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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
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2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

The number of ‘things’ ranging from simple devices to complex machines on the factory floor connected at the enterprise level 
and to the broader internet is growing exponentially. This connection also leads to a tremendous amount of data generated leading 
to ‘Data’ now considered one of the core assets in the broader manufacturing industry. However, the availability of this asset is 
hardly made use of by Small and Medium scale manufacturing enterprises (SME) - the ‘Mittelstand’ of America. How can certain 
types of data be shared by SME companies, yet have the ability to retain ownership and control over their own data? How does 
SME leverage computing on these diverse forms of data for the benefit of its clients and itself? In this paper, we propose a 
decentralized data distribution architecture to democratize the potential availability of large amounts of data generated by the 
manufacturing industry using the Fog Computing paradigm. The architecture leverages an Industry scalable middleware extension 
of Cloud manufacturing that securely filters and transmits data from IoT enabled manufacturing machines on the shop floor to 
potential users over the cloud. This work also demonstrates a data-centric approach which allows peer-to-peer data sharing laterally 
within the fog layer to serve cloud users.  We demonstrate the feasibility of the Fog middleware infrastructure through case studies 
that involves various types of manufacturing data. 
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1. Introduction 

The prevalence of the vision towards Industry 4.0 is leading 
the transformation of traditional manufacturing 
environments and factory floors into cyber-physical systems 
which give more flexibility to the key stakeholders in the 
manufacturing industry. Forecasts expect that nearly 50 
billion devices will be IoT enabled by 2020[1], and a major 
proportion of those devices will be on factory floors 

generating a tremendous amount of high variety and high-
frequency data. Moreover, data-intensive applications which 
require lots of parallel computing will play a primary role in 
these IoT enabled environments [2]. This “Big Data” 
generated will cause storage problems and would result in 
high resource utilization in the current cloud manufacturing 
environment. Data transmission in this scenario will become 
problematic because of privacy and latency issues and hence 
would require an extension of existing Cloud manufacturing 
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services [3]. Also, if manufacturers want to develop data-
driven strategies, perform advanced analytics on real-time 
data, the traditional cloud may limit flexibility. Also to note 
is that, once data is moved to the cloud, there is a notion that 
owners of such data lose control over how that data is shared 
and used. A solution to this concern is to distribute real-time 
data from manufacturers into decentralized computing nodes 
with storage and network capabilities which acts as an 
advanced data filter and transmits only the summary data to 
the Public Cloud. To transition towards Industry 4.0 
revolution, the manufacturers must be able to use Big Data 
technologies judiciously [4]. A substantial research effort is 
being placed on how to efficiently distribute control and 
computing systems geographically [5,6,7] and securely 
transfer data from an IoT endpoint to the client or computing 
nodes [8,9,10].  
 
Many small manufacturers have begun the journey to 
connect physical machines and devices on their shop-floor to 
integrated intra-enterprise and inter-enterprise systems. 
Communication protocols such as those enabled by OPC/UA 
and MTConnect have lowered the barriers to enable 
interoperability between machines and IT systems. This slow 
transformation now raises the issue of how small and 
medium scale manufacturers can leverage this data asset for 
direct benefit to the enterprise and more importantly how can 
such data assets be utilized for obtaining new business clients 
for small and medium scale manufacturers. 
 
Platform and Infrastructure-as-a-service cloud platforms 
partially solve this problem by migrating data over from 
within enterprise to the entire cloud [11]. However, such ad 
hoc distribution of data across the major cloud service 
providers only partially addresses the problem of computing 
and is mostly done to conduct in-house data analytics (ex. 
prognosis of machine assets, production scheduling, etc.). 
Such forms of product and process data can also be valuable 
in search and discovery processes in matching job shop 
service providers with users who request them through an 
equitable and decentralized architecture where the control 
over data lies in hands of the small manufacturers instead of 
a centralized organization. 
 
Consider the scenario of a design engineer at a startup 
company in search of the best job shop service providers who 
can work with the startup to conduct short prototype runs and 
in the future be able to conduct production quantity runs. A 
web search engine on recommended job shop service 
providers would yield superficial information on the service 
capabilities of the job shop. Personnel would have to conduct 
their own due diligence that involves physically visiting and 
confirming the capabilities of the service provider before any 
agreement is in place between the startup-company and 
manufacturing provider. What if there was a near real-time 
information resource available to engineers at the startup 
company to digitally verify technical capabilities offered by 
a service provider, prior historical performance, quality 
system certifications, materials worked with in the past and 
kinds of customers it has done business with. If such 

information is readily available, this would transform 
sourcing and selection of supply chain service providers. 
However, there are several challenges as to why this is not 
possible soon, even if all shop-floors at SMEs were fully 
connected. For one, how does SME share its private data with 
client requests for such access to data? How can SME 
continue to keep control over its data without data being 
compromised or sent to third-party services that may misuse 
them? In addition, client requests may also contain the need 
to aggregate information across multiple service providers 
which necessitates conducting a meta-analysis of individual 
data sources of each service provider. Also, if there are only 
a few cloud service providers aggregating such information, 
it increases the chance of data monopolization and 
consequent misuse. Manufacturers will be dependent on a 
centralized authority which may not always act according to 
their interest which further demotivates manufacturing 
service providers from further investing in the digital 
integration of its factories.  
  
Solutions to the above problem transcend both engineering 
solutions and transformative business model processes. New 
technologies such as decentralization enabled by Blockchain 
and ubiquitous computing through fog computing can 
perhaps provide solutions to the problem. The concept of Fog 
computing is built upon the idea of stretching the cloud 
network and bringing it closer to the IoT endpoints. Fog 
computing introduces a distributed and decentralized 
framework which connects the edge and the Cloud, thereby 
reducing the latency and bandwidth bottlenecks in an IoT 
environment [12]. This paper introduces a generic fog 
computing-based architecture for manufacturers to share 
their data and leverage the distributed computing paradigm 
to bridge the gap between cloud users and individual service 
providers. Our architecture is built on top of the existing 
three-layer fog computing architectures [13, 14, 15]. The 
architecture intends to provide a framework that can address 
data-ownership, data-computing, data-sharing, and data-
aggregation services with regards to the manufacturing data 
asset. Our contribution presents a solution to Data 
Distribution-as-a-Service (D-DaaS) enabled through the fog 
computing architecture. We present the architecture with fog 
nodes that act as an orchestrator in the distributed system 
which controls data transfer from the IIoT endpoints 
(example physical CNC machines) to the main High-
Performance Cloud through which the user interacts to get 
access to the machine level data. The paper further discusses 
briefly the data distribution service, fog computing and the 
previous works in these domains.  
 
The Section 2 in the paper reviews the literature while 
Section 3 details the proposed generic architecture proposed 
along with the technical details of the implementation, the 
architectural overview of each sublayer within the system. 
Further, Section 4 contains two case studies with their 
technical implementation. The Conclusions are drawn in 
Section 5 followed by future work to be done in Section 6. 
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2. Literature Survey 

In this section, state-of-the-art research related to the domain 
of data distribution in manufacturing, fog computing in 
manufacturing and existing fog computing architectures are 
discussed. 

2.1 Data Distribution in Manufacturing  
 
Data generated by the manufacturers, shop floors, designers 
is increasing at an exponential rate. Moreover, the exchange 
of this unstructured data becomes more arduous when data 
from heterogeneous sources like sensors, CAD-based 
product models, Supervisory Control and Data Acquisition 
(SCADA) systems, smart machines are incorporated into the 
data pipeline. The concept of fog computing in data 
distribution for a smart manufacturing environment has not 
been studied. There have been few efforts in the past to 
implement Data Distribution Service (DDS) in cyber 
manufacturing environments for flexible manufacturing 
environment at an intra-enterprise level. A publish-subscribe 
model, independent of any platform was implemented by the 
authors of [16] to develop a modular fixturing system which 
used the sensor feedback to adjust to the clamping forces 
while manufacturing using the RTI DDS software. Ungurean 
and Gaitan [17] discussed the interoperability of Data 
Distribution Service with a SCADA system. The study has 
shown an architecture based on the OPC protocol which uses 
a DDS middleware to distribute the data generated by the 
SCADA system. Some research has also been done to 
evaluate the robustness of the Data Distribution System in 
comparison to conventional methods of distribution the 
manufacturing data over the World Wide Web. Authors in 
[18], have compared Data Distribution Service with 
traditional web sockets for communication between control 
systems. The research has successfully shown the 
importance of publish-subscribe models in a real-time data 
distribution framework which is a key aspect of the Industry 
4.0 paradigm. In the case of data distribution in a cyber-
physical environment, the efficiency of the system lies in 
user-oriented information logistics [19]. 
 
2.2 Fog Computing in Manufacturing  
 
The term Fog computing was coined by Cisco who viewed it 
as an extension of cloud computing in order to bring 
intelligence closer to the edge [20]. The authors in [21] have 
discussed perspectives for fog computing in manufacturing 
with a focus on DAMA (Design Anywhere Manufacture 
Anywhere) concept which requires the availability of 
manufacturing data to key stakeholders, designers without 
delay and scalable integration of IT systems and 
manufacturing systems both vertically and horizontally [22]. 
In [23], the authors have proposed a framework to provide 
production ready machine learning models in factory floor 
operations. This research shows that fog computing is 
competent to address the Industry 4.0 design concerns of 
latency, lesser network dependency, and real-time analytics 
through a case study which used a Predictive Model Mark-

up Language implementation to predict faulty heating 
operations. Wu et al. [24] demonstrated a framework for real-
time machine prognosis using fog computing to predict tool 
wear. The research showed the significance of storing 
manufacturer’s data at the edge and analysing it locally 
instead of transferring the large data to and from local server 
to a centralized server. The prototype developed by the 
authors used a machine learning algorithm which was used 
to detect discrepancies in milling operations of a CNC 
machine. Li et al. [25] went a step further to leverage the 
potential of fog computing by using Artificial Intelligence. 
The authors implemented a deep learning model to identify 
flawed products on an assembly line by adopting a 
convolutional neural network in a fog computing 
environment. This study shows how fog computing is a 
benefit for manufacturers who are interested in making data-
driven decisions for their businesses.  
 
2.3 Architecture of Fog Computing  
 
The concept of fog computing is state-of-the-art with respect 
to current digitization in the manufacturing industry. Data 
transmission on a large scale requires a sophisticated 
architecture which can channel the data from the source to 
the destination with a high throughput rate to improve the 
end user experience. The architecture of Fog computing is 
highly distributed connectivity within nodes and loose 
device coupling [26]. The application of fog computing is 
mainly service oriented and as a result, the architecture 
totally depends on the service which is to be provided. Even 
if the service provided is similar, the individual components 
of the architecture may be adjusted to streamline data 
distribution. The Open Fog Consortium has set some 
guidelines for the architecture but the highly dynamic and 
variable nature of services which can be offered using fog 
computing makes it impossible to fix a specific architecture. 
 
A sizeable amount of research has been done in the 
healthcare domain with fog computing. Nandyala et al. [27], 
Gu et al. [28], Cao et al. [29] have analyzed a large volume 
of healthcare data by computationally offloading it using fog 
computing and using different architectures. Research papers 
[2, 30] have also been published which explain the 
middleware and evaluate the architectural constraints within 
a fog computing environment. Aazam et al. [3] discuss the 
constraints within an IoT-Cloud integration and provide a 
succinct comparison of fog and cloud computing 
technologies. 

3. The System Architecture 

The architecture (Fig. 1) is made up of the Physical Layer 
consisting of IoT enabled manufacturing machines, the fog 
layer which consists of distributed computing nodes which 
act as an orchestrator and brings manufacturing intelligence 
closer to the Physical Layer and the high-performance cloud 
computing layer with large storage and significant 
computing capabilities. The architecture proposed in the 
paper is built on the guidelines suggested by the Open Fog 
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Reference architecture [31] an officially accepted IEEE 
Standard named as IEEE 1934™ [32]. The High-Level 
architecture of the Data Distribution Architecture is 
presented (Fig. 2). 
 
 

 

Fig. 1. The Network Architecture: The figure shows the flow of data from 
the data source (CNC machines) to the main cloud which serves the client 

via the Fog computing architecture. 

The core fundamentals on which the architecture was built 
are as follows: 
 
Security:  All machines connecting to the fog node will be 
trusted and verified in our architecture. A combination of 
standardized MTConnect data model and OPC/UA for data 
transfer ensures secure data emission from the edge device. 
Further, the literature has proposed ways and means to secure 
the OPC/UA protocols [33]. Within the fog layer, the fog 
nodes communicate via the Publish-subscribe 
communication model which allows dynamic entry and exit 
into the system and hence necessitates secured software 
resources. For any fog node to join the network, it must 
register itself on a Loopback API [34] exposed at the Fog-
Cloud Middleware node (Fig. 2) where it gets access to 
architecture via access tokens. The fog nodes can be owned 
physically by neutral third parties who have no conflict of 
interest with the manufacturers or the data consumers. These 
neutral third parties can be academic institutions, 

government agencies etc. Fog computing, being a highly 
virtualized platform, allows the architecture to incorporate 
even virtual fog nodes within the proposed architecture. 
 
Scalability: The computing, storage and networking 
capabilities of the fog nodes can be scaled internally 
depending upon the number of machines connected and the 
throughput of data. The fog layers can be scaled vertically by 
adding more tiers within the hierarchy. Scalability can be 
achieved either by full virtualization or by container 
virtualization. Container virtualization is more cost effective 
and a light-weight solution compared to the Virtual 
migration when it comes to measuring the cost of scalability 
[35]. However, since the containers share the kernel of 
Operating System with other containers and have a root 
access, they are comparatively less secure and isolated than 
the Virtual migration. Moreover, when considering 
scalability, it should be kept in mind that the motivation for 
data movement is to present valuable data which can perform 
intricate analysis to help manufacturers [36]. Since an IIoT 
environment is a highly elastic and agile environment, the 
architecture supports the demand-driven expansion of 
individual components. 
 
Openness: The main motivation of developing this 
architecture is the democratization of the manufacturing data 
by storing it in distributed databases instead of being 
managed by a central authority which makes the generated 
data and insights available to any interested party. The 
architecture is highly interoperable and can thoroughly 
exchange information at each level and within levels. The 
communication between the location-aware fog nodes is also 
open and transparent. 
 

 

Fig. 2. The high – level three layered architecture  

Autonomy: Every fog node is autonomous, and no central 
authority directs the fog node to act in a certain way. It is up 
to the discretion of the fog nodes to communicate with other 
fog nodes or with the cloud. Similarly, the manufacturers 
have full authority and control on whether to share data with 
a specific fog node or not. A manufacturer can opt out of the 
system by simply disabling the ingestion engine installed on 
their end and similarly a fog node can opt out. 
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Programmability: The architecture consists of highly 
adaptive deployments including support for programming at 
the software and hardware layers. In a virtual environment it 
very easy to set up n number of fog nodes using DevOps tools 
like Ansible, Kubernetes, and Jenkins. Fog nodes can also be 
created in Docker containers (a piece of software that 
packages the code and its dependencies to flexibly adjust to 
different operating systems) to maximize the resources by 
using several components. Fog nodes can also be created 
virtually in containers using the containerization technique 
which prunes the use of computing resources [37]. 
 
Agility: The architecture is agile if it supports key 
operational decisions at the fog node. In critical cases or 
operations that require immediate attention, for example 
when the machine is in an alarming state or the tool is about 
to wear out, the fog nodes can send an immediate response 
to the manufacturers. 
 
Hierarchy: The architecture supports hierarchy both 
horizontally and vertically. As the number of machines 
connected increases or the throughput of data increases, the 
architecture can be deployed with clusters of fog nodes 
hierarchically by introducing tiers within the architecture. 
 
RAS (Reliability, Availability and Serviceability): The 
reliability of the architecture lies in using reliable software 
and hardware computing resources. Moreover, the hardware 
and software resources used within the architecture are easily 
available and in case of downtime can be serviced in order to 
be functional again. 
 
3.1 The Physical Layer 
 
In the proposed architecture, the Physical Layer (Fig. 3) 
consists of manufacturing machines that live stream data 
from their respective geographic locations through sensor 
networks, communication adapters, and single board 
computers to a local network. The Physical Layer may 
consist of several heterogeneous data sources. Several 
communication protocols may be used within the Physical 
Layer, such as MTConnect and OPC Unified Architecture 
(UA), which integrate the existing specifications of the 
machines and implement the relevant industry standards. The 
data generated by these machines can then be routed to a 
database server. Within the Physical Layer, both old legacy 
machines and newer smart machines can be connected to 
facilitate data sharing from these machines. 
 
3.2 The Fog Layer 
 
The Fog Layer consists of location-aware computing nodes 
which can perform compute and storage operations. These 
nodes are the fog nodes which act as an intermediate entity 
in our distributed data sharing architecture. The fog nodes 
present in the Physical Layer and store it to perform short 
term analytics. These nodes are then further connected to the 
main Public cloud and have the networking capabilities to 
communicate with other fog nodes in the network. 
 

The fog nodes can be physical systems having computation, 
storage and network capabilities which can be integrated into 
the D-DaaS architecture. The deployment of fog computing 
can also be driven by virtualization technology, which 
introduces a software abstraction between the computer 
hardware and the operating system and application running 
on the hardware. 
 
 

 
Fig. 3. The Physical Layer 

Techniques such as Data Virtualization can be used within 
the Fog Layer to integrate data from various sources [38]. 
This abstraction layer acts as a controller of hardware 
resources and enables multi-tenancy within the fog nodes 
[39]. In many cases, fog may not be just middleware that 
provides quick response and other related services. Fog may 
have its own set of complete applications (like the cloud) 
where the cloud may act as a facilitator to access the 
applications running on the fog node [40] The Fog Layer 
consists of decentralized computing nodes with storage and 
network capabilities and are positioned logically between the 
IoT enabled manufacturing machines and the Public Cloud. 
The nodes in this layer are responsible to transmit the 
collected data via an IoT gateway device which can be a 
router, switch or via wireless communication to the Public 
Cloud. The data transmitted from the manufacturing 
machines in the Edge Layer to the fog nodes needs to be 
compressed before being transferred to the main Cloud. 
 
The proximity of the fog layer to the manufacturing shop 
floor improves the efficiency of secure data transfer by 
resolving latency and bandwidth issues and simultaneously 
limiting the data transported to the High-Performance cloud 
for storage, processing, and long-term analytics. 
 
3.3 The Cloud Layer 
 
The cloud layer is the highest layer in our architecture which 
comprises of high-performance cloud computing resources 
that incorporate standards, procedures, and elements from 
normal cloud computing. HPC cloud computing will provide 
access to a massive computing infrastructure which will be 
able to cater to the needs of the continuously evolving 
manufacturing environment. It is also through this layer 
external users gain access to data contained at the lower level 
of the architecture. 
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The Cloud Layer receives all the filtered data from legacy 
CNC distributed fog nodes. Cloud layer has a middleware 
API which communicates with the fog nodes as per the 
request of the application users using the client-server REST 
architecture [41]. The cloud may also be used to perform 
long term analytics for the manufacturers. 
 
3.4 Communication Protocols 
 
Communication Protocols play a pivotal role in data-
intensive manufacturing environments. Currently, no 
communication protocol has been specifically designed or 
accepted as an industry standard in a Fog computing 
environment [42]. Several communication protocols used 
within the fog computing architecture have been listed by 
authors of [43]. 
 
HTTP: The HTTP protocol, one of the most popular 
networking protocols is used in developing this architecture. 
In fog computing, the rest architecture can be integrated with 
HTTP protocol to handle requests and send quick responses 
to those requests via a client-server architecture.  
The prime advantage of using RESTful Web services with 
HTTP is that it allows CRUD (Create, Read, Update and 
Delete) operations on the data stored within the fog nodes. 
Moreover, using both in combination gives flexibility in 
using several data formats like JSON. Several frameworks 
like NodeJS offer flexibility in using REST with HTTP [42]. 
The transport protocol used in HTTP is TCP which can be 
useful in sending from one fog node to another fog node, but 
bottlenecks may occur. Moreover, the security mechanism 
used by HTTP is the TLS (Transport Layer Security). 
 
Publish-Subscribe: The Publish-Subscribe is a messaging 
pattern where the publishers or the nodes which send a 
message, do not send the messages directly to the specific 
receivers of the message but instead send the messages to a 
message broker which then forwards the messages. Using the 
Publish-Subscribe pattern, the subscribers will receive only 
those messages that are of interest without the publisher’s 
knowledge. A publish-Subscribe model ensures that the 
same state of information is maintained across all nodes 
within a decentralized environment. The Pub/Sub 
architecture ensures more security by the principle of 
minimal privileges. 

4. Case Study 

In this section, we present two case studies where we 
transmit the data generated from physical CNC machines and 
3D CAD model data from a storage drive resource. The first 
case study involves data generated by a CNC machine and 
obtained via MTConnect protocol while the second one 
involves the data generated during CAD modelling activities. 
 
4.1 Data Distribution of Machine Data  
 
The first case study is for distributing the data generated by 

CNC machines, namely the HAAS VF-3, the PocketNC, and 
the MAZAK-Integrex within the Fitts Department of 
Industrial and Systems Engineering at NC State. The 
MAZAK-Integrex has an inbuilt adapter which streams data 
to a local server while the HAAS VF-3 and the PocketNC are 
the older legacy CNC machine. The HAAS VF-3 and the 
PocketNC machines were connected to a system-on-chip 
Raspberry Pi to interface with the machine control boards in 
order to transmit data via the MTConnect protocol through 
the university ethernet infrastructure [45]. The main 
motivation behind this case study is to demonstrate that 
manufacturers who may lack a highly sophisticated IT 
infrastructure can participate in Industry 4.0/Smart 
Manufacturing in order to share their data for a more 
collaborative manufacturing environment. This can increase 
business prospects for even small manufacturers. 
 
A gateway device collects real-time data from the CNC 
machines in the Data Intensive Manufacturing Environment 
Laboratory and Centre for Additive Manufacturing and 
Logistics at NC State University through a network of 
sensors, MTConnect adapters, and I/O adapters. All the raw 
data is streamed to a local cloud database server through a 
Python ingestion framework and stored in a PostgreSQL 
Database Server. Further, in the data pipeline, the data is 
compressed, filtered and shared as pre-decided views of a 
SQL Database and transmitted to a fog node with 
computation, storage, and network capabilities via a Python-
based oracle service that intermediates between the two 
servers. 
 
The fog node can be a physical system or a highly virtualized 
environment. In our implementation, a MongoDB instance 
running on the fog node is an endpoint for the transmitted 
data via the oracle. The NoSQL database stores the data in 
the format (Fig. 4). The Fog Node follows a Client-Server 
architecture and can share data with the main Public cloud 
via an API or can act as an independent server to serve 
authenticated clients on the machine data sent to it. The fog 
node also maintains a registry of data sources and the 
metadata associated with it. 
 

Laterally, the Fog Nodes are a part of the Data Distribution 
System wherein a Fog Node is both a Publisher and a 
Subscriber in a global data space. The fog nodes 
communicate with each other on topics whose data structures 
are pre-decided. The public Cloud is a data store for all the 

Fig. 4. The representation of data in a Fog Database 
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data collected from the Fog Nodes. Storing the data in local 
fog nodes is a viable solution to store and filter the real-time 
data [46]. The main cloud has applications deployed on the 
client-server architecture which serves users and shows the 
data collected from the IoT enabled machines via the Fog 
nodes. 
 
The main User Interface (Fig. 5) of the application deployed 
on the cloud was built using a node JS framework and 
MongoDB database. The user has the freedom to view the 
data related to various machines. Once the user selects a 
specific type of machine, the user will be directed to 
available data streams which will further fetch the data from 
respective fog nodes via a Fog-Cloud Middleware API. The 
graphical user interface at the Fog node is built by the 
MongoDB database, Node JS for rendering web page content 
hosting the historical data related to machines. All 
functionality for access management, user authentication and 
checking the number of login times are built into Node JS 
Express server and a MongoDB database at the fog node. In 
case of requests, data was exchanged in JSON format. 
 
4.2 Data Distribution of CAD Data  
 
The second case study involves the distribution of 
unstructured file formats such as jpeg, JSON data existing on 

other private cloud platforms like Google Cloud. The 
motivation behind this case study is to show the ease with 
which the data required by designers can be made available 
over the internet through the fog computing architecture. The 
case study is used to show the ease of distribution of 
unstructured design data through our implementation of the 
Fog computing architecture. The data source for this case 
study is a Public cyber manufacturing infrastructure 
developed to support design and manufacturing research 
maintained at the Google Cloud platform and developed by 
researchers from the DIME Lab at North Carolina State 
University and the University of Southern California. The 
repository contains a plethora of CAD data which includes 
the metadata of the files in JSON format, STEP files, STL 
files and JPEG images (Fig. 6) available freely for sharing. 
Consider a case, where a designer is looking to design a 
specific part for his design and looks up for it on the web.  
 
Our architecture facilitates read-only access to the image, 
metadata, data including make the metadata available via the 
user interface and an authenticated API access to download 
it with an agreement to the source. Using our architecture, 
the data from this CAD repository will be shared at will by 
the admin of the repository with the Fog databases using an 
authenticated Python program. The Python program will 

Fig. 5. The first user interface for the end user 

Fig. 6. The CAD data stored in a data source repository  
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fetch the data for read-only access from the source repository 
and this data will further be made available via the main  
cloud to the designer looking for a part via an API (Fig. 7).  
 
Our Fog computing architecture provides the required data 
pipeline which facilitates SME’s, academia, independent 
researchers to share their data from distributed computing 
nodes (Fig 8.) while keeping the access control of the data 
with them. An interested client or designer who sends a 
request via the Public Cloud does not have write-access to 
the data and his requests are served itself at the public cloud 
via the Fog-Cloud Middleware. The data sources (both CNC 
machines or CAD repositories in this case) have complete 
control of the data and it will be completely up to the 
repository admin to decide what data will be shared, whether 
to provide a download access or not and lastly whether to 
share data with a fog node or not.  

5. Conclusion  

In this paper, we present a decentralized data distribution 
architecture for democratizing the data generated in a smart 

manufacturing environment. We have implemented the fog 
computing architecture as per the IEEE standards. 
 
In the case study, we have presented the ease of distributing 
both structured and unstructured data through the 
architecture and making the data requested by the end user 
of a service provider available in a read- only format to the 
client. The architecture allows the manufacturer to have 
control over their own data. The Kafka client embedded in 
the fog nodes allows communication with other fog nodes 
within the layer between the IoT enabled manufacturing 
machines and the main Cloud. This ensures that the fog 
nodes can inter-communicate to deliver query results. 
 
Fog computing being a fledgling technology involves several 
different communication protocols for heterogeneous data 
transmission between fog to fog and fog to cloud which 
makes a coherent data distribution system possible. In 
addition to communication protocols, another compelling 
challenge lies in enhancing the user experience and hiding 
the backend working of the layers.  

Fig. 8. The data streams provided to the end user corresponding to data from different fog nodes 

Fig. 7. The CAD metadata and images presented in a read-only format to the end user. 
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6. Future Work  

In the future, our efforts will be focused on working towards 
making the architecture more industry scalable using cloud 
orchestration. An important consideration is to test the 
decentralized data distribution architecture on networking 
performance and latency of response to complex query 
requests. A major challenge lies ahead in domain of the 
security of the architecture. Since the number of things 
connected with the distributed architecture will be huge, 
security will remain a main issue of concern. Further, the 
type of data  to be distributed via the architecture will be 
heterogenous and with increase in data sources may require 
alternate network configurations for optimal performance, 
which might make node management tedious.  
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