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Abstract
We show that a symplectic reduction of the symmetric representation of the 
generalized n-dimensional rigid body equations  yields the n-dimensional 
Euler equation. This result provides an alternative to the more elaborate 
relationship between these equations established by Bloch, Crouch, Marsden, 
and Ratiu (Bloch et al 2002 Nonlinearity 15 1309–41). Specifically, we exploit 
the inherent Sp(2n,R)-symmetry in the symmetric representation to present 
its relationship with the Euler equation via symplectic reduction facilitated by 
the dual pair recently developed by Skerritt and Vizman (Skerritt and Vizman 
2019 J. Geom. Mech. 11 255–75).

Keywords: rigid body dynamics, symplectic reduction, dual pair

1.  Introduction

1.1.  Euler’s equation for rigid body dynamics

The configuration space for the rotational dynamics of a rigid body in R3 about its center of 
mass is the set of all three-dimensional (3D) rotations

SO(3) :=
{
Q ∈ M3(R) | QTQ = I, detQ = 1

}
,

where Mn(R) is the vector space of real n× n matrices. Hence one can describe the dynamics 
as a Hamiltonian system on the cotangent bundle (or the phase space) T∗SO(3). However, 
the presence of the SO(3)-symmetry helps us reduce the system to the dual so(3)∗ ∼= (R3)∗ 
of the Lie algebra so(3) ∼= R3 of SO(3); one may think of so(3) and so(3)∗ as the space of 
all possible values of the body angular velocity and momentum, respectively, seen in the 
frame attached to the body. This yields Euler’s equation for the body angular momentum Π 
in so(3)∗ (identified with R3):
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Π̇ = Π× I−1Π,

where I := diag(I1, I2, I3) is the inertia tensor with respect to the principal axes of the body, 
and Ω := I−1Π is the body angular velocity in so(3) (again identified with R3).

1.2.  Generalized rigid body equations

Manakov [8] and Ratiu [13] generalized the 3D rigid body equations to n dimensions as fol-
lows: let

SO(n) :=
{
Q ∈ Mn(R) | QTQ = I, detQ = 1

}

and so(n) be its Lie algebra, and equip so(n) with the inner product 〈 · , · 〉 : so(n)× so(n) → R 
defined as

〈A,B〉 := 1
2
tr(ATB).� (1)

So we may identify the dual so(n)∗ with so(n). Under this identification, we define the inertia 
operator I : so(n) → so(n)∗ ∼= so(n) of the generalized n-dimensional rigid body as

I(Ω) := ΛΩ+ ΩΛ,� (2)

where Λ := diag(λ1, . . . ,λn) with λi + λj > 0 for all i �= j. This is a generalization of the 
inertia tensor I defined above. In fact, setting I1 = λ2 + λ3, I2 = λ3 + λ1, and I3 = λ1 + λ2 
for n  =  3 yields

Π = I(Ω) =




0 −I3Ω3 I2Ω2

I3Ω3 0 −I1Ω1

−I2Ω2 I1Ω1 0


 ↔



I1Ω1

I2Ω2

I3Ω3


 ,

which is the body angular momentum in so(3)∗ ∼= R3. Let Q ∈ SO(n) be the rotational con-
figuration of the generalized rigid body, Ω := Q−1Q̇ ∈ so(n) be the body angular velocity, 
and Π := I(Ω) ∈ so(n)∗ ∼= so(n) be the body angular momentum. Then the generalized rigid 
body or Euler–Poisson equations on SO(n)× so(n)∗ are given by

Q̇ = QΩ,� (3a)

Π̇ = [Π,Ω],� (3b)

where [ ·, · ] : so(n)× so(n) → so(n) is the standard commutator. The n-dimensional Euler 
equation (3b) is the Hamiltonian system on a coadjoint orbit in so(n)∗ with the Hamiltonian 
(see Ratiu [13, theorem 3.1]):

h(Π) :=
1
2
〈
Π, I−1(Π)

〉
.� (4)

1.3.  Symmetric representation

The so-called symmetric representation of the generalized rigid body equations was originally 
discovered by Bloch and Crouch [3] as a necessary condition of optimality for the following 
optimal control problem: let T  >  0 be fixed, and consider
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min
U

∫ T

0

1
2
〈I(U),U〉 dt subject to Q̇ = QU and Q(0) ∈ SO(n),

where I  is the inertia operator (2) and U : [0, T] → so(n). Formally, the configuration space is 
Mn(R), and thus Q : [0, T] → Mn(R). However, we impose the initial condition Q(0) ∈ SO(n) 
so that Q(t) ∈ SO(n) for any t ∈ [0, T] because of the constraint Q(t)−1Q̇(t) = U(t) ∈ so(n). 
This is a special case of the so-called embedded optimal control problem considered in Bloch 
et al [6].

The control Hamiltonian Hc : T∗Mn(R)× so(n) → R is then defined as

Hc(Q,P,U) := P · (QU)− 1
2
〈I(U),U〉 = tr

(
PTQU

)
− 1

2
〈I(U),U〉,

where the ‘  ⋅  ’ above stands for the natural dual pairing

T∗
QMn(R)× TQMn(R) → R; (P, Q̇) �→ tr

(
PTQ̇

)
=: P · Q̇.

By the Pontryagin maximum principle [12], the optimal control U� necessarily maximizes the 
Hamiltonian, i.e. for any δU ∈ so(n),

d
ds

Hc(Q,P,U� + s δU)

∣∣∣∣
s=0

= 0.

However,

d
ds

Hc(Q,P,U� + s δU)

∣∣∣∣
s=0

= tr
(
PTQδU

)
− 〈I(U�), δU〉

=
1
2
tr
((

QTP− PTQ
)T
δU

)
− 〈I(U�), δU〉

=
〈
QTP− PTQ− I(U�), δU

〉
.

Note that QTP− PTQ− I(U�) ∈ so(n). Since δU ∈ so(n) is arbitrary, we have 
QTP− PTQ = I(U�), and thus obtain the optimal control U� as follows:

U�(Q,P) = I−1(QTP− PTQ
)
.

In what follows, we write Ω := U�(Q,P) for short; this quantity in fact coincides with the 
angular velocity Ω defined in section 1.2 as we shall see below. As a result, the (optimal) 
Hamiltonian H : T∗Mn(R) → R is given by

H(Q,P) := Hc(Q,P,U�(Q,P)) =
1
2
〈
QTP− PTQ, I−1(QTP− PTQ

)〉
,� (5)

whereas the standard symplectic form ω  on T∗Mn(R) is written as

ω
(
(Q̇1, Ṗ1), (Q̇2, Ṗ2)

)
= tr

(
Q̇T

1 Ṗ2 − ṖT
1 Q̇2

)
.� (6)

The optimal solution is necessarily an integral curve of the Hamiltonian vector field XH on 
T∗Mn(R) defined by Hamilton’s equation iXHω = dH, or in coordinates,

Q̇ = QΩ, Ṗ = PΩ.� (7)
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These equations are called the symmetric representation of the generalized rigid body equa-
tions (3). In fact, if we set

Π(t) := I(Ω(t)) = Q(t)TP(t)− P(t)TQ(t)

for t ∈ [0, T], then Π : [0, T] → so(n)∗ ∼= so(n) satisfies the n-dimensional Euler equation (3b); 
see also Bloch et al [5, 6] for its generalization to other matrix Lie groups.

Although it is a straightforward calculation to show that the generalized rigid body 
equations  (3) follow from the symmetric representation (7), the question remains as to 
how these two Hamiltonian systems are related to each other from the symplectic-geomet-
ric point of view. Bloch et al [4] gave one such relationship: specifically, they constructed 
symplectic submanifolds S ⊂ SO(n)× SO(n) of T∗Mn(R) ∼= Mn(R)×Mn(R) and SM of 
T∗SO(n) ∼= SO(n)× so(n)∗ as well as a diffeomorphism between S and SM in a rather elabo-
rate manner to establish an equivalence between the symmetric representation (7) and the 
Euler–Poisson equations (3).

1.4.  Main result

We present an alternative connection between the symmetric representation (7) and the Euler 
equation (3b) by showing that the two are related via symplectic reduction. Although this is 
not an equivalence, this connection exploits an inherent symmetry of the symmetric represen-
tation that seems to have been overlooked, and provides a geometrically natural and appealing 
alternative to the result of Bloch et al [4]. More specifically, we show the following:

Theorem.  The symmetric representation (7) of the n-dimensional generalized rigid body 
equation possesses an Sp(2n,R)-symmetry, and the Marsden–Weinstein reduction [10] of (7) 
restricted to an open subset of T∗Mn(R) by the symmetry at a certain level set of the associ-
ated momentum map yields the n-dimensional Euler equation  (3b) in a coadjoint orbit in 
so(n)∗.

2.  Symmetry and conservation law in the symmetric representation

2.1.  Sp(2n,R)-symmetry of the symmetric representation

Let us first identify the cotangent bundle T∗Mn(R) with the vector space of real 2n× n 
matrices:

T∗Mn(R) ∼= M2n×n(R) =
{
Z =

[
Q
P

]
| Q,P ∈ Mn(R)

}
.

Then we may write the symplectic form (6) in a more succinct form: for any Z ∈ M2n×n(R) 
and any X, Y ∈ TZM2n×n(R),

ω(X, Y) = tr
(
XTJY

)
with J :=

[
0 I
−I 0

]
� (8)

where I is the n× n identity matrix. Notice also that we may rewrite the Hamiltonian 
H : M2n×n(R) → R defined in (5) in the following more concise form:

H(Z) =
1
2
〈
ZTJZ, I−1(ZTJZ)

〉
.� (9)
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Let Sp(2n,R) be the symplectic group

Sp(2n,R) :=
{
S ∈ M2n(R) | STJS = J

}
,

and consider the Sp(2n,R)-action on M2n×n(R) by left multiplication, i.e.

Φ : Sp(2n,R)×M2n×n(R) → M2n×n(R); (S, Z) �→ SZ =: ΦS(Z).� (10)

Then one easily sees that this action is symplectic as well as that the Hamiltonian is invariant 
under the action, i.e. Φ∗

Sω = ω and H ◦ ΦS = H  for any S ∈ Sp(2n,R).

2.2.  Sp(2n,R)-momentum map

Let us find the momentum map associated with the above action Φ. First notice that the sym-
plectic form (8) is written as ω = −dθ with the one-form θ on M2n×n(R) defined as follows: 

for any Z =

[
Q
P

]
∈ M2n×n(R) and any Ż =

[
Q̇
Ṗ

]
∈ TZM2n×n(R),

θ(Z) · Ż := −1
2
tr
(
ZTJŻ

)
=

1
2
(
PTQ̇− QTṖ

)
.

It is clear that θ is invariant under the Sp(2n,R)-action, i.e. Φ∗
Sθ = θ for any S ∈ Sp(2n,R).

Let sp(2n,R) be the Lie algebra of Sp(2n,R), i.e.

sp(2n,R) =
{
ξ ∈ M2n(R) | ξTJ+ Jξ = 0

}
.

We equip sp(2n,R) with the inner product 〈 · , · 〉 : sp(2n,R)× sp(2n,R) → R defined as

〈ξ, η〉 := 1
2
tr(ξTη)

just as in (1), and thus we may identify the dual sp(2n,R)∗ with sp(2n,R). The infinitesimal 
generator of the above action Φ is, for any ξ ∈ sp(2n,R),

ξM2n×n(R)(Z) :=
d
ds

Φexp(sξ)(Z)
∣∣∣∣
s=0

= ξZ.

Since T∗Mn(R) ∼= M2n×n(R) is an exact symplectic manifold with ω = −dθ and Φ leaves 
θ invariant, the associated momentum map J : M2n×n(R) → sp(2n,R)∗ ∼= sp(2n,R) satis-
fies the following (see, e.g. Abraham and Marsden [1, theorem 4.2.10 on p 282]): for any 
ξ ∈ sp(2n,R),

〈J(Z), ξ〉 = θ(Z) · ξM2n×n(R)(Z)

= −1
2
tr
(
ZTJξZ

)

=
1
2
tr
(
(JZZT)Tξ

)

=
〈
JZZT , ξ

〉
,

and so we obtain

J(Z) = JZZT =

[
PQT PPT

−QQT −QPT

]
.� (11)

This is the special case with m  =  n of Skerritt and Vizman [15, proposition 4.1]. It is also easy 
to see that J is equivariant: for any S ∈ Sp(2n,R),

J. Phys. A: Math. Theor. 52 (2019) 36LT01
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J ◦ ΦS = Ad∗S−1 ◦ J.

By Noether’s theorem (see, e.g. Marsden and Ratiu [9, theorem 11.4.1 on p 372]), J is a 
conserved quantity of the symmetric representation (7) due to the Sp(2n,R)-symmetry. That 
each block of this matrix is a conserved quantity is also pointed out by Bloch et al [4] via 
direct computations.

3.  Symplectic reduction of the symmetric representation

3.1.  Symplectic reduction

Let P be a symplectic manifold with symplectic form ω , and suppose in addition that there 
is a symplectic action of a Lie group G on P, g∗ be the dual of the Lie algebra g of G, and 
J : P → g∗ be the momentum map associated with the action. The Marsden–Weinstein reduc-
tion [10] (see also [11, sections 1.1 and 1.2]) states that, if either (i) the G-action on P is free 
and proper, or (ii) µ ∈ g∗ is a regular value of J and the action of the isotropy group

Gµ :=
{
g ∈ G | Ad∗g−1µ = µ

}

on the level set J−1(µ) is free and proper, then the quotient space J−1(µ)/Gµ is also a sym-
plectic manifold with symplectic structure ωµ that is naturally induced by ω  and the geometric 
setting; see below for more details. Now, given a Hamiltonian H : P → R, one may define the 
Hamiltonian vector field XH on P by setting iXHω = dH. If H is invariant under the G-action, it 
gives rise to the reduced Hamiltonian Hµ on J−1(µ)/Gµ, and then the Hamiltonian dynamics 
in P is reduced to the Hamiltonian dynamics in J−1(µ)/Gµ defined in terms of Hµ and ωµ. 
In other words, one can reduce a Hamiltonian system with a Lie-group symmetry to a lower-
dimensional Hamiltonian system.

3.2.  Some technical issues of symplectic reduction

We would like to perform the Marsden–Weinstein reduction of the symmetric representa-
tion (7); here we have P = T∗Mn(R) ∼= M2n×n(R), G = Sp(2n,R) with the action Φ defined 
in (10), and the momentum map J from (11). However, condition (i) clearly does not hold 
because Φ is not a free action on M2n×n(R), and so one either needs to remedy this or check 
(ii). Otherwise, the quotient J−1(µ)/Sp(2n,R)µ may not be a manifold. The other issue is 
how to characterize the quotient space J−1(µ)/Sp(2n,R)µ explicitly in order to describe the 
symplectic structure and the reduced dynamics there in an explicit manner.

Fortunately, the recent work by Skerritt and Vizman [15] provides a geometric setting that 
is tailor-made for circumventing these issues. More specifically, we consider the following 
pair of momentum maps defined on M2n×n(R):

sp(2n,R)∗ J←−M2n×n(R)
M−→ o(n)∗,

where J is defined above in (11) and M is the momentum map associated with the action of 
the orthogonal group O(n) on M2n×n(R) to be described below; o(n) is the Lie algebra of 
O(n). What they show is that, by considering an open subset Z  of M2n×n(R) and restricting 
the actions and the momentum maps there, one may identify the Marsden–Weinstein quotient 
J−1(µ)/Sp(2n,R)µ with a coadjoint orbit in o(n)∗. We note that their result is slightly more 
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general than this: they have the result with M2n×m(R) and O(m) with n,m ∈ N instead, and so 
our setting is the special case of theirs with m  =  n.

3.3.  O(n)-action and momentum map

Consider the action of the orthogonal group O(n) on M2n×n(R) defined by right multiplica-
tion, i.e.

Ψ : O(n)×M2n×n(R) → M2n×n(R); (R, Z) �→ ZR = ΨR(Z).

It is a straightforward calculation to see that Ψ leaves the one-form θ invariant and hence is a 
symplectic action with respect to the symplectic form ω  defined in (8), i.e. Ψ∗

Rθ = θ and hence 
Ψ∗

Rω = ω for any R ∈ O(n).
Since o(n) = so(n), we identify the dual o(n)∗ with o(n) via the inner product (1). Then, 

following a similar calculation as the one for J from above (see also Skerritt and Vizman [15, 
proposition 4.1]), we obtain the associated momentum map M : M2n×n(R) → o(n)∗ ∼= o(n) 
as follows:

M(Z) = ZTJZ = QTP− PTQ.� (12)

Again, it is a straightforward calculation to see that M is equivariant, i.e. for any R ∈ O(n),

M ◦ΨR = Ad∗R ◦M.

3.4.  Symplectic reduction and dual pair

Following Skerritt and Vizman [15], let us consider the subset of M2n×n(R) that is consisting 
of the full-rank elements, i.e.

Z := {Z ∈ M2n×n(R) | rank Z = n}.� (13)

As shown in [15], Z  is an open subset of M2n×n(R), and the actions Φ and Ψ preserve Z . 
Hence we may restrict the symplectic form ω  and the momentum maps J and M to Z; we 
denote these restrictions by the same symbols for simplicity of notation:

sp(2n,R)∗ J←−Z M−→ o(n)∗.

Skerritt and Vizman [15, proposition 4.2] proved that Φ and Ψ define mutually transitive 
actions on Z  in the following sense: (i) The Sp(2n,R)-action Φ and the O(n)-action Ψ com-
mute; (ii) Φ and Ψ are symplectic actions; (iii) the momentum maps J and M are equivariant; 
(iv) each level set of J is an O(n)-orbit, and each level set of M is an Sp(2n,R)-orbit.

The mutual transitivity has the following important consequence (see also Balleier 
and Wurzbacher [2, theorem 2.9 (iii)] and Skerritt [14, proposition 3.5]): let Z0 ∈ Z  and 
µ0 := J(Z0) and Π0 := M(Z0). Then one can identify the Marsden–Weinstein quotient

Zµ0 := J−1(µ0)/Sp(2n,R)µ0

with the coadjoint orbit OΠ0 through Π0 in o(n)∗.

Remark 1.  We do not have to check that the condition (mentioned in section 3.2) that the 
Sp(n,R)-action Φ or the Sp(n,R)µ0 action on J−1(µ0) is free and proper. In fact, the smooth 
structure on the reduced space Zµ0 is induced by that of the coadjoint orbit OΠ0. See the proof 
of proposition 2.8 in [15] for details.
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More specifically, let iµ0 : J
−1(µ0) ↪→ Z  be the inclusion and πµ0 : J

−1(µ0) → Zµ0 be the 
quotient map. Then the reduced symplectic form ωµ0 on Zµ0 is uniquely determined by

i∗µ0
ω = π∗

µ0
ωµ0 ;

see [10] and Marsden et al [11, sections 1.1 and 1.2]. Also, let ωOΠ0
 be the (−)-Kirillov–

Kostant–Souriau symplectic structure, i.e. for any Π ∈ OΠ0 and A,B ∈ o(n),

ωOΠ0
(−ad∗AΠ,−ad∗BΠ) := −〈Π, [A,B]〉,

where [ ·, · ] is the commutator on o(n); see, e.g. Kirillov [7, chapter 1] and Marsden and Ratiu 
[9, chapter 14]. Then the momentum map M restricted to the level set J−1(µ0) gives rise to a 
diffeomorphism M : Zµ0 → OΠ0; moreover this map is symplectic with respect to the above 
symplectic forms, i.e.

M∗
ωOΠ0

= ωµ0 .

The diagram below gives an overview of this result.

.

3.5.  Reduction of symmetric representation

Let Q(0) = Q0 ∈ SO(n) and Π0 ∈ o(n)∗ be the initial rotational configuration and the initial 
body angular momentum of the rigid body, and fix P0 ∈ SO(n) so that

QT
0P0 − PT

0Q0 = Π0.

See Bloch and Crouch [3] and Bloch et  al [4] for the condition under which this is pos-
sible. Then clearly Z0 := (Q0,P0) is in the open subset Z ⊂ M2n×n(R) defined in (13) and 
Π0 = M(Z0). Now, setting

µ0 := J(Z0) =

[
P0QT

0 I

−I −Q0PT
0

]
∈ sp(2n,R)∗,

the level set

J−1(µ0) =

{[
Q
P

]
∈ Z | QQT = I, PPT = I, PQT = P0QT

0

}

is an invariant submanifold of the symmetric representation (7).
Let h : o(n)∗ → R be a collective Hamiltonian, i.e. h ◦M = H. From the expressions (9) 

and (12) of H and M, we find
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h(Π) =
1
2
〈
Π, I−1(Π)

〉
,

which is the Hamiltonian (4) of the generalized rigid body in the body representation. Then 
the result from the previous subsection implies that the Sp(2n,R)-reduced dynamics in Zµ0 is 
equivalent to the Lie–Poisson equation

Π̇ = ad∗Dh(Π)Π

in the coadjoint orbit OΠ0 ⊂ o(n)∗, where Dh(Π) ∈ o(n) is defined so that, for any δΠ ∈ o(n)∗,

〈δΠ,Dh(Π)〉 = d
ds

h(Π + s δΠ)

∣∣∣∣
s=0

=
〈
δΠ, I−1(Π)

〉
,

that is, Dh(Π) = I−1(Π). However, under the identification o(n)∗ ∼= o(n), ad∗AΠ = [Π,A] for 
any A ∈ o(n) and Π ∈ o(n)∗, and thus we obtain

Π̇ =
[
Π, I−1(Π)

]
,

which is the n-dimensional Euler equation (3b).
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