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The possibility of asymmetric absorption and reflection for flexural waves is demonstrated through

analytical and numerical examples. The emphasis is on the one-dimensional (1D) case of flexural

motion of a beam for which combinations of point scatterers are considered, which together provide

asymmetric scattering. The scatterers are attached damped oscillators characterized by effective

impedances, analogous to effective configurations in 1D acoustic waveguides. By selecting the

impedances of a pair of closely spaced scatterers it is shown that it is possible to obtain almost total

absorption for incidence on one side, with almost total reflection if incident from the other side.

The one-way absorption is illustrated through numerous examples of impedance pairs that satisfy

the necessary conditions for zero reflectivity for incidence from one direction. Examples of almost

total and zero reflection for different incidences are examined in detail, showing the distinct wave

dynamics of flexural waves as compared with acoustics.VC 2019 Acoustical Society of America.
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I. INTRODUCTION

An isolated lumped element in an acoustic waveguide

produces symmetric reflection for sound incident from either

side. This is true for standard sub-wavelength scatterers such

as a side-branch Helmholtz resonator (HR) or a membrane

stretched across the width of the waveguide. However, by

combining elements, e.g., a HR and a membrane in series,

one can achieve asymmetric reflection depending on the

direction of incidence. Such a combination of two or more

point scatterers in a sub-wavelength configuration can be

viewed as a new type of lumped element called a Willis ele-

ment.1 Unlike the classical point scatterers the Willis ele-

ment couples monopole and dipole radiation, which in turn

leads to asymmetry in the scattering, while it can still be

viewed as a sub-wavelength point scatterer. The effective

Willis parameters can be deduced from the scattering matrix

elements.2 An interesting case of asymmetric reflection is

unidirectional zero reflection3 in which the reflection is zero

for incidence from one direction but non-zero from the other.

The extreme limit of this phenomenon is one-way total

absorption where unidirectional zero reflection is accompa-

nied by zero transmission. The transmission must therefore

be zero for incidence from both directions, as required by

acoustical reciprocity. However, while total asymmetric

acoustic absorption implies zero symmetric transmission, the

reflection coefficients can differ as much as zero and unity in

magnitude. To the authors’ knowledge, this extreme limit of

one-way total absorption has not yet been demonstrated for

the simplest setup: one-dimensional (1D) waveguides.

The purpose of this paper is to show that one-way total

absorption can be obtained for flexural waves. Our analytical

and numerical model is a 1D system of flexural wave motion

in a beam, for which, by analogy with the lumped elements

in an acoustic waveguide, we consider closely spaced trans-

lational point impedances. These may be modeled as

attached single degree of freedom damped oscillators, which

apply an effective point force to the beam at the attachment

point. We do not consider rotational impedance elements,

which can apply a moment.4 Through proper choice of the

complex impedances, we demonstrate that two attached

damped oscillators display the same quantitative wave

effects as acoustic one-way total absorption. Specifically,

reflection is zero for incidence from one side, while the

reflection coefficient can be large, approaching unity in

some cases, for waves incident from the opposite direction.

The present problem is related to but fundamentally dif-

fers from the control of flexural waves in a beam using a pas-

sive tuned vibration absorber (TVA).5–7 A TVA, modeled

as a point translational impedance, can be used to minimize

transmission or reduce the vibration at a specific frequency

for a source that is either in the farfield6 or the near-field.7

The term vibration neutralizer5 rather than vibration

absorber is sometimes used to signify that the purpose of the

point attachment is to control vibration at a particular

frequency.

Unlike a single TVA, which necessarily has symmetric

scattering properties for incidence from the left or the right,

we consider two nearby impedances with the objective of

maximizing the scattering asymmetry to obtain flexural

wave one-way total absorption. The design objective is quite

distinct from that of the TVA in that we wish to make one

reflection zero and the other as close to unity as possible.a)Electronic mail: norris@rutgers.edu
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Here we are only concerned with passive wave control. We

note that the reflection/transmission from two identical

impedances was considered by Ref. 8, where the effect of

the spacing between the oscillators was found to be signifi-

cant. However, the symmetric configuration gives the same

reflection independent of the direction of incidence.

The outline of the paper is as follows. In Sec. II the gov-

erning equations are introduced and the solution is derived

for scattering from two point impedances. Necessary and

sufficient conditions for one of the reflection coefficients to

vanish are derived in Sec. III. It is shown that asymmetric

reflection requires at least one of the oscillators must be

damped. In Sec. IV we show through numerous examples

that one-way flexural reflection can be achieved from a wide

variety of impedance pairs. For instance, one may be purely

real (undamped) and the other imaginary (a pure damper), or

both may be damped. We find, surprisingly, that it is possi-

ble to achieve almost perfect one-way reflection (zero one-

way, unity the other). This effect is explored in detail using

asymptotic analysis in Sec. V. Finally, it is shown in Sec. VI

that almost perfect one-way reflection is achievable with a

unique pair of impedances in the frequency range

ka � ðp; 2pÞ. The main results are summarized and conclu-

sions are presented in Sec. VII.

II. SCATTERING BYA CLUSTER OF POINT
ATTACHMENTS

A. General solution

The beam has bending stiffness D (¼EI) and density q0

per unit length. Time harmonic motion e�ixt is assumed so that

the flexural wavenumber k is defined by k4 ¼ x2q0=D. We

assume there are N point scatterers located at xa with impedan-

ces la; a ¼ 1; 2;…;N. The total displacement w satisfies

D
d4w xð Þ
dx4

� k4w

� �

¼
X

N

a¼1

law xað Þd x� xað Þ: (1)

The attachment impedance l is modeled as single degree of

freedom with mass M, spring stiffness j, and damping coef-

ficient �, and defined as l¼ f/w, where f denotes the driving

force. The impedance as used here is analogous to that for

acoustics (pressure/velocity), although the two are not

dimensionally equivalent. Two possible configurations are

l ¼
1

Mx2
� 1

j� ix�

� ��1

; að Þ;

Mx2 � jþ ix�; bð Þ:

8

>

>

<

>

>

:

(2)

In case (a) the mass is attached to the plate by a spring and

damper in parallel,9 also called a vibration neutralizer.6

Model (b) assumes the mass is rigidly attached to the plate,

and both are attached to a rigid foundation by the spring and

damper in parallel.10 An important limit is a beam pinned at

xa; wðxaÞ ¼ 0, which corresponds to l ! 1. The (a) and (b)

oscillators could also be attached in parallel, e.g., on either

side of the beam, to give l ¼ la þ lb. The main point is that

there is a wide range of achievable passive l ðIm l � 0Þ. We

take advantage of this adaptivity by exploring the space of

possible impedances in this paper.

The solution is given by the incident wave win (x) plus

the displacement scattered by all the particles,

wðxÞ ¼ winðxÞ þ
X

N

b¼1

Gðx� xbÞlbwðxbÞ; (3)

where the Green’s function satisfies

D
d4GðxÞ
dx4

� k4GðxÞ
� �

¼ dðxÞ: (4)

We choose to normalize parameters so that the impedan-

ces and the Green’s function are non-dimensional. Define

ma ¼
2Dk3

la
; (5a)

gðxÞ ¼ 2Dk3GðxÞ ¼ i

2
eikjxj þ ie�kjxj
� �

; (5b)

then Eq. (3) becomes

wðxÞ ¼ winðxÞ þ
X

N

b¼1

gðx� xbÞm�1
b wðxbÞ: (6)

Setting x¼ xa in Eq. (6) gives a linear system of N equations,

which may be solved to give

wðxÞ ¼ winðxÞ þ
X

N

a;b¼1

gðx� xaÞM�1
ab winðxbÞ; (7)

where M�1
ab are the elements of the inverse of the N�N

matrix with elements

Mab ¼ madab � gðxa � xbÞ: (8)

B. Reflection, transmission, and absorption
coefficients

We consider incidence from the left and right, wþ
in and

w�
in, respectively,

w6inðxÞ ¼ e6ikx: (9)

The reflection coefficients Rþ, R�, and the single transmis-

sion coefficient T are defined by

wðxÞ ¼ wþ
in þ Rþe�ikx; x ! �1;

w�
in þ R�eikx; x ! 1;

(

(10a)

wðxÞ ¼ Te6ikx; x ! 61 for w6in : (10b)

These follow from Eq. (7) as

R6 ¼ i

2

X

N

a;b¼1

M�1
ab e6ik xaþxbð Þ; (11a)
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T ¼ 1þ i

2

X

N

a;b¼1

M�1
ab eik xa�xbð Þ: (11b)

To quantify absorption, we define absorption coeffi-

cients for right and left incidence aþ and a�, respectively, as

a6 ¼ 1� jTj2 � jR6j2: (12)

C. Example: One and two scatterers

It is useful to recall some of the features of a single

translational impedance before we consider two attachments.

1. One scatterer

For a single scatterer at x¼ 0 we have R6 ¼ R ¼ ði=2Þ
ðm� gð0ÞÞ�1

and T ¼ 1þ R. A desired value of T (or R¼T

� 1) is obtained if

m ¼ � 1

2
þ iT

2 T � 1ð Þ ) w 0ð Þ ¼ �iþ 1þ ið ÞT: (13)

Thus, for instance, w(0)¼ 0 for m¼ 0 (infinite impedance

l). Even though the beam is pinned the rotation at x¼ 0 is

not constrained, and hence half of the incident energy is

transmitted and half is reflected: jRj ¼ jTj ¼ 1=
ffiffiffi

2
p

. Zero

transmission (T¼ 0) is obtained if m ¼ � 1
2
, which is inter-

preted in terms of model (a) of Eq. (2) by Refs. 6 and 7: the

unique frequency at which T vanishes is given by Ref. 6 [Eq.

(7)] or Ref. 7 [Eq. (22)]. In general, the range of possible

values of T for the single scatterer is restricted only by the

requirement that the attachment is passive, i.e.,

Imm � 0 () Re T � jTj2 � 1.

The full transmission or—equivalently—the zero reflec-

tion case, namely jTj ! 1 () jRj ! 0, from Eq. (13) corre-

sponds to m ! 1 () l ! 0, so no scatterer. Also

wðx ¼ 0Þ ¼ eikxjx¼0 ¼ 1 as given by Eq. (13) with T¼ 1.

2. Two scatterers

For N¼ 2, let x1 ¼ �a=2; x2 ¼ a=2; a schematic of the

system is shown in Fig. 1. The matrixM is

M ¼ m1 � gð0Þ �gðaÞ
�gðaÞ m2 � gð0Þ

� �

; (14)

implying

R6¼ i

2detM
m1e

6ikaþm2e
7ika�2g 0ð Þcos kaþ2g að Þ

� �

;

(15a)

T¼1þ i

2detM
m1þm2�2g 0ð Þþ2g að Þcos ka
� �

: (15b)

The reflection coefficients can be written

R6 ¼ g2 0ð Þ
detM

e�ka þ sin ka� cos kað

� m1 þ m2ð Þcos ka6i m2 � m1ð Þsin kaÞÞ: (16)

This form shows that jRþj ¼ jR�j if l1 and l2 are real. In

that case there is no damping and the energy identity is

satisfied

jR6j2 þ jTj2 ¼ 1 for real l1; l2: (17)

The reflection coefficients can vanish, for instance, if ka ¼ p

and m1 þ m2 þ 1þ e�p ¼ 0, or if m1 ¼ m2 ¼ 1
2
tanð

kaþ e�ka sec ka� 1Þ.
When the separation a ! 0, Eq. (16) yields Rþ¼R�

with the two attachments acting as a single one with imped-

ance l¼l1þ l2.

III. ONE-WAY ZERO REFLECTION: IMPEDANCE

CONDITIONS

We are interested in configurations in which one of the

reflection coefficients vanishes but the other remains finite.

As shown above, the magnitudes of the reflection coeffi-

cients coincide for real-valued impedances. Therefore, in

order to have jRþj 6¼ jR�j requires that at least one of the

impedances l1; l2 is complex valued. We assume they are

passive dampers, which means that Imma � 0 for both a¼ 1

and 2. Assume Rþ¼ 0, then

R� ¼ m1 � m2ð Þ
detM

sin ka (18)

subject to the constraint implied by Rþ¼ 0,

e�ka þ sin ka� cos ka� ðm1 þ m2Þ cos ka
þ iðm2 � m1Þ sin ka ¼ 0: (19)

Equivalently,

mþcot kaþ im� ¼ K; (20)

where mþ, m�, and K ¼ 2ðgð0Þ cos ka� gðaÞÞ= sin ka are

m6 ¼ m16m2; (21)

K ¼ 1� cot kaþ e�ka= sin ka: (22)

Viewing mþ as the determining parameter, we have Rþ¼ 0

and

m1 ¼
mþ
2

þ i

2
mþcot ka� Kð Þ; (23a)

m2 ¼
mþ
2

� i

2
mþcot ka� Kð Þ; (23b)

FIG. 1. Schematic of the N¼ 2 system.
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R� ¼ 2i sin2ka

1

2
mþ � g 0ð Þ

� �

cos kaþ g að Þ
� �

1

2
mþ � g 0ð Þ þ g að Þcos ka

� �2
; (23c)

T ¼ 1þ i sin2ka

1

2
mþ � g 0ð Þ þ g að Þcos ka

: (23d)

One reason for considering mþ to be the control parameter is

that, unlike m�, it must lie in the negative half of the com-

plex plane, Immþ � 0. This does not, however, guarantee

that both m1 and m2 are in the same half plane. Therefore the

choice of mþ must be restricted by the passivity require-

ments Imma � 0; a ¼ 1; 2. The case Immþ ¼ 0 is of no

interest, and we therefore concentrate on Immþ < 0.

Define

m ¼ m0 þ im00; (24)

then the reflection coefficient Rþ vanishes if

m0
þcot ka� m00

–

¼ K; (25a)

m00
þcot kaþ m0

–

¼ 0; (25b)

where ka 2 ð0; pÞ. The non-zero reflection coefficient R� of

Eq. (18) can be rewritten as

R� ¼ �m00
þ cos kaþ im00

� sin ka

detM
; (26)

indicating that damping is essential in order to have R� 6¼ 0.

Of interest is therefore the part of the parameter space,

ðm00
þ;m

00
�Þ or—equivalently—ðm00

1;m
00
2Þ, where at least one of

the scatterers displays passive damping properties, i.e.,

m00
a < 0. Each point in this space uniquely defines the pair of

scatterers in terms of their damping properties, but not their

mass-stiffness properties or the spacing a between them.

Figure 2 illustrates this space with the shaded area corre-

sponding to the desired passive damping properties of the

scatterers. It can be noted that ðm00
þ;m

00
�Þ and ðm00

1;m
00
2Þ coor-

dinate systems are related by a p/4 rotation and
ffiffiffi

2
p

stretch

through the transformation given in Eq. (21). Passivity con-

ditions, analogous to m00
1 < 0 and m00

2 < 0, are therefore given

as jm00
�j < �m00

þ.

IV. EXAMPLES OF ONE-WAY REFLECTION

It was shown in Sec. III that damping is critical to obtain

one-way zero reflection. We will therefore consider the pair

of scatterers (a,b) described by two complex normalized

impedances ma;b ¼ m0
a;b þ im00

a;b with passive damping prop-

erties (m00
a;b < 0).

We start by investigating a setup composed of two scat-

terers where one is described by purely real ma ¼ m0
a, while

the other is described by a complex normalized impedance

mb ¼ m0
b þ im00

b, with m00
b < 0. As the system is non-

symmetric with respect to the selection of a and b, namely

for (a,b)¼ (1,2) and (a,b)¼ (2,1). We will therefore distin-

guish the two cases.

Next, we consider cases of two scatterers with passive

damping properties, i.e., m00
a;b < 0. Starting with the case of the

same negative normalized impedance m00
a ¼ m00

b ¼ m00 < 0, we

then generalize to m00
a 6¼ m00

b < 0 and relate this general case to

results obtained for other configurations of the scatterers.

A. First impedance purely real: m00
150

When (a,b)¼ (1,2), we have m1 ¼ m0
1 ðm00

1 ¼ 0Þ and

m2 ¼ m0
2 þ im00

2 , with m00
2 < 0, i.e., we investigate scatterer

configurations along an edge of the passive zone (see the

black dashed-dotted line in Fig. 2). Then, m00
þ ¼ m00

2 and

m00
� ¼ �m00

2 and the relation between m0
þ and m0

� follows

from Eq. (25) as:

ðm0
þcotka�KÞcot ka�m0

� ¼ 0; m00
2 ¼ m00

þ ¼�m00
� < 0:

(27)

From Eqs. (25a), (25b), and (27) we also have that

m0
�00; m0

þcot ka0K; for
k 2 ð0; p=2Þ;
k 2 ðp=2; pÞ:

	

(28)

Equation (27) with constraints in Eq. (28) define a surface in

ðm0
þ;m

0
�Þ space that is illustrated in Fig. 3. Relation (27) can

be mapped to ðm0
1;m

0
2Þ coordinates through Eq. (21) to find

corresponding real parts m0
1 and m0

2 of the complex impedan-

ces. Two particular configurations can be then be obtained

by cutting the design space from Fig. 3 with the m0
1 ¼ 0 or

m0
2 ¼ 0 planes resulting in one of the impedances being

purely real and the other purely imaginary.

1. Second impedance purely imaginary

Continuing with (a,b)¼ (1,2) (impedance l1 is purely

real), but specializing to the case of l2 purely imaginary

FIG. 2. (Color online) Design space for the two-scatterer case defined in terms

of ðm00
þ;m

00
�Þ or ðm00

1;m
00
2Þ. The shaded area marks all negative imaginary parts

of ma of the two scatterers, corresponding to passive damping properties.
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ðm00
1 ¼ m0

2 ¼ 0; m� ¼ �mþÞ, corresponds to a particular solu-

tion of the family of solutions illustrated in Fig. 3 by red

lines. Then Eq. (25) implies that

m0
1 ¼

Kcotka

cot2ka� 1
; m00

2 ¼
�K

cot2ka� 1
: (29)

Figure 4 shows the required values of m0
1 and m

00
2 and the cor-

responding reflection and transmission coefficients,

jRþj; jR�j and jTj. The impedance l2 for this model is pas-

sive for ka 2 ð0; p=4Þ and ka 2 ð3p=4; pÞ. Note that the

intersection of the surface given by Eq. (27) with m0
1 ¼ 0

reduces to a point at ka ¼ 0.

B. Second impedance purely real: m00
250

If ða; bÞ ¼ ð2; 1Þ, then m00
2 ¼ 0 (m2 ¼ m0

2) and m1 ¼ m0
1

þim00
1 with m00

1 < 0 corresponding to the red dashed-dotted

line in Fig. 2. In this case m00
þ ¼ m00

1 and m00
� ¼ m00

1 and the

relation between m0
þ and m0

� yields

ðm0
þcotka�KÞcotkaþm0

�¼0; m00
1 ¼m00

þ¼m00
�<0;

(30)

while Eqs. (25a) (25b), and (30) imply the constraints

m0
�00; m0

þcot ka9K; for
k 2 ð0; p=2Þ;
k 2 ðp=2; pÞ:

	

(31)

The design space given by Eq. (30) is shown in Fig. 3. As

before, two particular configurations can be seen by cutting

the design space from Fig. 3 by the m0
1 ¼ 0 or m0

2 ¼ 0 planes,

subject to the constraints (31).

1. First impedance purely imaginary

When mapping Eq. (30) on the m0
2 plane, i.e., taking

m0
1 ¼ 0, we have m1 ¼ im00

1; m
00
1 < 0 and m2 ¼ m0

2. The first

impedance purely negative imaginary while the second is

purely real ðm� ¼ � �mþÞ, a situation opposite to that consid-

ered previously, with

m00
1 ¼

K

cot2ka� 1
; m0

2 ¼
K cot ka

cot2ka� 1
: (32)

Figure 5 shows the required values of m00
1 and m

0
2 and the cor-

responding reflection and transmission coefficients,

jRþj; jR�j and jTj.

2. Second impedance infinite (pinned point)

Due to asymmetry of the design space, another interest-

ing scatterer configuration can be found by mapping Eq. (30)

onto the m0
1 plane. Then, m

0
2 ¼ 0, making the second normal-

ized impedance vanish and resulting in l2 ¼ 1, i.e., a

pinned point. Note that from the definition of the impedance

and the governing equation (1) it follows that energy can be

transferred across a pinned point through rotations of the

beam cross sections proportional to dw=dx even if w¼ 0.

This particular feature distinguishes the flexural wave prob-

lem from the acoustic one. In this case the other normalized

impedance, m1 ¼ m0
1 þ im00

1 , is complex with

FIG. 3. (Color online) Design space, jm00
�j < �m00

þ, corresponding to nega-

tive imaginary parts of m1 and m2 mapped through Eqs. (25a) and (25b) (see

Fig. 2). The color lines indicate special configurations of scatterers described

in the text. Solutions for the red, magenta, blue, and orange curves are given

in Figs. 4, 5, 6, and 11, respectively.

FIG. 4. (Color online) The normalized impedances for zero one-way reflec-

tion from Eq. (29). In this case l1 is real and l2 is positive imaginary and

hence passive.

FIG. 5. (Color online) The normalized impedances for zero one-way reflec-

tion from Eq. (32). In this case l2 is real and l1 is positive imaginary and

hence passive.
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m0
1 ¼ K sin ka cos ka; m00

1 ¼ �K sin2ka: (33)

Figure 6 shows the real and imaginary parts of the com-

plex normalized impedance for the first scatterer.

Interestingly, with the second point pinned, m2¼ 0, it is pos-

sible to obtain one-way reflection over wide wavenumber (or

frequency) band.

3. Second impedance infinite (pinned point) with a

pure damper

Note the exchanged positions (but the same values) of

the real parts of normalized impedances shown in rows 2

and 3 of Table I. A particular selection of ka¼ p/2 results in

the real parts of scatterers in rows 2 and 3—m0
2 and m0

1,

respectively—equal to zero. Therefore, for this specific con-

figuration we have the second scatterer pinned (l2¼1),

while the first is purely negative imaginary (passive damper).

The imaginary parts of the normalized impedances m00
2 from

Eqs. (32) and (33) are both m00
1 ¼ �K ¼ �ð1þ e�p=2Þ < 0.

C. Impedances with the same passive damping
properties: m00

15m00
2

Selecting passive damping properties other than dis-

cussed above, results in configurations with imaginary parts

of normalized impedances being both non-zero. A particular

choice is m00
1 ¼ m00

2 < 0 or, equivalently, m00
� ¼ 0 and

m00
þ < 0. With m00

1 ¼ m00
2 ¼ m00 < 0 Eqs. (25a) and (25b) lead

to

mþ ¼ K tan kaþ i2m00: (34)

Therefore from Eq. (23), the two impedances are

m1 ¼
1

2
K tan ka� m00cot kaþ im00;

m2 ¼
1

2
K tan kaþ m00cot kaþ im00;

(35)

implying jm0
1j > jm0

2j. It is therefore not possible to obtain

one-way reflection with a pair of scatterers with the same

negative imaginary part of the complex impedance having

FIG. 6. (Color online) The normalized impedances for zero one-way reflec-

tion from Eq. (33), corresponding to the blue curve in Fig. 3. In this case

m2¼ 0 (l2¼1) indicating a pinned point, and m1 ¼ m0
1 þ im00

1 is complex

with m00
1 < 0 and hence passive.

TABLE I. A summary of the special cases corresponding to the red, blue, magenta, and orange curves in Fig. 3 considered in this work. Note

m00
1 � 0; m00

2 � 0, ensuring passive configurations and D
ðnÞ
6

¼ ðd=2Þ½16ð1=cÞ tannka� for n¼ 0,2.

Passive ka m0
1 m00

1 m0
2 m00

2 Figure Section

0;
p

4

� �

;
3

4
p;p

� �

K

2
tan ka

0 0 �K

2
tan 2ka tan ka

4 IVA1

p

4
;
3

4
p

� �

0 K

2
tan 2ka tan ka

K

2
tan ka

0 5 IVB1

ð0; pÞ K

2
sin 2ka �K sin2ka 0 0 6 IVB2

ð0; pÞ K

2
tan ka� m00cot ka
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þ
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VI

FIG. 7. Examples of normalized impedance curves for various selected val-

ues of m00 < 0 for m00
þ < 0 and m00

� ¼ 0, based on Eq. (35).
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the same or opposite real parts (i.e., mass and stiffness prop-

erties). Equation (35) implies

ðm0
1Þ

2�ðm0
2Þ

2 ¼�2m00K () m0
þm

0
� ¼�2m00K; (36)

which defines a hyperbola in ðm0
1;m

0
2Þ [or ðm0

þ;m
0
�Þ] space

for each selected value of m00, as shown in Fig. 7.

Values of m0
1 and m0

2 required for the one-way zero

reflection with jRþj ¼ 0 are shown in Fig. 8. The corre-

sponding reflection jR�j and transmission jTj coefficients are
shown in Fig. 9. Note the possibility of obtaining narrow-

band highly directional properties of the system when m00 !
0 and ka ! 0 or ka ! p. Those special cases are discussed

in detail later.

1. Second impedance purely imaginary

A special case of scatterer configuration can be obtained

for m0
2 ¼ 0. Then, with m1 ¼ m0

1 þ im00 and m2 ¼ im00 we

have two scatterers with the same damping properties.

Equation (36) reduces to

ðm0
1Þ

2 ¼ �2m00K; (37)

and uniquely defines the relation between m00 and m0
1.

Equation (35) can be then reduced to

m0
1 ¼ K tan ka; m00 ¼ � 1

2
K tan2ka: (38)

Possible choices of m0
1 as a function of m00 and ka are shown

in Fig. 10.

D. Almost equal impedances

We now analyze the case where the differences between

the real and imaginary parts of the normalized impedances

are small. In particular we are interested in the cut of the

design space for m0
� � 0, as shown by the orange lines in

Fig. 3. We therefore set m0
� ¼ 6d where d is a small number

allowing for shifting the cutting plane in the design space;

the upper sign is taken for ka 2 ð0; p=2Þ and lower for

ka 2 ðp=2; pÞ, and are required for passive damping, i.e.,

m00
þ < 0 where m00

þ follows from Eq. (25b). At the same time

m00
� must satisfy jm00

�j < �m00
þ, which is imposed by setting

m00
�¼m00

þ
c

¼7d

c
tan ka; c2 �1;�1ð Þ[ 1;1ð Þ (39)

with c 2 ð�1;�1Þ for m00
� > 0 and c 2 ð1;1Þ for m00

� < 0,

and m0
þ can then be obtained by using Eq. (25a). In

summary,

FIG. 8. (Color online) Values of m0
1 and m

0
2 required for one-way zero reflection when m

00
1 ¼ m00

2 ¼ m00 < 0, computed from Eq. (35).

FIG. 9. (Color online) Reflection (a) jR�j and (b) transmission jTj for m00
1 ¼ m00

2 ¼ m00 < 0; jRþj ¼ 0. Note the large reflectivity for small m00 and ka � 0,p.

This phenomenon is examined in Sec. V.
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mþ ¼ K7d
tan ka

c
þ i

� �� �

tan ka;

m� ¼ 6d 1� i
tan ka

c

� �

;

for
k 2 0; p=2ð Þ;
k 2 p=2; pð Þ:

	

(40)

From m0
� ¼ 6d and Eq. (39) it can be seen that for

small d we have both real and imaginary parts of the normal-

ized impedances nearly the same, regardless of the choice of

c. Before discussing the case of ka ! 0 and ka ! p in Sec.

IV E, we present m1 and m2 as functions of ka, required for

the zero one-way reflection.

Figure 11 shows the real, m0
1;m

0
2, and imaginary,

m00
1;m

00
2 , parts of the normalized complex impedances for two

selected combinations of (d,c), namely (1� 10�3,1� 103)

[Fig. 11(a)] and (1� 10�3,1) [Fig. 11(b)], along with reflec-

tion and transmission coefficients. For large c [Fig. 11(a)],

both real and imaginary parts assume nearly the same values

over wide ka range. For small c [Fig. 11(b)], scatterer config-

urations analogous to those presented in Secs. IVA and IVB

are obtained with the difference in assumption on the real

parts being non-zero and having close values. Note all the

configurations presented in Fig. 11 are passive.

Reflection and transmission coefficients shown in Fig.

11 display very narrowband one-way reflection properties.

High values of jR�j are observed for ka ! 0 and ka ! p,

and are not sensitive to the selection of c. Close-up views for

ka ! 0 and ka ! p are shown in Fig. 12. Note that for

ka ! p the value of jR�j is close to one, the perfect reflec-

tion, while for ka ! 0; jR�j converges to a lower value.

These surprising results will be analyzed in detail in Sec. V.

E. Impedances with different passive damping

properties

Selecting an arbitrary, but different from those consid-

ered so far, configuration of passive damping properties of

scatterers we assume—analogously to Sec. IVD—that m00
�

and m00
þ are related by m00

þ ¼ cm00
� and m00

þ < 0. The constant

must satisfy c 2 ð�1;�1Þ [ ðþ1;þ1Þ, where values c ¼
f�1;þ1g recover results obtained in Secs. IVA and IVB,

and c ¼ 1 is equivalent to result presented in Sec. IVC.

The relation between m0
þ and m0

� yields

ðK � m0
þcot kaÞ c cot ka� m0

� ¼ 0; m00
þ < 0: (41)

Selection of m00
þ < 0 and c uniquely defines passive

damping properties of the two scatterers. Figure 13 presents

fragments of the design space for c < �1 and c> 1 for three

arbitrarily selected values of c : jcj ¼ fĉ; 10 ĉ; 100 ĉg; ĉ � 1.

It can be seen that for increasingly large values of jcj the
shape of the design space converges to that of Fig. 7, while

for small values of jcj the shape of the design space converges
to that of Fig. 3. Specifically, when jcj is large

m00
� ¼ m00

þ = jcj ! 0, resulting in the same damping properties

of the scatterers, and m0
� = jcj ! 0 in Eq. (41). The latter

observations are consistent with results of Sec. IVC (see Fig.

7) and discussion in Sec. IVB3.

Note that jm00
�j < �m00

þ with m00
þ and Eq. (25b) restrict the

selection of m0
� > 0 for ka 2 ð0; p=2Þ and m0

� < 0 for

ka 2 ðp=2; pÞ. The value of m0
þ is then given by

FIG. 11. (Color online) The normalized complex impedances for zero one-way reflection with d¼ 1� 10�3 and c¼ 1000 (a), and c¼ 1 (b). In this case the scat-

terers share close real and imaginary parts of the complex impedances (a), and close values of the real parts with one of the imaginary parts close to zero (b).

FIG. 10. (Color online) The normalized impedances for zero one-way

reflection from Eq. (38). In this case the two scatterers have the same damp-

ing properties, m00
1 ¼ m00

2 ¼ m00 and m0
2 ¼ 0.
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m0
þ ¼ K � m0

�
c

tan ka

� �

tan ka: (42)

For negative jcj [Fig. 13(b)] m0
þ behaves as 	 tan2ka for

small jcj and as 	 tan ka for large jcj. For small positive jcj
[Fig. 13(a)] m0

þ takes values 	� tan2ka and for large posi-

tive jcj; mþ 	 tan ka. It should be noted that as m0
þ can

change its sign, there exists m0
þ ¼ 0 choice (i.e., equal but

opposite real parts of the normalized impedances) and can

be achieved by a configuration satisfying

m0
� ¼ cK cot ka: (43)

It follows from Eq. (25b) that Eq. (43) can be satisfied

only by c> 0 for the system to be passive.

V. MAXIMUM REFLECTION FOR ka � 1 AND ka � p

We return to the surprising results indicating that signifi-

cant one-way reflection ðjR�j > 0:8Þ is possible for ka � 1,

and that almost unitary one-way reflection ðjR�j � 1Þ can be

achieved for ka � p, as illustrated in Figs. 9 and 12. Here we

derive analytical expressions that help explain the extreme

values of jR�j. These effects are associated with small imag-

inary parts for the impedances �m00
1;�m00

2 � 1; we therefore

concentrate on the case considered in Sec. IVC for

m00
1 ¼ m00

2 
 m00, corresponding to the impedances defined by

Eq. (35). The single parameter m00 yields, from Eqs. (23c)

and (34), a reflection coefficient

R� ¼ 2m00 cos ka

m00

sin ka
þ ig að Þtan ka

� �2
: (44)

Equation (44) may be written as

R� ¼ �cos ka

1

2y
� ig að Þy

cos ka

� �2
; where y ¼ sin ka

ffiffiffiffiffiffiffiffiffiffiffiffi

�2m00
p : (45)

This form allows us to easily find the asymptotic limits appro-

priate to the two cases of interest, which are considered next.

A. Low frequency maximal absorption

Expanding the expression (45) for ka � 1;�m00 � 1

indicates the preferred scaling m00 ¼ OðkaÞ2. Thus,

R� � �4

1

c
þ 1þ ið Þc

� �2
with c ¼ ka

ffiffiffiffiffiffiffiffiffiffiffiffi

�2m00
p : (46)

Hence, jR�j ¼ 4=ð1=c2 þ 2c2 þ 2Þ, implying that the maxi-

mum reflection is R� ¼ 2ð
ffiffiffi

2
p

� 1Þei3p=4 at c ¼ 2�1=4, corre-

sponding to

R� ¼ �0:5858þ 0:5858 i ¼ 0:8284 ei3p=4: (47)

In summary, for a given value of �m00 � 1 the reflection for

small ka is given approximately by Eq. (46), with maximum

FIG. 12. (Color online) A close-up view of Fig. 11(a), (d¼ 1� 10�3, c¼ 1000), showing the extreme cases of ka ! 0 (left) and ka ! p (right).

FIG. 13. (Color online) The design space analogous to that from Fig. 3, defined by Eq. (41) for (a) c ¼ fĉ; 10 ĉ; 100 ĉg, and (b) for c ¼ f�ĉ;�10 ĉ;�100 ĉg.
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amplitude jR�j ¼ 0:8248 at ka ¼ 1:1892
ffiffiffiffiffiffiffiffiffiffi

�m00
p

. An example

is shown in Fig. 14.

B. Maximal absorption for ka � p

In this case we assume p� ka � 1;�m00 � 1.

Expanding the expression (45) we find a similar preferred

scaling as before, with now m00 ¼ Oððp� kaÞ2Þ. Thus,

R� � 4

1

c
þ zc

� �2
; (48)

where

c ¼ p� ka
ffiffiffiffiffiffiffiffiffiffiffiffi

�2m00
p ; z ¼ 1� ie�p ¼ jzjei/; (49)

i.e., jzj ¼ 1:0009; / ¼ �0:0432. In this case jR�j ¼ 4=ð1=c2
þjzj2c2 þ 2Þ, implying that the maximum reflection coeffi-

cient is R� ¼ 1=½z cos2ð/=2Þ� at c ¼ jzj�1=2 ¼ 0:9995, corre-
sponding to

R� ¼ 0:9986þ 0:0432 i ¼ 0:9995 e�i/: (50)

The maximum jR�j is very close to, but not equal to unity,

as illustrated in the example of Fig. 14. In summary, for a

given value of �m00 � 1 the reflection for ka � p is given

approximately by Eqs. (48) and (49), with almost unit maxi-

mum amplitude at ka ¼ p� 1:4136
ffiffiffiffiffiffiffiffiffiffi

�m00
p

.

Finally, we note from Eq. (35) that the impedances for

both cases, ka near zero and p, are

m1
2
� 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m00=2
p

c
þ im00: (51)

These correspond to lightly damped oscillators, one being an

effective mass, the other a stiffness.

VI. MAXIMUM REFLECTION FOR ka > p

Finally, we consider the unique value of mþ ¼ m1 þ m2

for which the transmission is identically zero, T¼ 0, in

addition to Rþ ¼ 0. It follows from Eq. (23d) that both R–

and T vanish if

mþ ¼ 2gð0Þ � 2gðaÞ cos ka� i2 sin2ka; (52)

implying, using Eq. (23), that

m1 ¼ � 1

2
þ sin kaþ 1

2
e�ka

� �

e�ika;

m2 ¼ � 1

2
þ 1

2
e�kaeika;

R� ¼ �e�ika þ ie�ka:

(53)

The lowest value of ka for which both impedances are pas-

sive m00
1;m

00
2 � 0 is ka¼ 1.0067p, and they remain passive

until ka¼ 2p. Therefore, for almost all of the range

ka¼ (p,2p) these impedances yield Rþ¼T¼ 0 with almost

unit amplitude one-way reflection jR�j > 0:986. The damp-

ing of attachment 2 is very small, m00
2 > �0:007, with almost

all the damping in resonator 1.

VII. SUMMARYAND CONCLUSIONS

We have presented for the first time a flexural wave ana-

log of the one-way absorption effect in acoustics. Similar to

the acoustic setup, we consider a pair of adjacent lumped

elements, which breaks the symmetry of the scattering, in

this case oscillators attached pointwise on a beam. It is found

that at least one of the oscillators must be damped in order to

have zero reflection from one direction with significant

reflection from the opposite direction. The method of analy-

sis developed in Sec. II can be easily generalized to handle

larger clusters of oscillators; however, we have shown that

two are sufficient to achieve one-way absorption.

The starting point for finding possible combinations of

oscillator pairs is Eq. (19), which guarantees one reflection

coefficient vanishes (in this case Rþ¼ 0). This condition pro-

vides a single relation between the normalized impedances

m1 ¼ m0
1 þ im00

1 and m2 ¼ m0
2 þ im00

2 , which are otherwise

unconstrained except that they must correspond to passive

oscillators ðm00
1 � 0;m00

2 � 0Þ. This leaves a large set of pos-

sible configurations that may be considered. The bulk of the

FIG. 14. (Color online) Reflection coefficient jR�j near ka¼ 0 (left) and ka¼p (right) for m00
1 ¼ m00

2 ¼ �0:005; jRþj ¼ 0. In both cases the exact coefficient is

from Eq. (44). The approximation for small ka comes from Eq. (46), and for ka � p from Eq. (48). Absorption coefficients a6 are computed for approximate

values of R–.
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paper, Secs. IV and V, is devoted to investigating this large

space of design parameters. The numerous examples demon-

strate that one-way absorption can be realized by various

configurations of the scatterers and their mechanical proper-

ties, e.g., a combination of a single damper with two mass-

spring elements, a damper with a single mass-spring oscilla-

tor, a pinned point with a damper, or combinations of two

dampers with oscillators.

The examples discussed in Sec. IV and summarized in

Table I indicate that significant one-way reflection can be

obtained for attachments spaced less than k/2 apart. For

instance, if one of the impedances is real, corresponding to a

mass or a stiffness, and the other attachment is a pure

damper, then almost unit reflection can be achieved for an

approximate spacing of k/2 (see Fig. 5). Alternatively, if one

of the points is pinned and the other attachment is a damped

oscillator then relatively broadband and significant one-way

reflection is possible, as shown in Fig. 6. This finding for

flexural waves differs substantially from the acoustic case.

Here perfect one-way absorption can be obtained for a com-

bination of a damped oscillator with a pinned point—and is

attributed to the partial transfer of elastic waves through the

pinned (i.e., w¼ 0) point due to rotations of the beam cross

sections. We find that virtually perfect one-way absorption is

possible with two attachments with the same but small damp-

ing, if the spacing between them is slightly less than k/2.

Such a configuration requires real parts of the scatterers’

impedances of opposite signs [see Eq. (51)] and could be

achieved by properly selected high values of mass (positive

sign) and stiffness (negative sign) parameters for each of

them [see Eq. (2)]. This effect, shown in Fig. 14 has also

been verified using asymptotics based on the small parameter

m00
1 ¼ m00

2. Surprisingly, the same setup of two attachments

with equal and small damping yields a reflectivity of magni-

tude 0.82 for very small spacing a � k, also shown in Fig.

14. The strictly sub-wavelength nature of this effect means

that the pair of damped oscillators may be viewed as a single

attachment, i.e., a flexural wave Willis element.1

The results in this paper open up new possibilities in

structural wave dynamics. For instance, one could, in princi-

ple, design vibration absorbers that are not only frequency

selective, but also depend on where the noise is incident

from. In this paper we have shown that a large design space

exists; however, there is more work to be done in interpret-

ing this type of phenomenon in terms of realistic adaptive

oscillators. This requires mapping the non-dimensional

impedances found back to realistic oscillator dynamics, as in

the spring-mass-damper models of Eq. (2). The present

results use only translational impedances (point forces) in

the context of the classical beam theory, but could be

extended to include concentrated moments and more refined

engineering theories. For instance, further analysis of the

results in Sec. VA in which the point attachments are very

close together would benefit from a more precise theory,

such as Timoshenko’s, that better models the near-field of

concentrated forces.
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