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ABSTRACT 
Data driven advanced manufacturing research is dependent 

on access to large datasets made available from across the 
product lifecycle – from the concept design phase all the way 
down to end use and disposal. Despite such data being generated 
at a rapid pace, most product design data is archived in 
inaccessible silos. This is particularly acute in academic research 
laboratories and with data generated during product design and 
manufacturing courses. This project seeks to create an 
infrastructure that allow users (academia and the general public) 
to easily upload project data and related meta-data.  Current 
manufacturing research must shift from siloed repositories of 
product manufacturing data to a federated, decentralized, open 
and inter-operable approach. In this regard, we build ‘FabWave’ 
a cyber-infrastructure tool designed to capture manufacturing 
data. In its first pilot implementation, we focused our attention 
to gathering information rich 3D Mechanical CAD data and 
related meta-data associated with them, with the intent to make 
it easier for users to upload and access product design data. We 
describe workflows that we have initially tested out within the 
two academic universities and under two different course 
structures. We have also developed automated workflows to 
gather license appropriate CAD assemblies from commercial 
repositories. Our intent is to create the only known largest 
available CAD model set within academia for enabling research 
in data-driven computational research in digital design, 
fabrication and quality control. 

Keywords: Manufacturing Cyber Infrastructure, Data 
Management, CAD Model Repository, Digital Thread, Machine 
Learning CAD. 

INTRODUCTION 
Advanced manufacturing research is dependent on access to 

large datasets of product models to enable product designers to 
learn from past errors, and to discover and develop new solutions. 
Similarly, data generated during manufacturing processes and 

quality inspection also becomes valuable data for future research 
in advancing manufacturing research. However, such datasets are 
typically archived in inaccessible repositories and may be poorly 
described and difficult to use by others.  

While the ‘Digital Thread’ in manufacturing has 
concentrated on the final end point data generated during a 
product lifecycle, there is much value in all forms of data 
generated during the product lifecycle, even if it is not directly 
associated with product manufacturing. Examples include, failed 
designs, or unstructured data generated during the product 
design, prototyping and manufacturing process.  Such forms of 
data are hardly captured and may provide tremendous value for 
researchers in advancing data-driven forms of product design and 
manufacturing [1]. 

Data generated within industry are often times impossible to 
be shared outside of the enterprise. However data generated 
during research activities in manufacturing can be shared as 
evident in the US National Science Foundation and other Federal 
agency requirements on data management. Yet, manufacturing 
engineering researchers do not have an adequate workflow or any 
form of easy to use tool that allows data to be stored and made 
accessible to the community. The community of researchers 
simply rely on storage drives maintained at universities to store 
much of this data, with a small percentage of them made 
available through research datasets when the work is finally 
published. There is a much broader and possibly richer data-set 
generated within academia – be it within product design and 
manufacturing classes or through research activities conducted in 
manufacturing projects. These datasets if made accessible and 
usable by the community, can lower the barriers for other 
research groups to participate. For example, machine data 
generated during a biomedical manufacturing process, such as 
3D bioprinting can be valuable to those who are interested in 
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quality control, provided the datasets are annotated, tagged, 
classified and/or categorized to ensure its usability.  

 
This project during its initial phase focuses on 3D Model 

data related to product manufacturing. For any large data –driven 
project, the classical issue with large datasets is their 
classification, and product CAD data is no different. The 
classification of models using shape search has long been a topic 
of interest for researchers in the Computer Graphics and the 
Design/Manufacturing communities. Iyer et al. [2] classify 
research in 3D CAD Shape Search algorithms as follows: Global 
feature-based (Spherical Shape Harmonics (SPH) [3,4]), Graph-
based [5], feature-based [6], Histogram-based Shape 
Distributions [7], Product information-based [8] and 3D Object 
Recognition based (Extended Gaussian Images [9], Geometric 
Hashing [10]). The effectiveness of Local Feature-oriented 
techniques such as Heat Kernel Signatures [11] and Wave-Kernel 
Signatures [12] are also well established. 

 
With advances in computer vision techniques, there has been 

the rise in application of graphical techniques aligned with 
Machine Learning techniques for model recognition and 
classification. The use of Convolutional Neural Networks, 
applied to volumetric representations [13], octree representations 
[14], collections of 2D representations [15] and techniques using 
unsupervised image-capture [16] have shown high accuracies of 
90% and above. [17]. While promising, these techniques depend 
on large amounts of classified and categorized data to help 
improve results. In product manufacturing context, such data is 
not easily accessible and/or even readily available. Repositories 
such as those in Autodesk Fusion and GrabCAD would require 
manual download to get any sizeable chunk of data. Moreover 
much of the data is not readily categorized to be useful to the 
community for conducting research activities.  
 
LITERATURE SURVEY AND PREVIOUS WORK 

Building comprehensive databases in a variety of domains 
has long been a topic of interest for researchers, especially in 
fields where large amounts of data are either easily generated, or 
where large datasets have great transformative potential and aid 
collaborative research. WordNet is one such online repository 
that provides a “large lexical dataset, where words are grouped 
into sets of cognitive synonyms that express distinct concepts”. 
[18] This structured grouping of words in WordNet has 
significantly influenced work in Natural-Language processing. 
In a similar vein, the ImageNet project [19] has built on the 
‘synsets’ of WordNet to provide images that are annotated by the 
semantic classification of WordNet. The 3.2 million classified 
images on ImageNet provide Computer Vision researchers access 
to a large amount of data for use in further applications. 

 
Another well-known large-scale research database 

infrastructure, the Global Biodiversity Information Facility 
(GBIF) [20], has successfully collated hundreds of millions of 

species occurrence records through an international collaborative 
effort. Open access is provided to scientists and researchers to 
apply the data in peer-reviewed publications and policy papers. 
This data-driven approach to decision making has had far-
reaching positive implications in biodiversity, climate change, 
human health and food security.  

 
There have been multiple attempts to establish such a 

database for 3D shapes. The Princeton Shape Benchmark [21] is 
one of the well-established benchmarks that provides a 
standardized framework with 6,670 classified models for 
comparing experiments using different shape descriptors. 3-D 
mechanical CAD models require different classes as compared to 
regular 3-D models, since they are specific to the engineering 
discipline. The effort to construct a standard repository for 3-D 
mechanical CAD models [22] predates the Princeton Shape 
Benchmark; the National Design Repository (NDR) project by 
Regli et al. contains datasets classified on different bases such as 
Manufacturing (Machined, Cast-then-machined), Functional 
(Bracket, Gear, Housing, Linkage Arm, Nuts, Screws, Springs) 
Primitives (Cubes, Cylinders, Sphere, Torus), a Lego dataset etc. 
In all, there are around 600 CAD models classified on the 
previously mentioned bases. All the models were made available 
in ACIS-SAT, STEP and VRML formats. A smaller dataset of 40 
models, with variable fidelities, and a dataset of 27 models with 
minor topological variation is also included, to test the sensitivity 
of the various search techniques [23]. The use of the NDR dataset 
was further expanded upon in [23], where 9 shape-based and 
solid-based graph techniques were performed on the dataset, in 
order to establish a benchmark on CAD shape search techniques. 
A performance evaluation using k-Nearest Neighbours 
classification showed the effectiveness of different techniques for 
each classification.  

 
Jayanti and Ramani et al. established the Engineering Shape 

Benchmark (ESB) Dataset, by considering the Functional, 
Manufacturing, Lego model and real-world engineering parts 
from the NDR dataset (totaling 400 parts), and adding to this their 
own parts to bring up the total dataset to 867 models. [24] Instead 
of classifying the parts on the basis of function, the parts were 
classified on the basis of shape, giving due consideration to 
diversity of these 3D Models. These models were made available 
in STL and OBJ formats, along with the associated JPEG image. 
The higher level or ‘super-class’ categories were Flat-thin wall 
components, Rectangular Cubic Prisms and Solids of 
Revolution; sub-classes are further elaborated upon in [24]. 12 
different techniques were tested on the ESB set, which can be 
classified into Feature Vector-Based, Histogram-Based and 
Graph-Based methods. A comparison between the NDR dataset 
and the ESB datasets was then performed, showing the superior 
performance of 2-D view methods such as 2.5D Spherical 
Harmonics [25] and 2D Shape Distributions [26]. 
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Expanding on the concept of these existing benchmarks for 
3D models, ModelNet [27], a 127,915-strong clean collection of 
3D models of objects, has become a standard dataset for the 
testing of various shape-search algorithms. ModelNet classifies 
these objects into 662 categories, and provides a 40-class subset 
for validation of algorithms. More recently, ShapeNet has 
emerged as a larger, well annotated dataset of 220,000 models 
classified on the basis of WordNet synsets, with an overall size 
of 3,000,000 models [28]. ShapeNet’s focus is on creating a large 
set of geometric data for object- and scene-recognition, and 
explicitly excludes “mechanical CAD parts, molecular structures 
and other such domain-specific objects” [28]. The dataset made 
available through ShapeNet is not directly relevant to product 
manufacturing science and research applications. Specifically, 
information such as the categories, feature level detail, material 
and tolerance specifications are lacking, which are critical to any 
data-driven product design engineering research.  
 

FABWAVE (FW) – A CYBER-INFRASTRUCTURE (CI) 
FOR MANUFACTURING 

The overall goal of this project is to design the initial 
building blocks for a nationwide manufacturing 
cyberinfrastructure to advance our nation’s research and 
scholarly achievements in design and manufacturing (D&M) 
research. Current research must shift from siloed repositories of 
product manufacturing data to a platform that is federated, 
decentralized, open and inter-operable. This can be achieved 
through the transformation of techniques through which cyber-
capability is embedded in every physical end-point, be it on a 

desktop used by a product designer or within the control systems 
of a manufacturing machine. Advanced CI tools are rarely used 
in manufacturing science and research, primarily due to the lack 
of infrastructure to connect the diverse software tools and 
manufacturing machines used across the scientific community. 
Data generated during research are currently stored in siloed 
storage drives and hardly ever made accessible to the 
manufacturing community.  Beyond availability of this data, 
making them usable for future research is critical to lowering the 
barriers for manufacturing researchers to use CI tools. This 
manufacturing cyberinfrastructure, which we call ‘FabWave’ 
(FW) aims to create the first of its kind foundational experimental 
infrastructure to eventually support research interaction between 
manufacturing science and computer science researchers. 

 
In this work, we have focused on the ability to gather 3D 

CAD model data from a variety of sources generated within 
academic laboratories, teaching oriented classes and from 
publicly available open sourced data sources to create a 
comprehensive dataset of 3D mechanical CAD parts far beyond 
the amount of 3D models available today. 

3.1. FabWave Infrastructure Use Cases 

To aid the design the CI tool, the following use cases were 
considered to contextualize the design architecture of FabWave. 
While there are many more uses cases beyond the three listed 
below, the following have been chosen to be specific to the kind 
of data made available at present. 

 

Fig. 1. A Pilot Manufacturing Cyberinfrastructure- ‘FabWave’ 
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Use Case 1: A Design Aid for Novice Users: Ethan, an 
undergraduate student in mechanical engineering, is in the 
process of designing an L-bracket made out of aerospace grade 
titanium alloy. Ethan is not aware of the desired internal thread 
call-out for the holes in his bracket model, particularly because 
Titanium is a very hard to machine alloy and has strict design for 
manufacturability rules. He connects his 3D model of the bracket 
to FW’s plugin within his design software, FabWave analyzes his 
design and then recommends thread call-outs on the bracket. 
FabWave is able to do so, because it has analyzed hundreds and 
thousands of previous designs available in its repository and has 
made an informed decision on the recommended callout based on 
similar designs that exist in its repository.  

 
Use Case 2: Enabling Manufacturing Researchers: Rachel, a 

manufacturing science academic researcher is building a deep 
layer convolutional neural network algorithm to identify if a 3D 
product model is similar to a repository of digital product models 
existing in an organization’s database. However, Rachel has no 
easy way of training her model and stress testing her algorithm 
against several thousands of product model categories. Manual 
methods would simply be time consuming and impossible.  If 
FabWave existed, she could use API tools available through 
FabWave, to link her algorithm and test it against thousands of 
product digital models, while using the available cloud and 
university’s resources to conduct the study. 

 
Use Case 3: Artificial Intelligence in Product Design: Sid, an 

artificial intelligence researcher is studying how humans design 
products. He writes code to access FabWave’s repository of 
product model data to crawl through the individual product 
design features built into products, and searches through the 
meta-data surrounding the design of those products, which 
include design specifications, meeting minutes, audio, 2D 
sketches and design versions. He is now able to generate the next 
generation of contextual adaptation algorithms, which will allow 
computers to learn how to generate new products. The repository 
of heterogeneous data surrounding the design and making of a 
product within FabWave enriches and hastens the speed of his 
algorithm development.  

 
FabWave is intended to be a cyber-infrastructure to enable 

science and engineering research in manufacturing. In this first 
component, FabWave’s structure is designed to capture 3D CAD 
model data. However the underlying infrastructure can 
accommodate other forms of manufacturing data generated from 
a diversity of sources. Fig. 1 shows the overall stacked layer 
software architecture of FabWave. The goal is to create a 
detailed, continuously developing and eventually decentralized 
and inter-operable database of digital data (example CAD 
models), for use in design and manufacturing applications. 
Researchers will be able to access the entire dataset contained in 
the repository through the use of API tools, and therefore to build 
applications and enable their own research. Students have plug-

ins to record all the data automatically with limited human input, 
thereby easing the path to storing rich content in the repository 
and removing barriers to sharing data. To facilitate the entry of 
3D CAD model data, add-ins were developed at the design 
software level for both SolidWorks and Autodesk Fusion 360 
design software using their API features, to enable users to 
upload their data to the repository with ease. 

 

 

Fig. 2. FabWave Web User Interface 1 

3.2 Description and Structure  

 
Fig. 3. SolidWorks Publisher Plugin 
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 The front-end web interface for accessing FabWave (Fig. 2) 

is currently being built, using a Python based Django web 
framework; a basic user management system will be integrated 
into the Web UI. A Data Store integrated with ElasticStack, for 
uploading and visualizing the data is also under development. 
This front-end will connect to a storage repository containing the 
parts and related metadata for each of these parts. The remainder 
of the paper describes the workflow of capturing 3D model data 
of assemblies and associated parts, types of models captured and 
its organization. 

3.3 Data Collection and Add-Ins 

The repository for FabWave was initially built from the 
following sources: Student data from design oriented classes at 

NCSU and USC, other parametrically generated CAD models in 
academic projects, and data available freely for non-commercial 
purposes from CAD-sharing platforms such as Autodesk Gallery 
and GrabCAD. 
 
Data Source 1: Academic Sources of 3D Model Data 

To enable capturing student generated content, plugins were 
built for SolidWorks and Autodesk Fusion, two CAD software 
platforms heavily utilized in academic engineering curriculums. 
The plugins were created to make it easier for students/teaching 
assistants to upload content to the FW repository. Plugins created 
within SolidWorks and Fusion are shown in Fig. 3 and Fig. 4 
respectively. Data generated by the student exercises or projects 
are routed to the Google Drive currently maintained by NC State 
University. Authentication level grant access was built-in to 
allow data from USC to flow through into the Google Drive 
Account setup within NCSU (Fig. 5). In future, we would set 
individual storage accounts and then data made available 
through federated access across distributed repositories.  

Data Source 2: CAD Model Repositories 

Web-scraping and automation tools were utilized to download 
assemblies from sources such as Autodesk Fusion Gallery and 
GrabCAD. The workflow was adjusted to only download models 
that had the appropriate shareable license to allow the model to 
be used for research and other re-use purposes. Each model 
assembly came with a limited set of meta-data properties that 

 
Fig. 4. Autodesk Fusion 360 Publisher Plugin 

Fig 5. Workflow of data transfer from CAD Plugin to FW Repository on Google Drive 
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was available on each webpage of the model. The author of the 
assembly model, model categories and other description was also 
saved as part of the download process. While such data is limited 
with regards to characteristics of the assembly model, future 
workflow can include further categorization and classification of 
parts.  Due credit to the website and the author of the file was 
recorded in the form of the author name and download URL. 

 
Fig. 6. Assembly Level JSON Document  

The file downloads were restricted to the .STEP or .F3D 
formats; .STEP is an industry standard for CAD data, whereas 
F3D is a format specific to Autodesk Fusion software. Other 
popular formats such as .STL and .OBJ were not preferred, as 
they do not contain enough initial information about the part 
dimensions and other associated metadata. As of the date of 
writing this paper, 4700 CAD files of assemblies have been 
downloaded from these sources. 

3.4 Post-Processing of the CAD Data 

The models obtained from the Design classes at NCSU and 
USC were mostly individual parts. These parts were classified 
into various categories before uploading them to the repository. 
The categories were based on a combination of function and 
shape, derived from the listings on McMaster-Carr’s website 
[29]. These categories are listed in Table 1. However, the 
majority of the parts obtained from the web-sources were in the 
form of assemblies. 

Since part model data could be generated from any source 
near simultaneously from any end-point, models were assigned 
a Universally Unique Identifier (UUID). Using Autodesk Fusion 
360 CAD/CAM software, basic meta-data about the models were 
collected. This included, Bounding-Box dimensions, Volume 
and Surface Area of the files were extracted. These details, along 
with those extracted from the URL that the file was downloaded 
from, were added to a JSON file. The JSON format was chosen 
because of its compatibility with the NoSQL database schema, 
which allows flexibility in adding data without conforming to a 
rigid structure. This accounts for different sources of data having 
varying formats and representations, with the added possibility 
of selectively adding further metadata in the future. Each of these 
assemblies were then exported in .STEP, .F3D and .STL, along 
with a screenshot of each model and the .JSON document 
containing the metadata as shown in Fig. 6. It was essential to 

Fig. 7. Miscellaneous sample parts from the FabWave 3D Part Model Repository (As of Nov 2018: >125,000 3D Model Parts) 
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split the assemblies that were obtained, in order to isolate 
individual parts; these add far more value to the manufacturing 
applications that FabWave is oriented towards. Fig. 7 shows 
some of the parts that were obtained after splitting the 
assemblies. 

 
For models that have an assembly structure, each assembly 

was scanned and all parts were extracted from within the 
assembly structure. A UUID was assigned to them and a 
thorough acquisition of properties associated with these parts 
was made. In addition to the previously mentioned Area, Volume 
and Bounding Box dimensions, various other associated 
metadata such as edges, vertices and the position of the part in 
the assembly tree structure were obtained; the complete details 
are shown in Fig. 8. Each of the Part JSON documents also refers 
back to the Assembly JSON documents and its position in the 
BRep tree. The parts were exported in the same formats as 
previously mentioned for the assemblies. 

 

 
Fig. 8. Part level JSON Document  

 
In total, we have compiled together more than 125,000 

individual parts with full .STEP model information and as much 
meta-data possible about the part as possible. These models are 
available as a public resource for research purposes at 
http://www.dimelab.org/fabwave. Models generated from academic 
sources are mostly standard parts which can be useful to train 
machine learning models for classification type problems. When 
a model exercise was given to student group in a particular class, 
the workflow allows us to capture multiple ways in which 

students have generated the same final end-result. Such datasets 
become extremely valuable to train machine learning algorithms 
to learn how humans create models. The limitation is that such 
workflow in-advertently also captures amateur product models, 
especially the work of students. Nevertheless, it does represent a 
starting point to gather data from start point of the design to the 
fabrication of it, rather than just collect the final end-point of any 
design process.  

 
CONCLUSION 

The intersection of manufacturing sciences and data sciences 
are reinforced with the digital integration across the product 
lifecycle. Machine learning algorithms require access to copious 
amounts of classified and categorized data to help advance 
manufacturing systems and process research. However access to 
such data has hampered the broader use of machine learning and 
artificial intelligence research across the manufacturing domain. 
This pilot project which we have termed ‘FabWave’ is designed 
to collect data across academic and research grade projects with 
the intent to create datasets for academia to use and study. In this 
first phase, we have implemented the collection of 3D product 
design data from student led projects and crawled the web to 
collect sources of 3D mechanical CAD assemblies and individual 
parts. As of this writing, the project has collected more than 
125,000 individual CAD part files in various parts for the intent 
to making the data accessible for research to the community. Part 
meta-data was also captured to make it easier to search and find 
parts. In the future, we intend to integrate across many other 
forms of manufacturing data. In addition, a community led effort 
must be undertaken to classify and categorize the data to create a 
comprehensive and accessible dataset. 
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