
Harmonizing ARINC 653 and Realtime POSIX for
Conformance to the FACE Technical Standard

Gedare Bloom
University of Colorado Colorado Springs

Colorado Spring, CO, USA

gbloom@uccs.edu

Joel Sherrill
OAR Corporation

Huntsville, AL, USA

joel.sherrill@oarcorp.com

Abstract—The avionics industry is converging toward the
next generation of software standards produced by The Open
Group via the Future Airborne Capability Environment (FACE)
consortium and related FACE Technical Standard. The standard
combines ARINC 653, a previous avionics standard, with subsets
of POSIX 1003.1 that are closely aligned with the POSIX realtime
profiles PSE52, PSE53, and PSE54. In this paper, we describe our
approach to design, implement, and certify a system with FACE
Conformance to the FACE Operating System Segment Safety
Base profile. Our approach integrates the ARINC 653-compliant
Deos with RTEMS, an open-source real-time operating system
(RTOS). Our goal in combining Deos/RTEMS was to achieve cer-
tification of FACE Conformance in a low-cost manner by relying
on existing, mature software that already provides the majority
of the functionality required by the FACE Technical Standard.
We reached our goal with under 10,000 source lines of code
(SLOC) written to integrate RTEMS into Deos and implement
any additional POSIX application programming interfaces (APIs)
and tests needed for certification.

Index Terms—Future Airborne Capability Environment,
FACE, ARINC 653, POSIX, RTOS, RTEMS, Deos

I. INTRODUCTION

The Future Airborne Capability Environment (FACE) Tech-

nical Standard—Edition 3.0 [1] as of this writing—is a

standard for avionics platforms that is produced by The

Open Group using Modular Open Systems Approach (MOSA)

principles. The standard defines system software support and

application programming interfaces (APIs) needed for portable

avionics software in a component-based architecture consistent

with an object-oriented real-time computing paradigm.

Four OS Segment (OSS) profiles are defined by the FACE

Technical Standard: Security, Safety Base, Safety Extended,

and General Purpose. These profiles are a superset of ARINC

653 Part 1 (revisions 3 or 4) [2] and subsets of POSIX

that address the varying application-specific needs of avionics

software. Security is the most restrictive environment having

the fewest APIs available for applications, which may have

little to do with cybersecurity as a general concept other than

simplicity lending itself to security. An OSS certified for all the

capabilities of a particular profile is said to have conformance

for that profile. The General Purpose Profile is a POSIX-based

execution environment that optionally may include ARINC

This work is partially supported by NSF OAC-2001789. The authors also
thank DDC-I, Inc. for their role in this effort.

653, while the other three profiles require a mix of ARINC

653 and POSIX support from the OS.

In this paper, we describe our approach and experience de-

veloping an OS aiming at FACE conformance for the Security,

Safety Base, and Safety Extended profiles. One challenging

aspect for FACE conformance is that prior standards have

not required simultaneous POSIX and ARINC 653 support.

Thus, prior real-time operating systems (RTOSs) have focused

on one or the other. We identified that the requirements of

the FACE Technical Standard logically define two execution

environments—one supporting POSIX and one for ARINC

653—and that nothing in the standard restricts using two

OSs to satisfy the requirements. As a result, we chose a

path of least resistance that combined Deos, an RTOS with

ARINC 653 support, with RTEMS, an open-source RTOS

with POSIX support. At a high-level our approach mimics

paravirtualization with Deos as the host and RTEMS as a

guest.

Despite the separation of ARINC 653 and POSIX func-

tionality between Deos and RTEMS, a POSIX thread can

use a subset of the ARINC 653 APIs. In addition, multiple

partitions within Deos can contain RTEMS instances, and

therefore can execute multiple POSIX (RTEMS) applications

concurrently, which is logically equivalent to execution of

multiple statically-created POSIX processes.

II. BACKGROUND

A. Future Airborne Capability Environment (FACE)

The FACE Consortium was founded by The Open Group

in 2010 to define an open architecture for avionics. Since its

founding, three major editions of the FACE Technical Standard

and a wide variety of technical and business supporting

documents have been released. Edition 2.1 of the standard was

released in May 2014, and Edition 3.0 in November 2017. An

Edition 3.1 corrigenda is expected in 2020 that incorporates

corrections for identified issues.

As depicted in Fig. 1, the FACE Reference Architecture was

introduced in Edition 1.0 with five core segments that remain

to this day: Operating System Segment, Portable Components

Segment, Platform-Specific Services Segment, I/O Services

Segment, and Transport Services Segment. The basic func-

tionality of each segment is the same over time although

the interfaces have undergone significant changes. Editions

Fig. 1. FACE Architecture Diagram

1.x and 2.x use procedural-style interfaces, but Edition 3.x

uses an object-oriented approach for interfaces defined by the

FACE Consortium. Edition 2.0 adopted Interface Definition

Language for describing the interfaces in addition to intro-

ducing a new interface: FACE Health Monitoring and Fault

Management. Edition 3.0 introduced the Configuration, Life

Cycle, and Component State Persistent interfaces.

The Operating System Segment incorporates existing OS,

programming language, and graphics standards based on their

prior or anticipated use in safety-critical avionics system.

Relatively few changes have been made to the Operating Sys-

tem Segment across editions of the FACE Technical Standard

as a result of relying on established standards. The POSIX

profiles for Editions 1.x and 2.x are identical. Edition 3.0

added the POSIX clock_nanosleep method and allowed

for optional replacement of the ARINC 653P1-3 by ARINC

653P1-4 (revision 3 by 4) [2]; the latter was released in

August 2015. The upcoming Edition 3.1 includes changes

to the POSIX profiles that allow POSIX multi-process APIs

to be optional in the Safety Extended and General Purpose

Profiles and increase alignment with the profiles defined by the

Software Communications Architecture [3] standard, which is

used primarily for software-defined radios.

B. Deos

Deos is a safety-critical real-time operating system with

time- and space-partitioning capabilities that is certifiable to

the most stringent DO-178 Design Assurance Level (DAL)

A. Out-of-the-box Deos already contains all supported APIs

needed from ARINC 653 for achieving FACE conformance.

Deos supports the x86, PowerPC, MIPS, and ARM architec-

tures.

C. RTEMS

RTEMS is an open-source hard real-time operating system

that was first produced in the 1980s in conjunction with the US

Army. RTEMS has one of the most POSIX-rich environments

among open-source RTOSs, and it is therefore an appealing

choice for use in applications aligned with the FACE Technical

Standard or other POSIX-based standards. RTEMS supports

many architectures including those supported by Deos, and has

robust support for multicore scheduling and synchronization.

RTEMS is a single address space operating system (SASOS)

with a flat memory model that historically has been statically

linked with application code in a single process, multi-threaded

environment with no spatial isolation.

III. METHODOLOGY

In this section we describe the approach we took to align

Deos/RTEMS with the FACE Technical Standard. The main

motivation for our approach is that ARINC 653 and POSIX

services need not be provided by the same OS environment.

Thus, we use paravirtualization techniques to support exe-

cuting Deos and RTEMS in tandem to provide both sets of

services. Applications that use ARINC 653 or POSIX can run

under Deos or RTEMS, respectively.

A challenge for our approach is that Deos is not designed to

act as a hypervisor and so it does not have an existing set of hy-

percalls. The design of Deos as a time- and space-partitioning

RTOS however does permit running RTEMS inside a partition,

which yields a similar result as if RTEMS were in a virtual

machine environment provided by a hypervisor. We therefore

implemented a thin adapter layer that uses traditional Deos

syscalls like a hypercall interface and provides RTEMS with

access to request supervisor services.

A. RTEMS Paravirtualization

Paravirtualization of RTEMS has been an ongoing effort

spanning nearly a decade and several development projects

related to executing RTEMS efficiently as a guest within a host

(hypervisor or partitioning OS) environment [4]. This effort

produced an initial framework for defining a paravirtualized

RTEMS guest. We refined this framework and generalized it

to be host-agnostic. The general framework has been adopted

within RTEMS and is used by others to run RTEMS in a

virtualized environment.

Our approach for paravirtualization logically follows

RTEMS’ layered software architecture. We use a compile-

time option (RTEMS PARAVIRT) to control a kernel build

for paravirtualization. This option avoids the use of privileged

and sensitive instructions/registers in the architecture-specific

portion of RTEMS. Often, such usage is replaced with function

calls that need to be implemented to make the appropriate

call to the host OS (i.e., hypercall/syscall). These functions

are defined within an RTEMS board support package or

adapter that provides support to run RTEMS within a virtual

environment as opposed to a physical board.

We provided initial support to paravirtualize RTEMS for

the x86, ARM, and PowerPC architectures. Others have par-

avirtualized the SPARC v7/8 architecture. Our work targeted

Deos, while subsequent work has resulted in support for the

XtratuM and Xen hypervisors.

B. Time Management

We faced two challenges related to time. First is that when

RTEMS is scheduled as a guest it does not understand the

passage of time outside its own execution, and therefore the

system clock is not accurate. Second is the potential need to

synchronize the time-of-day (date/time) in an RTEMS partition

with time changes made in a different partition. We discuss

both of these challenges and our solutions in the following.

1) System Clock: The primary difficulty for tracking time

is that the time that elapses while the RTEMS partition is not

executing does not get relayed to the partition. Furthermore,

the partition does not know when it is context switched.

Thus, the start and end of a partition’s scheduling window

is transparent to the executing thread. We adopt a simple

approach to identify the start of the window by causing

Deos to deliver the RTEMS partition a time budget exceeded

exception at the start of each window. By never yielding (self-

suspending) back to Deos from RTEMS we ensure that this

exception will always be delivered like a software interrupt

aligned with the start of each new scheduling window, i.e.,

each activation of the RTEMS partition. We register a modified

clock tick interrupt handler to handle the exception; thus, each

scheduling window denotes a set of clock ticks.

The clock tick handler—driven by the time budget

exception—implements time management in a relatively

straightforward manner. We rely on Deos’ uptime (time offset

since boot) as a free-running clock source to keep track of

the passage of time. The exception handler fetches the uptime

with a syscall, calculates the time that elapsed since the start of

the previous scheduling window. From this time interval and

the configured system clock frequency, the handler calculates

how many clock ticks have elapsed. Any remainder of time

for a partial tick from the preceding window gets added to the

current interval, and any partial tick left at the end will get

passed to the subsequent window. The handler then invokes

the rtems_clock_tick method the same number of times

as full clock ticks that were calculated. This method is the

interface in RTEMS that clock drivers use to advance the

tick-based system clock. The number of calls made can vary

depending on the length of time between the start of partition

windows.

2) Time-of-Day Synchronization: Another time-related

challenge is communicating time changes between guest and

host environments. The FACE Technical Standard requires that

the ability to set the date/time is configurable for partitions,

and that if a partition sets the time then the new time gets set

for all partitions. Deos already supports the configuration of

a partition’s permission to set the global time, thus satisfying

the former requirement. We satisfied the latter requirement

in both directions by augmenting RTEMS to allow for time

updates from an external source, and by adding a server thread

in RTEMS that can synchronize the RTEMS partition’s time

with Deos’ time.

The modification to synchronize time with an external

source is a general improvement to RTEMS that we have

merged with the upstream public repository. Our approach

essentially introduces an event registration mechanism for reg-

istering a callback function in case a time change (set) happens

inside RTEMS. We use this mechanism to propagate time

changes from an RTEMS partition back to Deos; however, the

callback could also be useful for example to update a hardware

(real-time) clock when the software time changes. One might

use such an approach in combination with a network time

synchronization protocol.

The server thread that synchronizes RTEMS time to Deos

is an optional feature that must be enabled by the ap-

plication configuration. When enabled, the system startup

invokes deos_tod_synchronization_initialize,

which creates the server thread and obtains the current Deos

uptime and time bias. This bias is the difference between

uptime and the current time-of-day. The clock tick handler—

running at the start of each execution window—checks if the

bias value has changed since its previous reading and, if so,

unblocks the server thread to synchronize with the updated

time-of-day. The server thread calculates the current time from

the Deos uptime plus bias and calls clock_settime to

update the local partition’s notion of the time-of-day.

C. Thread Stack Allocation

RTEMS normally allocates thread stack memory from a

memory pool which is located in memory between the end

of the loaded binary image and the end of physical memory.

Under typical use, this allocation is non-problematic because

RTEMS operates without a memory management or protection

unit (MMU/MPU); thus, the memory “hole” between the end

of the binary image and physical memory is always available

for the OS to utilize. Deos provides spatial isolation with

MMU support to provide each partition with protected regions

for code, read-only data, writeable data, and thread stacks.

Deos initializes the stack memory region in the MMU to en-

sure stack pointer accesses remain within the region allocated

for thread stacks. Thus, RTEMS needs to be aware of the

allocated region for stack allocation. RTEMS already allows

an application to configure its own thread stack allocator

and deallocator, so we provided a custom stack allocator in

the adapter layer that reuses the RTEMS code for the heap

memory.

D. Memory Management

One aspect of POSIX support that is absent from RTEMS

is in the area of virtual memory and memory management

services. These services have not been needed by RTEMS

applications in the past. However, all the FACE OSS profiles

require support for shm_open and mmap methods, and

although only required in the General Purpose Profile we

also found it natural to provide shm_unlink and munmap

support. (Our system does not support memory (page) locking

or protection, which are only required in the FACE General

Purpose Profile.)

We implemented support in RTEMS for both shared mem-

ory objects and memory mapped files in a way that allows

applications to use those APIs within RTEMS. The RTEMS

implementation by itself is not overly interesting, because

RTEMS still does not support virtual memory so calls to mmap

are satisfied primarily through memory aliasing or memory

copying. We extended this implementation to call-out to the

Deos adapter to use Deos’ memory management routines to

provide inter-partition support for shared memory objects and

memory mapped files, which does provide for more feature-

rich memory services beyond the basic service in RTEMS

alone.

Subsequently to our effort implementing mmap there has

been interest in the RTEMS community for using and improv-

ing the support it provides. The main driver for this interest

seems to be the ability to use code from other monolithic

kernels (i.e., FreeBSD) for device drivers that use mmap to

access device memory.

E. Adding POSIX APIs

With respect to the POSIX API requirements, the FACE

profiles align with the POSIX Realtime System Profiles de-

fined in POSIX.1-2003 (IEEE Std 1000.13-2003 [5]): Minimal

Realtime System Profile (PSE51), Realtime Controller System

Profile (PSE52), Dedicated Realtime System Profile (PSE53),

and Multi-Purpose Realtime System Profile (PSE54). Table I

summarizes the alignment of the POSIX Realtime profiles with

closely matching FACE profiles; we define the aligned metric

for how closely they match as the number of methods shared

in both profiles divided by the number of methods in the FACE

profile. That is, we ignore the excess of methods that are in

the POSIX profile but were omitted in the FACE profile. Many

of the omitted methods were dropped in FACE profiles due

to those methods being deprecated or considered unsafe or

insecure to use in common programming recommendations.

Note that the FACE OSS profiles were defined following

POSIX.1-2008, while the PSE profiles have not been updated

since they were included in POSIX.1-2003.

The PSE51 profile is not a good match for any

FACE profile. The FACE Safety Base is a subset

of PSE53 except for the addition of posix_devctl,

pthread_mutex_timedlock, and umask; it is also a

close match to PSE52, but with networking APIs. Thus,

an OS with PSE53 support could simply add the three

additional API calls to support the Safety Base Pro-

file. FACE Safety Extended is a subset of PSE54 with

the addition of alarm, kill, pause, posix_devctl,

pthread_mutex_timedlock, and waitpid. The Gen-

eral Purpose Profile is a subset of POSIX.1-2008 (IEEE Std

1003.1 2008 Edition) with the addition of posix_devctl,

thus an OS that is compliant with POSIX.1-2008 would only

need to add posix_devctl to support every FACE OSS

profile. Note however that the FACE profiles are subsets

of POSIX, so, for example, it is possible to have support

for Safety Extended without having full support for PSE54;

indeed, there are 576 APIs in PSE54 that are not in Safety

Extended. An OS may optionally provide additional APIs

beyond the standard, but an application is restricted to calling

only the APIs available in the profile it uses.

The outlier in alignment between POSIX and FACE stan-

dards is the posix_devctl method, which is a standardized

alternative to ioctl that comes from POSIX 1003.26 [6].

The FACE Technical Standard requires only limited support

for posix_devctl for use on non-blocking sockets. In

a brief review we looked at several POSIX-compliant OSs,

including Linux and FreeBSD, and found that none of them

included support for the posix_devctl method; we did

find some systems that supported the devctl method, which

is essentially the same as posix_devctl but was in a

draft standard that was never standardized and eventually

deprecated. We also did not identify any required use cases

for this method outside of the FACE Technical Standard. We

added support for posix_devctl method in RTEMS as

a simple wrapper around ioctl, which could be done by

any OS that has a (sane) version of ioctl already in place.

To date however we are not aware of any other open-source

implementations of this standard API method.

F. Networking with lwIP

Lightweight IP (lwIP) is an open-source networking stack

that is commonly used in embedded systems because of its low

spatial resource overhead. The lwIP stack is also appealing for

safety qualification because it is a relatively small codebase

that can be configured to remove features and thus reduce the

complexity for qualification. Deos uses lwIP, but we found

it needed to be updated and have more features enabled to

satisfy the networking requirements of the FACE Technical

Standard. By default RTEMS does not use lwIP, although

lwIP has been ported to run with RTEMS as an alternative

network stack. Instead, RTEMS has a networking stack that is

derived from FreeBSD sources and headers. For implementing

the networking APIs, we use the existing FreeBSD-based

networking header files and implemented a client in RTEMS

that maps the networking APIs to lwIP’s interfaces. This

client uses a remote procedure call to invoke lwIP on a

server thread that executes in another partition. The client

supports concurrent requests from multiple threads, and the

server supports multiple concurrent client requests.

G. Joint ARINC 653 and POSIX

The FACE Technical Standard requires that, if ARINC 653

is supported, the ARINC 653 services for sampling ports,

queuing ports, and health services must be available in a

POSIX environment. Rather than have two distinct implemen-

tations of these services, the Deos implementation of ARINC

653 services was refactored and modified to allow adaptation

to a particular run-time. A set of plugins are instantiated when

a partition is created depending on whether it is a POSIX

or ARINC 653 partition. These plugins allow the partition

to bind to a common implementation—within a Deos shared

library that is statically loaded at boot-time—for run-time ser-

vices such as thread state management (blocking/unblocking),

synchronization, and scheduling. When a task blocks in an

ARINC 653 service, the task will be moved to a queue of

either ARINC 653 or POSIX threads, depending on how its

partition was initialized. As a result, software runtime support

for POSIX and ARINC 653 applications remains modular

and, importantly from a certification standpoint, the underlying

TABLE I
ALIGNMENT OF FACE TECHNICAL STANDARD 3.0 AND POSIX REALTIME PROFILES. ALIGNMENT PERCENTAGE IS THE RATIO OF SHARED METHODS IN

BOTH PROFILES DIVIDED BY THE NUMBER OF METHODS IN THE FACE PROFILE.

POSIX Profile Closest FACE Profile # Shared Methods Omitted in FACE Profile Added in FACE Profile Alignment
PSE51 Security 111 174 53 67.7%
PSE52 Security 140 489 24 85.4%
PSE52 Safety Base 216 413 31 87.5%
PSE53 Security 162 157 2 98.8%
PSE53 Safety Base 244 508 3 98.8%
PSE53 Safety Extended 319 433 17 94.9%
PSE54 Security 160 746 4 97.6%
PSE54 Safety Base 243 665 4 98.4%
PSE54 Safety Extended 330 578 6 98.2%
PSE54 General Purpose 789 119 23 97.2%

Std 1003.1 General Purpose 811 314 1 99.9%

shared library is identical for both APIs which allows reuse

of evidence and history of the binary library artifacts.

H. Development Tools

The development tools to work with Deos are integrated in

the OpenArbor IDE, which is an Eclipse-based development

environment produced by DDC-I, the company that also makes

Deos. The OpenArbor IDE included support for obtaining

a timeline of the execution of ARINC 653 processes. The

timeline is constructed from a log that captures the time when

each context switch occurs and the previous/next executing

threads. We leveraged an existing capability in RTEMS that

allows adding callouts to hooks invoked at specific points in

the thread lifecycle. In particular, we provide an extension

set in the adapter for Deos that provides a callout for the

context switch event to log the timestamp and two threads—

executing and heir in RTEMS parlance. The presence of this

hook made thread timeline visualization surprisingly simpler

than we initially anticipated.

Another developer aid available in the OpenArbor IDE is

a mechanism to display the set of ARINC 653 processes

in a partition along with information about each process’s

attributes such as its id, priority, allocated stack location and

size, and stack space usage. This information is provided

by an introspection monitor executing in a super-privileged

partition that has permission to examine memory in every

partition. RTEMS thread-specific support was developed for

the introspection monitor. The main challenge to implement

this support was that the interface to the partition was restricted

to 32-bit load word operations. Access to fields in structures

required using offsetof and addition, and pointers had

to be cast and dereferenced explicitly. The id, priority, and

stack space allocated were obtained directly by finding and

parsing the internal RTEMS data structure representing a

thread control block. Information about the stack space usage

however is not tracked by default in RTEMS. To get this

information, we enabled a stack checker capability, which is

optional in RTEMS, that populates the stack region with a

fixed value (i.e., a repeated canary). We then get an estimate

of the stack usage by walking the stack and finding the first

canary value from the start.

I. Cross-OS Configuration

Deos was designed to support statically configured safety-

critical systems amenable to safety certification and quali-

fication processes. As such, Deos has to be configured a

priori with the number of partitions, their characteristics, and

any I/O or IPC connections they have. The execution of

these partitions is manually scheduled by assigning individual

partitions to execution time windows. Partitions may yield

their time window early with their remaining time donated

to a pool of slack time; a set of partitions may be associated

with slack time. In multiprocessor configurations, partitions

can be assigned to specific cores during a time window or left

idle. This manual assignment of partitions to time windows

allows for detailed offline analysis of the execution including

worst-case execution time (WCET) analysis.

Many of Deos’s configuration parameters apply to a parti-

tion independent of whether the partition contains an ARINC

653 or RTEMS application. However, we added awareness of

some of these parameters in the adapter layer of RTEMS to

support better integration with Deos, including:

• ARINC 653 queuing ports;

• ARINC 653 shared memory regions;

• Permission to set the global time;

• Free memory space available;

• Video buffer row and height position.

The first two of these parameters are provided to RTEMS at

compile-time as they are statically configured parameters in

Deos. The configuration setting for permission to set the global

time is obtained through a series of syscalls to Deos that probe

for descending access permission. Once the access permission

is determined it is used to control whether and how RTEMS

should synchronize its notion of time with Deos as described

in Section III-B2. The remaining configuration parameters are

parsed from a boot-time string that is passed from Deos to the

partition as a list of key-value pairs. The amount of free space

available is used to set up the dynamic memory allocators

for the C Program Heap and the RTEMS Workspace; the

latter is the area from which RTEMS allocates internal OS

objects. The video buffer is a virtual 80x25 console that can be

shared among multiple partitions. Architectural-specific boot-

time parameters are passed through the same string, e.g., the

x86 adapter has boot parameters to allow using COM1 as a

console port and to choose between a soft-reset or halt when

the application exits.

IV. EVALUATION

We evaluate the extent to which we have been successful

along two primary axes: conformance to the FACE Technical

Standard, and programmer effort measured with source lines

of code (SLOC).

A. FACE Conformance

The FACE Consortium maintains a conformance process

that ensures that Units of Conformance (UoCs) do meet

the FACE requirements as claimed. Once a UoC is deemed

conformant, it may be listed in the FACE Registry [7].

Conformance is a Boolean condition: there is no concept of

partial conformance.

The FACE Conformance process requires examination of

more than code. A FACE Verification Authority (VA) is

presented with a Software Verification Package that provides

evidence such that the VA can independently verify that

FACE requirements for the software have been met. The

Software Verification Package includes documentation that

addresses all the potentially applicable FACE requirements.

Some requirements are not applicable, e.g., an Operating

System Segment UoC may optionally provide a Java run-

time, but the Deos/RTEMS environment does not, and so there

must be documentation for the VA to know that this optional

requirement is not being addressed. For functional require-

ments, there must be documented test cases that demonstrate

the requirement is being met, which the VA will check against

a Software Test Report for passing test results.

A (proprietary) mapping document was developed that

provides the location of specific evidence in Deos and RTEMS

artifacts along with the relevant test cases in the Software

Test Report for the VA to check that Deos/RTEMS satisfies

the FACE Technical Standard requirements. This document is

specific to a version of the standard and the product containing

the evidence. For many cases of the requirements, we could

rely on the existing standards that FACE includes to point

where in Deos or RTEMS the evidence already existed.

The Deos/RTEMS product was certified FACE Conformant

for the Safety Base OS Profile to the FACE Technical Stan-

dard 3.0 in September 2019. This certification also covers

the Security Profile, because it is a subset of Safety Base.

Conformance was achieved for the PowerPC architecture;

other architectures are planned to go through a streamlined

process for certifying conformance of variants that rely on

already-certified artifacts. At the time it achieved conformance,

Deos/RTEMS was the 10th FACE Operating System Segment

to be certified; DornerWorks Virtuosity [8] was the 9th, and

the first 8 were various products derived from the Integrity

and VxWorks 653 commercial RTOSs.

TABLE II
SLOC WRITTEN FOR RTEMS TO SUPPORT DEOS/RTEMS

Category SLOC Work-Months (est.) Cost (est. USD)
Kernel (Upstreamed) 1048 2.52 $28,381
Arch. Ind. Adapter 3037 7.59 $85,459
i386 (x86) Adapter 141 0.31 $3,454
PowerPC Adapter 99 0.21 $2,383
ARM Adapter 5 0.01 $104
Tests (Upstreamed) 647 1.52 $17,104
Adapter Tests 3813 9.78 $110,147

Total Upstreamed 1695 4.04 $45,485
Total Adapter 7095 17.9 $201,547

Total 8790 21.94 $247,032

B. Effort: Source Lines of Code (SLOC)

We used sloccount (v. 2.26) [9] to estimate the program-

mer effort and cost for the software written for Deos/RTEMS.

This estimate focuses only on the software for RTEMS,

because the modifications in Deos were not required to achieve

FACE Conformance but rather were made as improvements

to update software that was complementary to the FACE

Technical Standard, e.g., the lwIP stack.

Table II shows a breakdown of the SLOC for the RTEMS

code that was written to support FACE Conformance of

Deos/RTEMS. We divide the code in three sets of categories:

kernel code, adapter code, and tests. Furthermore, the adapter

is partitioned into the architecture-independent code and the

code that has been written to support specific instruction set

architectures (ISAs). To date, we have completed support for

the ARM, i386 (x86), and PowerPC ISAs, which account for

the bulk of the avionics market. The kernel code and their

tests have all been upstreamed, i.e., merged with the RTEMS

Project’s public Git repository. The adapter code and tests

remain proprietary and need to be licensed (with Deos) to

be useful.

The adapter code is largely independent of the target

architecture. The PowerPC adapter consists mostly of some

interrupt handling code, while the most complex adapter is

the i386 one, which has extra support needed to use a COM

port as a serial console. In the ARM case, we only have

a few SLOC to set up the compiler and linker to use the

architecture-independent sources; the effort to add ARM sup-

port was minimal. The bulk of the code is in the architecture-

independent adapter and its tests that together constitute 6,850

SLOC, which is about 78% of the total SLOC.

V. DISCUSSION

The primary motivation for the Deos/RTEMS effort was

driven by the commercial factors involved in satisfying the

joint ARINC 653 and POSIX requirements imposed by the

FACE Technical Standard. Historically, ARINC 653 systems

did not need POSIX, and therefore Deos had minimal support

for POSIX APIs. RTEMS has not been oriented toward avion-

ics applications and therefore neither had ARINC 653 support

nor offered competition to Deos’ market. Thus, the decision

to combine Deos with RTEMS was made as a synergistic

opportunity for both products.

As both RTEMS and Deos are mature OSs, one of our

key goals was to minimize changes to either. RTEMS had

initial support for paravirtualization which allowed it to avoid

privileged instructions such as interrupt disable/enable. This

support was necessary to host RTEMS in an unprivileged

address space container, but it was not sufficient to make

RTEMS a fully integrated guest. Much of our effort focused on

better integration via hypercalls/syscalls in the adapter layer to

enable use of inter-process communication (IPC) mechanisms

such as sampling and queuing ports, Deos lwIP network stack,

and shared memory. This integration required matching the

ARINC 653 view of IPC with that of the more flexible POSIX-

based RTEMS environment.

Although POSIX support could have been implemented

within Deos, it was viewed as beneficial to rely on the mature

POSIX implementation available in RTEMS, which has flight

heritage in space systems, and focus effort on certification

rather than on a clean-slate POSIX implementation plus certifi-

cation. In the end, this decision is validated by the achievement

of FACE Conformance with relatively minor improvements

made in Deos and reasonable effort (under 10000 SLOC) in

RTEMS.

In an orthogonal yet broader view, the changes that were

made to RTEMS and published in the open should facilitate

other, similar efforts to use RTEMS in partitioned kernels

and hypervisors as a guest for POSIX-based applications.

Throughout the process of creating Deos/RTEMS and working

toward FACE conformance we have made every effort to

return code to the public open-source RTEMS Project that is

generally useful and does not require a license for Deos. The

changes made in RTEMS have been maintained as patches

that apply on top of the public code base. We have attempted

to merge back changes made in common code, i.e., outside

of the adapter needed to interface with Deos. As shown in

Table II, this code amounts to 1695 SLOC or approximately

19% of the cost/effort of the programming portion of the effort

to achieve FACE conformance with Deos/RTEMS. Much

of this code advances the available support of open-source

software to achieve POSIX compliance. Thus, our work with

Deos/RTEMS can play a wider role in impacting industry.

As a side-effect of seeking FACE Conformance, we devel-

oped a new, public RTEMS document, the RTEMS POSIX

1003.1 Compliance Guide [10]. This guide documents which

standards-based APIs are supported by RTEMS in aggregate

and broken down to specific standards such as POSIX.2003,

POSIX.2008, C99, and C11. We also included the POSIX

profiles defined by standards such as the FACE Technical

Standard and the Software Communications Architecture [3].

We originally generated the bulk of this guide from an API

tracking spreadsheet with a shell script that we published to the

open-source RTEMS community. Subsequently, a member of

that community rewrote our script to use Python and improved

it. The data, program, and resultant guide are open-source and

publicly adopted by the RTEMS Project.

Time management was a particularly challenging area be-

cause ARINC 653 environments have a static execution order

of partitions with no need for time to advance while a

partition is executing. ARINC 653 also has no notion of

time-of-day (TOD). We discussed and prototyped multiple

approaches before settling on the current approach for man-

aging relative time inside each RTEMS partition, which is

described in Section III-B2. Our penultimate approach put

all the time management in the time budget exceeded excep-

tion handler, but we were concerned with the implications

of TOD synchronization—particularly, calling clock_set

from within an exception handler. After we split the time

management into an exception handling component and a

server (essentially equivalent to top- and bottom-half inter-

rupt handling), our final approach had the added benefits of

supporting nanosecond granularity timestamps and accurate

CPU utilization statistics within RTEMS. Support for TOD

itself required additions to Deos that required multiple design

iterations to avoid any need for asynchronous notifications of

time changes. Our decision to detect time changes and process

clock ticks in RTEMS only at the beginning of a partition’s

execution window is similar to how input is expected to either

be present or not at the beginning of a window.

Ultimately, the approach we have taken for the RTEMS

partitions is reminiscent of logical execution time (LET) [11].

The start of each window accumulates the progression of time

and reads input from IPC channels. The output of the partition

is delayed (by idle thread execution) until the end of the

execution window. Although we were not initially inspired

by the LET paradigm, we found the eventual alignment of

interest.

VI. RELATED WORK

Bloom et al. [4] describe an effort to align the Deos and

RTEMS OSs to the FACE Technical Standard 2.1 Safety

Base Profile using a paravirtualized RTEMS executing as a

partition to satisfy the POSIX services needed by FACE. The

authors describe an approach for time and clock management,

and the implementation of several methods from POSIX that

were included in the Safety Base Profile but missing from

RTEMS. However, this prior work did not implement all

of the required POSIX APIs needed for the FACE Safety

Base Profile, did not complete the integration of RTEMS

with Deos, and did not describe any metrics for success or

evaluation. Our work goes beyond this prior work with a

different approach for time management, implementation of all

POSIX methods needed by FACE Safety Base, a functionally

complete implementation and integration with Deos including

seamless IPC, kernel configuration, and developer tool support,

and evaluation of our effort in terms of SLOC and certification

of FACE Conformance (for Edition 3.0).

VanderLeest [8] describes preliminary work with Virtuosity

as an effort to extend the Xen hypervisor with support for

ARINC 653 and create a system aligned with the FACE

Technical Standard 2.1. The author uses Linux as the system

domain (dom0) and also as the guest to support POSIX-based

applications. Much of their motivation and approach is similar

to ours, however the published work is not complete and they

also mention concerns with using Linux due to its large code

base. They do describe a rough cost estimate for the work

they completed, which included “a few hundred“ SLOC to add

ARINC 653 scheduling in Xen and roughly 29,000 SLOC for

IPC. Their goal is to provide a complete open-source software

stack, and there are no commonly used and maintained open-

source ARINC 653 software projects, so the implementation

cost is expectedly higher than our approach relying on an

existing, commercial ARINC 653 RTOS.

Zuepke et al. [12] describe AUTOBEST as a system that can

support both ARINC 653 and the AUTOSAR standard for au-

tomotive software. Thus, AUTOBEST represents another point

in the design space that offers support for multiple standards

concurrently. The rationale given by the authors for combining

these two standards is that the strong temporal partitioning

of ARINC 653 is expected to yield benefits in automotive

systems that centralize and combine multiple applications that

previously executed on dedicated electronic control units. The

approach taken by the authors involves customizing a common

microkernel core for thread management and accommodat-

ing for differences in the standards most notably by using

userspace libraries to implement synchronization. They discuss

their decision to use a microkernel instead of a hypervisor

with the rationale primarily based on the need in automotive

standards (OSEK, AUTOSAR) to deliver prioritized interrupts.

Our approach is different in several ways including that we

take a virtualization-based approach and we are not consider-

ing automotive standards.

Crespo et al. [13] describe the XtratuM hypervisor, which

implements a separation kernel for integrated modular avionics

with an interface that is similar to ARINC 653. This interface

facilitates integration of ARINC 653-compliant guests. Xtra-

tuM has also been used to run RTEMS as a guest. However, to

the best of our knowledge XtratuM has not been used toward

achieving FACE Conformance.

Rufino et al. [14] describe the AIR Partition Management

microkernel that supports ARINC 653 by translating API

method calls into an upcall to a POSIX or RTOS native API.

Our approach differs in that we aim at FACE Conformance

and we rely on IPC mechanisms instead of upcalls.

VII. CONCLUSION

In this paper, we have described the design and imple-

mentation of Deos/RTEMS, which is an OS environment that

has been certified FACE Conformant aligned with the FACE

Technical Standard 3.0 for the PowerPC architecture. The

primary contribution of this work is to show that a relatively

low-cost approach can satisfy a standard that includes multiple

standards as subsets. We have also made contributions to

the open-source ecosystem of the RTEMS Project that could

filter to other industrial settings and platforms aside from the

exemplar Deos/RTEMS.

Future work may re-certify with some software updates,

certify other architectures (e.g., ARM and x86), and certify

for past and forthcoming editions of the FACE Technical

Standard. Additionally, the approach to use a hypervisor in

combination with paravirtualized guests could benefit from

further enhancements in real-time analysis and related tech-

niques to allay concerns that the additional layer makes WCET

and schedulability analysis too difficult. Despite academic

efforts [15]–[17], commercial and open-source hypervisors

often neglect real-time latency concerns in the hypervisor, and

real-time embedded systems have a strong need for device and

I/O virtualization that add further complications.

REFERENCES

[1] “Technical Standard for FACE (Future Airborne Capability
Environment), Edition 3.0,” Nov. 2017. [Online]. Available:
https://publications.opengroup.org/c17c

[2] “ARINC Specification 653 P1-4, Avionics Application Software Stan-
dard Interface, Part 1: Required Services,” 2015.

[3] “Software Communications Architecture Specification,” Joint Tactical
Networking Center (JTNC), San Diego, CA, Tech. Rep. Version: 4.1,
Aug. 2015.

[4] G. Bloom, J. Sherrill, and G. Gilliland, “Aligning Deos and RTEMS
with the FACE Safety Base Operating System Profile,” SIGBED

Rev., vol. 15, no. 1, pp. 15–21, Mar. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3199610.3199612

[5] “IEEE Standard for Information Technology- Standardized Application
Environment Profile (AEP)-POSIX Realtime and Embedded Application
Support,” IEEE Std 1003.13-2003 (Revision of IEEE Std 1003.13-1998),
pp. i–164, 2004.

[6] “IEEE Standard for Information Technology - Portable Operating
System Interface (POSIX(R)) - Part 26: Device Control Application
Program Interface (API) [C Language],” IEEE Std 1003.26-2003, pp.
1–46, Sep. 2004.

[7] “FACE UOC Registry,” Jan. 2020. [Online]. Available:
https://www.facesoftware.org/registry

[8] S. H. VanderLeest, “Designing a future airborne capability environment
(FACE) hypervisor for safety and security,” in 2017 IEEE/AIAA 36th

Digital Avionics Systems Conference (DASC), Sep. 2017, pp. 1–9, iSSN:
2155-7209.

[9] D. A. Wheeler, “SLOCCount,” Jan. 2020. [Online]. Available:
https://dwheeler.com/sloccount/

[10] “RTEMS POSIX 1003.1 Compliance Guide (5.b12e82d).
RTEMS POSIX 1003.1 Compliance Guide 5.b12e82d (19th
December 2019) documentation,” Dec. 2019. [Online]. Available:
https://docs.rtems.org/branches/master/posix-compliance/index.html

[11] C. M. Kirsch and A. Sokolova, “The Logical Execution Time Paradigm,”
in Advances in Real-Time Systems, S. Chakraborty and J. Eberspcher,
Eds. Berlin, Heidelberg: Springer, 2012, pp. 103–120.

[12] A. Zuepke, M. Bommert, and D. Lohmann, “AUTOBEST: a united
AUTOSAR-OS and ARINC 653 kernel,” in 21st IEEE Real-Time and

Embedded Technology and Applications Symposium, Apr. 2015, pp.
133–144, iSSN: 1545-3421.

[13] A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and J. Metge, “Xtratum
an open source hypervisor for tsp embedded systems in aerospace,” Data

Systems In Aerospace DASIA, Istanbul, Turkey, May 2009.
[14] J. Rufino, J. Craveiro, T. Schoofs, C. Tatibana, and J. Windsor, “AIR

Technology: a step towards ARINC 653 in space,” in Data Systems In

Aerospace DASIA, Istanbul, Turkey, 2009.
[15] Z. Jiang, N. C. Audsley, and P. Dong, “BlueVisor: A Scalable Real-

Time Hardware Hypervisor for Many-Core Embedded Systems,” in
2018 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), Apr. 2018, pp. 75–84.
[16] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtual-

ization on TrustZone-Enabled Microcontrollers? Voilà!” in 2019 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), Apr. 2019, pp. 293–304, iSSN: 1545-3421.
[17] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time

hypervisor scheduling in Xen,” in 2011 Proceedings of the Ninth ACM

International Conference on Embedded Software (EMSOFT), Oct. 2011,
pp. 39–48.

