Harmonizing ARINC 653 and Realtime POSIX for
Conformance to the FACE Technical Standard

Gedare Bloom
University of Colorado Colorado Springs
Colorado Spring, CO, USA
gbloom@uccs.edu

Abstract—The avionics industry is converging toward the
next generation of software standards produced by The Open
Group via the Future Airborne Capability Environment (FACE)
consortium and related FACE Technical Standard. The standard
combines ARINC 653, a previous avionics standard, with subsets
of POSIX 1003.1 that are closely aligned with the POSIX realtime
profiles PSE52, PSES3, and PSE54. In this paper, we describe our
approach to design, implement, and certify a system with FACE
Conformance to the FACE Operating System Segment Safety
Base profile. Our approach integrates the ARINC 653-compliant
Deos with RTEMS, an open-source real-time operating system
(RTOS). Our goal in combining Deos/RTEMS was to achieve cer-
tification of FACE Conformance in a low-cost manner by relying
on existing, mature software that already provides the majority
of the functionality required by the FACE Technical Standard.
We reached our goal with under 10,000 source lines of code
(SLOC) written to integrate RTEMS into Deos and implement
any additional POSIX application programming interfaces (APIs)
and tests needed for certification.

Index Terms—Future Airborne Capability
FACE, ARINC 653, POSIX, RTOS, RTEMS, Deos

Environment,

I. INTRODUCTION

The Future Airborne Capability Environment (FACE) Tech-
nical Standard—Edition 3.0 [1] as of this writing—is a
standard for avionics platforms that is produced by The
Open Group using Modular Open Systems Approach (MOSA)
principles. The standard defines system software support and
application programming interfaces (APIs) needed for portable
avionics software in a component-based architecture consistent
with an object-oriented real-time computing paradigm.

Four OS Segment (OSS) profiles are defined by the FACE
Technical Standard: Security, Safety Base, Safety Extended,
and General Purpose. These profiles are a superset of ARINC
653 Part 1 (revisions 3 or 4) [2] and subsets of POSIX
that address the varying application-specific needs of avionics
software. Security is the most restrictive environment having
the fewest APIs available for applications, which may have
little to do with cybersecurity as a general concept other than
simplicity lending itself to security. An OSS certified for all the
capabilities of a particular profile is said to have conformance
for that profile. The General Purpose Profile is a POSIX-based
execution environment that optionally may include ARINC

This work is partially supported by NSF OAC-2001789. The authors also
thank DDC-I, Inc. for their role in this effort.

Joel Sherrill
OAR Corporation
Huntsville, AL, USA
joel.sherrill@oarcorp.com

653, while the other three profiles require a mix of ARINC
653 and POSIX support from the OS.

In this paper, we describe our approach and experience de-
veloping an OS aiming at FACE conformance for the Security,
Safety Base, and Safety Extended profiles. One challenging
aspect for FACE conformance is that prior standards have
not required simultaneous POSIX and ARINC 653 support.
Thus, prior real-time operating systems (RTOSs) have focused
on one or the other. We identified that the requirements of
the FACE Technical Standard logically define two execution
environments—one supporting POSIX and one for ARINC
653—and that nothing in the standard restricts using two
OSs to satisfy the requirements. As a result, we chose a
path of least resistance that combined Deos, an RTOS with
ARINC 653 support, with RTEMS, an open-source RTOS
with POSIX support. At a high-level our approach mimics
paravirtualization with Deos as the host and RTEMS as a
guest.

Despite the separation of ARINC 653 and POSIX func-
tionality between Deos and RTEMS, a POSIX thread can
use a subset of the ARINC 653 APIs. In addition, multiple
partitions within Deos can contain RTEMS instances, and
therefore can execute multiple POSIX (RTEMS) applications
concurrently, which is logically equivalent to execution of
multiple statically-created POSIX processes.

II. BACKGROUND
A. Future Airborne Capability Environment (FACE)

The FACE Consortium was founded by The Open Group
in 2010 to define an open architecture for avionics. Since its
founding, three major editions of the FACE Technical Standard
and a wide variety of technical and business supporting
documents have been released. Edition 2.1 of the standard was
released in May 2014, and Edition 3.0 in November 2017. An
Edition 3.1 corrigenda is expected in 2020 that incorporates
corrections for identified issues.

As depicted in Fig. 1, the FACE Reference Architecture was
introduced in Edition 1.0 with five core segments that remain
to this day: Operating System Segment, Portable Components
Segment, Platform-Specific Services Segment, I[/O Services
Segment, and Transport Services Segment. The basic func-
tionality of each segment is the same over time although
the interfaces have undergone significant changes. Editions

...

[FACE Boundary

Operating

System Portable Components Segment Transport

Segment @ ‘ Services.
(O

ARINC-653|

Runtime

ATEMS

POSIX Platform-Specific Services Segment
Runtime

1/0 Services Segment

Fig. 1. FACE Architecture Diagram

1.x and 2.x use procedural-style interfaces, but Edition 3.x
uses an object-oriented approach for interfaces defined by the
FACE Consortium. Edition 2.0 adopted Interface Definition
Language for describing the interfaces in addition to intro-
ducing a new interface: FACE Health Monitoring and Fault
Management. Edition 3.0 introduced the Configuration, Life
Cycle, and Component State Persistent interfaces.

The Operating System Segment incorporates existing OS,
programming language, and graphics standards based on their
prior or anticipated use in safety-critical avionics system.
Relatively few changes have been made to the Operating Sys-
tem Segment across editions of the FACE Technical Standard
as a result of relying on established standards. The POSIX
profiles for Editions 1.x and 2.x are identical. Edition 3.0
added the POSIX clock_nanosleep method and allowed
for optional replacement of the ARINC 653P1-3 by ARINC
653P1-4 (revision 3 by 4) [2]; the latter was released in
August 2015. The upcoming Edition 3.1 includes changes
to the POSIX profiles that allow POSIX multi-process APIs
to be optional in the Safety Extended and General Purpose
Profiles and increase alignment with the profiles defined by the
Software Communications Architecture [3] standard, which is
used primarily for software-defined radios.

B. Deos

Deos is a safety-critical real-time operating system with
time- and space-partitioning capabilities that is certifiable to
the most stringent DO-178 Design Assurance Level (DAL)
A. Out-of-the-box Deos already contains all supported APIs
needed from ARINC 653 for achieving FACE conformance.
Deos supports the x86, PowerPC, MIPS, and ARM architec-
tures.

C. RTEMS

RTEMS is an open-source hard real-time operating system
that was first produced in the 1980s in conjunction with the US
Army. RTEMS has one of the most POSIX-rich environments
among open-source RTOSs, and it is therefore an appealing
choice for use in applications aligned with the FACE Technical
Standard or other POSIX-based standards. RTEMS supports

many architectures including those supported by Deos, and has
robust support for multicore scheduling and synchronization.
RTEMS is a single address space operating system (SASOS)
with a flat memory model that historically has been statically
linked with application code in a single process, multi-threaded
environment with no spatial isolation.

III. METHODOLOGY

In this section we describe the approach we took to align
Deos/RTEMS with the FACE Technical Standard. The main
motivation for our approach is that ARINC 653 and POSIX
services need not be provided by the same OS environment.
Thus, we use paravirtualization techniques to support exe-
cuting Deos and RTEMS in tandem to provide both sets of
services. Applications that use ARINC 653 or POSIX can run
under Deos or RTEMS, respectively.

A challenge for our approach is that Deos is not designed to
act as a hypervisor and so it does not have an existing set of hy-
percalls. The design of Deos as a time- and space-partitioning
RTOS however does permit running RTEMS inside a partition,
which yields a similar result as if RTEMS were in a virtual
machine environment provided by a hypervisor. We therefore
implemented a thin adapter layer that uses traditional Deos
syscalls like a hypercall interface and provides RTEMS with
access to request supervisor services.

A. RTEMS Paravirtualization

Paravirtualization of RTEMS has been an ongoing effort
spanning nearly a decade and several development projects
related to executing RTEMS efficiently as a guest within a host
(hypervisor or partitioning OS) environment [4]. This effort
produced an initial framework for defining a paravirtualized
RTEMS guest. We refined this framework and generalized it
to be host-agnostic. The general framework has been adopted
within RTEMS and is used by others to run RTEMS in a
virtualized environment.

Our approach for paravirtualization logically follows
RTEMS’ layered software architecture. We use a compile-
time option (RTEMS_PARAVIRT) to control a kernel build
for paravirtualization. This option avoids the use of privileged
and sensitive instructions/registers in the architecture-specific
portion of RTEMS. Often, such usage is replaced with function
calls that need to be implemented to make the appropriate
call to the host OS (i.e., hypercall/syscall). These functions
are defined within an RTEMS board support package or
adapter that provides support to run RTEMS within a virtual
environment as opposed to a physical board.

We provided initial support to paravirtualize RTEMS for
the x86, ARM, and PowerPC architectures. Others have par-
avirtualized the SPARC v7/8 architecture. Our work targeted
Deos, while subsequent work has resulted in support for the
XtratuM and Xen hypervisors.

B. Time Management

We faced two challenges related to time. First is that when
RTEMS is scheduled as a guest it does not understand the

passage of time outside its own execution, and therefore the
system clock is not accurate. Second is the potential need to
synchronize the time-of-day (date/time) in an RTEMS partition
with time changes made in a different partition. We discuss
both of these challenges and our solutions in the following.

1) System Clock: The primary difficulty for tracking time
is that the time that elapses while the RTEMS partition is not
executing does not get relayed to the partition. Furthermore,
the partition does not know when it is context switched.
Thus, the start and end of a partition’s scheduling window
is transparent to the executing thread. We adopt a simple
approach to identify the start of the window by causing
Deos to deliver the RTEMS partition a time budget exceeded
exception at the start of each window. By never yielding (self-
suspending) back to Deos from RTEMS we ensure that this
exception will always be delivered like a software interrupt
aligned with the start of each new scheduling window, i.e.,
each activation of the RTEMS partition. We register a modified
clock tick interrupt handler to handle the exception; thus, each
scheduling window denotes a set of clock ticks.

The clock tick handler—driven by the time budget
exception—implements time management in a relatively
straightforward manner. We rely on Deos’ uptime (time offset
since boot) as a free-running clock source to keep track of
the passage of time. The exception handler fetches the uptime
with a syscall, calculates the time that elapsed since the start of
the previous scheduling window. From this time interval and
the configured system clock frequency, the handler calculates
how many clock ticks have elapsed. Any remainder of time
for a partial tick from the preceding window gets added to the
current interval, and any partial tick left at the end will get
passed to the subsequent window. The handler then invokes
the rtems_clock_tick method the same number of times
as full clock ticks that were calculated. This method is the
interface in RTEMS that clock drivers use to advance the
tick-based system clock. The number of calls made can vary
depending on the length of time between the start of partition
windows.

2) Time-of-Day Synchronization: Another time-related
challenge is communicating time changes between guest and
host environments. The FACE Technical Standard requires that
the ability to set the date/time is configurable for partitions,
and that if a partition sets the time then the new time gets set
for all partitions. Deos already supports the configuration of
a partition’s permission to set the global time, thus satisfying
the former requirement. We satisfied the latter requirement
in both directions by augmenting RTEMS to allow for time
updates from an external source, and by adding a server thread
in RTEMS that can synchronize the RTEMS partition’s time
with Deos’ time.

The modification to synchronize time with an external
source is a general improvement to RTEMS that we have
merged with the upstream public repository. Our approach
essentially introduces an event registration mechanism for reg-
istering a callback function in case a time change (set) happens
inside RTEMS. We use this mechanism to propagate time

changes from an RTEMS partition back to Deos; however, the
callback could also be useful for example to update a hardware
(real-time) clock when the software time changes. One might
use such an approach in combination with a network time
synchronization protocol.

The server thread that synchronizes RTEMS time to Deos
is an optional feature that must be enabled by the ap-
plication configuration. When enabled, the system startup
invokes deos_tod_synchronization_initialize,
which creates the server thread and obtains the current Deos
uptime and time bias. This bias is the difference between
uptime and the current time-of-day. The clock tick handler—
running at the start of each execution window—checks if the
bias value has changed since its previous reading and, if so,
unblocks the server thread to synchronize with the updated
time-of-day. The server thread calculates the current time from
the Deos uptime plus bias and calls clock_settime to
update the local partition’s notion of the time-of-day.

C. Thread Stack Allocation

RTEMS normally allocates thread stack memory from a
memory pool which is located in memory between the end
of the loaded binary image and the end of physical memory.
Under typical use, this allocation is non-problematic because
RTEMS operates without a memory management or protection
unit (MMU/MPU); thus, the memory “hole” between the end
of the binary image and physical memory is always available
for the OS to utilize. Deos provides spatial isolation with
MMU support to provide each partition with protected regions
for code, read-only data, writeable data, and thread stacks.
Deos initializes the stack memory region in the MMU to en-
sure stack pointer accesses remain within the region allocated
for thread stacks. Thus, RTEMS needs to be aware of the
allocated region for stack allocation. RTEMS already allows
an application to configure its own thread stack allocator
and deallocator, so we provided a custom stack allocator in
the adapter layer that reuses the RTEMS code for the heap
memory.

D. Memory Management

One aspect of POSIX support that is absent from RTEMS
is in the area of virtual memory and memory management
services. These services have not been needed by RTEMS
applications in the past. However, all the FACE OSS profiles
require support for shm_open and mmap methods, and
although only required in the General Purpose Profile we
also found it natural to provide shm_unlink and munmap
support. (Our system does not support memory (page) locking
or protection, which are only required in the FACE General
Purpose Profile.)

We implemented support in RTEMS for both shared mem-
ory objects and memory mapped files in a way that allows
applications to use those APIs within RTEMS. The RTEMS
implementation by itself is not overly interesting, because
RTEMS still does not support virtual memory so calls to mmap
are satisfied primarily through memory aliasing or memory

copying. We extended this implementation to call-out to the
Deos adapter to use Deos’ memory management routines to
provide inter-partition support for shared memory objects and
memory mapped files, which does provide for more feature-
rich memory services beyond the basic service in RTEMS
alone.

Subsequently to our effort implementing mmap there has
been interest in the RTEMS community for using and improv-
ing the support it provides. The main driver for this interest
seems to be the ability to use code from other monolithic
kernels (i.e., FreeBSD) for device drivers that use mmap to
access device memory.

E. Adding POSIX APIs

With respect to the POSIX API requirements, the FACE
profiles align with the POSIX Realtime System Profiles de-
fined in POSIX.1-2003 (IEEE Std 1000.13-2003 [5]): Minimal
Realtime System Profile (PSE51), Realtime Controller System
Profile (PSE52), Dedicated Realtime System Profile (PSES3),
and Multi-Purpose Realtime System Profile (PSE54). Table I
summarizes the alignment of the POSIX Realtime profiles with
closely matching FACE profiles; we define the aligned metric
for how closely they match as the number of methods shared
in both profiles divided by the number of methods in the FACE
profile. That is, we ignore the excess of methods that are in
the POSIX profile but were omitted in the FACE profile. Many
of the omitted methods were dropped in FACE profiles due
to those methods being deprecated or considered unsafe or
insecure to use in common programming recommendations.
Note that the FACE OSS profiles were defined following
POSIX.1-2008, while the PSE profiles have not been updated
since they were included in POSIX.1-2003.

The PSE51 profile is not a good match for any
FACE profile. The FACE Safety Base is a subset
of PSE53 except for the addition of posix_devctl,
pthread_mutex_timedlock, and umask; it is also a
close match to PSE52, but with networking APIs. Thus,
an OS with PSES53 support could simply add the three
additional API calls to support the Safety Base Pro-
file. FACE Safety Extended is a subset of PSE54 with
the addition of alarm, kill, pause, posix_devctl,
pthread_mutex_timedlock, and waitpid. The Gen-
eral Purpose Profile is a subset of POSIX.1-2008 (IEEE Std
1003.1 2008 Edition) with the addition of posix_devctl,
thus an OS that is compliant with POSIX.1-2008 would only
need to add posix_devctl to support every FACE OSS
profile. Note however that the FACE profiles are subsets
of POSIX, so, for example, it is possible to have support
for Safety Extended without having full support for PSE54;
indeed, there are 576 APIs in PSE54 that are not in Safety
Extended. An OS may optionally provide additional APIs
beyond the standard, but an application is restricted to calling
only the APIs available in the profile it uses.

The outlier in alignment between POSIX and FACE stan-
dards is the posix_devct1 method, which is a standardized
alternative to ioctl that comes from POSIX 1003.26 [6].

The FACE Technical Standard requires only limited support
for posix_devctl for use on non-blocking sockets. In
a brief review we looked at several POSIX-compliant OSs,
including Linux and FreeBSD, and found that none of them
included support for the posix_devctl method; we did
find some systems that supported the devct1 method, which
is essentially the same as posix_devctl but was in a
draft standard that was never standardized and eventually
deprecated. We also did not identify any required use cases
for this method outside of the FACE Technical Standard. We
added support for posix_devctl method in RTEMS as
a simple wrapper around ioctl, which could be done by
any OS that has a (sane) version of ioctl already in place.
To date however we are not aware of any other open-source
implementations of this standard API method.

F. Networking with IwIP

Lightweight IP (IwIP) is an open-source networking stack
that is commonly used in embedded systems because of its low
spatial resource overhead. The 1wIP stack is also appealing for
safety qualification because it is a relatively small codebase
that can be configured to remove features and thus reduce the
complexity for qualification. Deos uses IwIP, but we found
it needed to be updated and have more features enabled to
satisfy the networking requirements of the FACE Technical
Standard. By default RTEMS does not use IwIP, although
IwIP has been ported to run with RTEMS as an alternative
network stack. Instead, RTEMS has a networking stack that is
derived from FreeBSD sources and headers. For implementing
the networking APIs, we use the existing FreeBSD-based
networking header files and implemented a client in RTEMS
that maps the networking APIs to IwIP’s interfaces. This
client uses a remote procedure call to invoke IwIP on a
server thread that executes in another partition. The client
supports concurrent requests from multiple threads, and the
server supports multiple concurrent client requests.

G. Joint ARINC 653 and POSIX

The FACE Technical Standard requires that, if ARINC 653
is supported, the ARINC 653 services for sampling ports,
queuing ports, and health services must be available in a
POSIX environment. Rather than have two distinct implemen-
tations of these services, the Deos implementation of ARINC
653 services was refactored and modified to allow adaptation
to a particular run-time. A set of plugins are instantiated when
a partition is created depending on whether it is a POSIX
or ARINC 653 partition. These plugins allow the partition
to bind to a common implementation—within a Deos shared
library that is statically loaded at boot-time—for run-time ser-
vices such as thread state management (blocking/unblocking),
synchronization, and scheduling. When a task blocks in an
ARINC 653 service, the task will be moved to a queue of
either ARINC 653 or POSIX threads, depending on how its
partition was initialized. As a result, software runtime support
for POSIX and ARINC 653 applications remains modular
and, importantly from a certification standpoint, the underlying

TABLE I
ALIGNMENT OF FACE TECHNICAL STANDARD 3.0 AND POSIX REALTIME PROFILES. ALIGNMENT PERCENTAGE IS THE RATIO OF SHARED METHODS IN
BOTH PROFILES DIVIDED BY THE NUMBER OF METHODS IN THE FACE PROFILE.

POSIX Profile | Closest FACE Profile | # Shared Methods | Omitted in FACE Profile | Added in FACE Profile | Alignment
PSES1 Security 111 174 53 67.7%
PSES2 Security 140 489 24 85.4%
PSE52 Safety Base 216 413 31 87.5%
PSES3 Security 162 157 2 98.8%
PSES3 Safety Base 244 508 3 98.8%
PSES3 Safety Extended 319 433 17 94.9%
PSE54 Security 160 746 4 97.6%
PSE54 Safety Base 243 665 4 98.4%
PSES54 Safety Extended 330 578 6 98.2%
PSE54 General Purpose 789 119 23 97.2%

Std 1003.1 General Purpose 811 314 1 99.9%

shared library is identical for both APIs which allows reuse
of evidence and history of the binary library artifacts.

H. Development Tools

The development tools to work with Deos are integrated in
the OpenArbor IDE, which is an Eclipse-based development
environment produced by DDC-I, the company that also makes
Deos. The OpenArbor IDE included support for obtaining
a timeline of the execution of ARINC 653 processes. The
timeline is constructed from a log that captures the time when
each context switch occurs and the previous/next executing
threads. We leveraged an existing capability in RTEMS that
allows adding callouts to hooks invoked at specific points in
the thread lifecycle. In particular, we provide an extension
set in the adapter for Deos that provides a callout for the
context switch event to log the timestamp and two threads—
executing and heir in RTEMS parlance. The presence of this
hook made thread timeline visualization surprisingly simpler
than we initially anticipated.

Another developer aid available in the OpenArbor IDE is
a mechanism to display the set of ARINC 653 processes
in a partition along with information about each process’s
attributes such as its id, priority, allocated stack location and
size, and stack space usage. This information is provided
by an introspection monitor executing in a super-privileged
partition that has permission to examine memory in every
partition. RTEMS thread-specific support was developed for
the introspection monitor. The main challenge to implement
this support was that the interface to the partition was restricted
to 32-bit load word operations. Access to fields in structures
required using offsetof and addition, and pointers had
to be cast and dereferenced explicitly. The id, priority, and
stack space allocated were obtained directly by finding and
parsing the internal RTEMS data structure representing a
thread control block. Information about the stack space usage
however is not tracked by default in RTEMS. To get this
information, we enabled a stack checker capability, which is
optional in RTEMS, that populates the stack region with a
fixed value (i.e., a repeated canary). We then get an estimate
of the stack usage by walking the stack and finding the first
canary value from the start.

I. Cross-OS Configuration

Deos was designed to support statically configured safety-
critical systems amenable to safety certification and quali-
fication processes. As such, Deos has to be configured a
priori with the number of partitions, their characteristics, and
any I/O or IPC connections they have. The execution of
these partitions is manually scheduled by assigning individual
partitions to execution time windows. Partitions may yield
their time window early with their remaining time donated
to a pool of slack time; a set of partitions may be associated
with slack time. In multiprocessor configurations, partitions
can be assigned to specific cores during a time window or left
idle. This manual assignment of partitions to time windows
allows for detailed offline analysis of the execution including
worst-case execution time (WCET) analysis.

Many of Deos’s configuration parameters apply to a parti-
tion independent of whether the partition contains an ARINC
653 or RTEMS application. However, we added awareness of
some of these parameters in the adapter layer of RTEMS to
support better integration with Deos, including:

o ARINC 653 queuing ports;

¢ ARINC 653 shared memory regions;
o Permission to set the global time;

« Free memory space available;

o Video buffer row and height position.

The first two of these parameters are provided to RTEMS at
compile-time as they are statically configured parameters in
Deos. The configuration setting for permission to set the global
time is obtained through a series of syscalls to Deos that probe
for descending access permission. Once the access permission
is determined it is used to control whether and how RTEMS
should synchronize its notion of time with Deos as described
in Section III-B2. The remaining configuration parameters are
parsed from a boot-time string that is passed from Deos to the
partition as a list of key-value pairs. The amount of free space
available is used to set up the dynamic memory allocators
for the C Program Heap and the RTEMS Workspace; the
latter is the area from which RTEMS allocates internal OS
objects. The video buffer is a virtual 80x25 console that can be
shared among multiple partitions. Architectural-specific boot-

time parameters are passed through the same string, e.g., the
x86 adapter has boot parameters to allow using COM1 as a
console port and to choose between a soft-reset or halt when
the application exits.

IV. EVALUATION

We evaluate the extent to which we have been successful
along two primary axes: conformance to the FACE Technical
Standard, and programmer effort measured with source lines
of code (SLOC).

A. FACE Conformance

The FACE Consortium maintains a conformance process
that ensures that Units of Conformance (UoCs) do meet
the FACE requirements as claimed. Once a UoC is deemed
conformant, it may be listed in the FACE Registry [7].
Conformance is a Boolean condition: there is no concept of
partial conformance.

The FACE Conformance process requires examination of
more than code. A FACE Verification Authority (VA) is
presented with a Software Verification Package that provides
evidence such that the VA can independently verify that
FACE requirements for the software have been met. The
Software Verification Package includes documentation that
addresses all the potentially applicable FACE requirements.
Some requirements are not applicable, e.g., an Operating
System Segment UoC may optionally provide a Java run-
time, but the Deos/RTEMS environment does not, and so there
must be documentation for the VA to know that this optional
requirement is not being addressed. For functional require-
ments, there must be documented test cases that demonstrate
the requirement is being met, which the VA will check against
a Software Test Report for passing test results.

A (proprietary) mapping document was developed that
provides the location of specific evidence in Deos and RTEMS
artifacts along with the relevant test cases in the Software
Test Report for the VA to check that Deos/RTEMS satisfies
the FACE Technical Standard requirements. This document is
specific to a version of the standard and the product containing
the evidence. For many cases of the requirements, we could
rely on the existing standards that FACE includes to point
where in Deos or RTEMS the evidence already existed.

The Deos/RTEMS product was certified FACE Conformant
for the Safety Base OS Profile to the FACE Technical Stan-
dard 3.0 in September 2019. This certification also covers
the Security Profile, because it is a subset of Safety Base.
Conformance was achieved for the PowerPC architecture;
other architectures are planned to go through a streamlined
process for certifying conformance of variants that rely on
already-certified artifacts. At the time it achieved conformance,
Deos/RTEMS was the 10th FACE Operating System Segment
to be certified; DornerWorks Virtuosity [8] was the 9th, and
the first 8 were various products derived from the Integrity
and VxWorks 653 commercial RTOSs.

TABLE 11
SLOC WRITTEN FOR RTEMS TO SUPPORT DEOS/RTEMS

Category SLOC | Work-Months (est.) | Cost (est. USD)
Kernel (Upstreamed) 1048 2.52 $28,381
Arch. Ind. Adapter 3037 7.59 $85,459
1386 (x86) Adapter 141 0.31 $3,454
PowerPC Adapter 99 0.21 $2,383
ARM Adapter 5 0.01 $104
Tests (Upstreamed) 647 1.52 $17,104
Adapter Tests 3813 9.78 $110,147
Total Upstreamed 1695 4.04 $45,485
Total Adapter 7095 17.9 $201,547
[Total [8790] 21.94 [$247,032

B. Effort: Source Lines of Code (SLOC)

We used sloccount (v. 2.26) [9] to estimate the program-
mer effort and cost for the software written for Deos/RTEMS.
This estimate focuses only on the software for RTEMS,
because the modifications in Deos were not required to achieve
FACE Conformance but rather were made as improvements
to update software that was complementary to the FACE
Technical Standard, e.g., the IwIP stack.

Table II shows a breakdown of the SLOC for the RTEMS
code that was written to support FACE Conformance of
Deos/RTEMS. We divide the code in three sets of categories:
kernel code, adapter code, and tests. Furthermore, the adapter
is partitioned into the architecture-independent code and the
code that has been written to support specific instruction set
architectures (ISAs). To date, we have completed support for
the ARM, 1386 (x86), and PowerPC ISAs, which account for
the bulk of the avionics market. The kernel code and their
tests have all been upstreamed, i.e., merged with the RTEMS
Project’s public Git repository. The adapter code and tests
remain proprietary and need to be licensed (with Deos) to
be useful.

The adapter code is largely independent of the target
architecture. The PowerPC adapter consists mostly of some
interrupt handling code, while the most complex adapter is
the 1386 one, which has extra support needed to use a COM
port as a serial console. In the ARM case, we only have
a few SLOC to set up the compiler and linker to use the
architecture-independent sources; the effort to add ARM sup-
port was minimal. The bulk of the code is in the architecture-
independent adapter and its tests that together constitute 6,850
SLOC, which is about 78% of the total SLOC.

V. DISCUSSION

The primary motivation for the Deos/RTEMS effort was
driven by the commercial factors involved in satisfying the
joint ARINC 653 and POSIX requirements imposed by the
FACE Technical Standard. Historically, ARINC 653 systems
did not need POSIX, and therefore Deos had minimal support
for POSIX APIs. RTEMS has not been oriented toward avion-
ics applications and therefore neither had ARINC 653 support
nor offered competition to Deos’ market. Thus, the decision

to combine Deos with RTEMS was made as a synergistic
opportunity for both products.

As both RTEMS and Deos are mature OSs, one of our
key goals was to minimize changes to either. RTEMS had
initial support for paravirtualization which allowed it to avoid
privileged instructions such as interrupt disable/enable. This
support was necessary to host RTEMS in an unprivileged
address space container, but it was not sufficient to make
RTEMS a fully integrated guest. Much of our effort focused on
better integration via hypercalls/syscalls in the adapter layer to
enable use of inter-process communication (IPC) mechanisms
such as sampling and queuing ports, Deos IwIP network stack,
and shared memory. This integration required matching the
ARINC 653 view of IPC with that of the more flexible POSIX-
based RTEMS environment.

Although POSIX support could have been implemented
within Deos, it was viewed as beneficial to rely on the mature
POSIX implementation available in RTEMS, which has flight
heritage in space systems, and focus effort on certification
rather than on a clean-slate POSIX implementation plus certifi-
cation. In the end, this decision is validated by the achievement
of FACE Conformance with relatively minor improvements
made in Deos and reasonable effort (under 10000 SLOC) in
RTEMS.

In an orthogonal yet broader view, the changes that were
made to RTEMS and published in the open should facilitate
other, similar efforts to use RTEMS in partitioned kernels
and hypervisors as a guest for POSIX-based applications.
Throughout the process of creating Deos/RTEMS and working
toward FACE conformance we have made every effort to
return code to the public open-source RTEMS Project that is
generally useful and does not require a license for Deos. The
changes made in RTEMS have been maintained as patches
that apply on top of the public code base. We have attempted
to merge back changes made in common code, i.e., outside
of the adapter needed to interface with Deos. As shown in
Table II, this code amounts to 1695 SLOC or approximately
19% of the cost/effort of the programming portion of the effort
to achieve FACE conformance with Deos/RTEMS. Much
of this code advances the available support of open-source
software to achieve POSIX compliance. Thus, our work with
Deos/RTEMS can play a wider role in impacting industry.

As a side-effect of seeking FACE Conformance, we devel-
oped a new, public RTEMS document, the RTEMS POSIX
1003.1 Compliance Guide [10]. This guide documents which
standards-based APIs are supported by RTEMS in aggregate
and broken down to specific standards such as POSIX.2003,
POSIX.2008, C99, and C11. We also included the POSIX
profiles defined by standards such as the FACE Technical
Standard and the Software Communications Architecture [3].
We originally generated the bulk of this guide from an API
tracking spreadsheet with a shell script that we published to the
open-source RTEMS community. Subsequently, a member of
that community rewrote our script to use Python and improved
it. The data, program, and resultant guide are open-source and
publicly adopted by the RTEMS Project.

Time management was a particularly challenging area be-
cause ARINC 653 environments have a static execution order
of partitions with no need for time to advance while a
partition is executing. ARINC 653 also has no notion of
time-of-day (TOD). We discussed and prototyped multiple
approaches before settling on the current approach for man-
aging relative time inside each RTEMS partition, which is
described in Section III-B2. Our penultimate approach put
all the time management in the time budget exceeded excep-
tion handler, but we were concerned with the implications
of TOD synchronization—particularly, calling clock_set
from within an exception handler. After we split the time
management into an exception handling component and a
server (essentially equivalent to top- and bottom-half inter-
rupt handling), our final approach had the added benefits of
supporting nanosecond granularity timestamps and accurate
CPU utilization statistics within RTEMS. Support for TOD
itself required additions to Deos that required multiple design
iterations to avoid any need for asynchronous notifications of
time changes. Our decision to detect time changes and process
clock ticks in RTEMS only at the beginning of a partition’s
execution window is similar to how input is expected to either
be present or not at the beginning of a window.

Ultimately, the approach we have taken for the RTEMS
partitions is reminiscent of logical execution time (LET) [11].
The start of each window accumulates the progression of time
and reads input from IPC channels. The output of the partition
is delayed (by idle thread execution) until the end of the
execution window. Although we were not initially inspired
by the LET paradigm, we found the eventual alignment of
interest.

VI. RELATED WORK

Bloom et al. [4] describe an effort to align the Deos and
RTEMS OSs to the FACE Technical Standard 2.1 Safety
Base Profile using a paravirtualized RTEMS executing as a
partition to satisfy the POSIX services needed by FACE. The
authors describe an approach for time and clock management,
and the implementation of several methods from POSIX that
were included in the Safety Base Profile but missing from
RTEMS. However, this prior work did not implement all
of the required POSIX APIs needed for the FACE Safety
Base Profile, did not complete the integration of RTEMS
with Deos, and did not describe any metrics for success or
evaluation. Our work goes beyond this prior work with a
different approach for time management, implementation of all
POSIX methods needed by FACE Safety Base, a functionally
complete implementation and integration with Deos including
seamless IPC, kernel configuration, and developer tool support,
and evaluation of our effort in terms of SLOC and certification
of FACE Conformance (for Edition 3.0).

VanderLeest [8] describes preliminary work with Virtuosity
as an effort to extend the Xen hypervisor with support for
ARINC 653 and create a system aligned with the FACE
Technical Standard 2.1. The author uses Linux as the system
domain (dom0) and also as the guest to support POSIX-based

applications. Much of their motivation and approach is similar
to ours, however the published work is not complete and they
also mention concerns with using Linux due to its large code
base. They do describe a rough cost estimate for the work
they completed, which included ““a few hundred” SLOC to add
ARINC 653 scheduling in Xen and roughly 29,000 SLOC for
IPC. Their goal is to provide a complete open-source software
stack, and there are no commonly used and maintained open-
source ARINC 653 software projects, so the implementation
cost is expectedly higher than our approach relying on an
existing, commercial ARINC 653 RTOS.

Zuepke et al. [12] describe AUTOBEST as a system that can
support both ARINC 653 and the AUTOSAR standard for au-
tomotive software. Thus, AUTOBEST represents another point
in the design space that offers support for multiple standards
concurrently. The rationale given by the authors for combining
these two standards is that the strong temporal partitioning
of ARINC 653 is expected to yield benefits in automotive
systems that centralize and combine multiple applications that
previously executed on dedicated electronic control units. The
approach taken by the authors involves customizing a common
microkernel core for thread management and accommodat-
ing for differences in the standards most notably by using
userspace libraries to implement synchronization. They discuss
their decision to use a microkernel instead of a hypervisor
with the rationale primarily based on the need in automotive
standards (OSEK, AUTOSAR) to deliver prioritized interrupts.
Our approach is different in several ways including that we
take a virtualization-based approach and we are not consider-
ing automotive standards.

Crespo et al. [13] describe the XtratuM hypervisor, which
implements a separation kernel for integrated modular avionics
with an interface that is similar to ARINC 653. This interface
facilitates integration of ARINC 653-compliant guests. Xtra-
tuM has also been used to run RTEMS as a guest. However, to
the best of our knowledge XtratuM has not been used toward
achieving FACE Conformance.

Rufino et al. [14] describe the AIR Partition Management
microkernel that supports ARINC 653 by translating API
method calls into an upcall to a POSIX or RTOS native API.
Our approach differs in that we aim at FACE Conformance
and we rely on IPC mechanisms instead of upcalls.

VII. CONCLUSION

In this paper, we have described the design and imple-
mentation of Deos/RTEMS, which is an OS environment that
has been certified FACE Conformant aligned with the FACE
Technical Standard 3.0 for the PowerPC architecture. The
primary contribution of this work is to show that a relatively
low-cost approach can satisfy a standard that includes multiple
standards as subsets. We have also made contributions to
the open-source ecosystem of the RTEMS Project that could
filter to other industrial settings and platforms aside from the
exemplar Deos/RTEMS.

Future work may re-certify with some software updates,
certify other architectures (e.g., ARM and x86), and certify

for past and forthcoming editions of the FACE Technical
Standard. Additionally, the approach to use a hypervisor in
combination with paravirtualized guests could benefit from
further enhancements in real-time analysis and related tech-
niques to allay concerns that the additional layer makes WCET
and schedulability analysis too difficult. Despite academic
efforts [15]-[17], commercial and open-source hypervisors
often neglect real-time latency concerns in the hypervisor, and
real-time embedded systems have a strong need for device and
I/O virtualization that add further complications.

REFERENCES
[1] “Technical Standard for FACE (Future Airborne Capability
Environment), Edition 3.0, Nov. 2017. [Online]. Available:

https://publications.opengroup.org/c17c

[2] “ARINC Specification 653 P1-4, Avionics Application Software Stan-
dard Interface, Part 1: Required Services,” 2015.

[3] “Software Communications Architecture Specification,” Joint Tactical
Networking Center (JTNC), San Diego, CA, Tech. Rep. Version: 4.1,
Aug. 2015.

[4] G. Bloom, J. Sherrill, and G. Gilliland, “Aligning Deos and RTEMS
with the FACE Safety Base Operating System Profile,” SIGBED
Rev., vol. 15, no. 1, pp. 15-21, Mar. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3199610.3199612

[5] “IEEE Standard for Information Technology- Standardized Application
Environment Profile (AEP)-POSIX Realtime and Embedded Application
Support,” IEEE Std 1003.13-2003 (Revision of IEEE Std 1003.13-1998),
pp. i-164, 2004.

[6] “IEEE Standard for Information Technology - Portable Operating
System Interface (POSIX(R)) - Part 26: Device Control Application
Program Interface (API) [C Language],” IEEE Std 1003.26-2003, pp.
1-46, Sep. 2004.

[71 “FACE UOC Registry,” Jan.
https://www.facesoftware.org/registry

[8] S. H. VanderLeest, “Designing a future airborne capability environment
(FACE) hypervisor for safety and security,” in 2017 IEEE/AIAA 36th
Digital Avionics Systems Conference (DASC), Sep. 2017, pp. 1-9, iSSN:
2155-7209.

[9] D. A. Wheeler, “SLOCCount,”

https://dwheeler.com/sloccount/

“RTEMS POSIX 1003.1 Compliance Guide (5.b12e82d).

RTEMS POSIX 1003.1 Compliance Guide 5.b12e82d (19th

December 2019) documentation,” Dec. 2019. [Online]. Available:

https://docs.rtems.org/branches/master/posix-compliance/index.html

C. M. Kirsch and A. Sokolova, “The Logical Execution Time Paradigm,”

in Advances in Real-Time Systems, S. Chakraborty and J. Eberspcher,

Eds. Berlin, Heidelberg: Springer, 2012, pp. 103-120.

A. Zuepke, M. Bommert, and D. Lohmann, “AUTOBEST: a united

AUTOSAR-OS and ARINC 653 kernel,” in 21st IEEE Real-Time and

Embedded Technology and Applications Symposium, Apr. 2015, pp.

133-144, iSSN: 1545-3421.

A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and J. Metge, “Xtratum

an open source hypervisor for tsp embedded systems in aerospace,” Data

Systems In Aerospace DASIA, Istanbul, Turkey, May 2009.

[14] J. Rufino, J. Craveiro, T. Schoofs, C. Tatibana, and J. Windsor, “AIR

Technology: a step towards ARINC 653 in space,” in Data Systems In

Aerospace DASIA, Istanbul, Turkey, 2009.

Z. Jiang, N. C. Audsley, and P. Dong, “BlueVisor: A Scalable Real-

Time Hardware Hypervisor for Many-Core Embedded Systems,” in

2018 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), Apr. 2018, pp. 75-84.

S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtual-

ization on TrustZone-Enabled Microcontrollers? Voila!” in 2019 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), Apr. 2019, pp. 293-304, iSSN: 1545-3421.

S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time

hypervisor scheduling in Xen,” in 2011 Proceedings of the Ninth ACM

International Conference on Embedded Software (EMSOFT), Oct. 2011,

pp. 39-48.

2020. [Online]. Available:

Jan. 2020. [Online]. Available:

[10]

[11]

[12]

[13]

[15]

[16]

(17]

