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Abstract

We show that a symplectic reduction of the symmetric representation of the
generalized n-dimensional rigid body equations yields the n-dimensional
Euler equation. This result provides an alternative to the more elaborate
relationship between these equations established by Bloch, Crouch, Marsden,
and Ratiu (Bloch et al 2002 Nonlinearity 15 1309-41). Specifically, we exploit
the inherent Sp(2n, R)-symmetry in the symmetric representation to present
its relationship with the Euler equation via symplectic reduction facilitated by
the dual pair recently developed by Skerritt and Vizman (Skerritt and Vizman
2019 J. Geom. Mech. 11 255-75).
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1. Introduction

1.1. Euler’s equation for rigid body dynamics

The configuration space for the rotational dynamics of a rigid body in R? about its center of
mass is the set of all three-dimensional (3D) rotations

SO(3):={0eM;R)|Q"Q=1detQ=1},

where M, (R) is the vector space of real n x n matrices. Hence one can describe the dynamics
as a Hamiltonian system on the cotangent bundle (or the phase space) T*SO(3). However,
the presence of the SO(3)-symmetry helps us reduce the system to the dual so(3)* = (R%)*
of the Lie algebra so0(3) = R3 of SO(3); one may think of so(3) and so(3)* as the space of
all possible values of the body angular velocity and momentum, respectively, seen in the
frame attached to the body. This yields Euler’s equation for the body angular momentum II
in s0(3)* (identified with R?):
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=1 x 'L,

where I := diag(l,, I, I3) is the inertia tensor with respect to the principal axes of the body,
and € := I~ 'II is the body angular velocity in so(3) (again identified with R?).

1.2. Generalized rigid body equations

Manakov [8] and Ratiu [13] generalized the 3D rigid body equations to n dimensions as fol-
lows: let

SO(n) :={Q e M,(R) | Q"0 =1, detQ =1}
and so(n) beits Lie algebra, and equip so(n) with the inner product (-, - }: so(n) x so(n) — R
defined as

1

(A,B) := Etr(ATB). (1)
So we may identify the dual so(n)* with so(n). Under this identification, we define the inertia
operator Z: so(n) — so(n)* = so(n) of the generalized n-dimensional rigid body as

Z(Q) = AQ + QA, (2

where A := diag(Aq, ..., \,) with A\; + \; > 0 for all i # j. This is a generalization of the
inertia tensor I defined above. In fact, setting I} = A\ + A3, L = A3+ A, and Iz = A\ + A
for n = 3 yields

0 -5 LD, 1,
II = I(Q) = I3Q3 0 —1191 s 1292 ,
—IQQQ 1191 0 I3Q3

which is the body angular momentum in s0(3)* = R3. Let Q € SO(n) be the rotational con-
figuration of the generalized rigid body, Q := 0~'Q € s0(n) be the body angular velocity,
and II := Z(Q) € so(n)* = so(n) be the body angular momentum. Then the generalized rigid
body or Euler—Poisson equations on SO(n) x so(n)* are given by

Q=09 (3a)
IT = [I1, 9], (3b)
where [+, -]: s0(n) X so(n) — so(n) is the standard commutator. The n-dimensional Euler

equation (3b) is the Hamiltonian system on a coadjoint orbit in so(n)* with the Hamiltonian
(see Ratiu [13, theorem 3.1]):

h(IT) := %(H, Z-'(1)). )

1.3. Symmetric representation

The so-called symmetric representation of the generalized rigid body equations was originally
discovered by Bloch and Crouch [3] as a necessary condition of optimality for the following
optimal control problem: let 7 > 0 be fixed, and consider
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T
rnl}n/0 %(Z(U), U)dr subjectto Q= QU and Q(0) € SO(n),
where Z is the inertia operator (2) and U: [0, 7] — so(n). Formally, the configuration space is
M, (R), and thus Q: [0, T] — M,(R). However, we impose the initial condition Q(0) € SO(n)
so that Q(r) € SO(n) for any t € [0, T] because of the constraint Q(¢)~'Q(r) = U(t) € so(n).
This is a special case of the so-called embedded optimal control problem considered in Bloch
et al [6].
The control Hamiltonian H,: T*M,(R) x so(n) — R is then defined as
1 1

He(Q. P, U) = P+ (QU) = 5(Z(U), U) = u(P'QU) — 2 (Z(V), V),

where the © - * above stands for the natural dual pairing
TyMa(R) x ToM,(R) - R;  (P,Q) = tr (PTQ) =: P Q.

By the Pontryagin maximum principle [12], the optimal control U* necessarily maximizes the
Hamiltonian, i.e. for any §U € so(n),

gHC(Q,P, U* +s56U) =0.
ds =0
However,
d
$HC(Q, P, U* +56U)| =u(P'QSU) — (Z(U*),8U)
s=0

_ % tr((QTP - PTQ)TcSU) —(Z(U*), sU)
=(Q"P-P'Q-I(U"),6U).

Note that QTP — PTQ — Z(U*) € so(n). Since J6U € so(n) is arbitrary, we have
QTP — PTQ = Z(U*), and thus obtain the optimal control U* as follows:

Ut(Q.P)=17'(Q"P-P'Q).
In what follows, we write Q := U*(Q, P) for short; this quantity in fact coincides with the
angular velocity €2 defined in section 1.2 as we shall see below. As a result, the (optimal)
Hamiltonian H: T*M,(R) — R is given by

1 _

H(Q,P) = He(Q,P,U(Q.P) = 5(Q"P = PTQ,.T7(Q"P — PQ)),  (5)
whereas the standard symplectic form w on 7*M,,(R) is written as

W((Ql,Pl),(Qz,Pz)):tr(.lszff’]TQz) (6)

The optimal solution is necessarily an integral curve of the Hamiltonian vector field Xy on
T*M,(R) defined by Hamilton’s equation iy,w = dH, or in coordinates,

0 =09, P = PQ. (7)



L I
J. Phys. A: Math. Theor. 52 (2019) 36LT01 W Letters

These equations are called the symmetric representation of the generalized rigid body equa-
tions (3). In fact, if we set

() := Z(Q1) = Q(1)"P(r) — P(1)" Q(1)

fort € [0, 7], thenII: [0,T] — so0(n)* = so(n) satisfies the n-dimensional Euler equation (3b);
see also Bloch et al [5, 6] for its generalization to other matrix Lie groups.

Although it is a straightforward calculation to show that the generalized rigid body
equations (3) follow from the symmetric representation (7), the question remains as to
how these two Hamiltonian systems are related to each other from the symplectic-geomet-
ric point of view. Bloch et al [4] gave one such relationship: specifically, they constructed
symplectic submanifolds S C SO(n) x SO(n) of T*M,(R) = M,(R) x M,(R) and Sy of
T*SO(n) = SO(n) x so(n)* as well as a diffeomorphism between S and Sy in a rather elabo-
rate manner to establish an equivalence between the symmetric representation (7) and the
Euler—Poisson equations (3).

1.4. Main result

We present an alternative connection between the symmetric representation (7) and the Euler
equation (3b) by showing that the two are related via symplectic reduction. Although this is
not an equivalence, this connection exploits an inherent symmetry of the symmetric represen-
tation that seems to have been overlooked, and provides a geometrically natural and appealing
alternative to the result of Bloch et al [4]. More specifically, we show the following:

Theorem. The symmetric representation (7) of the n-dimensional generalized rigid body
equation possesses an Sp(2n, R)-symmetry, and the Marsden—Weinstein reduction [10] of (7)
restricted to an open subset of T*M,,(R) by the symmetry at a certain level set of the associ-
ated momentum map yields the n-dimensional Euler equation (3b) in a coadjoint orbit in
so(n)*.

2. Symmetry and conservation law in the symmetric representation

2.1 Sp(2n,R)-symmetry of the symmetric representation

Let us first identify the cotangent bundle 7*M,(R) with the vector space of real 2n x n
matrices:

TML(R) = Moo (®) = {2 = ] | 0.P e mim) .

Then we may write the symplectic form (6) in a more succinct form: for any Z € My, x,(R)
and any X,Y € TzMp,xn(R),

w(X,Y) =t (X"JY) with J:= {OI (I)] ®)

where [ is the n x n identity matrix. Notice also that we may rewrite the Hamiltonian
H: My, (R) — R defined in (5) in the following more concise form:

H(Z) = %(ZTJ]Z, 1-'(Z2"12)). )
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Let Sp(2n, R) be the symplectic group
Sp(2n,R) := {8 € My, (R) | STIS = J},
and consider the Sp(2n, R)-action on My, «,(R) by left multiplication, i.e.
©: Sp(2n.B) X Myyn(B) — Mayn(R):  (5.2) > SZ = 05(2).  (10)

Then one easily sees that this action is symplectic as well as that the Hamiltonian is invariant
under the action, i.e. ®§w = w and H o &g = H for any S € Sp(2n,R).

2.2. Sp(2n,R)-momentum map

Let us find the momentum map associated with the above action ®. First notice that the sym-
plectic form (8) is written as w = —d6 with the one-form € on My, ., (R) defined as follows:

forany Z = [IQ’} € My,x,(R) and any 7 — [ﬂ € TzMauxn(R),

02) 2=y (Z12) = 5 (PO - O'F).

It is clear that @ is invariant under the Sp(2n, R)-action, i.e. 36 = 6 for any S € Sp(2n,R).
Let sp(2n, R) be the Lie algebra of Sp(2n, R), i.e.
sp(2n,R) = {€ € Mp,(R) | €T + J€ = 0}
We equip sp(2n, R) with the inner product (-, - ): sp(2n,R) x sp(2n,R) — R defined as

(&m) = %tr(ETn)

just as in (1), and thus we may identify the dual sp(2n,R)* with sp(2n, R). The infinitesimal
generator of the above action ® is, for any £ € sp(2n, R),

d
gMZan(R)(Z) = a(DeXP(Sﬁ)(Z) =¢Z.
s=0

Since T*M,(R) = My, x,(R) is an exact symplectic manifold with w = —d6 and ® leaves
6 invariant, the associated momentum map J: My, x,(R) — sp(2n,R)* = sp(2n,R) satis-
fies the following (see, e.g. Abraham and Marsden [1, theorem 4.2.10 on p 282]): for any
& € sp(2n,R),

(J(2).€) = 0(Z) - &y (m) (2)
- ! tr(Z'J¢Z)

2
= %tr((JZZT)TE)
= (1277 .¢),
and so we obtain
pQ"  pP'
J(2)=177" = {_QQQT —QPT} : (11)

This is the special case with m = n of Skerritt and Vizman [15, proposition 4.1]. It is also easy
to see that J is equivariant: for any S € Sp(2n, R),

5



L I
J. Phys. A: Math. Theor. 52 (2019) 36LT01 W Letters

JO@S :Ad;fl OJ.

By Noether’s theorem (see, e.g. Marsden and Ratiu [9, theorem 11.4.1 on p 372]), J is a
conserved quantity of the symmetric representation (7) due to the Sp(2n, R)-symmetry. That
each block of this matrix is a conserved quantity is also pointed out by Bloch et al [4] via
direct computations.

3. Symplectic reduction of the symmetric representation

3.1. Symplectic reduction

Let P be a symplectic manifold with symplectic form w, and suppose in addition that there
is a symplectic action of a Lie group G on P, g* be the dual of the Lie algebra g of G, and
J: P — g* be the momentum map associated with the action. The Marsden—Weinstein reduc-
tion [10] (see also [11, sections 1.1 and 1.2]) states that, if either (i) the G-action on P is free
and proper, or (ii) u € g* is a regular value of J and the action of the isotropy group

Gu:={g€G|Ad; 1p=p}

on the level set J~' (1) is free and proper, then the quotient space J~'(11)/G,, is also a sym-
plectic manifold with symplectic structure @, that is naturally induced by w and the geometric
setting; see below for more details. Now, given a Hamiltonian H: P — R, one may define the
Hamiltonian vector field Xy on P by setting ix,w = dH. If H is invariant under the G-action, it
gives rise to the reduced Hamiltonian H,, on J~'(1)/G,,, and then the Hamiltonian dynamics
in P is reduced to the Hamiltonian dynamics in J~'(1)/G,, defined in terms of H,, and @,,.
In other words, one can reduce a Hamiltonian system with a Lie-group symmetry to a lower-
dimensional Hamiltonian system.

3.2. Some technical issues of symplectic reduction

We would like to perform the Marsden—Weinstein reduction of the symmetric representa-
tion (7); here we have P = T*M,(R) = My, x,(R), G = Sp(2n, R) with the action ® defined
in (10), and the momentum map J from (11). However, condition (i) clearly does not hold
because @ is not a free action on My, ,(R), and so one either needs to remedy this or check
(ii). Otherwise, the quotient J~'(x)/Sp(2n,R),, may not be a manifold. The other issue is
how to characterize the quotient space J~'(12)/Sp(2n, R),, explicitly in order to describe the
symplectic structure and the reduced dynamics there in an explicit manner.

Fortunately, the recent work by Skerritt and Vizman [15] provides a geometric setting that
is tailor-made for circumventing these issues. More specifically, we consider the following
pair of momentum maps defined on My, x,(R):

sp(2n, R)* S Manxn(R) 5 o(n)",

where J is defined above in (11) and M is the momentum map associated with the action of
the orthogonal group O(n) on My, x,(R) to be described below; o(n) is the Lie algebra of
O(n). What they show is that, by considering an open subset Z of My, x,(IR) and restricting
the actions and the momentum maps there, one may identify the Marsden—Weinstein quotient

J7'(1)/Sp(2n,R),, with a coadjoint orbit in o(n)*. We note that their result is slightly more
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general than this: they have the result with M, (R) and O(m) with n,m € N instead, and so
our setting is the special case of theirs with m = n.

3.3. O(n)-action and momentum map

Consider the action of the orthogonal group O(n) on My, «,(R) defined by right multiplica-
tion, i.e.

T: O(n) X Mapsn(R) = Masn(R);  (R.Z) 5 ZR = Up(Z).

It is a straightforward calculation to see that W leaves the one-form 6 invariant and hence is a
symplectic action with respect to the symplectic form w defined in (8), i.e. U360 = 6 and hence
Uyw = w forany R € O(n).

Since o(n) = so(n), we identify the dual o(n)* with o(n) via the inner product (1). Then,
following a similar calculation as the one for J from above (see also Skerritt and Vizman [15,
proposition 4.1]), we obtain the associated momentum map M: My, ,,(R) — o(n)* = o(n)
as follows:

M(Z)=27"Jz = Q"P - P'Q. (12)
Again, it is a straightforward calculation to see that M is equivariant, i.e. for any R € O(n),

Mo Uy = Ad; o M.

3.4. Symplectic reduction and dual pair

Following Skerritt and Vizman [15], let us consider the subset of My, ,(IR) that is consisting
of the full-rank elements, i.e.

Z :={Z € My, x,(R) | rank Z = n}. (13)

As shown in [15], Z is an open subset of M,y ,(R), and the actions ® and ¥ preserve Z.
Hence we may restrict the symplectic form w and the momentum maps J and M to Z; we
denote these restrictions by the same symbols for simplicity of notation:

sp(2n,R)* <1 2 M o(n)*

Skerritt and Vizman [15, proposition 4.2] proved that ® and U define mutually transitive
actions on Z in the following sense: (i) The Sp(2n, R)-action ® and the O(n)-action ¥ com-
mute; (ii) @ and ¥ are symplectic actions; (iii) the momentum maps J and M are equivariant;
(iv) each level set of J is an O(n)-orbit, and each level set of M is an Sp(2n, R)-orbit.

The mutual transitivity has the following important consequence (see also Balleier
and Wurzbacher [2, theorem 2.9 (iii)] and Skerritt [14, proposition 3.5]): let Zy € Z and
o = J(Zy) and Ty := M(Zy). Then one can identify the Marsden—Weinstein quotient

2Ho = J_] (MO)/Sp(zn’ R)Mo
with the coadjoint orbit Opy, through I in o(n)*.

Remark 1. We do not have to check that the condition (mentioned in section 3.2) that the
Sp(n, R)-action ® or the Sp(n,R),, action on J~' (1) is free and proper. In fact, the smooth
structure on the reduced space Z,,, is induced by that of the coadjoint orbit Ory,. See the proof
of proposition 2.8 in [15] for details.
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More specifically, let i,,,: J~' (10) < Z be the inclusion and 7, : I (o) — 2, be the
quotient map. Then the reduced symplectic form @, on Z,, is uniquely determined by

-k
lﬂo

see [10] and Marsden ez al [11, sections 1.1 and 1.2]. Also, let wo,, be the (—)-Kirillov—
Kostant-Souriau symplectic structure, i.e. for any IT € Opy, and A, B € o(n),

won, (—ad;TL, —adjIT) := —(IT, [4, B]),

ok
W= T, Wy

where [ -, -] is the commutator on o(n); see, e.g. Kirillov [7, chapter 1] and Marsden and Ratiu
[9, chapter 14]. Then the momentum map M restricted to the level set J ™ (1) gives rise to a
diffeomorphism M: ?HO — Orq,; moreover this map is symplectic with respect to the above
symplectic forms, i.e.

— -
M wo,, = Wy,-

The diagram below gives an overview of this result.

Z
i
I~ (o)
- Mi;3-1(9)
?;O T O,

3.5. Reduction of symmetric representation

Let Q(0) = Qo € SO(n) and IIy € o(n)* be the initial rotational configuration and the initial
body angular momentum of the rigid body, and fix Py € SO(n) so that
oPo — P3Qo = Tlo.

See Bloch and Crouch [3] and Bloch et al [4] for the condition under which this is pos-
sible. Then clearly Zy := (Qo, Po) is in the open subset Z C My, x,(R) defined in (13) and
Iy = M(Z). Now, setting

P,OT 1
00 € sp(2n,R)*,
—I  —QoP}

the level set

I (o) = { LQJ] €Z|0Q"=1PP =1 PQ" = POQ€}

is an invariant submanifold of the symmetric representation (7).
Let h: o(n)* — R be a collective Hamiltonian, i.e. h o M = H. From the expressions (9)
and (12) of H and M, we find
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1
A1) = (1L T~ (11
(1m) = (1.7 (1),
which is the Hamiltonian (4) of the generalized rigid body in the body representation. Then
the result from the previous subsection implies that the Sp(2n, R)-reduced dynamics in Z,, is

equivalent to the Lie—Poisson equation

in the coadjoint orbit O, C o(n)*, where DA(II) € o(n) is defined so that, for any dII € o(n)*,

d
(611, Dh(IT)) = CTh(H+s5H) = (0ILZ7'(11)),
§ s=0
that is, Dh(II) = Z~!(II). However, under the identification o(n)* & o(n), ad;11 = [IL, A] for
any A € o(n)and II € o(n)*, and thus we obtain

I = [IL, 77 ()],

which is the n-dimensional Euler equation (30).
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