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Decoding the earliest orogenic stages in the Andes, the largest subduction orogen on Earth is fundamental to un-
derstanding changes in climate, drainage organization, and biodiversity in South America. Furthermore, it is cru-
cial to unraveling the driving mechanism behind the initiation of orogeny. To track the earliest stages of Andean
growth, we studied the Aysén/Río Mayo basin (ARB) in the North Patagonian Andes. The small degree of Ceno-
zoic tectonic overprinting in this part of the Andes has allowed outstanding preservation of the deformational
and sedimentary record of the earliest Andean deformation. In this study, we employ a multidisciplinary ap-
proach involving structural geology, sedimentology, geochronology, and provenance studies from the Early Cre-
taceous Apeleg Formation (~130–122 Ma) in the ARB and geochemical analysis of intrusive Cretaceous igneous
rocks. Particularly, the recognition of syncontractional growth strata at several localities indicate a syntectonic or-
igin for this unit and provide additional structural evidence of Early Cretaceous contraction in the North Patago-
nian Andes. Thus, the Apeleg Formation is interpreted as deposited during a contractional basin stage.
Geochemical data from Aptian-Albian intrusive igneous rocks indicate that initial contraction emplaced over
thinned crust likely inherited from the Jurassic extension in the ARB. This stage is then comparedwith a new syn-
thesis of the earliest Cretaceous contraction along the Andes. This analysis reveals that the ARB likely holds the
oldest post-Gondwanic synorogenic unit along the orogen and more significantly, that Andean birth was a
diachronous process which propagated northward since the late Early Cretaceous. The latter findings have
major implications for the evolution of the Andes and shed light into the driving mechanism behind initial
orogeny.

© 2019 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Over the last decades, studies documenting the earliest Andean oro-
genic stages after western Gondwana breakup, have shown evidence of
shortening mostly since Late Cretaceous times (e.g. Dalziel et al., 1974;
Mégard, 1984; Wilson, 1991; Fildani et al., 2003; Mpodozis et al.,
2005; Arriagada et al., 2006; Jaimes and Freitas, 2006; Martin-
Gombojav and Winkler, 2008; Tunik et al., 2010; Fennell et al., 2015;
Gianni et al., 2015; Echaurren et al., 2016, 2017; Horton, 2008b;
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Horton et al., 2001; among others). At this time, the western South
American margin experienced a change in subduction dynamics that
lead to a shift in the tectonic regime from margin extension to backarc
contraction (Vicente, 1970; Auboin et al., 1973). This stage has been
classically linked to the Late Cretaceous separation from Africa at equa-
torial latitudes and the onset of the westward acceleration of South
America (Fig. 1) (Dalziel et al., 1974; Mpodozis and Ramos, 1990;
Coney and Evenchick, 1994). However, this hypothesis has been chal-
lenged in more recent studies. Faccenna et al. (2017) and Schellart
(2017) used numerical modeling to suggest that the tectonic shift to
contraction was triggered by subduction at lower mantle depth invigo-
rating convection and ultimately driving plate margin contraction. Par-
ticularly the work of Faccenna et al. (2017) suggest that the Andean
Cordillera main orogenic phase started at 60–50 Ma, after a long phase
V. All rights reserved.
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Fig. 1. a) This image shows the present tectonic setting of the Andean orogen and related foreland basins. Figuremodified fromHorton (2018a). b) Threemain stages of Andean subduction duringMesozoic times exemplified by the tectonic evolution
of the Southern Central Andes (33°S). Figure modified from Ramos (2009).
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of westward drifting of South America. This hypothesis has been re-
cently favored by Chen et al. (2019) based on the reconstruction of
the Meso-Cenozoic Nazca plate subduction. Several geological studies
addressing themost significant Paleogene toNeogene Andean deforma-
tion also assume that the Andes evolved after Late Cretaceous times
(Oncken et al., 2006; Farías et al., 2010; Giambiagi et al., 2012;
Decelles et al., 2015; Riesner et al., 2018, among many others).

Assessing the timing of the onset of the earliest Andean contrac-
tional stage is crucial to a better understanding of the geodynamic pro-
cesses that initiated subduction orogeny. Such data are necessary to
better comprehend the interactions between mantle-driven processes,
topographic evolution, climate dynamics, biodiversity changes and An-
dean deformation (e.g. Lamb and Davis, 2003; Poulsen et al., 2010;
Hoorn et al., 2010; Garzione et al., 2006; Nie et al., 2010; Baker et al.,
2014; Armijo et al., 2015). Also, this informationwould benefit interpre-
tations in studies assessing spatial and temporal trends in hydrology,
drainage organization, and ecology conditions (e.g. Mulch et al., 2010).

Hereinwe address several fundamental questions regarding Andean
evolution. Including, when and where did initial shortening precisely
began? Was the onset of contraction coeval along the length of Andes,
or did it propagate along strike? Uncertainties associated with these
questions are often compounded by a limited geologic record of pro-
gressive constractional conditions, scarce documentation of active con-
tractional structures contemporaneous to sedimentation, as well as
limited constraints on depositional age and provenance.

The North Patagonian Andes offers a remarkable opportunity to
evaluate the earliest Andean evolutionary stages. This segment has not
been subjected to significant crustal shortening (~20–7 km, Orts et al.,
2012; Echaurren et al., 2016; Gianni et al., 2017) and was not exten-
sively overprinted by subsequent tectonic stages as the rest of the
orogen (Fig. 2a). This allowed excellent preservation of the Mesozoic
sedimentary record, which is advantageous to track early Andean
growth. It is also noteworthy that one of the oldest Cretaceous angular
unconformities in the orogen, dated between 121 and 118Myr (Aptian)
(Suárez et al., 2009a; Suarez et al., 2010), has been described in this area
(e.g. Ramos, 1981a; Orts et al., 2012; Echaurren et al., 2017) (Fig. 2b).
Synorogenic deposits linked to this primitive Andean stage remain un-
documented. Some authors have suggested synorogenic deposition for
the late Hauterivian-Aptian Apeleg Formation of the Aysén/Río Mayo
Basin (ARB) (Aguirre-Urreta and Ramos, 1981) or the turbiditic
Ingenieros Formation (Folguera and Iannizzotto, 2004) (Fig. 2b). How-
ever, subsequent studies pointed out the lack of structural and sedimen-
tological evidence for the Early Cretaceous contraction and synorogenic
deposition in these units (Bell and Súarez, 1997; Depine and Ramos,
2004; Demant and González, 2010; Suárez et al., 2009a, 2009b).
Hence, most recent works have favored a model involving post-rift de-
position during thermal subsidence of the ARB rifting stage.

In this study, we provide structural, sedimentologic, geochronologic,
andprovenance data, in support of a synorogenic character for theApeleg
Formation.We also obtained geochemical data from Early Cretaceous ig-
neous rocks to estimate crustal thicknesses at this basin stage. Finally, the
inferred deformation event is compared with a compilation of studies
dealingwith the onset of the Cretaceous contraction along thewhole An-
dean Cordillera. This analysis reveals that the ARB holds the oldest post-
Gondwanic foreland basin deposits in the orogen. The latter suggests the
initiation of orogeny closely after southern SouthAtlantic opening,which
has direct implications for competing models of Andean birth.

2. Geological framework

The PatagonianAndes are located in the southern sector of the active
margin ofwestern SouthAmerica and are divided into theNorthern and
Fig. 2. a) Tectonic setting of the Patagonian Andes and the ARB (Aysén/RíoMayo Basin). Potentia
from Suárez et al. (2009a). c) Geological map from the study area based on Ploszkiewicz and Ram
General Carrera-Buenos Aires, LP: Lago Posadas, CHC: Chonos metamorphic complex, EAC: Eas
Austral Patagonian Andes at the Aysén triple junction (46°30′S)
(Fig. 2a). North of this triple junction, the Nazca plate subducts beneath
the North Patagonian Andes, while to the south the Antarctic plate is
subducting under the Austral and Fuegian Andes.

During theMesozoic, this regionwas subjected to regional extension
related to the breakup of Western Gondwana producing several basins
within the arc, retroarc and intraplate areas (Uliana et al., 1989). In
the Early Jurassic, regional extension developed an NNW-trending
retroarc marine/continental basin in Patagonia. In the North Patagonian
Andes, deposits associatedwith this Early Jurassic basin are represented
by volcaniclasticmarine deposits of the Ostarena Formation (e.g. Suárez
and Márquez, 2007) (Fig. 2b). From Middle to Late Jurassic times, sev-
eral extensional depocenters developed associated with the eruption
of extensive silicic volcanic rocks (Pankhurst et al., 2000). Subsequently,
the last extensional stage took place between ~155 and 140Myr during
a southwestward shift of mesosilicic magmatism. This terminal exten-
sional stage process produced the marine intraarc to backarc ARB
(Ramos and Palma, 1983) (Fig. 2a).

The stratigraphy of the ARB comprises the volcanic calc-alkaline
rocks of the Ibañez-Lago La Plata formations and the sedimentary and
volcanic rocks of the Coyhaique Group (Suárez et al., 1996; Ramos,
1981a; Iannizzotto et al., 2004) (Fig. 2a). The latter includes, from base
to top, the Toqui-Tres Lagunas, Katterfeld-Ingenieros and Apeleg forma-
tions. The Toqui and Tres Lagunas formations consist of shallowmarine
sedimentary deposits interbedded with pyroclastic rocks. Both units
represent diachronic marine ingression. A Tithonian to Valanginian
age for these units have been assigned based on ammonites and zircon
U-Pb SHRIMP dating (see Suárez et al., 2009a and references therein).
The Katterfeld Formation consists of black shales holding Valanginian
to Hauterivian ammonites (Olivero and Aguirre-Urreta, 2002). This
unit deposited in a restricted shelf environment that interfingered to
the east with prodelta turbidites of the.

Ingenieros Formation (Iannizzotto et al., 2004). The youngest unit in
the ARB is the Apeleg Formation, which is the focus of this study. This
unit overlies and interfingers with the Katterfeld Formation
(Ploszkiewicz and Ramos, 1987; González-Bonorino and Suárez,
1995). To the east, on the Argentinian side of the ARB, this unit mostly
consists of deltaic sandstones and conglomerates (Ramos, 1981a;
Hechem et al., 1993). In the western ARB in Chile, the Apeleg Formation
presents facies characteristic of muddy flats and tidal sandbars
interpreted as deposited in a shallow marine environment (Bell and
Súarez, 1997). The upper sections of the Apeleg Formation record the
final shallowing of the marine Aisén Basin. This is interpreted based
on the description of basaltic volcanism and the formation of andesitic
surtseyan tuff cones of the Baño Nuevo Volcanic Complex accumulated
synchronously with the ultimate sedimentary stages of the Apeleg For-
mation (Demant and González, 2010) (Fig. 2b). Surtseyan tuff cones re-
sulted from shallow level magma–water interaction during the
emergence and growth of monogenetic volcanoes through standing
water in the shallowing Aisén Basin (Demant et al., 2007).

The base of the Apeleg Formation is considered Hauterivian
(~131–126 Ma; Aguirre-Urreta et al., 2019), based on the presence of
Favrella sp. An early Aptian age is interpreted for the upper Apeleg For-
mation indicated by the ammonite Tropaeum or Australiceras sp. (Bell
and Súarez, 1997; Suárez et al., 2009a and references therein). The latter
is supported by radiometric ages of 122 and 121Ma interfingered lavas
and tuff cones in the top beds of this unit (three amphibole Ar/Ar ages
and one U-Pb SHRIMP) obtained from interbedded volcanic rocks of
the Baño Nuevo complex located 60 km to the southwest of the study
area (Suarez et al., 2010) (Fig. 2b).

Following the Cretaceousmarine regression, the ARBwas covered in
angular unconformity by subaerial calcalkaline volcanic rocks belonging
l source areas to the Apeleg Formation are also shown. b) Stratigraphy of theARBmodified
os (1987) and our ownmapping. Abbreviations are LPF: Lago La Plata-Fontana, CBA: Lago

tern Andean complex, SCB: Subcordilleran Batholith, CPB: Central Patagonian Batholith.
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to the Divisadero Group (Ramos, 1981a; Suárez et al., 2009a) (Fig. 2b).
The age of this unit has been constrained through U-Pb SHRIMP zircon
dating that yielded ages between ~118 to 102 Myr (Pankhurst et al.,
2003). The Divisadero Group is linked to a major magmatic stage asso-
ciated with the Patagonian Batholith, which began its emplacement
since Late Jurassic (see Echaurren et al., 2017 for a synthesis). The angu-
lar unconformity at the base of the Divisadero Group has been
interpreted as evidence of one of the oldest Andean uplift stages
(Iannizzotto et al., 2004). This contractional event has been constrained
to the 121–118 Myr time interval (Aptian) based on geochronological
data from the Apeleg Formation and the Divisadero Group (Suárez
et al., 2009a) (Fig. 2b). In the study area, this magmatic stage is also rep-
resented by subvolcanic bodies such as sills and dikes and granitoids in-
truding the Apeleg Formation (Ploszkiewicz and Ramos, 1987) (Fig. 2c).
Finally, a Late Cretaceous contractional episode is associated with the
tectonic emplacement of the Patagonian Batholith in the Lago La
Plata-Fontana fold belt (Ramos and Palma, 1983; Iannizzotto et al.,
2004) (LPF in Fig. 2a).
3. Methodology

3.1. Sedimentology of the Apeleg Formation

To understand the depositional environment of the Apeleg Forma-
tion, we describe sedimentary sections in different structures of the ex-
ternal sector of the LPF (Fig. 2c). Beds were divided into facies taking
into account lithologic composition, sedimentary structures, and facies
geometry. These sections provided the framework to sedimentologic
data, conglomerate clasts counts, petrographic thin sections, and detri-
tal zircon (U-Pb) sampling. Also, we measured 270 paleocurrent orien-
tations at 29 sites in tabular cross-stratified sandstones. These were
later restored for bedding tilt (see Table S1 in supplementary data for
the complete dataset).
3.2. Growth strata detection

To study growth structures in the Apeleg Formation, we carried out
direct dip measurements, recorded changes in bed thickness, and iden-
tified intraformational angular unconformities (Riba, 1976). Also, we
registered the presence of sedimentary onlaps towards fold hinges or
faults on contractional structures. This methodology is suitable to dis-
tinguish distinctive bed fanning in growth strata from drag folds
forming local flexures in homoclinal beds near normal or contractional
faults in the hangingwall (e.g. Gianni et al., 2018a). To discriminate con-
tractional fanning structures from those developed during exten-
sion, such as tectonic rollover growth-strata folds (e.g. Finch et al.,
2004), growth strata associated with fault-tip monoclines
(Gawthorpe and Hardy, 2002) or delta-related synsedimentary nor-
mal faulting (e.g. Bhattacharya and Davies, 2001); we only studied
sections closely associated with structures with clear contractional
kinematics. Moreover, as mesoscale normal faults in synextensional
deposits are often preserved even after strong inversion of the
depocenter bounding normal faults (Bechis et al., 2010; Giambiagi
et al., 2011), determination of their absence at all localities was
used as an additional criterion to discard a synextensional origin
for growth strata geometries. When possible we recognized typical
syntectonic geometries formed during thrusting such as syncline-
growth structures (e.g. Hong et al., 2007). We analyzed areas devoid
of pervasive shearing to prevent mistaking syntectonic deposits with
strata divergence and thickening caused by potential trishear fold-
ing. Furthermore, we combined our analysis of growth strata with
paleocurrent determinations which provide information about flow
directions and related modifications during the development of con-
tractional structures (Burbank et al., 1996).
3.3. Provenance analysis

In order to determine potential sediment source areas in the Apeleg
Formation, we present data from conglomerate and sandstone compo-
sitions, and carried out U-Pb zircon geochronology.

For conglomerate composition we conducted clasts counts at 9 sites
using 30 × 30 cm grids on outcrops of pebble to cobble conglomerates.
Clastswere identified according to rock type,mineralogy, and grain size.

For sandstone composition we conducted petrographic analyses on
21 samples of sandstones from the Apeleg Formation (refer to tables
S2 and S3 in supplementary data for the complete dataset). We ob-
tained thin sections for each sample and carried out 300 grains point-
counting using the Gazzy-Dickinsonmethod (Gazzi, 1966; Zuffa, 1985).

For U-Pb zircon geochronology we collected a sample from the base
of the La Esperanza section (sample APG152, location in Fig. 2c; see sup-
plementary table S5 in material for the complete dataset). Heavy-
mineral concentrates of the b350 μm fraction were separated using tra-
ditional techniques at ZirChron LLC. Zircons from the non-magnetic
fraction were mounted in a 1-in. diameter epoxy puck and slightly
ground and polished to expose the surface and for laser ablation analy-
ses. After cathode-luminescence (CL) imaging atUniversity of Idaho, the
LA-ICP-MS U-Pb analyses were carried out atWashington State Univer-
sity using a NewWave Nd: YAG UV 213-nm laser coupled to a Thermo
Finnigan Element 2 single collector, double-focusing, magnetic sector
ICP-MS. Operating parameters and procedures are similar to those of
Chang et al. (2006). Laser spot size and repetition rates were 30 μm
and 10 Hz, respectively. He and Ar carrier gases delivered the sample
aerosol to the plasma. Each analysis consists of a short blank analysis
followed by 250 sweeps through masses 202, 204, 206, 207, 208, 232,
235, and 238, taking approximately 30 s. Time-independent fraction-
ation was corrected by normalizing U/Pb and Pb/Pb ratios of the un-
knowns to the zircon standards (Chang et al., 2006). U and Th
concentrations were monitored by comparing to NIST 610 trace ele-
ment glass. Two zircon standards were used: Plesovice, with an age of
338 Ma (Sláma et al., 2008) and FC-1, with an age of 1099 Ma (Paces
and Miller, 1993). Uranium lead ages were calculated and plots gener-
ated using Isoplot (Ludwig, 2003). To determine the maximum deposi-
tional ages we identify the youngest age group (more than three)
overlapping within the error (Gehrels et al., 2006). Then, we calculated
an age from this group using the Tuffzirc algorithm of Ludwig (2003)
and age errors were reported using the quadratic sum of the analytical
error plus the total systematic error for the set of analyses (Gehrels
et al., 2008).

An additional medium-grained sandstone sample was collected
from the Apeleg Formation near the town of Apeleg (19APL01; location
in Fig. 2c; see supplementary table S5 in material for the complete
dataset). Standard zircon isolation methods were used including rock
crushing and grinding, as well as hydraulic, heavy-liquid density and
magnetic separation at the University of Texas at Austin following the
mineral separation guidelines of the University of Arizona LaserChron
Center (Gehrels et al., 2006). Zircon grains were poured into 20 μm
thick epoxy mounts, polished and imaged at the University of Arizona
LaserChron. Zircon U-Pb geochronological analyses were conducted
over two sessions at the Arizona LaserChron Center by laser ablation in-
ductively coupled plasma mass spectrometry (LA-ICPMS) on the Ele-
ment2 HR ICMPS following the analytical techniques of Gehrels et al.
(2006, 2008) and Gehrels and Pecha (2014). Backscatter electron im-
ages were used to pick analytical spots at random. Spots were ablated
with a beam diameter of 20 μm, a laser wavelength of 193 nm, at a rep-
etition rate of 8 Hz, and a fluence of ~5 J/cm2. Age calibration standards
include: Sri Lanka, FC-1, and R33. Uncertainties of 1–2% (1σ error) are
reported for 206Pb/238U and 206Pb/207Pb ages. We report 206Pb/238U
ages for zircons younger than 900 Ma and 206Pb/207Pb ages for zircons
older than 900 Ma. Individual analyses were filtered by N20% discor-
dance, N5% reverse discordance, or 10% internal uncertainty. Ages and
associated uncertainties are presented in the following section as
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histograms and probability density plots (Sharman et al., 2018), en-
abling the discrimination of key age populations and visual graphical
comparison. Age peaks are defined by three or more zircon grains
with individual ages that overlap at the 1σ level.

3.4. Geochemistry

To quantify crustal thickness in Early Cretaceous times and to deter-
mine the nature of themagmatism in the study areawe analyzed Aptian
igneous rocks from the Divisadero Group intruding the Apeleg Forma-
tion (Fig. 2c). We selected five samples from the Divisadero Group for
a geochemical analysis (see the precise locations and table S4 in supple-
mentary data), corresponding to several granodioritic to tonalitic intru-
sives and a subvolcanic rhyolitic body. The totality of collected samples
corresponds to fresh rocks. The analyseswere performed by Acmelabs –
Bureau Veritas, Vancouver, Canada. Major, trace and rare earth element
(REE) contents were determined ICP/ICP MS (Inductively Coupled
Plasma Mass Spectrometry). For complete details in the procedure
followed by the laboratory refer to code LF202 in www.acmelab.com.
For metallic elements, a solution was made with aqua regia and then
an ICP-ES/MS (Inductively Coupled Plasma-Emission Spectrometer/
Mass) analysis.

4. Results and interpretations

4.1. Sedimentology

We studied six sedimentary sections (Apeleg, La Magdalena, La
Esperanza, Apestaluga, La Pepita and Trampa de Puma areas) outcrop-
ping related to different contractional structures (Fig. 2c). In the exam-
ined areas, this unit mainly consists of pale green and brown sandstone,
conglomeratic sandstone and conglomerate. The unit is locally intruded
by dacitic to rhyolitic dikes at several localities (Fig. 3). We identified
eight lithofacies in the Apeleg Formation (Table 1) (Fig. 4). 1) Black
mudstones and shales (F). This facies only appears at the Trampa de
Puma section and presents bed thickness ranging from 15 to 400 cm
(Fig. 3). It is interpreted as reflecting suspension settling in waning
flow conditions. 2) Horizontally stratified sandstones (Sh). This facies
consists of medium- to coarse- and sometimes pebbly sandstones
with 1–40 cm bedding, occasional coarsening upward, and hosting ori-
ented petrified logs. It is interpreted as deposited under upper flow re-
gime conditions. 3) Massive sandstones (Sm). This facies is
characterized by a 30–80 cmbed thickness, sharp basal contacts and oc-
casional thinning upward. This is interpreted as related to rapid deposi-
tion by sheet or sediment gravity flows. 4) Planar cross-stratified
sandstones (Sp). This facies forms laterally continuous beds with a set
thickness between 50 and 200 cm with occasional burrows and ori-
ented petrified logs. Fluid escape and synsedimentary deformational
structures are locally observed. It is interpreted as related to the migra-
tion of large 2-D dunes. 5) Hummocky cross-stratified sandstones
(HCS). This facies occurs only occasionally and presents undulating
cross-beds and low-angle truncations (Fig. 3). This is interpreted as
the result of storm waves and deposition in the lower shoreface and
transition zone between fairweather wave-base and storm wave-base.
Particularly, at the La Pepita area, this facies appears interbedded with
highly bioturbated fine-grained massive sandstones showing Planolites
sp., Gyrochorte sp., Asteriacites lumbricales, Ophioichnus aysenensis,
which characterized the Cruziana ichnofacies (Fig. 4). This ichnofacies
has been previously identified in the Apeleg Formation and described
in detail by Bell (2004). 6) Clast-supported and planar cross-stratified
conglomerates (Gcp). This facies is interpreted as deposited in longitu-
dinal bars. 7) Clast-supported and massive conglomerates (Gcm) likely
deposited from sheetfloods and clast-rich debris flows. 8) Matrix-
supported andmassive conglomerates (Gmm) interpreted as deposited
by debris flows.
We classify these facies into threemain facies associations (Table 2).
Facies association S1 makes up most of the analyzed sections in the
Apeleg Formation. It consists of medium- to coarse-grained sandstones
with planar cross-stratification (Sp) and horizontal stratification (Sh) as
well as occasional beds with HCS. Paleocurrent measurements in Sp
mostly indicate unimodal paleoflows showing low dispersion and
main directions to the W and WNW except for the Apestaluga area
with directions roughly to the E (Fig. 3). We interpret this facies associ-
ation as indicating deposition in a delta-front from rapidly decelerating
unidirectional flows in distributary mouth-bar environments. The pres-
ence of HCS is interpreted as indicating sporadic reworking of sandy
delta-front lithofacies by storm processes. Preservation of structures
formed by unidirectional flows could have been favored by high rates
of deposition and rapid burial in this setting (Bhattacharya, 2006).
This interpretation is compatible with the occurrence of stressed trace
fossils of Cruziana ichnofacies (Bell, 2004) at La Pepita area and the pres-
ence of glauconite (3.77–0.45%) in samples from Sp, Sh and HCS
lithofacies (see supplementary table S2). Facies association S2 only ap-
pears at Trampa del Puma section. This contains medium-grained mas-
sive sandstones of facies Sm intercalated with dark shales and
mudstones of facies F (Fig. 4). At this locality, Sm contains abundant
mudstone rip-up clasts (Fig. 4e). This association is interpreted as de-
posited by turbidity currents in a prodelta environment where facies
Sm are interpreted as Ta Bouma cycles.

The G1 association occurs mostly separated from S1 and S2 and is
mainly present to the west of the study area at La Magdalena area.
This facies association is composed of massive and planar cross-
bedded conglomerates of Gcp, Gcm and Gmm and massive sandstones
of Sm lithofacies. This is interpreted as debris or hyperconcentrated
flows on an alluvial fan. (Figs. 2c and 3).

We interpret the sedimentary environment of the Apeleg Formation
in the analyzed area as deposited in a deltaic setting. Only locally an al-
luvial environment is interpreted to thewest at LaMagdalena area pos-
sibly related to deposition in an upper delta plain setting where river
processes dominate (Bhattacharya, 2006). According to the paleoflow
determinations, this deltaic system could have been fed mostly from
the E and ENE and more locally from the W (Apestaluga area) (Fig. 3).
These interpretations are in harmony with previous findings in neigh-
boring areas in the eastern sector of the ARB interpreting a mostly del-
taic environment in the Apeleg Formation (Scasso, 1989; Hechem
et al., 1993; González-Bonorino and Suárez, 1995). According to
Scasso (1987), this deltaic system was fed by fluvial systems repre-
sented by the Valanginian-Aptian Puesto Albornoz and Manantial
Pelado formations outcropping to the east of the study area.

4.2. Evidence of syncontractional deposition: growth strata in the Apeleg
Formation and structural evidence of Cretaceous contraction

The general structure in the study area is characterized by the pres-
ence of two sets of structures. A WNW- and WSW-striking regional-
scale fractures and several WNW- WSW- and ~N-striking thrust and
folds with a wavelength of ~1–2 km (Ploszkiewicz and Ramos, 1987)
(Fig. 2c). According to Folguera and Iannizzotto (2004), the structure
of the North Patagonian Andes in this area is related to basin inversion
of previous Late Jurassic-Neocomian depocenters of the ARB. However,
as the study area lacks seismic reflection data and synrift units are not
well exposed, we therefore cannot infer the deep structure and related
deformation mechanism.

In thiswork, syncontractional growth strata in the Apeleg Formation
were detected in numerous structures that constitute the orogenic front
of the North Patagonian Andes at the study area. In the western sector,
at the la Magdalena area, we observe strata dip variations from 35° to
12–9° to the NE, sedimentary wedging and bed thickness changes in
the forelimb of an N-striking and eastward verging anticline (Figs. 2c
and 5a, b).To the east, we also found growth strata geometries in the vi-
cinity of the Apeleg area (Fig. 2c). In this sector, a westward verging and

http://www.acmelab.com


Fig. 3.Measured stratigraphic sections in the Apeleg Formation at the study area showing lithologies, sedimentary structures, paleocurrents, conglomerate clast compositions. Sandstone petrographic sample locations and U/Pb sample location are
also shown. For the location of the sections see Fig. 2c.
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Table 1
Description and interpretation of lithofacies.

Facies
code

Description Process interpretation

F Organic-rich mudstones and shales
with 15 cm-4 m bed thickness

Suspension-settling in waning flow
conditions in turbidity currents

Sh Medium- to coarse-grained and
sometimes pebbly sandstone;
horizontally stratified with
eventual burrows; laterally
continuous, sharp-basal contacts to
slightly erosional; 1–40 cm bed
thickness; rare gravel, occasional
coarsening upward; petrified
trunks (up to 50-cm diameter)

Planar bed flow; upper
flow regime

Sm Medium- to coarse-grained
sandstone; massive; 30–80 cm bed
thickness; sharp basal contacts;
occasional thinning upward.

Rapid deposition by
sediment gravity or sheet
flow

Sp Coarse-grained and pebbly
sandstone with occasional pelitic
clasts, planar (tangencial)
cross-stratification, set thickness
50–200 cm; eventual burrows;
laterally continuous, petrified
trunks

Migration of large 2D ripples
(dunes) under moderately
powerful, unidirectional
channelized flows.

HCS Medium- to coarse- grained
sandstone with hummocky
cross-stratification,; 15–30 cm bed
thickness, locally interfingered with
bioturbated fine-sandstone holding
Planolites sp., Gyrochorte sp.,
Asteriacites lumbricales, Ophioichnus
aysenensis

Storm beds deposited in a shallow
marine setting in the outer
shoreface and transition zone
between fairweather wave-base
and storm wave-base.

Gcp Subangular to rounded pebble to
cobble polymictic conglomerate,
clast-supported, planar
cross-stratified

Migration of longitudinal bars

Gcm Subangular to rounded pebble to
cobble polymictic conglomerate,
poorly sorted, clast-supported,
structureless, massive, poorly
organized

Deposition from sheetfloods and
clast-rich debris flows

Gmm Subangular to rounded pebble
polymictic conglomerate, matrix
supported, disorganized, poorly
sorted

Hyperconcentrated flow or debris
flow
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NW-striking anticline depicts fanning strata from 30° to 6° roughly to
the west and a systematic thinning of the sedimentary packages to-
wards the anticline hinge (Figs. 5c, d). The central sector of the study
area presents a series of thrusts and folds with a variable strike
(Fig. 2c). This zone is characterized by the presence of the El Amigo syn-
cline, which depicts a change in strike from NNW in the northern ex-
treme to SSW in the southern area (Fig. 5e). Based on the
documentation of opposite dipping fanning strata on both syncline
flanks, this structure is interpreted as a syncline growth (Fig. 5e). The
western flank, at the Apestaluga location, is linked to an east-verging
thrust to the west and presents growth geometries with eastward dip-
ping strata variations from 30° to 3° (Fig. 5f). To the south, this same
structure propagates an anticline which presents overturned fanning
strata that define a dip variance of ~115° (Fig. 5g). Beds at the base pres-
ent strata dips ranging from 73 to 53° to the NW, and to the top of the
section, beds depict dips variations from22 to 12° to E (Fig. 5g). Notably,
up-section attenuation in bed deformation over the frontal limb of this
structure follows typical geometries found in syncontractional growth
folds (e.g. Suppe et al., 1997). The eastern flank, at the La Esperanza
area, describes growth strata with beds presenting systematic thinning
towards the SSE and dip variations from 40° to 4° to the NNW (Fig. 5h,i,
j). In the southernmost sector of the study area, a large-scale growth
structure is identified at the La Pepita area (Fig. 2c). This structure de-
picts an internal syntectonic angular unconformity within the
succession, sedimentary onlaps and systematic thickness variations,
and fanning strata from 40° to 7–3° to the NW (Fig. 5k).

All the localities with growth strata present fanning directions that
are compatible with paleoflow determinations. The only exception is
the La Magdalena area that lacks structures from where to obtain
paleocurrent measurements (Fig. 3 and 5c, e, k).

Particularly interesting is the El Amigo syncline growth at the
Apestaluga and La Esperanza areas, where we determined a convergent
paleoflow towards the syncline axis. This highlights the influence of this
contractional structure on the local paleoflow during deposition of the
Apeleg Formation and further supports the syncontractional origin of
the growth strata.

Overall, the fact that normal faulting or the evidence of reactivated
faults at macro- and meso-scale in syntectonic deposits (e.g. Bechis
et al., 2010; Giambiagi et al., 2011) is absent at all localities as well as
the fact that most growth geometries are directly related to contrac-
tional structures preclude linking growth strata to an extensional set-
ting. Additionally, no growth normal-faulting has been observed that
could help linking growth strata genesis to sedimentary dynamics in
deltaic environments (Bhattacharya and Davies, 2001). Furthermore,
described geometries associated with overturned folds terminating in
gently dipping beds as well as opposing dipping growth strata associ-
ated with the El Amigo syncline differ from classical large-scale
clynoform geometries described in Gilbert-type deltas.

Independent evidence suggesting that these structures began to
form in Early Cretaceous times is derived from cross-cutting structural
relationships between the Divisadero Group (Aptian-Cenomanian)
(Ploszkiewicz and Ramos, 1987) and the Apeleg Formation. This is illus-
trated by the presence of relatively undeformed rhyolitic dikes at the
Apestaluga area and Early Cretaceous quartz veins (Domínguez, 1981;
Lanfranchini et al., 1999) at La Pepita area intruding previously formed
thrusts and syncline folds (Fig. 6).

4.3. Provenance of the Apeleg Formation

4.3.1. Conglomerate composition
Conglomerates were classified into two groups: volcanic silicic rocks

(dacite and rhyolite) and quartz clasts. Conglomerates from the Apeleg
Formation show N80% volcanic clasts and more limited quartz (Fig. 3).

Volcanic clasts composition indicates sediment derived from two
potential sources, both linked to the Chon Aike Magmatic Province in
Patagonia (Pankhurst et al., 2000). One located to the west and around
the study area known as the V3 stage, which is represented by the Lago
La Plata Formation (Fig. 2a) and the other to the east, associated with
the V1 and V2 stages (Marifil Formation and Bahia Laura Group) in
the foreland sector. In particular, the latter volcanic source is supported
by paleocurrent data. On the other hand, quartz detritus could have
originated from multiple metamorphic sources such as the late Paleo-
zoic Eastern Andean Complex (EAC) to the south or the Triassic Chonos
Metamorphic Complex (CMC) to the west or metamorphic Paleozoic
basements located to NE and SE (North PatagonianMassif and Deseado
Massif, respectively) (Fig. 2a).

4.3.2. Sandstone composition
Grain categories are outlined in Table 3, whereas results are plotted

in ternary diagrams (Fig. 3a, b, and c; Folk et al., 1970; Dickinson, 1983).
Analyzed sandstones are in all cases medium-to-coarse grained. Quartz
is abundant; being monocrystalline quartz (Qm) and Polycrystalline
quartz (Qpg) the most frequent varieties (15% of total framework
grains). K-feldspar is more frequent than plagioclase (19% vs 0.44%).
The lithic fraction is largely dominated by acidic volcanic fragments
(27% of total framework grains) with minor contributions of plutonic
fragments (7.7%). Glauconitic grains are subordinated (0.78%), although
their content is as high as 3.77% in two of the analyzed samples. Accord-
ing to Folk et al. (1970) classification scheme, these arenites classify as
lithoarenites and feldspathic lithoarenites, with variable contents of



Fig. 4. Photographs of sandstone and gravel lithofacies from the Apeleg Formation in the study area. a) Horizontally stratified sandstones (Sh). b) Petrified logs in Sh. c) Planar cross-
stratified sandstones (Sp). d) Field photograph of S1 facies association. e) Field photograph of S2 facies association of interbedded massive sandstones (Sm) and shales (F). f) Planar
cross-bedded conglomerates (Gcp). g) Massive clast-supported conglomerates (Gcm). h) Massive matrix-supported conglomerates (Gmm). i) Sandstones with hummocky cross-
stratification (HCS). j) Bioturbated sandstones with marine trace fossils characteristic of the Cruziana ichnofacies.
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Table 2
Description and interpretation of facies associations.

S1: Cross-stratified and bedded
sandstones

Sh, Sp,
HCS

Deposition in terminal
distributary channels and mouth
bars in a delta front
environment with occasional
storm reworking

S2: Mudstones and shales with
interbedded massive sandstones

F, Sm Prodelta

G1: Cross-stratified and massive
conglomerates with interbedded
massive sandstones

Gcp,
Gcm,
Gmm,
Sm

Alluvial fan
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quartz (Fig. 7a). This is coherent with petrographic observations, where
volcanic fragments constitute the majority of framework grains, with
minor K-feldspar, and quartz. Dickinson (1983) QFL diagram indicate
multiple sources for these sediments. A volcanic source (Transitional
and Dissected Arc) is interpreted due to the high abundance of volcanic
fragments (Fig. 7b). On the other hand, a Recycled Orogen source is
probably linked to high total quartz contents. The QmFLt diagram also
shows multiple detrital sources. The volcanic source is again dominant
(Arc fields), whereas a Recycled Lithic-to-Transitional Orogen consti-
tutes aminor source, as evidenced by the samples plotted in those fields
and the Mixed Sources Field (Fig. 7c).Overall, these arenites are mainly
composed of volcanic lithic fragments, monocrystalline quartz, poly-
crystalline quartz, and K-feldspar. In some cases glauconitic grains are
abundant.

Similar to the conglomerate composition, the most likely volcanic
sources for these sediments are the V3 stage in the west or the V1 and
V2 stages in the east, which all belong to the Chon Aike magmatic prov-
ince (Fig. 2a). These source areas would have contributed to volcanic
lithic fragments and monocrystalline quartz grains. A second source
area corresponds to a recycled orogen, which probably was the source
of both, polycrystalline quartz and K-feldspar. The latter could have
originated from metamorphic rocks of the EAC in the Andes to the
south or CMC in the west (Fig. 2a).

4.3.3. Detrital zircon U-Pb geochronology

4.3.3.1. Maximum depositional age of the Apeleg Formation. Sample
19APL01 yielded two youngest grains which overlap within error
(Fig. 7d). These results suggest a maximum depositional age of
~130–124 Ma, in agreement with the late Hauterivian to Aptian fossil
record described in this unit (see Suárez et al., 2009a). Sample APG-
152 was collected from the base of the sedimentary section at the La
Esperanza area. This sample yielded a single youngest grain of
~150Ma. The youngest grain population is not representative of the de-
positional age of the Apeleg Formation, perhaps due to a lower number
of grains analyzed.

4.3.3.2. Provenance of the Apeleg Formation. The spectrumof the N360 zir-
con U-Pb ages obtained from two detrital sandstone samples fall domi-
nantly between ~150 Ma and 333 Ma (see supplementary table S5for a
complete dataset) (Fig. 7d). The distribution of these ages present bi-
modal graphical peaks at ~183–182 Ma and ~159–155 Ma (Fig. 7d).
There are minor age populations of Carboniferous (~333–311 Ma),
Permian (~292–258 Ma), and Triassic (~248–211 Ma) age grains.

Two potential sediment source zones could have supplied popula-
tions represented by these age peaks. In the North Patagonian Andes,
immediately to the north of the study area, a possible source is I-type
calc-alkaline intrusives of the Subcordilleran batholith (SCB)
(190–178 Ma) (Rapela et al., 2005) (Fig. 2a). Alternatively, detritus
could have been delivered from the Patagonian interior to the east,
from the silicic volcanic rocks of the Jurassic V1 stage (188–178 Ma) of
the Chon Aike Magmatic Province (Pankhurst et al., 2000). The Patago-
nian interior has two potential sediment source regions characterized
by the V1 volcanic stage, one in the North Patagonian Massif (NPM)
(Marifil Formation) to the NE and the other to the ENE from the Lonco
Trapial Group (Fig. 2a). Both sources, the SCB, and the V1may have con-
tributed to the Apeleg Formation. However, the mostly westward-
directed paleocurrents and the predominance of volcanic clasts in con-
glomerates and the sandstonepetrographic analyses suggest that the V1
(Marifil and/or Lonco Trapial Group) was the dominant source (Figs. 3
and 7). Futhermore, Butler et al. (2019) recently suggested that the
SCB began supplying sediment to wedgetop and foreland depocenters
in the middle-late Miocene coincident the main phase of fold-thrust
belt development. It is noteworthy that several previous studies also
demonstrate the significance of the V1 sediment source in Aptian-
Albian units in different Patagonian basins (e.g. Navarro et al., 2015;
Ghiglione et al., 2015; Malkowski et al., 2017; Sickmann et al., 2019).
The smaller age population between ~160–150 Ma most likely corre-
sponds to the V3 volcanic stage (157–142 Ma), exposed along the
Andes forming the basement to the Coyhayque Group in the ARB
(Ramos, 1981a) (Fig. 2a). Carboniferous to Triassic zircons could have
been supplied from Paleozoic–Triassic metamorphic complexes associ-
ated with the proto-Andean convergent margin as seen in Cretaceous
units from the Austral-Magallanes Basin (Malkowski et al., 2017)
(Fig. 2a). Alternatively, Carboniferous and Permian zircons could have
been delivered from the northeast from late Paleozoic (~320–250 Ma)
subalkaline granitoids in the northern and western sector of the North
Patagonian Massif (Ramos, 2008) (Fig. 2a). Triassic zircons may also
have had an eastern source corresponding with granitoids from the
Central Patagonian Batholith (CPB) (223–201 Ma; Rapela et al., 2005)
(Fig. 2a).

4.3.4. Geochemistry of Divisadero magmatism
We analyzed Aptian igneous rocks from the Divisadero Group in-

truding the Apeleg Formation to obtain an estimation of the Early Creta-
ceous crustal thickness and to determine the nature of the magmatism
in the study area (Fig. 2c). Age determinations (K/Ar and U/Pb) for
this unit in the study area have yielded ages between 117 and 107
Myr (Ramos, 1981a; Rolando et al., 2002) (Fig. 2c). Thus, geochemical
data from these rocks can give us information regarding the crustal
thickness immediately after the contractional stage recorded from
growth strata and by cross-cut structural relations (Figs. 5 and 6).

We present major and trace element composition of four intrusive
rocks and one lava dome (see table S5 in the supplementary informa-
tion for the complete dataset).We compared these samples with a pub-
lished geochemical compilation of the Divisadero Group from
Echaurren et al. (2017) which is representative of the background re-
gional trend. In terms of composition these rocks classify as granites
and granodiorites with a high silica content (SiO2 68.13–77.84 wt%.
Fig. 8a), low MgO, Fe2O3(t) and TiO2 contents (0.22–1.28, 1.6–3.57 and
0.07–0.53 wt%, respectively) and Al2O3 contents of 13.1–16.45 wt%. All
samples show a clear calc-alkaline and high-K calc-alkaline affinity in
the K2O vs. SiO2 diagram (Peccerillo and Taylor, 1976. Fig. 8b), and
values of alumina saturation index predominantly below of 1.1
(Fig. 8c), except for one sample presenting higher values. The latter al-
lows classifying these Cretaceous rocks as related to a metaluminous
to peraluminous magmatism (Shand, 1943), with a predominance of
I-type granites (Chappel and White, 2001) (Fig. 8c). On the other
hand, the tracemultielemental diagramnormalized to a primitiveman-
tle (McDonough and Sun, 1995) shows an enrichment of Th, U and Pb,
and negative anomalies of Nb, Ta and Ti (Fig. 8d), which suggests an or-
igin linked to subduction (Thompson et al., 1984; among others). This is
in agreement with the geotectonic setting discrimination diagrams of
Pearce et al. (1984) (Y + Nb vs. Rb, Y vs. Nb), and the Th/Nb vs SiO2

and La/Nb vs SiO2 diagrams of Müntener et al. (2018) indicating a sub-
duction setting (Fig. 8e,f and g). Regarding cortical thickness estima-
tions, the La/Yb(N) ratio (5.15–10.75) (normalized to chondrite,
Nakamura (1974)), indicates a range between 18 and 23 km according
to Hu et al. (2017) (Dm=27.78 ln[0.34 (La/Yb)N]) (Fig. 8h), suggesting



Fig. 5. Syncontractional growth strata from the Apeleg Formation. a)Map view of growth strata at the LaMagdalena area. b)field data of the basal section of growth strata in the later area.
c) Landsat image showing structural data, paleocurrent results, and d) a field picture of growth strata at the Apeleg area. e) Local sketchmap of the Apestaluga-La Esperanza areas showing
structural data, paleocurrent results, and locations of growth structures related to the El Amigo syncline. f) Growth strata in the northern sector of theApestaluga area and g) anticlinewith
overturned fanning strata to the south. h) Google Earth image showing the location of (i and j) growth structures in the La Esperanza area. k) Paleocurrent data and growth strata at La
Pepita area. For locations see Fig. 2c. Original field photograph can be found at supplementary information in Fig. S1.
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Fig. 6.Cross-cutting structural evidences of the late Early Cretaceous contraction in the external area of the LPF. (a) Landsat image and (b–c)field pictures showing contractional structures
cut by rhyolitic dikes related to theAptianDivisaderoGroup volcanic rocks in theApestaluga area. (d) Landsat image and (e)field picture showing a thrust cut by quartz veins related to the
Divisadero Group magmatism in the La Pepita area. See Fig. 2c for the location.
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the existence of a thin Early Cretaceous crust. This is also evidenced by
the low values of Sm/Yb ratio (1.14–2.41) indicatingmagma generation
at relatively low pressure in the stability range of pyroxene (Fig. 8i. Kay
et al., 1991).

Crustal thickness estimation derived from 117 to 107 Myr rocks of
the Divisadero Group indicates that initial Andean contraction recorded
in the study area took place in a thin crust. A reasonable explanation for
Table 3
Classifications for sandstone petrographic point counts.

Symbol Description

Qm Monocrystalline quartz with flash extinction
Qm-ond Monocrystalline quartz with ondulant extinction
Qpg Polycrystalline quartz
Ko K-feldspar (orthose/orthoclase)
Kper K-feldspar (perthite)
Km K-feldspar (microcline)
P Plagioclase feldspar
Gl Glauconite
LVA-fels Acid volcanic fragments with felsitic texture
LVA-silicif Acid volcanic fragments with evidence of silicification
LVI Intermediate volcanic fragments
Pyro Pyroclastic fragments
M Mica fragments
LS Sedimentary fragments
Q-LVA Quartz crystals within acid volcanic fragments
P-LVA Plagioclase feldspar crystals within acid volcanic fragments
K-LVA K-feldspar crystals within acid volcanic fragments
K-LPlut K-feldspar crystals within granitic/plutonic fragments
Q-LPlut Quartz crystals within granitic/plutonic fragments
Gar Garnet
Q Total quartz (Qm + Qm-ond + Qpg + Q-LVA + Q-LPlut)
F Total feldspar (Ko + Kper+Km + P + P-LVA + K-LVA + KLPlut)
L Total Lithic fragments
Lt Total Lithic fragments with Qpg
this has been recently provided by Echaurren et al. (2017) based on a re-
gional analysis of the Divisadero Groupmagmatism. These authors sug-
gested that a thin crust at the onset of Andean shortening was a feature
inherited from the previous Late Jurassic-earliest Cretaceous exten-
sional stage associated with the opening of the ARB (Fig. 2b).

5. Discussion

5.1. Tectonic setting of the Apeleg Formation

Sedimentological data presented in Section 3 indicates that deposi-
tion associated with the Apeleg Formation was marked by the accumu-
lation of ~100–350 m of sediments in a deltaic environment (Fig. 3).
Additionally, structural data described in section 4 shows for the first
time that these deposits representmultiple lines of evidence for growth
strata and progressive unconformities directly related to the develop-
ment of contractional structures (Fig. 5). The contraction in the study
area is further corroborated by the presence of folds and thrusts affect-
ing the Apeleg Formation that are intruded by relatively undeformed
rhyolitic dikes and quartz veins related to the Aptian-Albian Divisadero
Group magmatism (Fig. 6). As a whole, our tectosedimentary analysis
indicates a synorogenic origin for the Apeleg Formation, which con-
trasts most recent proposals claiming deposition linked to a thermal
subsidence mechanism (González-Bonorino and Suárez, 1995; Bell
and Súarez, 1997; Depine and Ramos, 2004; Demant and González,
2010; Suárez et al., 2009b). We suggest that growth-strata in the
study area could be the result of wedge-top depozone dynamics in a
foreland basin system (DeCelles, 2012). In these settings, the active oro-
genic front is often buried and growth geometries develop due to simul-
taneous sedimentation and deformation. However, the scarcity of
published data in the subsurface area of the ARB does not allow at the
moment inferring more details about the characteristics of the rest of

Image of Fig. 6


Fig. 7. a) Quartz-feldspar-lithic (QFL) sandstone nomenclature (Folk et al., 1970). b) QFL tectonic provenance (Dickinson, 1983). c) QmFLt tectonic provenance (Dickinson, 1983).
d) Probability density plots and histograms of U-Pb detrital zircon ages.
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the potential depozones. Alternatively, the Apeleg Formation could
have form part of an incipient broken foreland basin system (Strecker
et al., 2011) whose maximum expression took place in late Early to
Late Cretaceous during deposition of the Chubut Group to the east of
the study area (Gianni et al., 205). In any case, the Apeleg Formation in-
dicates the inception of shortening and incipient activity of the North
Patagonian orogenic front in latest Hauterivian/Barremian to Aptian
times (~130 to 122Myr). Estimation of crustal thickness from geochem-
ical data of ~117–107Myr igneous rocks of the Divisadero Group intrud-
ing folded rocks of the Apeleg Formation indicates that initial
shortening took place in a thin crust (Fig. 8). Such conditions were
most likely inherited from previous Late Jurassic-earliest Cretaceous
backarc rifting stage in the ARB (Echaurren et al., 2017). A similar case
has been recently reported in the early evolution of the southern Ti-
betan plateau, where a thin continental crust, probably at or below sea
level, existed during early Tertiary time prior to and during the early
stages of collision of India (DePaolo et al., 2019).

It is worth noting that the marine regression associated with the
Apeleg Formation took place in a context of increasing global sea level
(Haq et al., 1987; Hallam and Cohen, 1989; EXXON Petroleum
Company, 1988; Vérard et al., 2015) (Fig. 1b). This observation
strengthens the idea of a forced origin for the regression (Aguirre-
Urreta and Ramos, 1981), as also inferred from data indicating coeval
contractional activity presented in this study.

Further insights into this basin stage are provided by provenance re-
sults presented in Section 5. In provenance studies the initiation of orog-
eny and foreland basin development are commonly interpreted based
on marked shifts on sediment sources, often determined through U/Pb
detrital zircon geochronology and/or sandstone-conglomerate compo-
sition (e.g. Horton, 2018a). In the Andes, this change has been fre-
quently associated with the detection of arc and basement sources
from the western active margin. This is interpreted as indicating the es-
tablishment of an orogenic drainage divide (e.g. Di Giulio et al., 2016;
Horton, 2018a for a synthesis). Notably, despite evidence indicating
contraction during deposition of the Apeleg Formation, provenance
data does not suggest the existence of a well-defined drainage divide
during this basin stage. In this regard, data obtained from conglomerate
clasts counts (high silicic volcanic clasts proportions; Fig. 3), sandstone
petrography (high proportions of silicic volcanic lithic Fig. 7d), and de-
trital zircon U-Pb geochronology (conspicuous b183 and 176 Ma age
peaks; Fig. 7d) indicate a dominant eastern sediment source in the Pat-
agonian interior with minor contributions from the western margin
(smaller age population between ~160–150 Ma; Fig. 7d).

We suggest that this could be the potential outcome of a primitive
mountain-building stage represented by the Apeleg Formation. In this
regard, we suggest that the low shortening magnitude of this early
stage would have been insufficient to develop a noticeable sediment
source in the active margin and hence, a well-defined drainage divide
(Fig. 9). Topographic build-up would have been further delayed by the
existence of an attenuated crust in the ARBprevious to initial shortening
(Echaurren et al., 2017). Further insights can be provided from the anal-
ysis of the documented growth strata. As seen in Fig. 5, most growth ge-
ometries are related to folds where steeply tilted lower strata are
covered to the top by gently dipping (10–5°) beds. The presence of
these geometries is typical of growth strata reflecting structure uplift
rates below sedimentation rates (Burbank et al., 1996) precluding

Image of Fig. 7


Fig. 8. a) TAS diagram (Cox et al., 1979). b) K2O vs. SiO2 diagram (Peccerillo and Taylor, 1976). c) A/CNK vs. A/NK diagram (Shand, 1943). Field of I- and S-type granites of Chappel and
White (2001). d) Trace multielemental diagram normalized to primitive mantle (McDonough and Sun, 1995). e) Geotectonic setting discrimination diagrams of Pearce et al. (1984).
f) Th/Nb vs SiO2 diagram after Müntener et al. (2018). g) La/Nb vs SiO2 diagram after Müntener et al. (2018). h) SiO2 vs La/Yb(N), crustal thickness estimations from Hu et al. (2017).
i) Light rare earth elements (Sm/Yb) vs. heavy rare earth elements (La/Sm) diagram. Light blue area in all diagrams represents data compilation from Echaurren et al. (2017) of
Divisadero Group in the North Patagonian Andes. See Fig. 2c for sample location. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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basement exposure and the development of local basin sources. From a
broader perspective, low topography at this stage is evident from the
sedimentary environments in the Apeleg Formation indicating deposi-
tion close to sea level (Fig. 3) and the shallow marine nature of this
unit to the southwest of the ARB (Bell and Súarez, 1997). The latter in-
dicates that significant crustal thickening and related isostatic topogra-
phy was not established at that time. This is confirmed by our
estimations based on La/Yb ratios indicating an attenuated crust
(~20–18 km) at the time of rhyolitic dikes emplacement after incipient
shortening in the study area (Fig. 8e and f). Thus, during this stage, the
ARB would have been dominated by sources from the Patagonian fore-
land delivered by deltaic systems. In these, sediments may have
bypassed incipiently growing low-amplitude structures in theARB, sim-
ilarly to those documented by López-Blanco et al. (2003) in the South-
Pyrenean foreland basin. In this context, rivers would have transported
materials eroded from intraplate highs to the east (Fig. 9). In the hypo-
thetical context of a foreland basin system for the Apeleg Formation, the
latter sources could have been linked to incipient forebulge uplift
(Horton et al., 2010). On the other hand, in the case of an incipient bro-
ken foreland basin system, this source could have been associated with
subtle intraplate deformation (e.g. Ghiglione et al., 2015; Hurtado et al.,
2018).

Therefore, the existence of a thin crust at the onset of shortening,
sedimentary environments suggesting deposition close to sea level,

Image of Fig. 8


Fig. 9. Conceptual model for the tectonic setting of the Apeleg Formation in the ARB. Incipient contractional basin stage: Inception of initial shortening in an attenuated crust in Early
Cretaceous times produced a progressive forced marine regression during deposition of the Apeleg Formation. During this stage, Andean topography was negligible, orogenic load and
related basin subsidence was low, and arc activity was reduced. Hence, basin sediments were mostly supplied from the relatively higher foreland area by west-directed fluvial-deltaic
systems. Advanced basin stage: In Late Cretaceous times, vigorous arc activity and further shortening and orogenic load, favored the establishment of a dominant active margin source
in the west deriving nonmarine synorogenic sediments to the east (Chubut Group).
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growth strata geometries linked to structures not exposing the base-
ment and foreland-derived provenance are not in conflict. All these in-
dicate that at the onset of contraction, a high topography (Andes)
with a clear drainage divide was not developed immediately, as ex-
pected in the early stages of mountain building.

A similar case was recently documented in the northern sector of the
Austral basin. There, provenance studies in indicate that Aptian-Albian
successions were derived from the Patagonian continental interior and
it was interpreted as the result of intraplate deformation (Ghiglione
et al., 2015). However, most recent studies in these same successions
based on the anomaly of magnetic susceptibility (AMS) indicate that E-
W contraction took place during deposition of these units (Ramos et al.,
2016; Aramendía et al., 2018). Thus, the Aptian-Albian depocenters of
the northern Austral basin were linked to the initial stage of Andean
growth at those latitudes despite not presenting a clear Andean zircon
provenance (Aramendía et al., 2018; Ronda et al., 2019).

Awestern active source and amoremature drainage divide began to
develop in the Late Cretaceous recognized through in provenance anal-
ysis of the nonmarine Chubut Group and the marine Paso del Sapo and
Lefipán Formations in the foreland area (Tunik et al., 2004; Butler et al.,
2019) (Fig. 9). In this regard, recent paleoaltimetry studies by Colwyn
et al. (2017) indicate that the Patagonian orogenic rain shadow was al-
ready established by ~62Ma. According to these authors, the North Pat-
agonian Andes would have been a long-lived topographic feature,
mostly built during the Late Cretaceous-Paleocene orogenic phase.

Therefore, we suggest that the synorogenic deposition of the Apeleg
Formation constitutes a primitive contractional basin stage. The latter
would have developed before significant orogenic load, lithospheric
flexure and basin subsidence (Fig. 9).

5.2. Synthesis of post-Gondwanic initial contraction along the Andean
orogen and implications for geodynamic models of subduction orogeny

In order to place Early Cretaceous contraction in the ARB in the con-
text of the Andean evolution, here we summarize studies documenting
the earliest orogenic stages along-strike this mountain belt.
The early evolution of the Northern Andes (~10°N to 0°) is consid-
ered a classic accretionary orogeny associated with active subduction
since Jurassic times (Restrepo and Toussaint, 1991; Ramos, 2009)
(Fig. 1a). Two end-member models have been suggested to explain
the Cretaceous tectonic evolution of this orogenic sector. One proposing
contraction related to accretion of one or more oceanic terranes since
Early Cretaceous times (e.g. Villagómez and Spikings, 2013; Spikings
et al., 2015) and the other suggesting the existence of an Early Creta-
ceous extensional continental arc associated with an oceanic floored
backarc basin. The latter would have formed between ~141 and 100
Myr and was accreted in latest Cretaceous (Kennan and Pindell, 2009;
Nivia et al., 2006; Spikings et al., 2015; Villagómez et al., 2011). This hy-
pothesis is compatible with the preserved mantle velocity structure in
that region that can only be reconstructed through numerical modeling
when considering the existence of an intraoceanic subduction and an
oceanic back-arc basin (Braz et al., 2018). The Late Cretaceous contrac-
tion has been suggested based on the distribution and composition of
sedimentary rocks, detrital thermochronology, and geochronology of
igneous complexes that indicate that the active margin shifted to con-
traction around 115 Ma (Villagómez et al., 2011; Spikings et al., 2015).
Nevertheless, according to a recent study of Zapata et al. (2019), back-
arc basin extension would have continued up to 100 Ma based on the
documentation of an active arc at that time and the syn-extensional na-
ture of the basin infill. Independent data supporting initial contraction
of the Northern Andes at 100Ma is also provided by the recent plate re-
constructions of Braz et al. (2018) that incorporate the velocity mantle
structure into geodynamic numerical models.

The Central Cordillera of Colombia and the Eastern Cordillera of
Ecuador began to experience more significant shortening from
Maastrichtian to early Paleocene times (Cooper et al., 1995; Barragán,
1999; Aleman and Ramos, 2000; Ruiz, 2002; Baby et al., 2004; Gómez
et al., 2003, 2005; Vallejo, 2007; Horton et al., 2010; Mora et al., 2010;
Villagómez and Spikings, 2013; Reyes-Harker et al., 2015). The latter is
confirmed by the basin deposition that depicts a sudden increase in ac-
cumulation rates between ~70 and 60Myr associated with the foreland
flexure subsidence (Horton, 2018a).

Image of Fig. 9
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In the northern Central Andes between 0° and 18°S, initial orogeny is
marked by synorogenic deposition and the development of angular un-
conformities during the Late Cretaceous Mochica and Peruvian phases
at ~100 Ma and ~90–70 Myr, respectively (Steinmann, 1929; Mégard,
1984; Jaillard et al., 2000; Pfiffner and Gonzalez, 2013) (Fig. 1a). Oro-
genic load related to the Mochica tectonic phase allowed the develop-
ment of the Turonian-Maastrichtian Andean Basin, a foreland basin
system encompassing northern Peru to south Bolivia including the
Potosí, Marañon, Acre and Oriente basins (Reyes, 1972; Sempere,
1995; Jaillard and Soler, 1996; Sempere et al., 1997; Jaillard et al.,
2000; Menegazzo et al., 2016) (Fig. 1a).

Further to the south in the Central Andes between 20°S and 25°S, the
beginning of Cretaceous contraction is well recorded within the
Tarapacá and Atacama foreland basins (Schiller, 1912; Mpodozis et al.,
2005; Arriagada et al., 2006; Fuentes et al., 2018; Martínez et al.,
2018a) (Fig. 1a). The oldest synorogenic deposits have been described
in the Atacama basin and belong to the Tonel Formation with a maxi-
mum depositional age of ~107 Ma (Bascuñán et al., 2016).

In the Southern Central Andes between 26° and 33°S, structural ev-
idence and dating of synorogenic strata indicate an initial growth stage
between ~105 and 80 Myr (Boyce et al., 2014; Martínez et al., 2015,
2018b). The best exposures of the Cretaceous foreland basin deposits
in the Southern Central Andes are preserved in the Neuquén basin
(32°30′-40°S) (Fig. 1a). In this area, timing of foreland basin inception
is either interpreted to correspond with the base of the nonmarine
Neuquén Group and Diamante Formation (~107–98 Myr) (Groeber,
1946, 1947; Ramos, 1981b; Tunik et al., 2010; Di Giulio et al., 2012;
Fennell et al., 2015; Balgord and Carrapa, 2016; Gómez et al., 2019) or
an the unconformity between the Huitrín Formation and the Rayoso
Group (Cobbold and Rossello, 2003; Mosquera and Ramos, 2006), at
sometime after 124 Ma and before ~120 Myr.

In the North Patagonian Andes between 40° and 46°30′S the early
Andean growth is mostly inferred based on the finding of a late Aptian
angular unconformity separating the Apeleg Formation from the
Divisadero Group and spanning the 118–121 Myr time interval
(Ramos, 1981a; Folguera and Iannizzotto, 2004; Suárez et al., 2009b;
Orts et al., 2012; Echaurren et al., 2017) (Fig. 2b). This stage has also
been inferred based description of synorogenic deposition linked to in-
traplate deformation dated between ~115–65 Myr (Gianni et al., 2015,
2018a, 2018b; Echaurren et al., 2017).

The Cretaceous contraction in the Southern Andes (Austral Patago-
nian and Fuegian Andes) between 46°30′S and 56°S is well established
based on structural evidence, metamorphic events, thermochronology
and by the conspicuous formation of the Austral-Magallanes foreland
basin (Dalziel et al., 1974; Dalziel, 1981, 1986; Bruhn and Dalziel,
1977; Nelson et al., 1980; Kohn et al., 1995) (Figs. 1a and 2a). In this
area, the earliest deformation is related to the closure of the oceanic
floored Rocas Verdes basin (Dalziel et al., 1974). This extensional basin
formed through northward unzipping of the backarc area from Early
to Late Jurassic times (e.g. Malkowski et al., 2016) (Fig. 2a). According
to Calderon et al. (2013), the beginning of ophiolite obduction began be-
tween 120 and 110 Myr and terminated before ~80 Ma giving place to
the Austral-Magallanes foreland basin. In the northern sector of this
basin, between 46°S and 49°S, Aguirre-Urreta and Ramos (1981) sug-
gested that a proto-Patagonian Cordillera was first uplifted in Aptian-
Albian times. Regressive deposits associated with this stage and dated
between 122 and 110 Myr have been interpreted whether as the
synorogenic deposits linked to Patagonian Andes growth (Aguirre-
Urreta and Ramos, 1981) or intraplate deformation linked to South At-
lantic opening (Ghiglione et al., 2015). The former hypothesis has
been recently favored based on the anomaly of magnetic susceptibility
indicating E-W contraction during deposition of this unit related to
the Andean fold-thrust belt propagation at this time (Aramendía et al.,
2018). In the southernAustral-Magallanes basin synorogenic deposition
began around 112–110 Myr at 49°-50°S and propagated southward up
to ~89–85 Myr in the Fuegian Andes (Wilson, 1991; Fildani and
Hessler, 2005; McAtamney et al., 2011; Ghiglione et al., 2014;
Malkowski et al., 2015; among many others).

Sediment accumulation curves from the Austral-Magallanes basin
suggest accelerated flexure-related deposition began at ~100 Ma and
persisted until ~60 Ma (Biddle et al., 1986; Horton, 2018a). The dia-
chronic foreland basin deposition has been explained by the southward
propagation of backarc closure of the preexisting Rocas Verdes basin
(e.g. Malkowski et al., 2016; Ghiglione et al., 2016; Ronda et al., 2019).

The synthesis above indicates that most of the Andean margin re-
cords a generalized growth stage mainly between ~110 and 90 Myr
(Cobbold et al., 2007; Somoza and Zaffarana, 2008). However, evidence
of the initial contractional deformation at 122–118Myr is found in a dis-
crete sector between 40° and 47°S in the North Patagonian Andes and
the Northern sector of the Austral Patagonian Andes. We note that
synorogenic deposits of the Apeleg Formation (~130–122 Myr) not
only constitute the oldest sedimentary record of Early Cretaceous con-
traction in this 42°-47°S segment, but most likely of the entire Andean
Cordillera. Hence, the ARB preserves a unique record of the earliest evo-
lutionary stage of the Andes.

A striking feature resulting from this synthesis is that the beginning of
Andean evolution seems to have been characterized by a diachronic tec-
tonic uplift pattern (Fig. 10). We note that besides the Rocas Verdes-
Austral basins segment of the southern Patagonian Andes (~950 km)
that experienced a southward growth, the rest of the Andes (~6500 km)
depict a northward propagating tectonic uplift pattern (Fig. 10).

As described in the synthesis above the earliestmargin contraction is
recorded in the segment from 42° to 47°S to the south at 122–118 Myr
and locally earlier at ~130–124 Myr considering sedimentation of the
lower section of the Apeleg Formation in the ARB (Fig. 10). The segment
affected by early contraction could be extended up to 52°S if we con-
sider the beginning of the Rocas Verdes ophiolite obduction at
120–110 Myr as suggested by Calderon et al. (2013). At this time, the
rest of the Andean margin was experiencing thermal subsidence and/
or intraarc to backarc extension (e.g. Jaillard and Soler, 1996; Charrier
et al., 2007; Zapata et al. 2019). At around, 100–90Myr contractional de-
formation propagated to the north and affected the entire Andeanmar-
gin (Fig. 10). Although delayed in time respect to our revision, Horton
(2018a) described a contemporaneous shift in accumulation and sedi-
mentary polarity first in the southern Andes at ~100 Ma, and then at
~70–60 Myr in the rest of the Andean orogen. We suggest that this tec-
tonic pattern is not likely the result of selective erosion of earliest
synorogenic deposits in the Andes. The latter is supported by the pres-
ervation of Early Cretaceous sedimentary rocks in several basins of the
Central and Northern Andes associated with thermal subsidence or
basin extension (Jaillard and Soler, 1996; Charrier et al., 2007; Ramos,
2009; Menegazzo et al., 2016; Fuentes et al., 2018; Zapata et al. 2019;
among others).

The potential diachronous character of the Andean birth has major
implications for the driving mechanism behind initial orogeny, an
issue intensely debated (Somoza and Zaffarana, 2008; Schellart, 2017;
Faccenna et al., 2017; Chen et al., 2019). It has been suggested that
this stage does not correlate with the dynamics of the Atlantic Ocean
as initially thought and that early Andean deformation lagged several
millions of years after the ocean opening (e.g. Oncken et al., 2006;
Barnes and Elhers, 2009; Faccenna et al., 2017). However, although
the strongest deformation and orocline formation in the Central Andes
is Cenozoic in age, as reviewed above, contraction can be tracked back
up to Cretaceous times along strike the Andean Cordillera (see also
Ramos, 2009; Horton et al., 2018).

From our updated synthesiswe note that the diachronic inception of
Andean orogeny mimics roughly the evolution of the Atlantic Ocean
opening (Fig. 10). In this regard, the earliest contraction and
synorogenic deposition appeared in the Patagonian Andes after em-
placement of the first oceanic crust (134–132 Myr; Nürnberg and
Müller, 1991) in the southernmost part of the South Atlantic Ocean
and more evidently during South Atlantic rifting acceleration at



Fig. 10. a) Atlantic synrift modified from Brune et al. (2016) showing an acceleration in rifting velocity between ~130 and ~120 Myr (b-d). Conceptual model linking northward
propagating South Atlantic opening and upper plate drift to the diachronic Andean birth. Reconstruction indicating rift velocity (coloured areas) and continent motion (Africa fixed) is
modified from Brune et al. (2016). Main works describing post-Gondwanic initial Andean contraction in Cretaceous times are: 1) Cobbold and Rossello (2003), 2) Mosquera and
Ramos (2006), 3) Ramos (1981a), 4) Folguera and Iannizzoto (2003), 5) Suárez et al. (2009a), 6) Orts et al. (2012), 7) Echaurren et al. (2016, 2017), 8) Aramendía et al. (2018),
9) This sudy, 10) Pindell and Kennan (2009), 11) Villagómez et al. (2011), 12) Spikings et al. (2015), 13) Cooper et al. (1995), 14) Barragán (1999), 15) Aleman and Ramos (2000),
16) Ruiz (2002), 17) Baby et al. (2004), 18) Gómez et al. (2003, 2005), 19) Vallejo (2007), 20) Horton et al. (2010), 21) Mora et al. (2010), 22) Villagómez and Spikings (2013), 23)
Reyes-Harker et al. (2015), 24) Steinmann (1929), 25) Mégard (1984), 26) Jaillard et al. (2000), 27) Pfiffner and González (2013), 28) Réyes (1972), 29) Sempere (1995), 30) Jaillard
and Soler (1996), 31) Sempere et al. (1997), 32) Menegazzo et al. (2016), 33) Mpodozis et al. (2005), 34) Arriagada et al. (2006), 35) Fuentes et al. (2018), 36) Martínez et al. (2018a),
37) Bascuñan et al. (2016), 38) Boyce et al. (2014), 39) Martínez et al. (2015; 2018b), 40) Groeber (1946), 41) Ramos (1981b), 42) Tunik et al. (2010), 43) Di Giulio et al. (2012), 44)
Fennell et al. (2015), 45) Balgord and Carrapa (2016), 46) Gianni et al. (2015, 2018a), 47) Suárez and De la Cruz (2001), 48) Dalziel 1974, 49) Dalziel (1981, 1986), 50) Bruhn and Dalziel
(1977), 51) Nelson et al. (1980), 52) Kohn et al. (1995), 53)Wilson (1991), 54) Fildani and Hessler (2005), 55) McAtamney et al. (2011), 56) Ghiglione et al. (2014), 57) Malkowski et al.
(2015), 58) Ronda et al. (2019). Abbreviations are; ARB: Aysén-RíoMayo Basin; RVB: Rocas Verdes Basin; Central SA, Central South Atlantic; Equ. SA, equatorial South Atlantic; SA, south-
ern South Atlantic; NW Africa, Northwest Africa; S Africa, South Africa; S America, South America. Figure modified from Brune et al. (2016). See text for further details.
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~122–120 Ma likely (Heine and Brune, 2014; Brune et al., 2016)
(Fig. 10). Plate margin contraction at this time resulted from the onset
of upper-plate motion overcoming trench retreat as suggested for
more recent Andes stages (e.g. Oncken et al., 2006; Somoza and
Zaffarana, 2008). This abrupt increase in upper-plate motion was ex-
plained by Brune et al. (2016) through numerical modeling. These au-
thors attributed this process to a shift from a slow- rift to a fast-rift
stage triggered by sudden thermomechanical weakening during plate
breakup. As seen in the study of Brune et al. (2016), this abrupt
upper-plate acceleration stage was fastest in the South Atlantic Ocean,
which explains the oldest evidence of Andean margin contraction at
those latitudes (Fig. 10). Also, this process would have also played a
key role in is triggering amodification in the subduction angle in south-
ern South America at that time (Gianni et al., 2018b). It is worth noting
that at this stage the progressive closure of the Rocas Verdes backarc
basin and subsequent arc-continent collision may have delayed early
deformation in southernmost South America (Fuegian Andes) respect
to the Patagonian Andes to the north. Subsequently, early contractional
deformation propagated northward achieving its climax between ~100
and 90 Myr during the full continental breakup and further westward
drifting of South America (Somoza and Zaffarana, 2008; Husson et al.,
2012; Heine and Brune, 2014) (Fig. 10). This northward younging of
orogen development is not accounted for the numerical modeling of
Andean mountain-building of Capitanio et al. (2011) and Faccenna
et al. (2017). Thesemodels reproduce the critical shift from backarc ex-
tension to contraction at ~70Ma or later (see Fig. 3b in Schellart, 2017),
which is in stark contrast with the updated Andean synthesis and the
results presented in this study.

High resolution numerical modeling of Schellart (2017) considering
the influence of deep mantle subduction on continental trenchward
motion reproduces effectively the initial timming of contraction at
~125, but also fails to reproduce the northward propagating pattern of
Andean growth. This study predicts that backarc extension changes to
shortening in the Central Andes at ~120 Ma, while extension continues
periodically until 80–120Myr away from the centre (Fig. 3b). The latter
would produce an overall outward growth pattern from the Central
Andes which is inconsistent with the geological observations reviewed
above.

Hence, although lower mantle slab penetration, subduction length,
and slab age may have significantly shaped late orogenic evolution,
these processes are not responsible for the establishment of the initial
tectonic shift from an extensional subduction setting to a contractional
subduction zone (i.e. Chilean-type margin, Uyeda and Kanamori,
1979). Instead, the close relation to Atlantic Oceandynamics and related
upper plate drift suggest a dominant role for this process at least at the
beginning of Andean orogeny (Dalziel et al., 1974; Baker et al., 1981;
Mpodozis and Ramos, 1990; Coney and Evenchick, 1994, Heuret and
Lallemand, 2005; Husson et al., 2012; Yang et al., 2019). At this moment
a northward propagating mantle drag at the base of the lithosphere as-
sociated with the progressive development of the Atlantic Ocean con-
vection cell (Husson et al., 2012), would have produced a diachronic
drifting of South America. This process resulted in a northward-
younging overriding of the Pacific trench overcoming slab roll-back
and triggering the diachronic tectonic uplift pattern observed during
the Andean birth stage (Fig. 10). Subsequently, in Paleogene toNeogene
times, further changes in several geodynamic parameters such as
upper-plate velocity (Silver et al., 1998), slab age, subduction length
and depth (e.g. Capitanio et al., 2011; Faccenna et al., 2017; Schellart,
2017; Chen et al., 2019) as well as the onset of critical climatic condi-
tions (e.g. Lamb andDavis, 2003; Armijo et al., 2015) would have signif-
icantly enhanced orogen contraction, profoundly shaping the Andean
orogen to achieve its current state. The joint action of these processes
would have resulted in the present Cordillera morphology associated
with the development of along-strike orogen symmetry, large-scale ro-
tations linked to the BolivianOrocline and orogenic plateau formation in
the Central Andes (e.g., Oncken et al., 2006; Armijo et al., 2015).
6. Conclusions

A multidisciplinary approach demonstrates a synorogenic origin for
the Apeleg Formation corresponding to thefirst concrete report of latest
Hauterivian/Barremian to Aptian (~130–122 Myr) syntectonic deposi-
tion related to the initial growth of the North Patagonian Andes.
Synorogenic strata deposited in deltaic environment sourced from the
east as part of a primitive contractional basin stage in the ARB. The latter
would have developed in an attenuated crust before major orogenic
load, lithospheric flexure and basin subsidence commonly described
in relation to more advanced foreland basin stages.

A synthesis of Cretaceous deformation along the whole Andean Cor-
dillera indicates that the Apeleg Formation potentially constitutes the
oldest post-Gondwana synorogenic deposits of the Andes. More signif-
icantly, this synthesis and the obtained results reveal that Andean
birth was a diachronic process that propagated northward. This pattern
of initial deformation challenges current geodynamic models and sheds
light into the driving process behind initial Andean subduction orogeny.
We note that this particular evolution followed closely the path of South
Atlantic Ocean opening and related changes in plate motion suggesting
an origin directly linked to these processes. Subsequently, additional
processes in Cenozoic times linked to an increase in upper platemotion,
subduction length and depth, and slab age, as well as, climate change
since Eocene times would have played a key role in producing the
most significant deformation of the Andes.
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