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The possibility of asymmetric absorption and reflection for flexural waves is demonstrated through
analytical and numerical examples. The emphasis is on the one-dimensional (1D) case of flexural
motion of a beam for which combinations of point scatterers are considered, which together provide
asymmetric scattering. The scatterers are attached damped oscillators characterized by effective
impedances, analogous to effective configurations in 1D acoustic waveguides. By selecting the
impedances of a pair of closely spaced scatterers it is shown that it is possible to obtain almost total
absorption for incidence on one side, with almost total reflection if incident from the other side.
The one-way absorption is illustrated through numerous examples of impedance pairs that satisfy
the necessary conditions for zero reflectivity for incidence from one direction. Examples of almost
total and zero reflection for different incidences are examined in detail, showing the distinct wave

dynamics of flexural waves as compared with acoustics. © 2019 Acoustical Society of America.
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I. INTRODUCTION

An isolated lumped element in an acoustic waveguide
produces symmetric reflection for sound incident from either
side. This is true for standard sub-wavelength scatterers such
as a side-branch Helmholtz resonator (HR) or a membrane
stretched across the width of the waveguide. However, by
combining elements, e.g., a HR and a membrane in series,
one can achieve asymmetric reflection depending on the
direction of incidence. Such a combination of two or more
point scatterers in a sub-wavelength configuration can be
viewed as a new type of lumped element called a Willis ele-
ment." Unlike the classical point scatterers the Willis ele-
ment couples monopole and dipole radiation, which in turn
leads to asymmetry in the scattering, while it can still be
viewed as a sub-wavelength point scatterer. The effective
Willis parameters can be deduced from the scattering matrix
elements.” An interesting case of asymmetric reflection is
unidirectional zero reflection’ in which the reflection is zero
for incidence from one direction but non-zero from the other.
The extreme limit of this phenomenon is one-way total
absorption where unidirectional zero reflection is accompa-
nied by zero transmission. The transmission must therefore
be zero for incidence from both directions, as required by
acoustical reciprocity. However, while total asymmetric
acoustic absorption implies zero symmetric transmission, the
reflection coefficients can differ as much as zero and unity in
magnitude. To the authors’ knowledge, this extreme limit of
one-way total absorption has not yet been demonstrated for
the simplest setup: one-dimensional (1D) waveguides.
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The purpose of this paper is to show that one-way total
absorption can be obtained for flexural waves. Our analytical
and numerical model is a 1D system of flexural wave motion
in a beam, for which, by analogy with the lumped elements
in an acoustic waveguide, we consider closely spaced trans-
lational point impedances. These may be modeled as
attached single degree of freedom damped oscillators, which
apply an effective point force to the beam at the attachment
point. We do not consider rotational impedance elements,
which can apply a moment.* Through proper choice of the
complex impedances, we demonstrate that two attached
damped oscillators display the same quantitative wave
effects as acoustic one-way total absorption. Specifically,
reflection is zero for incidence from one side, while the
reflection coefficient can be large, approaching unity in
some cases, for waves incident from the opposite direction.

The present problem is related to but fundamentally dif-
fers from the control of flexural waves in a beam using a pas-
sive tuned vibration absorber (TVA).S*7 A TVA, modeled
as a point translational impedance, can be used to minimize
transmission or reduce the vibration at a specific frequency
for a source that is either in the farfield® or the near-field.’
The term vibration neutralizer’ rather than vibration
absorber is sometimes used to signify that the purpose of the
point attachment is to control vibration at a particular
frequency.

Unlike a single TVA, which necessarily has symmetric
scattering properties for incidence from the left or the right,
we consider two nearby impedances with the objective of
maximizing the scattering asymmetry to obtain flexural
wave one-way total absorption. The design objective is quite
distinct from that of the TVA in that we wish to make one
reflection zero and the other as close to unity as possible.

© 2019 Acoustical Society of America 873



Here we are only concerned with passive wave control. We
note that the reflection/transmission from two identical
impedances was considered by Ref. 8, where the effect of
the spacing between the oscillators was found to be signifi-
cant. However, the symmetric configuration gives the same
reflection independent of the direction of incidence.

The outline of the paper is as follows. In Sec. II the gov-
erning equations are introduced and the solution is derived
for scattering from two point impedances. Necessary and
sufficient conditions for one of the reflection coefficients to
vanish are derived in Sec. III. It is shown that asymmetric
reflection requires at least one of the oscillators must be
damped. In Sec. IV we show through numerous examples
that one-way flexural reflection can be achieved from a wide
variety of impedance pairs. For instance, one may be purely
real (undamped) and the other imaginary (a pure damper), or
both may be damped. We find, surprisingly, that it is possi-
ble to achieve almost perfect one-way reflection (zero one-
way, unity the other). This effect is explored in detail using
asymptotic analysis in Sec. V. Finally, it is shown in Sec. VI
that almost perfect one-way reflection is achievable with a
unique pair of impedances in the frequency range
ka =~ (m,2n). The main results are summarized and conclu-
sions are presented in Sec. VII.

Il. SCATTERING BY A CLUSTER OF POINT
ATTACHMENTS

A. General solution

The beam has bending stiffness D (=EI) and density p’
per unit length. Time harmonic motion e~ is assumed so that
the flexural wavenumber k is defined by k* = w?p’/D. We
assume there are N point scatterers located at x, with impedan-
ces i, o = 1,2, ...,N. The total displacement w satisfies

d*
D( dv; > Z”a W) I(X — xy). (1)

The attachment impedance u is modeled as single degree of
freedom with mass M, spring stiffness %, and damping coef-
ficient v, and defined as u = f/w, where f denotes the driving
force. The impedance as used here is analogous to that for
acoustics (pressure/velocity), although the two are not
dimensionally equivalent. Two possible configurations are

( 1 1 )“ @)
U= Mw? k—iov) ’ 2)
Mw? — K + iov, (b).

In case (a) the mass is attached to the plate by a spring and
damper in parallel,” also called a vibration neutralizer.’®
Model (b) assumes the mass is rigidly attached to the plate,
and both are attached to a rigid foundation by the spring and
damper in parallel.'® An important limit is a beam pinned at
Xy, W(x,) = 0, which corresponds to i — co. The (a) and (b)
oscillators could also be attached in parallel, e.g., on either
side of the beam, to give u = u, + p,. The main point is that
there is a wide range of achievable passive u (Im u > 0). We
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take advantage of this adaptivity by exploring the space of
possible impedances in this paper.

The solution is given by the incident wave wy, (x) plus
the displacement scattered by all the particles,

w(x) = win(x) + > Glx — xp)ppw(xp), 3)
=1

where the Green’s function satisfies

4 X
D (%F) - k4G(x)) = 5(x). 4

We choose to normalize parameters so that the impedan-
ces and the Green’s function are non-dimensional. Define

2Dk
my = ; (5a)
Hy
¢(x) = 2DK°G(x) = % (e*h! 4 jo k) (5b)
then Eq. (3) becomes

N

w(x) = win(x) + Z glx— x/;)mﬁlw(x/;). (6)
p=1

Setting x = x,, in Eq. (6) gives a linear system of N equations,
which may be solved to give

N
w(x) = win(x) + Z glx— x%)M;ﬁ1 Win (¥p), 7
o, fi=1

where M‘ﬁ are the elements of the inverse of the N x N
matrix with elements

Myp = mydyp — g(xy — Xp). (8)

B. Reflection, transmission, and absorption
coefficients

We consider incidence from the left and right, wi and

wy,, respectively,

Wi (x) = e™ . 9)

The reflection coefficients R, R_, and the single transmis-
sion coefficient T are defined by

+ —ikx
i +R ) - )
w(x) = {W‘“ e o T (10a)
wy +R_e™, x— oo,
w(x) = Te*™, x — oo for wy. (10b)
These follow from Eq. (7) as
i — E Z Mxlgl ei’lk ‘Q+k/1)7 (lla)

=1
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- N
_ 1 —1 ik(x,—x
T—1+§ZMO(/;€ (o) (11b)

o, fp=1

To quantify absorption, we define absorption coeffi-
cients for right and left incidence o™ and o, respectively, as

o =1—|T] — |R~|*. (12)

C. Example: One and two scatterers

It is useful to recall some of the features of a single
translational impedance before we consider two attachments.

1. One scatterer

For a single scatterer at x=0 we have R~ = R = (i/2)
(m—g(0)) " and T = 1 +R. A desired value of T (or R=T
— 1) is obtained if

m= —%+2(T17T_1) = w0)=—-i+{1+i1)T. 13)
Thus, for instance, w(0) =0 for m =0 (infinite impedance
w). Even though the beam is pinned the rotation at x=0 is
not constrained, and hence half of the incident energy is
transmitted and half is reflected: |R| = |T| = 1/+/2. Zero
transmission (7 =0) is obtained if m = —%, which is inter-
preted in terms of model (a) of Eq. (2) by Refs. 6 and 7: the
unique frequency at which T vanishes is given by Ref. 6 [Eq.
(7)] or Ref. 7 [Eq. (22)]. In general, the range of possible
values of T for the single scatterer is restricted only by the
requirement that the attachment is passive, i.e.,
Imm <0 <= ReT > [T|> < 1.

The full transmission or—equivalently—the zero reflec-
tion case, namely |T| — 1 <= |R| — 0, from Eq. (13) corre-

sponds to m — 0o <= u — 0, so no scatterer. Also
w(x =0) = ¢*| _, = 1 as given by Eq. (13) with T= 1.
2. Two scatterers

For N=2, let x; = —a/2, x, = a/2; a schematic of the
system is shown in Fig. 1. The matrix M is

m —¢(0)  —g(a) )
M= , (14
(o )

implying

Ri= 2deltM (mleiik“ +mae* —24(0)cos ka+2g(a)),

(15a)

FIG. 1. Schematic of the N =2 system.
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i
T=14+—— -2 2 .o(1
+2detM (m1 +my —2g(0) +2g(a)coska).  (15b)
The reflection coefficients can be written
2
0 '
R+ = getLN)[ (e7@ + sin ka — cos ka
— (m1 + my)cos ka*xi(my — my)sin ka)). (16)

This form shows that |[R.| = |R_| if u; and p, are real. In
that case there is no damping and the energy identity is
satisfied

IR-> +|T> =1 for real u;, . (17)

The reflection coefficients can vanish, for instance, if ka = n
and my+m+1+e =0, or if m =m=j(tan
ka + e sec ka — 1).

When the separation ¢ — 0, Eq. (16) yields R, =R_
with the two attachments acting as a single one with imped-
ance U= iy + lo.

lll. ONE-WAY ZERO REFLECTION: IMPEDANCE
CONDITIONS

We are interested in configurations in which one of the
reflection coefficients vanishes but the other remains finite.
As shown above, the magnitudes of the reflection coeffi-
cients coincide for real-valued impedances. Therefore, in
order to have |R.|# |R_| requires that at least one of the
impedances p;, i, is complex valued. We assume they are
passive dampers, which means that Im mz,, < 0 for both a =1
and 2. Assume R =0, then

2) sin ka (18)

subject to the constraint implied by R, =0,

e 4 sin ka — cos ka — (m; + my) cos ka

+i(my — my) sin ka = 0. (19)
Equivalently,
m,cotka +im_ =K, (20)

where m,, m_, and K = 2(g(0) cos ka — g(a))/ sin ka are
m+ = ny imz, (21)

K =1—cotka+ e */sin ka. (22)

Viewing m as the determining parameter, we have R, =0
and

m :%+%(m+cotka -K), (23a)
- % . %(mcot ka — K), (23b)
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1
( [§m+ - g(O)] cos ka + g(a))
R_ = 2isin*ka 5, (23¢)
1
S = 2(0) + g(a)cos ka)
)
T—14+ i sin“ka (23d)

0 .
3 = ¢(0) + g(a)cos ka

One reason for considering m, to be the control parameter is
that, unlike m_, it must lie in the negative half of the com-
plex plane, Imm, < 0. This does not, however, guarantee
that both m; and m, are in the same half plane. Therefore the
choice of m, must be restricted by the passivity require-
ments Imm, <0, « =1,2. The case Imm, =0 is of no
interest, and we therefore concentrate on Imm . < 0.
Define

m=m+im", (24)
then the reflection coefficient R, vanishes if
m' cotka —m" =K,

(25a)

m' cotka +m' =0, (25b)
where ka € (0, ). The non-zero reflection coefficient R_ of
Eq. (18) can be rewritten as

—m',_ cos ka 4 im” sin ka

R_ pu—
detM

. (26)

indicating that damping is essential in order to have R_ # 0.

Of interest is therefore the part of the parameter space,
(m'_,m" ) or—equivalently—(m/, m;), where at least one of
the scatterers displays passive damping properties, i.e.,
m!) < 0. Each point in this space uniquely defines the pair of
scatterers in terms of their damping properties, but not their
mass-stiffness properties or the spacing a between them.
Figure 2 illustrates this space with the shaded area corre-
sponding to the desired passive damping properties of the
scatterers. It can be noted that (m’,,m" ) and (m{,m5) coor-
dinate systems are related by a 7/4 rotation and /2 stretch
through the transformation given in Eq. (21). Passivity con-
ditions, analogous to m/ < 0 and m < 0, are therefore given
as |m” | < —m']..

IV. EXAMPLES OF ONE-WAY REFLECTION

It was shown in Sec. III that damping is critical to obtain
one-way zero reflection. We will therefore consider the pair
of scatterers (o,f5) described by two complex normalized
impedances m, g = n, g + im’; p with passive damping prop-
erties (m’, 5 < 0).

We start by investigating a setup composed of two scat-
terers where one is described by purely real m, = n,,, while
the other is described by a complex normalized impedance
mp =m'y +imp, with myg <0. As the system is non-
symmetric with respect to the selection of o and f, namely
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FIG. 2. (Color online) Design space for the two-scatterer case defined in terms
of (m,m") or (m{,m}). The shaded area marks all negative imaginary parts
of m,, of the two scatterers, corresponding to passive damping properties.

for (o) =(1,2) and (o,f) =(2,1). We will therefore distin-
guish the two cases.

Next, we consider cases of two scatterers with passive
damping properties, i.e., m, g < 0. Starting with the case of the
same negative normalized impedance m), = mg =m" <0, we
then generalize to m) # m}g < 0 and relate this general case to
results obtained for other configurations of the scatterers.

A. Firstimpedance purely real: m{=0

When (o) =(1,2), we have my =m| (m{ =0) and
my = mly + imfy, with mj < 0, i.e., we investigate scatterer
configurations along an edge of the passive zone (see the
black dashed-dotted line in Fig. 2). Then, m/ = m) and

m” = —m), and the relation between m’ and m’ follows

from Eq. (25) as:

(m',cotka — K)cotka —m" =0, m) =m'| =—m" <0.

(27)
From Egs. (25a), (25b), and (27) we also have that

ke (0,7/2),

ke (n/2,m). (28)

m' 20, ml cotkazK, for {

Equation (27) with constraints in Eq. (28) define a surface in
(m',,m"_) space that is illustrated in Fig. 3. Relation (27) can
be mapped to (m,m)) coordinates through Eq. (21) to find
corresponding real parts m and m) of the complex impedan-
ces. Two particular configurations can be then be obtained
by cutting the design space from Fig. 3 with the m| = 0 or
my =0 planes resulting in one of the impedances being
purely real and the other purely imaginary.

1. Second impedance purely imaginary

Continuing with (o) =(1,2) (impedance p; is purely
real), but specializing to the case of u, purely imaginary
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FIG. 3. (Color online) Design space, |m” | < —m'_, corresponding to nega-
tive imaginary parts of m; and m, mapped through Eqgs. (25a) and (25b) (see
Fig. 2). The color lines indicate special configurations of scatterers described
in the text. Solutions for the red, magenta, blue, and orange curves are given
in Figs. 4, 5, 6, and 11, respectively.

(m| =my =0, m_ =m.,), corresponds to a particular solu-
tion of the family of solutions illustrated in Fig. 3 by red
lines. Then Eq. (25) implies that

Kcotka ” —K

o - 29
cot?ka — 1’ g cot?ka — 1 (29)

my =
Figure 4 shows the required values of m and m and the cor-
responding reflection and transmission coefficients,
|[R.|, |R-| and |T|. The impedance u, for this model is pas-
sive for ka € (0,7/4) and ka € (3n/4,n). Note that the
intersection of the surface given by Eq. (27) with m| =0
reduces to a point at ka = 0.

B. Second impedance purely real: m;=0

If (o, ) = (2, 1), then m = 0 (my = m}) and m; = m)
+im! with m < 0 corresponding to the red dashed-dotted
line in Fig. 2. In this case m" = m{ and m” = m{ and the
relation between 7/, and m’_ yields

I Re(m1) \‘\ .'"
............. Im(m,) /
__RJ ‘\\ /,/ 10.8 .
IR <
e [T] 10.6 +d
...... y -
. =
"
04
EI
0.2
‘ 0
0 /4 /2 3n/4 w
k xa

FIG. 4. (Color online) The normalized impedances for zero one-way reflec-
tion from Eq. (29). In this case yu; is real and u, is positive imaginary and
hence passive.
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(m',cotka—K)cotka+m' =0, m}=m" =m" <0,

(30)
while Egs. (25a) (25b), and (30) imply the constraints
ke (0,7/2)
/! > / < I I
m_20, m cotkasK, for {ke (n/2,7). (31

The design space given by Eq. (30) is shown in Fig. 3. As
before, two particular configurations can be seen by cutting
the design space from Fig. 3 by the m} = 0 or m}, = 0 planes,
subject to the constraints (31).

1. First impedance purely imaginary

When mapping Eq. (30) on the ), plane, i.e., taking
m| =0, we have m; = im{, m] < 0 and m, = m),. The first
impedance purely negative imaginary while the second is
purely real (m_ = —m ), a situation opposite to that consid-
ered previously, with

K K cot ka

1 !
my=—_.
T2 cot?ha — 1

m=—5—— 32
' cot?ka — 1 (32)
Figure 5 shows the required values of m/ and m, and the cor-
responding reflection and transmission coefficients,
R-1, R_] and |7].

2. Second impedance infinite (pinned point)

Due to asymmetry of the design space, another interest-
ing scatterer configuration can be found by mapping Eq. (30)
onto the m| plane. Then, m) = 0, making the second normal-
ized impedance vanish and resulting in u, = oo, i.e., a
pinned point. Note that from the definition of the impedance
and the governing equation (1) it follows that energy can be
transferred across a pinned point through rotations of the
beam cross sections proportional to dw/dx even if w=0.
This particular feature distinguishes the flexural wave prob-
lem from the acoustic one. In this case the other normalized

impedance, m; = m} + im{, is complex with

27 11
15
10.8
1 ;
. 3
| e
£ 05 106 S
= E
= - =
E | +
T -05 0.4 T
o =
o
A | -
10.2
_1 5 E
2 0
0 /4 /2 3n/4 T

kxa
FIG. 5. (Color online) The normalized impedances for zero one-way reflec-

tion from Eq. (32). In this case u, is real and u, is positive imaginary and
hence passive.
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/2 3n/4 T
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FIG. 6. (Color online) The normalized impedances for zero one-way reflec-
tion from Eq. (33), corresponding to the blue curve in Fig. 3. In this case
my =0 (1, = 00) indicating a pinned point, and m; = m| + im{ is complex
with m{ < 0 and hence passive.

m', = K sinkacoska, m| = —K sin’ka. (33)

Figure 6 shows the real and imaginary parts of the com-
plex normalized impedance for the first scatterer.
Interestingly, with the second point pinned, m, =0, it is pos-
sible to obtain one-way reflection over wide wavenumber (or
frequency) band.

3. Second impedance infinite (pinned point) with a
pure damper

Note the exchanged positions (but the same values) of
the real parts of normalized impedances shown in rows 2
and 3 of Table I. A particular selection of ka = m/2 results in
the real parts of scatterers in rows 2 and 3—m) and m,
respectively—equal to zero. Therefore, for this specific con-
figuration we have the second scatterer pinned (i, = 00),
while the first is purely negative imaginary (passive damper).
The imaginary parts of the normalized impedances m/ from
Egs. (32) and (33) are both m! = —K = —(1 4+ ¢ ™/?) < 0.

FIG. 7. Examples of normalized impedance curves for various selected val-
ues of m" < 0 for m", < 0and m” = 0, based on Eq. (35).

C. Impedances with the same passive damping
properties: my=mj

Selecting passive damping properties other than dis-
cussed above, results in configurations with imaginary parts
of normalized impedances being both non-zero. A particular
choice is m| =mj <0 or, equivalently, m” =0 and
m'l < 0. With m{ = mj = m" < 0 Egs. (25a) and (25b) lead
to

m, = K tan ka + i2m". (34)
Therefore from Eq. (23), the two impedances are
1 i L/
m; = =K tan ka — m"cotka + im’",
3 (35)

1
my = EKtan ka + m" cotka + im”,

implying |m| > |m}|. It is therefore not possible to obtain
one-way reflection with a pair of scatterers with the same
negative imaginary part of the complex impedance having

TABLE I. A summary of the special cases corresponding to the red, blue, magenta, and orange curves in Fig. 3 considered in this work. Note
m| <0, mj <0, ensuring passive configurations and A(if) = (0/2)[1=(1/c) tan"ka] for n=0,2.

Passive ka m) m/ ) m) Figure Section
K K
(0’ §>7 (%TC» n) Etan ka 0 0 — Etan 2ka tan ka 4 VAl
K K
E §n 0 —tan 2ka tan ka —tan ka 0 3 VBI
4’4 2 2
(0,7) K in 2ka —K sin*ka 0 0 6 IVB2
2
K " K 1 o
(0,7) 5 tan ka — m"cot ka " > tan ka + m"cotka " -9 ve
K K
(0,7) K tan ka K 0 K 10 Vel
(0,m) K an ka=A® FAY tan ka LY ka7 A? FAY tan ka 11,12 IVD
2 - 2
K 1" K 1"
];;;f:[ 5 tan ka — m"cot ka m<l 5 tan ka + m"cot ka m<l 14 VAVB
=~ 1 —n! — sin? 1 1 1
(7, 27) mh + 3 sin 2ka m, — sinka ) + 3 e~ cos ka Ee’k“ sin ka Vi
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FIG. 8. (Color online) Values of m) and n) required for one-way zero reflection when m{ = m% = m" < 0, computed from Eq. (35).

the same or opposite real parts (i.e., mass and stiffness prop-
erties). Equation (35) implies

(n)* — (m)h)* = —2m"K = m'.m' =-2m"K, (36)

which defines a hyperbola in (m',m}) [or (m' ,m" )] space
for each selected value of m”, as shown in Fig. 7.

Values of m| and m) required for the one-way zero
reflection with |Ry| =0 are shown in Fig. 8. The corre-
sponding reflection |R_| and transmission |T'| coefficients are
shown in Fig. 9. Note the possibility of obtaining narrow-
band highly directional properties of the system when m” —
0 and ka — 0 or ka — n. Those special cases are discussed
in detail later.

1. Second impedance purely imaginary

A special case of scatterer configuration can be obtained
for m)y = 0. Then, with m; = m) + im” and m, = im" we
have two scatterers with the same damping properties.
Equation (36) reduces to

(m})* = —2m'K, (37)

and uniquely defines the relation between m” and m).
Equation (35) can be then reduced to

5
09
-4 0.8
= 07
-3 0.6
& 05
. 2 04
£ 03
-1 02
0.1

00 /4 /2 3n/4 ™ 0

k x a

@)

1
m) =K tan ka, m" = _EK tan’ka. (38)

Possible choices of m| as a function of m” and ka are shown
in Fig. 10.

D. Almost equal impedances

We now analyze the case where the differences between
the real and imaginary parts of the normalized impedances
are small. In particular we are interested in the cut of the
design space for m’_ = 0, as shown by the orange lines in
Fig. 3. We therefore set m’ = = where J is a small number
allowing for shifting the cutting plane in the design space;
the upper sign is taken for ka € (0,7/2) and lower for
ka € (n/2,7), and are required for passive damping, i.e.,
mi < 0 where m’jr follows from Eq. (25b). At the same time
m” must satisfy [m” | < —m'[, which is imposed by setting

m//
:T_*'ziztanka, c € (—o0,—1)U(1,00) (39)

/"
m

with ¢ € (—o0, —1) for m” > 0 and ¢ € (1, 00) for m” <0,
and m', can then be obtained by using Eq. (25a). In
summary,

-5 : : - 1
0.9
-4 0.8
:E 107
w3 06
B
€ 0.5
I
= _ 27 0.4
€
0.3
-1
0.2
0.1
0
0 /4 /2 3r/4 T
k x a

(b)

FIG. 9. (Color online) Reflection (a) |R_| and (b) transmission |T| for m| = m = m" < 0; |R.| = 0. Note the large reflectivity for small m” and ka ~ 0,7.

This phenomenon is examined in Sec. V.
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FIG. 10. (Color online) The normalized impedances for zero one-way
reflection from Eq. (38). In this case the two scatterers have the same damp-
ing properties, m{ = mj = m" and m = 0.

m. = {Klé(tan ka + i)}tan ka,

e ! o { ke (0,7/2),
m_ = ié(l —1i ),
¢

ke (n/2,7).

(40)

From m’ = *0 and Eq. (39) it can be seen that for
small 0 we have both real and imaginary parts of the normal-
ized impedances nearly the same, regardless of the choice of
c. Before discussing the case of ka — 0 and ka — m in Sec.
IVE, we present m; and m, as functions of ka, required for
the zero one-way reflection.

Figure 11 shows the real, m,m), and imaginary,
m![, m, parts of the normalized complex impedances for two
selected combinations of (J,c), namely (1 X 10*3,1 X 103)
[Fig. 11(a)] and (1 x 1073,1) [Fig. 11(b)], along with reflec-
tion and transmission coefficients. For large ¢ [Fig. 11(a)],
both real and imaginary parts assume nearly the same values
over wide ka range. For small ¢ [Fig. 11(b)], scatterer config-
urations analogous to those presented in Secs. IV A and IV B
are obtained with the difference in assumption on the real

2 [ e 1
{ / Re(m,) = Re(m,) = 0 \
- -Im(m,) x 10?
Im(m,) x 107 0.8
g — R .
3
o "
U _.. 0.6 dp
- E
—
5 04 @
E.
S— ‘J 0l2
-2 g 0
0 /4 /2 3n/4 T

k x a

(a)

parts being non-zero and having close values. Note all the
configurations presented in Fig. 11 are passive.

Reflection and transmission coefficients shown in Fig.
11 display very narrowband one-way reflection properties.
High values of |[R_| are observed for ka — 0 and ka — T,
and are not sensitive to the selection of c. Close-up views for
ka — 0 and ka — © are shown in Fig. 12. Note that for
ka — 7 the value of |R_| is close to one, the perfect reflec-
tion, while for ka — 0, [R_| converges to a lower value.
These surprising results will be analyzed in detail in Sec. V.

E. Impedances with different passive damping
properties

Selecting an arbitrary, but different from those consid-
ered so far, configuration of passive damping properties of
scatterers we assume—analogously to Sec. IV D—that m”
and m'] are related by m’, = cm” and m’, < 0. The constant
must satisfy ¢ € (—oo, —1) U (+1, +00), where values ¢ =
{—1;+1} recover results obtained in Secs. IVA and IVB,
and ¢ = oo is equivalent to result presented in Sec. IV C.
The relation between m/, and m’_ yields

(K — m'_cotka) ccotka —m' =0, m' <O0. (41)

Selection of m’. <0 and ¢ uniquely defines passive
damping properties of the two scatterers. Figure 13 presents
fragments of the design space for ¢ < —1 and ¢ > 1 for three
arbitrarily selected values of ¢ : |¢| = {¢;10¢;100¢}, ¢ > 1.
It can be seen that for increasingly large values of |c| the
shape of the design space converges to that of Fig. 7, while
for small values of |c| the shape of the design space converges
to that of Fig. 3. Specifically, when |c| is large
m” =m' [ |c| — 0, resulting in the same damping properties
of the scatterers, and m’ /|c| — 0 in Eq. (41). The latter
observations are consistent with results of Sec. IV C (see Fig.
7) and discussion in Sec. IV B 3.

Note that |m” | < —m', with m| and Eq. (25b) restrict the
selection of m’ >0 for ka € (0,7/2) and m’ <O for
ka € (n/2,m). The value of m’_is then given by

{ ‘ Re(m,) = Re(m,) o A
[ - Im(m,) x 10?
Im(m,) x 10? 08
— Rl ,
R 3
> m .r
e 06 9
. E
—
5 04
‘ 3
‘ —J 0.2
2 0
0 /4 /2 3n/4 ™

k x a

(b)

FIG. 11. (Color online) The normalized complex impedances for zero one-way reflection with 6 =1 x 1072 and ¢ = 1000 (a), and ¢ = 1 (b). In this case the scat-
terers share close real and imaginary parts of the complex impedances (a), and close values of the real parts with one of the imaginary parts close to zero (b).
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FIG. 12. (Color online) A close-up view of Fig. 11(a), (0 =1 x 1073, ¢ = 1000), showing the extreme cases of ka — 0 (left) and ka — 7 (right).

/
m', = <K ~ " tan ka) tan ka. 42)
c

For negative |c| [Fig. 13(b)] m/, behaves as ~ tan’*ka for
small |c| and as ~ tan ka for large |c|. For small positive |c|
[Fig. 13(a)] m’Jr takes values ~ — tan’ka and for large posi-
tive [c[, my ~ tan ka. It should be noted that as m’, can
change its sign, there exists m’, =0 choice (i.e., equal but
opposite real parts of the normalized impedances) and can
be achieved by a configuration satisfying

/

m = cK cotka. (43)

It follows from Eq. (25b) that Eq. (43) can be satisfied
only by ¢ > 0 for the system to be passive.

V. MAXIMUM REFLECTION FOR ka < 1 AND ka~ =

We return to the surprising results indicating that signifi-
cant one-way reflection (JR_| > 0.8) is possible for ka < 1,
and that almost unitary one-way reflection (|[R_| & 1) can be
achieved for ka ~ =, as illustrated in Figs. 9 and 12. Here we
derive analytical expressions that help explain the extreme
values of |R_|. These effects are associated with small imag-
inary parts for the impedances —m/, —m)} < 1; we therefore
concentrate on the case considered in Sec. IVC for
m| = m4 = m", corresponding to the impedances defined by
Eq. (35). The single parameter m” yields, from Egs. (23c)
and (34), a reflection coefficient

_ 2m" cos ka N (a4
m//
ig(a)tan k
Equation (44) may be written as
—cos k in k
= TR wherey :%. (45)
—2m

. 27
1 iglay
2y  cos ka
This form allows us to easily find the asymptotic limits appro-
priate to the two cases of interest, which are considered next.

A. Low frequency maximal absorption

Expanding the expression (45) for ka < 1,—m" < 1
indicates the preferred scaling m” = O(ka)”. Thus,
—4 h ka
N withy = ——.
1 A\ V=2m"
( + (1 + 1)y>

Y
Hence, [R_| = 4/(1/7* + 29> +2), implying that the maxi-
mum reflection is R_ = 2(v/2 — 1)e/* at y = 271/4, corre-
sponding to

(46)

R_ = —0.5858 + 0.5858 1 = (0.8284 ¢*7/*. 47)

In summary, for a given value of —m” < 1 the reflection for
small ka is given approximately by Eq. (46), with maximum

=
e

e i i

FIG. 13. (Color online) The design space analogous to that from Fig. 3, defined by Eq. (41) for (a) ¢ = {¢; 10¢;100¢}, and (b) for ¢ = {—¢; —10¢; —100¢}.
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amplitude |R_| = 0.8248 at ka = 1.1892v/—m". An example
is shown in Fig. 14.

B. Maximal absorption for ka ~ =

In this case we assume 7w —ka < 1,—m" < 1.
Expanding the expression (45) we find a similar preferred
scaling as before, with now m” = O((n — ka)*). Thus,

4

R_~ VG (48)

<+zy>
Y
where
T — ka :
Ny — 1] i — i}
y = = z=1—1ie " =|z]e'?, (49)

ie., |z| = 1.0009, ¢ = —0.0432. In this case |R_| = 4/(1/y>
+|z|*? + 2), implying that the maximum reflection coeffi-
cientis R_ = 1/[zcos*(¢/2)] at y = |z|~'/* = 0.9995, corre-
sponding to

R_ = 0.9986 + 0.0432i = 0.9995 ¢ 1*. (50)

The maximum |R_| is very close to, but not equal to unity,
as illustrated in the example of Fig. 14. In summary, for a
given value of —m” < 1 the reflection for ka ~ 7 is given
approximately by Egs. (48) and (49), with almost unit maxi-
mum amplitude at ka = © — 1.4136v/ —m".

Finally, we note from Eq. (35) that the impedances for
both cases, ka near zero and 7, are

'
~ t#—i—im". (51)

m

1=

These correspond to lightly damped oscillators, one being an
effective mass, the other a stiffness.

VI. MAXIMUM REFLECTION FOR ka>n=

Finally, we consider the unique value of m, = m; + my
for which the transmission is identically zero, T=0, in

1

e |R(EX.)I
—RA7)

0.9
0.8
0.7
0.6
0.5+
0.4+
0.3+

[REX, [RAP), [T), o*, o

0.2

0.1+

0 0.02 0.04 0.06 0.08 0.1
kxal/m

addition to R, = 0. It follows from Eq. (23d) that both R_
and T vanish if

m, = 2g(0) — 2g(a) cos ka — i2 sin*ka, (52)

implying, using Eq. (23), that

1 1 .
m; = —5-’- (sin ka +§€ka>€lka,

1 1 " 53
my = 7§+§efkaelka7 ( )
R = _e—lka + ie—ka.

The lowest value of ka for which both impedances are pas-
sive m!,my <0 is ka=1.0067%, and they remain passive
until ka=2n. Therefore, for almost all of the range
ka = (n,2m) these impedances yield R, =T =0 with almost
unit amplitude one-way reflection |R_| > 0.986. The damp-
ing of attachment 2 is very small, m’z’ > —0.007, with almost
all the damping in resonator 1.

Vil. SUMMARY AND CONCLUSIONS

We have presented for the first time a flexural wave ana-
log of the one-way absorption effect in acoustics. Similar to
the acoustic setup, we consider a pair of adjacent lumped
elements, which breaks the symmetry of the scattering, in
this case oscillators attached pointwise on a beam. It is found
that at least one of the oscillators must be damped in order to
have zero reflection from one direction with significant
reflection from the opposite direction. The method of analy-
sis developed in Sec. II can be easily generalized to handle
larger clusters of oscillators; however, we have shown that
two are sufficient to achieve one-way absorption.

The starting point for finding possible combinations of
oscillator pairs is Eq. (19), which guarantees one reflection
coefficient vanishes (in this case R, = 0). This condition pro-
vides a single relation between the normalized impedances
my = m} +im| and m, = m), +im}, which are otherwise
unconstrained except that they must correspond to passive
oscillators (m| < 0,m) < 0). This leaves a large set of pos-
sible configurations that may be considered. The bulk of the

1-

097 |REAP')| (approximate)

0.8} ~N
07+

\ |REEx.)

06" | (exact)

0.5r
0.4
03 [zs”

IRE), IREPIL 1T), o, o

02f--"""
01f

0.9 0.92 0.94 0.96 0.98 1
kxa/m

FIG. 14. (Color online) Reflection coefficient |R_| near ka =0 (left) and ka = = (right) for m| = m}j = —0.005; |R..| = 0. In both cases the exact coefficient is
from Eq. (44). The approximation for small ka comes from Eq. (46), and for ka ~ 7 from Eq. (48). Absorption coefficients & are computed for approximate

values of R_.
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paper, Secs. IV and V, is devoted to investigating this large
space of design parameters. The numerous examples demon-
strate that one-way absorption can be realized by various
configurations of the scatterers and their mechanical proper-
ties, e.g., a combination of a single damper with two mass-
spring elements, a damper with a single mass-spring oscilla-
tor, a pinned point with a damper, or combinations of two
dampers with oscillators.

The examples discussed in Sec. IV and summarized in
Table I indicate that significant one-way reflection can be
obtained for attachments spaced less than /2 apart. For
instance, if one of the impedances is real, corresponding to a
mass or a stiffness, and the other attachment is a pure
damper, then almost unit reflection can be achieved for an
approximate spacing of 4/2 (see Fig. 5). Alternatively, if one
of the points is pinned and the other attachment is a damped
oscillator then relatively broadband and significant one-way
reflection is possible, as shown in Fig. 6. This finding for
flexural waves differs substantially from the acoustic case.
Here perfect one-way absorption can be obtained for a com-
bination of a damped oscillator with a pinned point—and is
attributed to the partial transfer of elastic waves through the
pinned (i.e., w=0) point due to rotations of the beam cross
sections. We find that virtually perfect one-way absorption is
possible with two attachments with the same but small damp-
ing, if the spacing between them is slightly less than A/2.
Such a configuration requires real parts of the scatterers’
impedances of opposite signs [see Eq. (51)] and could be
achieved by properly selected high values of mass (positive
sign) and stiffness (negative sign) parameters for each of
them [see Eq. (2)]. This effect, shown in Fig. 14 has also
been verified using asymptotics based on the small parameter
m!| = mj. Surprisingly, the same setup of two attachments
with equal and small damping yields a reflectivity of magni-
tude 0.82 for very small spacing a < 4, also shown in Fig.
14. The strictly sub-wavelength nature of this effect means
that the pair of damped oscillators may be viewed as a single
attachment, i.e., a flexural wave Willis element.’

The results in this paper open up new possibilities in
structural wave dynamics. For instance, one could, in princi-
ple, design vibration absorbers that are not only frequency
selective, but also depend on where the noise is incident
from. In this paper we have shown that a large design space
exists; however, there is more work to be done in interpret-
ing this type of phenomenon in terms of realistic adaptive

J. Acoust. Soc. Am. 146 (1), July 2019

oscillators. This requires mapping the non-dimensional
impedances found back to realistic oscillator dynamics, as in
the spring-mass-damper models of Eq. (2). The present
results use only translational impedances (point forces) in
the context of the classical beam theory, but could be
extended to include concentrated moments and more refined
engineering theories. For instance, further analysis of the
results in Sec. V A in which the point attachments are very
close together would benefit from a more precise theory,
such as Timoshenko’s, that better models the near-field of
concentrated forces.
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