� „�
D �) c1 ≥ c2

c1 = c2 : (� „�
D �)

� „�
D vi : A | � v1 ≥ v2

� „�
D v1 = v2 : A | �

� „�
D ei : A | � e1 ≥ e2

� | e1 = e2 : A „�
D �

plus compatibility, reflexivity, symmetry, transitivity

Figure 8 Equational theory for the dual calculus.

B.4 Equational theory

Lastly, we have the equational theory in Figure 8. The dualities of evaluation – between
variable and co-variable bindings, data and co-data, values (answers) and evaluation contexts
(questions) – are more readily apparent than F . In particular, the notion of substitution
discipline for S is now fully dual as in [7]: a subset of terms (values VS) and a subset
of co-terms (co-values ES) which are substitutable, giving the known dualities between
call-by-value (+) and -name (≠) [5] and ı and ıı [3]. The ‰ axioms reassociate variable and
co-variable bindings, and the important cases are for ı (corresponding to ‰

ı of lets) and ıı .
Also note the lack of commuting conversions Ÿ; these follow from the µ axiom.

C Encoding fully dual (co-)data types into D

Now let’s looks at the fully dual version of the functional encoding from Section 5. Thanks
to the generic notion of shifts, the encoding of dual (co-)data into the core D connectives is
similar to the functional encoding, except that in place of the function type A æ B we use
the classical representation (°A)`B. For the generic (co-)data declarations in Figure 7, we
have the following definition:

JFKDG,⁄X...S«((÷Y ij .
j..((°(øRij Bij)) ¢ j..((¿TijAij) ¢ j..1))) ü i..0)

JGKDG,⁄X...S»((’Y ij .
j..((¬(¿TijAij))` j..((øRij Bij)` j..‹))) & i..€)

The encoding of multi-output data types places a °-negates every additional output of
a constructor, and the encoding of multi-output co-data is now exactly dual to the data
encoding. The encodings of (co-)patterns, (co-)pattern-matching objects, and (co-)data
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structures follow the above type encoding like so:

JKi Y .. –.. x..KDG , valS
!
ÿ
i
2 (ÿ1 (packY .. (cont[evalR –], .. (boxT x, ..()))))

"

JOi Y .. x.. –..KDG , enterS
#
fi
i
2 [fi1 [specY .. [throw[boxT x], .. [evalR –, ..[]]]]]

$

J⁄{qi.ci i..}KDG , ⁄{JqiKDG .JciK
D
G

i..}

J⁄̃{pi.ci i..}KDG , ⁄̃{JpiKDG .JciK
D
G

i..}

Jp[C/Y .., e/–.., v/x..]KDG = JpKDG [JCKDG /Y .., JeKDG /–.., JvKDG /x..]
Jq[C/Y .., v/x..], e/–..KDG = JqKDG [JCKDG /Y .., JvKDG /x.., JeK

D
G /–..]

We also have an analogous notion of type isomorphism. The case for higher kinds is the
same, and base isomorphism � ✏G A ¥ B : S is witnessed by a pair of inverse commands
c : (x : A „�

G — : B) and c
Õ : (y : B „�

G – : A) such that both compositions are identities:

Èµ—:B.c||µ̃y:B.c
ÕÍ = Èx||–Í : (x : A „�

G – : A) Èµ–:A.cÕ||µ̃x:A.cÍ = Èy||—Í : (y : B „�
G — : B)

Using type isomorphisms in D, the analogous local and global encodings are sound for fully
dual data and co-data types utilizing any combination of +, ≠, ı, and ıı evaluation.

I Theorem 7. For all „ G extending D and � „G A : k, � ✏G A ¥ JAKDG : k.

I Theorem 8. For all „ G extending D, (co-)terms of type A are in equational correspondence
with (co-)terms of type JAKDG , respectively.

I Theorem 9. If „ G extends D and c = c
Õ : (� „�

G �) then JcKDG = JcÕKDG : (J�KDG „�
F J�KDG ).
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