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ABSTRACT
Data driven advanced manufacturing research is dependent

on access to large datasets made available from across the
product lifecycle — from the concept design phase all the way
down to end use and disposal. Despite such data being generated
at a rapid pace, most product design data is archived in
inaccessible silos. This is particularly acute in academic research
laboratories and with data generated during product design and
manufacturing courses. This project seeks to create an
infrastructure that allow users (academia and the general public)
to easily upload project data and related meta-data. Current
manufacturing research must shift from siloed repositories of
product manufacturing data to a federated, decentralized, open
and inter-operable approach. In this regard, we build ‘FabWave’
a cyber-infrastructure tool designed to capture manufacturing
data. In its first pilot implementation, we focused our attention
to gathering information rich 3D Mechanical CAD data and
related meta-data associated with them, with the intent to make
it easier for users to upload and access product design data. We
describe workflows that we have initially tested out within the
two academic universities and under two different course
structures. We have also developed automated workflows to
gather license appropriate CAD assemblies from commercial
repositories. Our intent is to create the only known largest
available CAD model set within academia for enabling research
in data-driven computational research in digital design,
fabrication and quality control.

Keywords: Manufacturing Cyber Infrastructure, Data
Management, CAD Model Repository, Digital Thread, Machine
Learning CAD.

INTRODUCTION

Advanced manufacturing research is dependent on access to
large datasets of product models to enable product designers to
learn from past errors, and to discover and develop new solutions.
Similarly, data generated during manufacturing processes and
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quality inspection also becomes valuable data for future research
in advancing manufacturing research. However, such datasets are
typically archived in inaccessible repositories and may be poorly
described and difficult to use by others.

While the ‘Digital Thread” in manufacturing has
concentrated on the final end point data generated during a
product lifecycle, there is much value in all forms of data
generated during the product lifecycle, even if it is not directly
associated with product manufacturing. Examples include, failed
designs, or unstructured data generated during the product
design, prototyping and manufacturing process. Such forms of
data are hardly captured and may provide tremendous value for
researchers in advancing data-driven forms of product design and
manufacturing [1].

Data generated within industry are often times impossible to
be shared outside of the enterprise. However data generated
during research activities in manufacturing can be shared as
evident in the US National Science Foundation and other Federal
agency requirements on data management. Yet, manufacturing
engineering researchers do not have an adequate workflow or any
form of easy to use tool that allows data to be stored and made
accessible to the community. The community of researchers
simply rely on storage drives maintained at universities to store
much of this data, with a small percentage of them made
available through research datasets when the work is finally
published. There is a much broader and possibly richer data-set
generated within academia — be it within product design and
manufacturing classes or through research activities conducted in
manufacturing projects. These datasets if made accessible and
usable by the community, can lower the barriers for other
research groups to participate. For example, machine data
generated during a biomedical manufacturing process, such as
3D bioprinting can be valuable to those who are interested in
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quality control, provided the datasets are annotated, tagged,
classified and/or categorized to ensure its usability.

This project during its initial phase focuses on 3D Model
data related to product manufacturing. For any large data —driven
project, the classical issue with large datasets is their
classification, and product CAD data is no different. The
classification of models using shape search has long been a topic
of interest for researchers in the Computer Graphics and the
Design/Manufacturing communities. Iyer et al. [2] classify
research in 3D CAD Shape Search algorithms as follows: Global
feature-based (Spherical Shape Harmonics (SPH) [3,4]), Graph-
based [5], feature-based [6], Histogram-based Shape
Distributions [7], Product information-based [8] and 3D Object
Recognition based (Extended Gaussian Images [9], Geometric
Hashing [10]). The effectiveness of Local Feature-oriented
techniques such as Heat Kernel Signatures [11] and Wave-Kernel
Signatures [12] are also well established.

With advances in computer vision techniques, there has been
the rise in application of graphical techniques aligned with
Machine Learning techniques for model recognition and
classification. The use of Convolutional Neural Networks,
applied to volumetric representations [13], octree representations
[14], collections of 2D representations [15] and techniques using
unsupervised image-capture [16] have shown high accuracies of
90% and above. [17]. While promising, these techniques depend
on large amounts of classified and categorized data to help
improve results. In product manufacturing context, such data is
not easily accessible and/or even readily available. Repositories
such as those in Autodesk Fusion and GrabCAD would require
manual download to get any sizeable chunk of data. Moreover
much of the data is not readily categorized to be useful to the
community for conducting research activities.

LITERATURE SURVEY AND PREVIOUS WORK

Building comprehensive databases in a variety of domains
has long been a topic of interest for researchers, especially in
fields where large amounts of data are either easily generated, or
where large datasets have great transformative potential and aid
collaborative research. WordNet is one such online repository
that provides a “large lexical dataset, where words are grouped
into sets of cognitive synonyms that express distinct concepts”.
[18] This structured grouping of words in WordNet has
significantly influenced work in Natural-Language processing.
In a similar vein, the ImageNet project [19] has built on the
‘synsets’ of WordNet to provide images that are annotated by the
semantic classification of WordNet. The 3.2 million classified
images on ImageNet provide Computer Vision researchers access
to a large amount of data for use in further applications.

Another well-known large-scale research database
infrastructure, the Global Biodiversity Information Facility
(GBIF) [20], has successfully collated hundreds of millions of

species occurrence records through an international collaborative
effort. Open access is provided to scientists and researchers to
apply the data in peer-reviewed publications and policy papers.
This data-driven approach to decision making has had far-
reaching positive implications in biodiversity, climate change,
human health and food security.

There have been multiple attempts to establish such a
database for 3D shapes. The Princeton Shape Benchmark [21] is
one of the well-established benchmarks that provides a
standardized framework with 6,670 classified models for
comparing experiments using different shape descriptors. 3-D
mechanical CAD models require different classes as compared to
regular 3-D models, since they are specific to the engineering
discipline. The effort to construct a standard repository for 3-D
mechanical CAD models [22] predates the Princeton Shape
Benchmark; the National Design Repository (NDR) project by
Regli et al. contains datasets classified on different bases such as
Manufacturing (Machined, Cast-then-machined), Functional
(Bracket, Gear, Housing, Linkage Arm, Nuts, Screws, Springs)
Primitives (Cubes, Cylinders, Sphere, Torus), a Lego dataset etc.
In all, there are around 600 CAD models classified on the
previously mentioned bases. All the models were made available
in ACIS-SAT, STEP and VRML formats. A smaller dataset of 40
models, with variable fidelities, and a dataset of 27 models with
minor topological variation is also included, to test the sensitivity
of the various search techniques [23]. The use of the NDR dataset
was further expanded upon in [23], where 9 shape-based and
solid-based graph techniques were performed on the dataset, in
order to establish a benchmark on CAD shape search techniques.
A performance evaluation using k-Nearest Neighbours
classification showed the effectiveness of different techniques for
each classification.

Jayanti and Ramani et al. established the Engineering Shape
Benchmark (ESB) Dataset, by considering the Functional,
Manufacturing, Lego model and real-world engineering parts
from the NDR dataset (totaling 400 parts), and adding to this their
own parts to bring up the total dataset to 867 models. [24] Instead
of classifying the parts on the basis of function, the parts were
classified on the basis of shape, giving due consideration to
diversity of these 3D Models. These models were made available
in STL and OBJ formats, along with the associated JPEG image.
The higher level or ‘super-class’ categories were Flat-thin wall
components, Rectangular Cubic Prisms and Solids of
Revolution; sub-classes are further elaborated upon in [24]. 12
different techniques were tested on the ESB set, which can be
classified into Feature Vector-Based, Histogram-Based and
Graph-Based methods. A comparison between the NDR dataset
and the ESB datasets was then performed, showing the superior
performance of 2-D view methods such as 2.5D Spherical
Harmonics [25] and 2D Shape Distributions [26].
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Fig. 1. A Pilot Manufacturing Cyberinfrastructure- ‘FabWave’

Expanding on the concept of these existing benchmarks for
3D models, ModelNet [27], a 127,915-strong clean collection of
3D models of objects, has become a standard dataset for the
testing of various shape-search algorithms. ModelNet classifies
these objects into 662 categories, and provides a 40-class subset
for validation of algorithms. More recently, ShapeNet has
emerged as a larger, well annotated dataset of 220,000 models
classified on the basis of WordNet synsets, with an overall size
0f'3,000,000 models [28]. ShapeNet’s focus is on creating a large
set of geometric data for object- and scene-recognition, and
explicitly excludes “mechanical CAD parts, molecular structures
and other such domain-specific objects” [28]. The dataset made
available through ShapeNet is not directly relevant to product
manufacturing science and research applications. Specifically,
information such as the categories, feature level detail, material
and tolerance specifications are lacking, which are critical to any
data-driven product design engineering research.

FABWAVE (FW) — A CYBER-INFRASTRUCTURE (CI)
FOR MANUFACTURING

The overall goal of this project is to design the initial
building  blocks for a nationwide manufacturing
cyberinfrastructure to advance our nation’s research and
scholarly achievements in design and manufacturing (D&M)
research. Current research must shift from siloed repositories of
product manufacturing data to a platform that is federated,
decentralized, open and inter-operable. This can be achieved
through the transformation of techniques through which cyber-
capability is embedded in every physical end-point, be it on a

desktop used by a product designer or within the control systems
of a manufacturing machine. Advanced CI tools are rarely used
in manufacturing science and research, primarily due to the lack
of infrastructure to connect the diverse software tools and
manufacturing machines used across the scientific community.
Data generated during research are currently stored in siloed
storage drives and hardly ever made accessible to the
manufacturing community. Beyond availability of this data,
making them usable for future research is critical to lowering the
barriers for manufacturing researchers to use CI tools. This
manufacturing cyberinfrastructure, which we call ‘FabWave’
(FW) aims to create the first of its kind foundational experimental
infrastructure to eventually support research interaction between
manufacturing science and computer science researchers.

In this work, we have focused on the ability to gather 3D
CAD model data from a variety of sources generated within
academic laboratories, teaching oriented classes and from
publicly available open sourced data sources to create a
comprehensive dataset of 3D mechanical CAD parts far beyond
the amount of 3D models available today.

3.1. FabWave Infrastructure Use Cases

To aid the design the CI tool, the following use cases were
considered to contextualize the design architecture of FabWave.
While there are many more uses cases beyond the three listed
below, the following have been chosen to be specific to the kind
of data made available at present.
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Use Case 1: A Design Aid for Novice Users: Ethan, an
undergraduate student in mechanical engineering, is in the
process of designing an L-bracket made out of aerospace grade
titanium alloy. Ethan is not aware of the desired internal thread
call-out for the holes in his bracket model, particularly because
Titanium is a very hard to machine alloy and has strict design for
manufacturability rules. He connects his 3D model of the bracket
to FW’s plugin within his design software, FabWave analyzes his
design and then recommends thread call-outs on the bracket.
FabWave is able to do so, because it has analyzed hundreds and
thousands of previous designs available in its repository and has
made an informed decision on the recommended callout based on
similar designs that exist in its repository.

Use Case 2: Enabling Manufacturing Researchers: Rachel, a
manufacturing science academic researcher is building a deep
layer convolutional neural network algorithm to identify if a 3D
product model is similar to a repository of digital product models
existing in an organization’s database. However, Rachel has no
easy way of training her model and stress testing her algorithm
against several thousands of product model categories. Manual
methods would simply be time consuming and impossible. If
FabWave existed, she could use API tools available through
FabWave, to link her algorithm and test it against thousands of
product digital models, while using the available cloud and
university’s resources to conduct the study.

Use Case 3: Artificial Intelligence in Product Design: Sid, an
artificial intelligence researcher is studying how humans design
products. He writes code to access FabWave’s repository of
product model data to crawl through the individual product
design features built into products, and searches through the
meta-data surrounding the design of those products, which
include design specifications, meeting minutes, audio, 2D
sketches and design versions. He is now able to generate the next
generation of contextual adaptation algorithms, which will allow
computers to learn how to generate new products. The repository
of heterogeneous data surrounding the design and making of a
product within FabWave enriches and hastens the speed of his
algorithm development.

FabWave is intended to be a cyber-infrastructure to enable
science and engineering research in manufacturing. In this first
component, FabWave’s structure is designed to capture 3D CAD
model data. However the underlying infrastructure can
accommodate other forms of manufacturing data generated from
a diversity of sources. Fig. 1 shows the overall stacked layer
software architecture of FabWave. The goal is to create a
detailed, continuously developing and eventually decentralized
and inter-operable database of digital data (example CAD
models), for use in design and manufacturing applications.
Researchers will be able to access the entire dataset contained in
the repository through the use of API tools, and therefore to build
applications and enable their own research. Students have plug-

ins to record all the data automatically with limited human input,
thereby easing the path to storing rich content in the repository
and removing barriers to sharing data. To facilitate the entry of
3D CAD model data, add-ins were developed at the design
software level for both SolidWorks and Autodesk Fusion 360
design software using their API features, to enable users to
upload their data to the repository with ease.
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The front-end web interface for accessing FabWave (Fig. 2)
is currently being built, using a Python based Django web
framework; a basic user management system will be integrated
into the Web UI. A Data Store integrated with ElasticStack, for
uploading and visualizing the data is also under development.
This front-end will connect to a storage repository containing the
parts and related metadata for each of these parts. The remainder
of the paper describes the workflow of capturing 3D model data
of assemblies and associated parts, types of models captured and
its organization.

3.3 Data Collection and Add-Ins

The repository for FabWave was initially built from the
following sources: Student data from design oriented classes at

NCSU and USC, other parametrically generated CAD models in
academic projects, and data available freely for non-commercial
purposes from CAD-sharing platforms such as Autodesk Gallery
and GrabCAD.

Data Source 1: Academic Sources of 3D Model Data

To enable capturing student generated content, plugins were
built for SolidWorks and Autodesk Fusion, two CAD software
platforms heavily utilized in academic engineering curriculums.
The plugins were created to make it easier for students/teaching
assistants to upload content to the FW repository. Plugins created
within SolidWorks and Fusion are shown in Fig. 3 and Fig. 4
respectively. Data generated by the student exercises or projects
are routed to the Google Drive currently maintained by NC State
University. Authentication level grant access was built-in to
allow data from USC to flow through into the Google Drive
Account setup within NCSU (Fig. 5). In future, we would set
individual storage accounts and then data made available
through federated access across distributed repositories.

Data Source 2: CAD Model Repositories

Web-scraping and automation tools were utilized to download
assemblies from sources such as Autodesk Fusion Gallery and
GrabCAD. The workflow was adjusted to only download models
that had the appropriate shareable license to allow the model to
be used for research and other re-use purposes. Each model
assembly came with a limited set of meta-data properties that
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Fig 5. Workflow of data transfer from CAD Plugin to FW Repository on Google Drive
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was available on each webpage of the model. The author of the
assembly model, model categories and other description was also
saved as part of the download process. While such data is limited
with regards to characteristics of the assembly model, future
workflow can include further categorization and classification of
parts. Due credit to the website and the author of the file was

recorded in the form of the author name and download URL.
descriptor [2]
@ : Assembly
1 : GrabCAD
num_extrude_feat : @
volume : 21991083.16272338
num_vertices : 27147

download_url : https://grabcad.com/library/2017-pwnage-

offseason-775pro-gearbox-1

2017 OFFSEASON 775PRO GEARBOX.STEP

download_filename :
display_name : 2017 PWNAGE OFFSEASON 77SPRO GEARBOX
x_dim : 719.1974542236329
num_chamfer_feat : @
location_author : Unknown
name_author : Pwnage Robotics
publish_date : LookForURL
area : 9915882.5747231

ind_categ_tags : STEP / IGESgearboxshifterballball-

shifter32dp775pro
num_hole_feat : @
num_edges : 39109
num_faces : 14820
num_revolve_feat : @
z_dim : 816.7501538638401
num_fillet_feat : @
y_dim : 2393.1313895613885
UUID_assembly : @beed84e-fcae-46c9-9bff-afe@7b56cf38
2.217763572430917
Fig. 6. Assembly Level JSON Document

va_ratio

The file downloads were restricted to the .STEP or .F3D
formats; .STEP is an industry standard for CAD data, whereas
F3D is a format specific to Autodesk Fusion software. Other
popular formats such as .STL and .OBJ were not preferred, as
they do not contain enough initial information about the part
dimensions and other associated metadata. As of the date of
writing this paper, 4700 CAD files of assemblies have been
downloaded from these sources.

3.4 Post-Processing of the CAD Data

The models obtained from the Design classes at NCSU and
USC were mostly individual parts. These parts were classified
into various categories before uploading them to the repository.
The categories were based on a combination of function and
shape, derived from the listings on McMaster-Carr’s website
[29]. These categories are listed in Table 1. However, the
majority of the parts obtained from the web-sources were in the
form of assemblies.

Since part model data could be generated from any source
near simultaneously from any end-point, models were assigned
a Universally Unique Identifier (UUID). Using Autodesk Fusion
360 CAD/CAM software, basic meta-data about the models were
collected. This included, Bounding-Box dimensions, Volume
and Surface Area of the files were extracted. These details, along
with those extracted from the URL that the file was downloaded
from, were added to a JSON file. The JSON format was chosen
because of its compatibility with the NoSQL database schema,
which allows flexibility in adding data without conforming to a
rigid structure. This accounts for different sources of data having
varying formats and representations, with the added possibility
of selectively adding further metadata in the future. Each of these
assemblies were then exported in .STEP, .F3D and .STL, along
with a screenshot of each model and the .JSON document
containing the metadata as shown in Fig. 6. It was essential to
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split the assemblies that were obtained, in order to isolate
individual parts; these add far more value to the manufacturing
applications that FabWave is oriented towards. Fig. 7 shows
some of the parts that were obtained after splitting the
assemblies.

For models that have an assembly structure, each assembly
was scanned and all parts were extracted from within the
assembly structure. A UUID was assigned to them and a
thorough acquisition of properties associated with these parts
was made. In addition to the previously mentioned Area, Volume
and Bounding Box dimensions, various other associated
metadata such as edges, vertices and the position of the part in
the assembly tree structure were obtained; the complete details
are shown in Fig. 8. Each of the Part JSON documents also refers
back to the Assembly JSON documents and its position in the
BRep tree. The parts were exported in the same formats as
previously mentioned for the assemblies.

num_revolve_feat : @
num_hole_feat : ©

y_dim : 50

x_dim : 50.32416894

num_faces : 162
num_fillet_feat : @
UUID_part : a71b5626-56c@-4644-b3db-128e90182cc3
num_extrude_feat : @

num_edges : 472

va_ratio : 1.81
body_name_STEP
: Bodyl
1 : @beed84e-fcae-46c9-9bff-afe@7b56cf38
num_chamfer_feat :
volume : 8

z_dim :

num_vertices : 316
descriptor [2]

: Part

: GrabCAD

Fig. 8. Part level JSON Document

In total, we have compiled together more than 125,000
individual parts with full .STEP model information and as much
meta-data possible about the part as possible. These models are
available as a public resource for research purposes at
http://www.dimelab.org/fabwave. Models generated from academic
sources are mostly standard parts which can be useful to train
machine learning models for classification type problems. When
a model exercise was given to student group in a particular class,
the workflow allows us to capture multiple ways in which

students have generated the same final end-result. Such datasets
become extremely valuable to train machine learning algorithms
to learn how humans create models. The limitation is that such
workflow in-advertently also captures amateur product models,
especially the work of students. Nevertheless, it does represent a
starting point to gather data from start point of the design to the
fabrication of it, rather than just collect the final end-point of any
design process.

CONCLUSION

The intersection of manufacturing sciences and data sciences
are reinforced with the digital integration across the product
lifecycle. Machine learning algorithms require access to copious
amounts of classified and categorized data to help advance
manufacturing systems and process research. However access to
such data has hampered the broader use of machine learning and
artificial intelligence research across the manufacturing domain.
This pilot project which we have termed ‘FabWave’ is designed
to collect data across academic and research grade projects with
the intent to create datasets for academia to use and study. In this
first phase, we have implemented the collection of 3D product
design data from student led projects and crawled the web to
collect sources of 3D mechanical CAD assemblies and individual
parts. As of this writing, the project has collected more than
125,000 individual CAD part files in various parts for the intent
to making the data accessible for research to the community. Part
meta-data was also captured to make it easier to search and find
parts. In the future, we intend to integrate across many other
forms of manufacturing data. In addition, a community led effort
must be undertaken to classify and categorize the data to create a
comprehensive and accessible dataset.
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