
Uniform Strong Normalization for
Multi-Discipline Calculi

Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola

University of Oregon {pdownen,philipjf,ariola}@cs.uoregon.edu

Abstract. Modern programming languages have effects and mix multi-
ple calling conventions, and their core calculi should too. We characterize
calling conventions by their “substitution discipline” that says what
variables stand for, and design calculi for mixing disciplines in a single
program. Building on variations of the reducibility candidates method,
including biorthogonality and symmetric candidates which are both spe-
cialized for one discipline, we develop a single uniform framework for
strong normalization encompassing call-by-name, call-by-value, call-by-
need, call-by-push-value, non-deterministic disciplines, and any others
satisfying some simple criteria. We explicate commonalities of previous
methods and show they are special cases of the uniform framework and
they extend to multi-discipline programs.

1 Introduction

Picking a programming language means choosing not just a concrete syntax and
set of features, but also a calling convention. As Simon Peyton Jones [20] says:

These days, the strict/lazy decision isn’t a straight either/or choice. For
example, a lazy language has ways of stating “use call-by-value here,”
and even if you were to say “Oh, the language should be call by value,”
you would want ways to achieve laziness anyway. Any successor language
to Haskell will have support for both strict and lazy functions. So the
question then is: “How do you mix them together?”

This question is as important in language theory as it is in practice: different
programming languages merit different calculi. For example, just βη axioms
are enough for equality of call-by-name functions, but more axioms are needed
to complete the theory of call-by-value [25,10]. More drastically, call-by-need
requires some extra rules even for computing answers. If we then want to reflect
the reality of programming languages that mix calling conventions, we need a
theory that mixes them, too. Again, the question is: “How?”

Polarized logic [31,18] and call-by-push-value [15] partially answers the ques-
tion of how to mix calling conventions by dividing types into two groups: positive
and negative. The positive types, like sums, follow the call-by-value discipline
whereas the negative types, like functions, follow the call-by-name regime. Here,
by contrast, we do connect calling conventions with types, but allow each type
constructor to build a type of any convention; for example we can have both a

2

call-by-value or a call-by-need function type. This more closely reflects practice
where OCaml has call-by-value functions.

Even though each calculus for each convention is different, they can be all
be seen as variations on the same idea. As pioneered by Ronchi Della Rocca et
al. [24], calculi for different calling conventions can be summarized as instances
of a common calculus parameterized by a substitution discipline [4] specifying
what might be substituted for identifiers. Call-by-name and -value can then share
the same βη axioms, (λx.M)V = M{V/x} and λx.V x = V ; what changes is the
notion of value V . Call-by-name says that V can be any term, and call-by-value
is more restrictive. Each of the above mentioned three calling conventions can be
uniformly represented, as well as more exotic ones like the dual to call-by-need
[1] and the non-deterministic evaluation of the symmetric λ-calculus [2].

Abstracting away the differences across languages enables us to study prop-
erties of those languages in a uniform way. In this paper, we focus on strong
normalization. Currently, there are separate proofs of strong normalization for
calculi of different disciplines. Here, we show one common proof for all of them by
articulating the essential properties of the substitution discipline that guarantees
strong normalization. We build on a technique previously used for studying
a language of mixed induction and co-induction [5], which is based on both
biorthogonal [7,13,22] and symmetric candidate [2] models, and extend it to
accommodate multi-discipline languages. Furthermore, the more refined version
of the technique presented here lets us formally understand the relationship
between orthogonality and symmetric candidates: biorthogonality models are
subsumed as a special case of our uniform model.

The orthogonality-based family of methods require that we not only think
of how to create values of a type, but also how to use them. This inevitably
leads to the invention of abstract-machine-like constructs to represent a reified
environment or context of a program fragment [13,22]. Instead of going about
an ad hoc reification, we base our proof on a classical sequent calculus which is
already an abstract machine language that is well-suited to mixing disciplines.
We then apply the general result from the sequent calculus to get a strongly-
normalizing, multi-discipline λ- and λµ-calculus [19] which combines the three
disciplines used in practice: call-by-value, -name, and -need.

This work uses a sequent calculus with impredicative polymorphism based on
[5] and extended with multiple disciplines—which are given as a parameter to
the system and not fixed a priori—in the sense that different calling conventions
can be used in the same program (Section 4). Our contributions are:

– A uniform proof of strong normalization based on orthogonality and symmet-
ric candidates that parametrically accounts for multiple disciplines (Section 5).

– A more precise model than [5] which subsumes biorthogonality models for call-
by-name, -value, and -push-value as special instances, and the first proof of
strong normalization for multi-discipline call-by-need and its dual (Section 6).

The proofs for Sections 4 to 6 together with a strongly normalizing and poly-
morphic λµ-calculus that mixes call-by-value, -name, and -need are given in the
extended version of this paper which can be accessed at ?.

3

2 A Language Approach to Abstract Machines

One of the most basic ways of evaluating a λ-calculus term is by repeated β
reduction. For instance, if we have the term (λx.λy.x+ y) 1 2 we can compute a
value in three steps:

(λx.λy.x+ y) 1 2→ (λy.1 + y) 2→ 1 + 2→ 3

However, even in this simple example we can observe one frustration with the
β-reduction model from the perspective of implementation: reductions might not
always occur at the “top” of the term, but can be buried somewhere within it.
In the very first reduction step above, the redex (λx.λy.x + y) 1 subjected to
β reduction happens inside of the outermost application context � 2, where �
stands for the position of the sub-term within the context. As such, performing
evaluation by β reduction requires a search for the next redex within a term,
which must be specified as part of an implementation of the evaluator.

An abstract machine gives a lower-level description of evaluation by interweav-
ing search and reduction together. To keep track of its position within the term,
a machine does not evaluate terms directly but rather larger configurations. Here,
the configurations we use are called commands (denoted by the metavariable c)
which consist of a term (denoted by v) together with a syntactic representation
of its context called co-term (denoted by e). One abstract machine in this style
is the Krivine machine [12], which requires only two rules:

〈v v′||e〉 → 〈v||v′ · e〉 〈λx.v||v′ · e〉 → 〈v{v′/x}||e〉

The first rule pushes the argument of a function call onto the call-stack. In other
words, evaluating an application of the form v v′ in a surrounding context e
consists of pushing the argument v′ on top of e and then evaluating v in the larger
context. The second rule implements β reduction by popping the top argument
off of a call-stack and plugging it into the formal parameter of a λ-abstraction.
In the Krivine machine style, our previous example can be computed as follows,
where we assume the term is evaluated in a context named α:

〈(λx.λy.x+ y) 1 2||α〉 → 〈(λx.λy.x+ y) 1||2 · α〉
→ 〈λx.λy.x+ y||1 · 2 · α〉
→ 〈λy.1 + y||2 · α〉 → 〈1 + 2||α〉 → 〈3||α〉

So the machine returns same result, 3, to the surrounding context as was achieved
by β reduction. The Krivine machine thus seems to represent a lower level
implementation, one closer to actual computation on a physical machine using call-
stacks. Moreover, exploring the laws of the Krivine machine suggests additional
possibilities. We see in the Krivine machine that there are actually two different
syntactic constructs for invoking a function: both configurations 〈�||v · e〉 and
〈� v||e〉 do exactly the same thing as the second is rewritten into the first. That
is, both call-stack formation and ordinary λ calculus application are two ways of

4

getting at the same concept. It is thus natural to wonder if the redundancy can
be eliminated by unifying the two.

We are accustomed to having variables stand for an unknown value and then
having the possibility to bind these variables to known terms later. The same can
be done with respect to contexts, now that they are embodied with a syntactic
representation in the form of co-terms. Already in the example above we refer
to α (called a co-variable) as a generic placeholder for the surrounding context
of evaluation. The next is to abstract over co-variables like α. That is the role
of the µ-abstraction, written as µα.c, which comes equipped with the following
reduction rule:

〈µα.c||e〉 → c{e/α}

The above says that when the term µα.c is evaluated in a context e, then the
next step is to execute the command c with α bound to e. µ-abstractions unify
the two forms of function calls by representing function application in terms of
call-stack formation. For example, the above λ-calculus term (λx.λy.x+y)1 2 can
be rewritten to avoid function application altogether as µβ.〈λx.λy.x+ y||1 · 2 · β〉.
Note that this term behaves the same as the original one:

〈µβ.〈λx.λy.x+ y||1 · 2 · β〉||α〉 → 〈λx.λy.x+ y||1 · 2 · α〉

As such, the application term v v′ becomes syntactic sugar for µα.〈v||v′ · α〉.
However, the presence of µ-abstraction makes the language more expressive

than λ-calculus because a µ has the ability to erase its context when the abstracted
co-variable is never used:

〈µβ.〈λx.λy.x+ y||α〉||1 · 2 · α〉 → 〈λx.λy.x+ y||α〉

A µ-abstraction can also duplicate its context by using the abstracted co-variable
more than once. Indeed, terms such as µα.c create a control effect much like
those found in many programming languages. In particular, µ-abstractions are
similar to the callcc operator from Scheme.

So far, this analysis gives rise to a language for representing abstract machines
implementing call-by-name evaluation. But what about call-by-value evaluation,
where arguments are evaluated before resolving a function application, giving rise
to evaluation contexts of the form V � (where V denotes a value: a variable or a
λ-abstraction) in addition to � v. The call-by-value version of the above Krivine
machine would use an extra co-term V ◦ e corresponding to the additional form
of evaluation context (first apply V to the input and return the result to e), as
well as the following three reduction rules:

〈v v′||e〉 → 〈v||v′ · e〉 〈V ||v′ · e〉 → 〈v′||V ◦ e〉 〈V ′||(λx.v) ◦ e〉 → 〈v{V ′/x}||e〉

The first rule pushes an argument onto the call-stack as before. The second rule
switches the attention of the machine from the function, represented by V , to the
argument v′ beginning evaluation of the argument by placing it on the left-hand
side of the command. The third rule implements β reduction slightly differently

5

from before, since the function is now found in the co-term after evaluation due
to the second rule. The call-by-value evaluation of our example above becomes:

〈(λx.λy.x+ y) 1 2||α〉 →→ 〈λx.λy.x+ y||1 · 2 · α〉
→ 〈1||(λx.λy.x+ y) ◦ (2 · α)〉
→ 〈λy.1 + y||2 · α〉
→ 〈2||(λy.1 + y) ◦ α〉 → 〈1 + 2||α〉 → 〈3||α〉

Besides changing the language of co-terms to account for a different evaluation
strategy, this presentation of call-by-value machines suffers even worse redun-
dancy: there are three different syntactic representations of function invocation—
〈(λx.v) v′||e〉, 〈λx.v||v′ · e〉, and 〈v′||λx.v ◦ e〉—all of which are equivalent to one
another. In the interest of eliminating redundancy, we should again wonder if
all notions of function invocation can be distilled down to a single primitive
operation with the help of some other generic binding constructs, like µ. Indeed,
call-by-value can employ the dual of µ-abstractions, known as µ̃-abstractions [3],
to write everything with call-stacks. Symmetric to a µ, the µ̃-abstraction µ̃x.c is
a co-term that binds its input to the variable x and then runs the command c,
as follows:

〈v||µ̃x.c〉 → c{v/x}

Just like µ-abstractions can be used to write a λ-calculus application with a
call-stack, so too can µ̃-abstractions be used to write the extra call-by-value
evaluation context with the primitive form of call-stack: v ◦ e becomes syntactic
sugar for µ̃x.〈v||x · e〉. Expanding this notational definition, the second rule thus
becomes:

〈V ||v′ · e〉 → 〈v′||µ̃x.〈V ||x ◦ e〉〉

which names the argument for evaluation, and the call-by-value implementation
of β reduction simplifies to the call-by-name one:

〈V ′||(λx.v) ◦ e〉 = 〈V ′||µ̃y.〈λx.v||y · e〉〉 → 〈λx.v||V ′ · e〉 → 〈v{V ′/x}||e〉

A calculus for abstract machines These basic constructs—functions and
call-stacks, variables and co-variables, µ- and µ̃-abstractions—define a general
calculus for reasoning about abstract machines (both call-by-value and call-by-
name) known as system L [17]. System L is a lower-level machine-like calculus, in
that no search is needed for evaluation: reduction can always take place at the “top”
of a command. But system L also supports high-level reasoning like the λ-calculus,
in that it is still sound to perform reductions anywhere within a command, which
correspond to out-of-order simplifications and optimizations. Also like the λ-
calculus, system L can be seen as either an untyped or typed language. Since there
are two different forms of variables—both ordinary variables and co-variables—
there are two typing environments: Γ = x1 : A1, x2 : A2, . . . , xn : An for tracking
the types of free variables and ∆ = α1 : A1, α2 : A2, . . . , αn : An for tracking the
types of free co-variables. Since there are three different forms of expressions—
commands, terms, and co-terms—there are three different typing judgements.

6

Terms returning a result of type A in environments Γ and ∆ are typed as
Γ ` v : A | ∆. Co-terms expecting an input of type A in environments Γ and
∆ are typed as Γ | e : A ` ∆. And commands that are capable of running in
environments Γ and ∆ are typed as c : (Γ ` ∆). With this notation in mind, the
typing rules for the L-style language of abstract machines are:

Γ, x:A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

Γ ` v : A | ∆ Γ | e : B ` ∆
Γ | v · e : A→ B ` ∆

Γ, x:A ` x : A | ∆
c : (Γ ` α:A,∆)

Γ ` µα.c : A | ∆
c : (Γ, x:A ` ∆)

Γ | µ̃x.c : A ` ∆ Γ | α:A ` α : A,∆

Γ ` v : A | ∆ Γ | e : A ` ∆
〈v||e〉 : (Γ ` ∆)

Amazingly, in the same way that the typing rules for λ-calculus correspond to
the rules of natural deduction, the above typing rules correspond to the sequent
calculus [3]! The typing rules for call-stacks and commands correspond to the
logical rules for implication (on the left) and cut.

3 Substitution Disciplines

But there is a problem that rears its head when we try to compute; the funda-
mental critical pair of classical logic between the µ- and µ̃-abstractions [3]:

c1{µ̃x.c2/α} ← 〈µα.c1||µ̃x.c2〉 → c2{µα.c1/x}.

The choice between these two reductions takes us down two separate paths. In
the worst case, x and α are never used and c1 and c2 are unrelated to one another,
which means that a single command can reduce to two completely unrelated
results. This critical pair can be resolved by always preferring one reduction or
the other, giving two different calculi. Favoring µ by always taking the left path
gives the call-by-value calculus, whereas favoring µ̃ by always taking the right
path gives the call-by-name calculus.

As observed by Plotkin [23], different calling conventions require different
calculi: the traditional λ-calculus is suitable for reasoning about Haskell programs,
as the call-by-value λ-calculus is for OCaml programs. But denotational semantics
seems to capture the essential difference between call-by-name and call-by-value
more generally: the difference is reflected in the Denotable domain [27]. A call-by-
name variable can denote any expressible value, including errors or divergence,
whereas a call-by-value variable can only denotes “regular” values.

This idea can be represented syntactically by characterizing the calculus in
two parts [24,4]; one part is common to different parameter passing techniques
and the other only differs in one aspect: what can be substituted for a variable and
co-variable. We refer to what variables and co-variables stand for as a substitution
discipline. We call a term that can be substituted for a variable a value, and
call a co-term that can be substituted for a co-variable a co-value. Thus, the

7

call-by-name calculus is defined by saying that every term is a substitutable value,
while the set of co-values is restricted to the bare minimum necessary to not get
stuck. Symmetrically, the call-by-value calculus is formed by saying that every
co-term is a co-value, and restricting values down to the bare minimum to avoid
getting stuck. Moreover, call-by-name and -value are not the only disciplines
expressible in this framework. For instance, call-by-need can be characterized by
the notion of substitution discipline as well [1].

Mixing Disciplines This framework allows for a characterization of the dif-
ferences between calling conventions as a resolution to the above fundamental
critical pair, which can be further distilled into a discipline on substitution. Why,
then, should only choose one discipline globally for the entire program? Often
times such a restriction can be quite limiting. As observed in [21], some functions
like λx.x+ x will always evaluate their argument eagerly even in a lazy language,
and as such the extra costs associated with lazy evaluation (such as boxing
expressions into thunks and closures instead of passing arguments directly as
unboxed machine primitives) should be avoided when laziness is irrelevant. Thus,
it would be more practical to let the programmer, or at least the compiler during
code generation and optimization, choose which discipline is appropriate for each
juncture. In other words, we want a multi-discipline language that incorporates
many calling conventions.

The obvious way to signal the intended discipline is to just annotate each
command with symbols such as v (for call-by-value) and n (for call-by-name),
which resolves the fundamental critical pair on a per-command basis. So in the
above example, we could write the call-by-value choice as 〈µα.c1|v|µ̃x.c2〉 →
c1{µ̃x.c2/α} and the call-by-name choice as 〈µα.c1|n|µ̃x.c2〉 → c2{µα.c1/x}.
Unfortunately, just marking commands is not enough, as it only pushes the issue
of the critical pair one step away. The problem is that we could lie about what a
variable or co-variable denotes by using it in a context that violates the contract
of its binding. For example, the same critical pair is simulated as follows:

〈µα.c1|v|µ̃y.c2〉 ← 〈µα.c1|n|µ̃x. 〈x|v|µ̃y.c2〉〉 → 〈µα.c1|n|µ̃x.c2{x/y}〉 .

By reducing the top redex and plugging in the computation µα.c1 for the n
variable x, on the left we end up with a v command that will prioritize the term.
But by instead performing the inner redex and renaming x for y, we end up with
the equivalent n command that will prioritize the co-term.

So a multi-discipline sequent calculus cannot just annotate commands, but
must ensure that the chosen discipline of variables and co-variables remains
consistent throughout their lifetime. To make this choice apparent in the syntax,
variables and co-variables must have a statically-inferable discipline which we
accomplish with annotations, e.g., xv and αn. Furthermore, terms and co-terms
in general also much have a statically-inferable discipline, since it is sometimes
necessary to introduce a new binding during reduction. For example, recall the
second rule of the call-by-value abstract machine in Section 2, which corresponds
to naming the argument of a function with a µ̃-abstraction. This naming step is
necessary to avoid getting stuck during a call-by-value function call: call-by-value

8

r, s, t ∈ Kind ::= n || v || . . .

As, Bs ∈ Types ::= as || A s→ B || ∀sa.A A,B ∈ Type ::= As

vs ∈ Terms ::= xs || µαs.c || µ(x s α).c || µ(a s α).c

es ∈ Co-Terms ::= αs || µ̃xs.c || v s e || A s e

c ∈ Command ::= 〈vs||es〉 v ∈ Term ::= vs e ∈ Co-Term ::= es

x ::= xt a ::= at α ::= αt

Fig. 1. Syntax of a multi-discipline, polymorphic sequent calculus.

β reduction does not apply to 〈λx.v||v′ · e〉 when v′ is not a value. This is done
by lifting v′ out of the call-stack [4]

〈λxv.v||v′ · e〉 → 〈λxv.v||µα.〈v′||µ̃y.〈x||y · e〉〉〉.

However, to annotate α and y above, we would need to know what the intended
disciplines of λxv.v and e are.

4 A Parametric, Multi-Discipline Sequent Calculus

We now formalize the core calculus for studying multi-discipline reduction in the
presence of control. For simplicity we limit to a few key type formers: functions
and parametric polymorphism. These features are found in most real functional
programming languages, are enough both to write a variety of interesting pro-
grams, and expose the main challenges faced in strong normalization proofs.

Syntax As in the abstract machine language of Section 2, the syntax of our
calculus is comprised of terms (“producers” v), co-terms (“consumers” e), and
commands (“executables” c) as shown in Fig. 1. The first thing to notice is a
change of syntax for functions. Instead of λ-abstractions, functions are written
by pattern-matching on their context: a call-stack of the form x · α. This change
of notation is syntactic in nature—note that λx.v is equivalent to µ(x ·α).〈v||α〉—
which helps to emphasize the role of functions as responders to call-stacks.
As in system F, polymorphism is expressed in terms of type abstraction and
specialization. Note that these constructs are analogous to functions, except that
the parameter is a type, not a value.

The second thing to notice about the syntax is that terms and co-terms are
divided by their discipline as discussed in Section 3, a finite collection of symbols
denoted by the metavariable s, so that vs produces a s value and es consumes a s
value. This aligns with the annotations on variables and co-variables, where xs is
a member of (only) Terms and similarly αs is in Co-Terms. A bold (co-)variable
denotes an annotated (co-)variable, respectively, where the annotation could
be any discipline. Commands, in contrast, do not have an outwardly-visible

9

〈µα.c||E〉 �µ c{E/α} 〈V ||µ̃x.c〉 �µ̃ c{V/x} µα.〈v||α〉 �ηµ v µ̃x.〈x||e〉 �ηµ̃ e

〈µ(xt s αr).c||Vt s Er〉 �β→ c{Vt/x
t, Er/α

r}
〈µ(at s αr).c||At s Er〉 �β∀ c{At/a

t, Er/α
r}

vt s e �ς→ µ̃xs.〈vt||µ̃yt.〈xs||yt s e〉〉 (6 ∃Vt,vt = Vt)

V s er �ς→ µ̃xs.〈µβr.〈xs||V s βs2〉||er〉 (6 ∃Er,er = Er)

A s er �ς∀ µ̃xs.〈µβr.〈xs||A s βs〉||er〉 (6 ∃Er,er = Er)

c � c′

C[c]→ C[c′]

e � e′

C[e]→ C[e′]

v � v′

C[v]→ C[v′]

Fig. 2. Rewriting theory for multi-discipline, polymorphic sequent calculus.

discipline because they do not produce or consume anything, but instead are only
well-formed if they have an internally-consistent discipline shared by a producer
and consumer cooperating together. To ensure that every term and co-term
belong to exactly one syntactic category Terms and Co-Terms, the call-stack dot
is also annotated with a discipline symbol. That way, it is immediately apparent
that v s e is an s co-term and µ(x s α).c is an s term. For example, a wholly
call-by-value function can be written as µ(xv v αv).c that matches a call-stack of
the form vv v ev. The v in the v tells us the discipline used for computing the
function itself, whereas the annotations on the abstracted (co-)variables tell us
the discipline of the argument and result. Replacing v with n gives instead wholly
call-by-name functions, but other more interesting combinations are also possible.
The functions found in call-by-push-value [15] and polarized languages [31] would
have the form µ(xv n αn).c and vv n en, with a call-by-value argument and
call-by-name function and result.

Parameterized Reduction Theory The reduction theory, denoted by →
shown in Fig. 2, is the compatible closure of the top-level reduction relation �.
Here the metavariable C ranges over any context such that filling the whole
with an object of the appropriate sort is well formed. Whereas � only applies
to the top of some expression, → can apply anywhere inside of it. Further, we
use →→ for the reflexive, transitive closure of →. The reduction rules in � are
given names which we write in subscript. We also use subscripts on the → rule
to denote the restriction to the rules of the same name, for instance →β→ refers
to the compatible closure of the relation �β→ . At times we will use multiple
subscripts to denote collections of reductions, as in �β→,β∀ for the union of �β→

and �β∀ . When a relation such as � or → is used without a subscript it refers
to the union over all of the rules.

The reduction theory is parameterized by a set of specific discipline symbols
equipped with an associated subset of terms called values and co-terms called
co-values (denoted by Vs and Es, respectively, for each discipline symbol s). As
with (co-)terms, we use the plain metavariables V and E to refer to the union of
values and co-values for every s. For example, we write 〈µα.c||E〉 →µ c{E/α}

10

Vu ::= vu

Vv ::= xv || µ(x v α).c || µ(a v α).c

Vn ::= vn

Eu ::= eu

Ev ::= ev

En ::= αn || V n E || A n E

Vlv ::= xlv || µ(x lv α).c || µ(a lv α).c

Elv ::= αlv || µ̃xlv.D[〈xlv||Elv〉] || V lv E || A lv E

Vln ::= xln || µ(x ln α).c || µ(a ln α).c || µαln.D[〈Vln||αln〉]

Eln ::= αln || V ln E || A ln E

D ::= � || 〈vlv||µ̃ylv.D〉 || 〈µαln.D||eln〉

Fig. 3. (Co-)values in by-name (n), -value (v), -need (lv), -co-need (ln) and u.

Γ,x : A `Θ x : A | ∆ V ar
Γ | α : A `Θ α : A,∆

Co-V ar

c : (Γ `Θ α : A,∆)

Γ `Θ µα.c : A | ∆ Act
c : (Γ,x : A `Θ ∆)

Γ | µ̃x.c : A `Θ ∆
Co-Act

Γ `Θ v : A | ∆ Γ | e : A `Θ ∆

〈v||e〉 : (Γ `Θ ∆)
Cut

Γ `Θ v : A | ∆ Γ | e : B `Θ ∆

Γ | v s e : A
s→ B `Θ ∆

→L
c : (Γ,x : A `Θ α : B,∆)

Γ `Θ µ(x s α).c : A
s→ B | ∆

→R

Γ | e : B{At/a
t} `Θ ∆

Γ | At s e : ∀sat.B `Θ ∆
∀L

c : (Γ `Θ,a α : B,∆)

Γ `Θ µ(a s α).c : ∀sa.B | ∆ ∀R

Fig. 4. Type system for the multi-discipline, polymorphic sequent calculus.

and by the syntactic requirement that the two sides of a command agree on
a discipline, it must be that the disciplines of E and α match. Disciplines are
not just restrictive but also enabling in the case of the ς rules (originally due to
Wadler [29]) that lift unevaluated components out of call-stacks to be computed,
so there is no “largest” reduction theory that subsumes all others.

Values and Co-Values We can now give interpretations of some specific
discipline symbols: the call-by-value (v), -name (n), -need (lv for “lazy value”
[1]), -co-need (ln for “lazy name”) and non-deterministic (u) disciplines are
defined by the values and co-values in Fig. 3.

Typing As a generalization of polarity, types belong to one of several kinds, each
associated with a discipline. The kind of a type is specified by its top constructor,

for example A
v→ B and A

lv→ B are types of call-by-value and call-by-need,
respectively. Type variables range over a specific kind denoting the discipline of
(co-)terms they specify, and the polymorphic quantifier ∀s must choose a specific
kind of type to abstract over.

11

The typing rules for the calculus are given in Fig. 4. There are some criteria
for when sequents are well formed: (1) identifiers (a, x, α) in Θ, Γ , and ∆ are
all unique, (2) the disciplines of (co-)variables must match that of their type, as
in xs : As and αs : As, and (3) in the sequent Γ `Θ v : A | ∆, all the free type
variables of Γ , ∆, v, and A are included in Θ, and similarly for Γ | e : A `Θ ∆
and c : (Γ `Θ ∆). Only derivations where all sequents are well formed are
considered proofs. Note that this imposes the standard criteria on the right ∀
rule that the abstracted type variable in the premise is not free in the conclusion.
Well-formedness also ensures that in the cut and the left rule for ∀, the free
variables of the cut and instantiated type are contained in Θ.

Admissible Disciplines Our proof of strong normalization is parameterized
by a collection of discipline symbols and their interpretation. However, there are
two important properties on disciplines needed for our proof.

Definition 1. A discipline is stable exactly when (co-)values are closed un-
der reduction and substitution, focalizing exactly when at least all (1) vari-
ables, µ(x s α).c, and µ(a s α).c are values, and (2) co-variables, V s E, and
A s E, are co-values, and admissible exactly when it is stable and focalizing.

Property 1. The n, v, lv, ln, and u disciplines are collectively admissible.

Our proof of strong normalization works uniformly for any collection of admissible
disciplines. As we present the proof in the next section we assume some admissible
disciplines have been chosen, which could include any combination of the five
disciplines presented above, or some other admissible disciplines of interest.

5 Strong Normalization

While some properties, like type safety, are straightforward enough to prove
directly [30], other properties, like strong normalization, resist a direct approach.
The problem with proving strong normalization is that just inducting over syntax
or typing derivations is far too weak. Instead, the standard practice uses a more
indirect approach based on the idea behind Tait’s method [26] and reducibility
candidates [8]: set up an interpretation for types that serves as a waypoint
between syntax and safety. The interpretation for a type should encompass all
programs of that type (adequacy) and also fit inside the intended candidate
property (safety). When interpreting types, the definition is usually designed with
safety in mind: interpretations contain only safe programs by construction, but
their adequacy needs to be justified. Instead, we will orient ourselves the other
way in the style of symmetric candidates [2], where the interpretations for types
are designed with adequacy in mind: interpretations contain all the necessary
well-typed programs by construction, but their safety needs to be justified. But
that means we need to consider things which are not yet known to be safe, and so
are not a candidate interpretation for any type. Therefore, we work in the larger
and more lax domain of pre-types which encompasses all possible candidates but
does not impose the necessary safety conditions.

12

Pre-Types In the biorthogonality family of methods [7,22,13], a type has a
two-sided interpretation described by both a set of terms and a set of co-terms.
Intuitively, a model of a type describes some desired behavior of programs (like
an algorithm, or specification), where the term side can be seen as a collection of
implementations and the co-term side can be seen as set of test operations. By
analogy, orthogonality is an operation that evaluates implementations (terms)
with operations (co-terms). On the one hand, orthogonality selects only those
implementations that pass a comprehensive set of tests, and on the other hand,
orthogonality also selects only those test that behave correctly with respect to
the reference implementation(s). The biorthogonal interpretation of types then is
safe by construction, where the co-terms (tests) of a type are exactly everything
orthogonal to (here, forming a strongly normalizing command with) any term
(implementation) of the type, and vice versa. Since orthogonality can always
complete one half from the other, only one side is necessary.

However, the method we use here cannot rely on such luxuries. While con-
structing the interpretation of types, we will have to consider incremental steps
which may include extra (co-)terms that create unsafe interactions and exclude
necessary (co-)terms that would be safe. Therefore, the new insight is to work in
a domain where terms and co-terms are grouped together as a single unit, and
which includes many pre-types that are not candidate interpretations for types.

Definition 2. A pre-type A (of discipline r) is a pair (Av, Ae) where Av is
a set of strongly normalizing r-terms and Ae is a set of strongly normalizing
r-co-terms.

We use ordinary set membership to refer to the underlying sets: given A =
(Av, Ae), we write v ∈ A for v ∈ Av and e ∈ A for e ∈ Ae. We write SN r for the
pre-type containing all strongly normalizing (co-)terms of discipline r and ‚ for
the set of all strongly normalizing commands.

We can compare pre-types like we do with sets. But because they are built
with two opposite sets, there are two different methods of comparison. The
first comparison is containment which just checks that the (co-)terms of one
pre-type are a subset of the other. The second comparison corresponds instead
to behavioral sub-typing [16]: A is a sub-type of B if every program fragment of
A can be used in every context of B. Intuitively, the subsumption of sub-typing
sends every producer of As (i.e., terms) to B and dually sends every consumer
of Bs (i.e., co-terms) to A. We can also combine pre-types with unions and
intersections that go along with these two comparisons: for containment this just
means the union and intersection, respectively, of the sets underlying pre-types,
but for sub-typing this corresponds to the intuition behind union and intersection
types in programming languages.

Definition 3. Let A = (Av, Ae) and B = (Bv, Be) be pre-types. A is contained
in B, written A v B, and A is a sub-type of B, written A ≤ B, as follows:

A v B iff Av ⊆ Bv and Ae ⊆ Be A ≤ B iff Av ⊆ Bv and Ae ⊇ Be

13

The union and intersection for containment (t,u) and sub-typing (∨,∧) are:

A t B = (Av ∪Bv, Ae ∪Be) A ∨ B = (Av ∪Bv, Ae ∩Be)
A u B = (Av ∩Bv, Ae ∩Be) A ∧ B = (Av ∩Bv, Ae ∪Be)

Orthogonality The orthogonality operation on pre-types uses one pre-type
to generate another one containing everything it can safely interact with and
nothing more.

Definition 4. The orthogonal of any pre-type A of r, written A⊥, is:

vr ∈ A⊥ ⇐⇒ ∀er ∈ A.〈vr||er〉 ∈‚ er ∈ A⊥ ⇐⇒ ∀vr ∈ A.〈vr||er〉 ∈‚
Together, orthogonality and containment capture the notion of safety in terms
of pre-types: A v A⊥ means 〈v||e〉 ∈ ‚ for all v, e ∈ A. Although we have
generalized the notion of orthogonality to pre-types, it still exhibits the properties
which mimic negation in intuitionistic logic.

Property 2. Contrapositive: If A v B then B⊥ v A⊥. Double orthogonal intro-
duction: A v A⊥⊥. Triple orthogonal elimination : A⊥⊥⊥ = A⊥.

However, because pre-types also come with another notion of comparison, we
get an additional new property of orthogonality that follows from sub-typing.

Property 3. Monotonicity : If A ≤ B then A⊥ ≤ B⊥.

This fact is key to our entire endeavor: the monotonicity of orthogonality (and
similar operations) with respect to sub-typing guarantees that there are always
fixed points of orthogonality. This is the fact that powers the fixed-point construc-
tion of symmetric candidates [2] that we generalize by rephrasing the construction
in terms of a two-sided model of sub-typing.

Top Reduction Another standard part of a strong normalization proof is to
identify a subset of reductions that are important to check for the purpose of
normalization. Usually in the λ-calculus, these important reductions are the
standard reductions that make up an operational semantics. But since we are
working in the sequent calculus, we already have a notion of “main” reduction
that is immediately apparent in the syntax: the reductions that occur at the
“top” of a command. We define top reduction on commands as:

c �β→,β∀ c′

c 0 c
′

c �µ c′

c + c′
c �µ̃ c′

c − c′
er �ς→,ς∀ e

′
r

〈Vr||er〉 − 〈Vr||e′r〉
c +,0,− c

′

c c′

Note that top reductions are distinguished based on a “charge:” the positive +

let the term of a command take control of computation, the negative − let
the co-term take control, and the neutral 0 require that both the term and
co-term cooperate with another to proceed. The purpose of this distinction is to
help tame the potential for non-determinism: notice that both +,0 and −,0
are deterministic for all disciplines, but +,− may not be depending on the

14

discipline. We need to pay attention to non-determinism because it breaks the
expected expansion property used in strong normalization proofs [9]. Normally,
top expansion says that if 〈v||e〉 c and v, e, and c are all strongly normalizing
then so is 〈v||e〉. However, this might not work if there is another top reduction
〈v||e〉 c′ where c′ loops forever. So generalizing top expansion to accommodate
non-determinism requires an assumption of all possible top reductions even
after some other internal reductions have happened. Packaged in a pre-type A,
non-deterministic top expansion assumes that A is closed under reduction—if
v, e ∈ A and v→→ v′ and e→→ e′ then v′, e′ ∈ A—and that every possible top
reduction from A commands leads to a strongly normalizing command in order
to conclude that every A command is strongly normalizing.

Lemma 1 (Nondeterministic Top Expansion). If A is closed under re-
duction and 〈v||e〉 c implies c ∈‚ for all v, e ∈ A and c then A v A⊥.

So we have a top expansion property for the general non-deterministic case,
but what about when we are dealing with (co-)terms from a deterministic
discipline like v or n? We can carve out a pre-type of deterministically-normalizing
(co-)terms of r (DN r) where all their possible top reductions either land in ‚
or not, after any number of other reductions have occurred:

vr ∈ DN r ⇐⇒ ∀er∈SN r.(vr→→v′r ∧ 〈v′r||er〉 c ∧ 〈v′r||er〉 c′)⇒(c∈‚⇔ c′∈‚)

er ∈ DN r ⇐⇒ ∀vr∈SN r.(er→→e′r ∧ 〈vr||e′r〉 c ∧ 〈vr||e′r〉 c′)⇒(c∈‚⇔ c′∈‚)

As shorthand, we write Ad to mean AuDN r for a pre-type A of r. Now, we get
an improved top expansion property for deterministically-normalizing (co-)terms.

Lemma 2 (Deterministic top expansion). If r is stable, v, e ∈ SN r, either
v ∈ DN r or e ∈ DN r, and 〈v||e〉 c ∈‚ then 〈v||e〉 ∈‚.

Deterministic top expansion relies on commutation between top and non-top
reductions based on the stability of r. Note that for any discipline r where
top reduction is deterministic, it follows that SN r = DN r, and so the above
deterministic top expansion property holds for any term and co-term of r. Since
the n, v, lv, and ln disciplines all meet this criteria, they all enjoy the usual
expansion property unlike u.

Reducibility Candidates The interpretation of a type should be both adequate
and safe, so let’s consider how to phrase those two conditions in terms of pre-types.
Safety, which tells us a type’s interpretation contains only good interactions, is
already captured by orthogonality (A is safe when A v A⊥). Adequacy, which
tells us a type’s interpretation contains all programs dictated by the typing
rules, is a little more involved, however. Certainly, interpretations should include
everything that interacts well with the type (A⊥ v A), but this is not enough.
We need to be able to show type membership looking at a single top reduction,
but reduction isn’t in general deterministic, so we must explicitly require that a
(co-)term that interacts well with A after it causes one top reduction is also in A.
This extra condition only tests the (co-)values of A: 〈vr||er〉 + c only when er

15

is a co-value of r and 〈vr||er〉 − c only when vr is a value of r. Therefore, we
define the saturation of a pre-type A of r as:

vr ∈As⇐⇒ ∀Er ∈A.〈vr||Er〉 =
+,0 c∈‚ er ∈As⇐⇒ ∀Vr ∈A.〈Vr||er〉 =

−,0 c∈‚
where =

+,0 and =
−,0 are the reflexive closures of +,0 and −,0, respectively.

Now that we know how to phrase safety in terms of orthogonality and
adequacy in terms of saturation, we can say that reducibility candidates, which
are the potential interpretations of types, are pre-types that lie between their
own saturation and orthogonal.

Definition 5. A pre-type A (of r) is a reducibility candidate (of r) exactly when
As v A v A⊥. We write CRr for the set of all reducibility candidates of r.

In practice, the A⊥ upper-bound is used to justify the cut rule for forming
commands, and the As lower-bound is used to justify the left and right rules
for activation, implication, and universal quantification. Also, the As lower-
bound serves a second purpose by ensuring that reducibility candidates are all
inhabited by (co-)variables, which will be needed to show that typing implies
strong normalization even for open commands and (co-)terms.

As it turns out, there is an equivalent way of identifying reducibility candidates
of admissible disciplines: they are all fixed points of saturation.

Lemma 3 (Reducibility fixed-point). For any pre-type A of an admissible
discipline r, A is a reducibility candidate of r if and only if A = As.

Reducibility candidates are saturation fixed points because A⊥ v As for any
A, and the reverse follows from the focalization of r because the participants
in neutral β-reductions—abstractions and call stacks—are (co-)values that can
be tested by saturation. The equivalence between candidates and fixed points
gives us a general-purpose construction method for candidates of any admissible
discipline by solving recursive pre-type equations.

Fixed-Point Solutions The fixed-point construction of types is powered by
the pervasive monotonicity properties of sub-typing between pre-types. Mono-
tonicity isn’t limited to just orthogonality; other operations, like saturation and
containment-union with a constant pre-type, are also monotonic: for any A, B, C
of r, if A ≤ B then As ≤ Bs and A t C ≤ A t C. Therefore, if we describe the
essence of a type with some pre-type C, we can build a fully-saturated pre-type
around it by finding a solution to the equation A = C t As. Combined with
the fact that sub-typing (and containment) forms a lattice on pre-types, the
Knaster-Tarksi fixed point theorem ensures that this equation has a fixed point,
giving us the basis of a function for generating saturated pre-types.

Lemma 4 (Fixed-point construction). For every discipline r, there is a
function Fr(−) such that for any pre-type C of r, Fr(C) = C t Fr(C)s.

The Knaster-Tarski fixed point theorem, however, does not ensure that there
is a unique fixed point satisfying the equation. Therefore, the Fr(−) operations
must somehow pick which among the possible solutions is the result. Two readily

16

available options are the largest or smallest such fixed points with respect to
sub-typing, but note that neither one is “more principled” than the other: the
largest one has the most terms but fewest co-terms, and the smallest one has the
fewest terms but most co-terms. Either one will work for demonstrating strong
normalization, however, as long as we are consistent. Moreover, we will prove in
the next section (Lemma 7) that for deterministic r the solutions will be unique.

So now we know how to build a saturated extension of any pre-type C of r
that satisfies one of the conditions for being a reducibility candidate by definition:
Fr(C)s v Fr(C). But we still need to make sure that this extension is safe: we must
show when Fr(C) v Fr(C)⊥. It turns out that the safety condition of reducibility
candidates follows when C is a pre-type consisting of only deterministically-
normalizing (co-)values that only form strongly-normalizing commands, because
then the result of Fr(C) is itself a fixed point of saturation.

Lemma 5 (Fixed-point validity). If C v C⊥dv then Fr(C) = Fr(C)s.
Where we write Vr for the pre-type of strongly normalizing (co-)values of discipline
r, and use the shorthand Av = A u Vr for pre-types A in r.

Interpretations of Types With a uniform method for generating reducibility
candidates in hand, we can now construct the candidates for particular types.
Both implication and universal quantification are negative types defined by
their observations—call stacks—so their interpretation starts with the negative
construction of a pre-type that selects terms compatible with some co-terms: for
a set of strongly-normalizing r-co-terms O, Neg(O) is the following pre-type of r:

vr ∈ Neg(O) ⇐⇒ ∀Er ∈ O.〈vr||Er〉 ∈‚ er ∈ Neg(O) ⇐⇒ er ∈ O

The above negative construction satisfies the validity criteria for the fixed-
point reducibility candidates from Lemma 5 (C v C⊥dv) by keeping only its
deterministically-normalizing (co-)values and closing it under orthogonality.

Lemma 6. For any set O of deterministically-normalizing r-co-values,
Neg(O)dv v Neg(O)dv⊥dv = Neg(O)dv⊥dv⊥dv.

We now have a negative interpretation for the specific type constructors:
– For all A and B, A r→ B , Fr(Neg({V r E | V ∈ A, E ∈ B})dv⊥dv) ∈ CRr.
– For all K ⊆ CRt, ∀rt.K , Fr(Neg({At r E | B ∈ K,E ∈ B})dv⊥dv) ∈ CRr.

Adequacy The final step is to give an interpretation for syntactic types, environ-
ments, and sequents as reducibility candidates, substitutions, and propositions,
respectively, where we write CR for

⋃
r CRr:

JarKφ , φ(a) JA r→ BKφ , JAKφ r→ JBKφ J∀rat.BKφ , ∀rt.{JBK(φ,A/at) | A∈CRt}

JΘK , {φ | ∀ar ∈ Θ.φ(a) ∈ CRr}

JΓ`Θ∆Kφ , {ρ | ∀ar∈Θ.a{ρ}∈Typer ∧ ∀x:A∈Γ.x{ρ}∈JAKφ ∧ ∀α:A∈∆.α{ρ}∈JAKφ}

c : (Γ �Θ ∆) , ∀φ ∈ JΘK, ρ ∈ JΓ `Θ ∆Kφ.c{ρ} ∈‚
Γ �Θ v : A | ∆ , ∀φ ∈ JΘK, ρ ∈ JΓ `Θ ∆Kφ.JAKφ ∈ CR ∧ v{ρ} ∈ JAKφ

Γ | e : A �Θ ∆ , ∀φ ∈ JΘK, ρ ∈ JΓ `Θ ∆Kφ.JAKφ ∈ CR ∧ e{ρ} ∈ JAKφ

17

Typing derivations are adequate with respect to the interpretation of their
conclusion for any admissible choice of disciplines, which in turn gives us strong
normalization.

Theorem 1 (Adequacy). (1) c : (Γ `Θ ∆) implies c : (Γ �Θ ∆), (2) Γ `Θ
v : A | ∆ implies Γ �Θ v : A | ∆, and (3) Γ | e : A `Θ ∆ implies Γ | e : A �Θ ∆.

Adequacy follows by induction on the typing derivation. Note that the re-
quirement that disciplines are focalizing is used to justify the left and right rules
of functions and polymorphism so that abstractions and call stacks end up in
the meaning of those types. This also ensures that (co-)variables are (co-)values
(resp.) that inhabit every reducibility candidate, so that every environment has a
suitable substitution used to extract strong normalization for reduction of open
commands, terms, and co-terms.

Corollary 1 (Strong normalization). Typed commands, terms, and co-terms
are strongly normalizing.

6 Biorthogonals are Fixed Points

The candidate-based approach to strong normalization—tracing back to Tait
[26] and Girard [6] and fitting in the general area of logical relations [28] and
realizability [11]—easily accommodates impredicative polymorphism by outlining
the candidate meanings of types before defining any particular type. Tait’s
original method doesn’t work for us because we need types to classify co-terms in
addition to terms. The use of orthogonality for modeling types appears in multiple
places, including Girard’s [7] linear logic, Krivine’s [13] classical realizability,
and Pitts’ [22] >>-closed relations, and can prove strong normalization for
certain disciplines. For call-by-name we could start by defining types via their
observations (so for functions, valid call stacks), the set of terms of that type as
anything orthogonal to these observations, and, finally, the set of co-terms of that
type as the double orthogonal of the defining observations. The dual approach,
starting with the constructions of values, works for call-by-value.

Munch-Maccagnoni [17] identified a key feature of the orthogonal construction
of types: all call-by-value and -name types are generated by their values and
co-values, respectively. That is, the meaning of a type is the orthogonal of its
(co-)values; in our notation, A = Av⊥. As it turns out, these are exactly the
reducibility candidates produced by our fixed-point framework for well-behaved
disciplines that induce enough determinism. In the general case, the inherent
non-determinism of disciplines like u allows for many different and incompatible
candidate meanings for a particular type [14], but for disciplines like v, n, lv,
and ln that eliminate the fundamental non-deterministic choice, there can only
be one meaning for each type and it must be the fixed point of −v⊥.

Lemma 7. For any admissible discipline r where SN r = DN r and pre-type A
of r, A is the unique reducibility candidate containing Av if and only if A = Av⊥.

18

This extra uniqueness property of candidates provided by determinism gives
us a more direct method of building them in a finite number of steps, as opposed
to using the existence of solutions to recursive equations. In particular, note
that there is a positive construction of pre-types, dual to Neg(−) from Section 5,
which uses some set of terms C to generate all compatible co-terms:

v ∈ Pos(C) ⇐⇒ v ∈ C e ∈ Pos(C) ⇐⇒ ∀v ∈ C.〈v||e〉 ∈‚
Both the positive and negative construction of pre-types can be used to directly
construct reducibility candidates of any deterministic discipline (as in Lemma 7).
In the special cases of call-by-value and call-by-name there is an even simpler con-
struction because they trivialize the co-value- and value-restriction, respectively.

Theorem 2. Let r be any admissible discipline with deterministic top reduction
(including v, n, lv, and ln, among others), C be a set of r-values, and O be a
set of r-co-values. Both Pos(C)v⊥v⊥ and Neg(O)v⊥v⊥ are reducibility candidates
of r. Furthermore, Pos(C)⊥ ∈ CRv if r = v and Neg(O)⊥ ∈ CRn if r = n.

The finitely-constructed candidates Neg(O)⊥ ∈ CRn and Pos(C)⊥ ∈ CRv

are exactly the usual biorthogonal meanings of types in call-by-name and call-
by-value languages: both Neg(O) and Pos(C) include a built-in orthogonal
on one side of the pre-type to get started, and the second orthogonal is a
closure operation since any more are redundant (Neg(O)⊥⊥ = Neg(O)⊥ and
Pos(C)⊥⊥ = Pos(C)⊥). For example, let the set of call-stacks for two pre-types
A and B be A r B = {V r E | V ∈ A, E ∈ B}, so that the interpretation of
call-by-name and -value function types must be

A n→ B = ((A n B)⊥, (A n B)⊥⊥) A v→ B = ((A v B)⊥v⊥⊥, (A v B)⊥v⊥)

Theorem 2 also gives the first finite construction of reducibility candidates for call-
by-need and its dual, which only differs from the simple biorthogonal meanings
by being careful about (co-)values and using one more level of orthogonality to
reach a fixed point. For example, lazy function types, where l is lv or ln, must be

A l→ B = ((A l B)⊥v⊥v⊥, (A l B)⊥v⊥)

The uniqueness condition of Lemma 7 removes any other possibilities for call-
by-name and -value specifically—Neg(O)⊥ ∈ CRn and Pos(C)⊥ ∈ CRv are
the only candidates containing Neg(O)⊥v and Pos(C)⊥v—and similarly for the
general-purpose positive and negative candidates. That means the candidates
of n, v, lv, and ln, and any other deterministic, admissible discipline produced
by our general-purpose fixed-point construction must be exactly these, so our
framework subsumes the existing discipline-specific biorthogonal methods for
(any combinations of) call-by-name and -value.

In comparison with Barbanera and Berardi’s symmetric candidates method [2]
for the symmetric λ-calculus—a calculus corresponding to u since all (co-)terms
are substitutable and there are no ς-reductions—there are more differences. The

19

main underlying idea to generate candidates as the fixed point of some saturation
operation is the same, as is the definition of candidates as something in between
saturation and orthogonality, but the meaning of “saturation” used here is
more general. In particular, symmetric candidates defines saturation in terms
of the syntax of programs, requiring that (co-)variables and certain µ- and µ̃-
abstractions satisfying some conditions are present. We instead define saturation
in terms of the behavior of programs, requiring that they work—either now or in
one step—with all relevant (co-)values. When considering only the u discipline,
the approaches produce identical candidates. However, basing saturation on
dynamic structure instead of syntactic structure has two benefits. First, it is
straightforward to extend the basic method to accommodate additional language
features, like multiple disciplines and focusing via ς-reductions as we have done
here, since the meaning of saturation does not have to change: run-time behavior
is enough to uniformly describe new features. Second, our definition of saturation
is strictly more inclusive than the one of symmetric candidates: everything that
works must be included. The larger saturation is key for Lemma 7 and Theorem 2
and for subsuming the biorthogonal methods in the more general multi-discipline
setting: since we know that candidates include all the sensible (co-)terms, there
is less room for spurious variations making the final result more precise.

7 Conclusion

We have explored multi-discipline calculi with polymorphism and control, based
on the sequent calculus. The sequent calculus setting is good for exploring multi-
discipline programming since it provides a clean separation between the different
disciplines and allows us to treat them abstractly as an object of study. As our
main objective, we established strong normalization by using a model of types
based on both orthogonality and fixed points. Our model is uniform over multiple
disciplines, with a generic characterization of which ones are admissible, and
strictly generalizes several previous models. This study illustrates the benefits of
both the sequent calculus and discipline-agnostic reasoning: we can give a single
explanation for several calculi in one fell swoop and without losing anything
from the discipline-specific models. Our setting of pre-types already comes with
a built-in notion of sub-typing along with the union and intersection of types, it
would be interesting to relate these ideas to filter models and the characterization
of strong normalization in terms of intersection types. More practically, we
would like to relate our formal study of mixing disciplines to the way current
languages combine strict and lazy features, with an ultimate aim of improving
multi-disciplined programming and compilation.

References

1. Ariola, Z.M., Herbelin, H., Saurin, A.: Classical call-by-need and duality. In:
TLCA’11 (2011)

20

2. Barbanera, F., Berardi, S.: A symmetric lambda calculus for “classical” program
extraction. In: TACS’94 (1994)

3. Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP’00 (2000)
4. Downen, P., Ariola, Z.M.: The duality of construction. In: ESOP’14 (2014)
5. Downen, P., Johnson-Freyd, P., Ariola, Z.M.: Structures for structural recursion.

In: ICFP’15 (2015)
6. Girard, J.Y.: Interprétation fonctionnelle et elimination des coupures de

l’arithmétique d’ordre supérieur. These d’état, Université de Paris 7 (1972)
7. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
8. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,

New York, NY, USA (1989)
9. Graham-Lengrand, S.: Polarities & Focussing: a journey from Realisability to

Automated Reasoning. Habilitation thesis, Université Paris-Sud (2014)
10. Herbelin, H., Zimmermann, S.: An operational account of call-by-value minimal

and classical λ-calculus in “natural deduction” form. In: TLCA’09 (2009)
11. Kleene, S.C.: On the interpretation of intuitionistic number theory. Journal of

Symbolic Logic 10(4), 109–124 (12 1945)
12. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher-Order and Symbolic

Computation 20(3), 199–207 (2007)
13. Krivine, J.L.: Realizability in classical logic. In: Interactive models of computation

and program behaviour, vol. 27. Société Mathématique de France (2009)
14. Lengrand, S., Miquel, A.: Classical Fω, orthogonality and symmetric candidates.

Annals of Pure and Applied Logic 153(1), 3–20 (2008)
15. Levy, P.B.: Call-By-Push-Value. Ph.D. thesis, University of London (Aug 2001)
16. Liskov, B.: Keynote address-data abstraction and hierarchy. In: OOPSLA ’87 (1987)
17. Munch-Maccagnoni, G.: Focalisation and classical realisability. In: CSL’09 (2009)
18. Munch-Maccagnoni, G.: Syntax and Models of a non-Associative Composition of

Programs and Proofs. Ph.D. thesis, Université Paris Diderot (2013)
19. Parigot, M.: λµ-calculus: An algorithmic interpretation of classical natural deduction.

In: LPAR’92 (1992)
20. Peyton Jones, S.: https://www.red-gate.com/simple-talk/opinion/geek-of-the-

week/simon-peyton-jones-geek-of-the-week/
21. Peyton Jones, S.L., Launchbury, J.: Unboxed values as first class citizens in a

non-strict functional language. In: FPCA. pp. 636–666 (1991)
22. Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical

Structures in Computer Science 10(3), 321–359 (2000)
23. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theoretical

Computer Science 1, 125–159 (1975)
24. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus: a Metamodel for

Computation. Springer-Verlag (2004)
25. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.

In: LFP’92. pp. 288–298 (1992)
26. Tait, W.W.: Intensional interpretations of functionals of finite type I. Journal of

Symbolic Logic 32, 198–212 (1967)
27. Turbak, F., Gifford, D., Sheldon, M.A.: Design Concepts in Programming Languages.

The MIT Press (2008)
28. Wadler, P.: Theorems for free! In: FPCA’89 (1989)
29. Wadler, P.: Call-by-value is dual to call-by-name. In: ICFP’03 (2003)
30. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information and

Computation 115(1) (1994)

21

31. Zeilberger, N.: The Logical Basis of Evaluation Order and Pattern-Matching. Ph.D.
thesis, Carnegie Mellon University (2009)

	Uniform Strong Normalization for Multi-Discipline Calculi

