Polymorphic Circuit Generation Using Random Boolean Logic
Expansion

Jeffrey T. McDonald

Trinity L. Stroud

Todd R. Andel

jtmcdonald@southalabama.edu tls1627@jagmail southalabama.edu tandel@southalabama.edu
University of South Alabama University of South Alabama University of South Alabama
Mobile, Alabama Mobile, Alabama Mobile, Alabama
ABSTRACT RBLE provides a unique method to generate polymorphic variants

Securing applications on untrusted platforms can involve protec-
tion against legitimate end-users who act in the role of malicious
reverse engineers and hackers. Such adversaries have access to
the full execution environment of programs, whether the program
comes in the form of software or hardware. In this paper, we con-
sider the nature of obfuscating algorithms that perform iterative,
step-wise transformation of programs into more complex forms
that are intended to increase the complexity (time, resources) for
malicious reverse engineers. We consider simple Boolean logic
programs as the domain of interest and examine a specific trans-
formation technique known as iterative sub-circuit selection and
replacement (ISR), which represents a practical, syntactic approach
for obfuscation. Specifically, we focus on improving the security
of ISR by maximizing the flexibility and potential security of the
replacement step of the algorithm which can be formulated in the
following question: given a selection of Boolean logic gates (i.e., a
sub-circuit), how can we produce a semantically equivalent (poly-
morphic) version of the sub-circuit such that the distribution of
potential replacements represents a random, uniform distribution
from the set of all possible replacements. This practical question
is related to the theoretic study of indistinguishability obfusca-
tion, where a transformer for a class of circuits guarantees that
given any two semantically equivalent circuits from the class, the
distribution of variants from their obfuscation are computation-
ally indistinguishable. Ideally, polymorphic circuits that follow a
random, uniform distribution provide stronger protection against
malicious analyzers that target identification of distinct patterns as
a basis for deobfuscation and simplification.

In this paper, we introduce a novel approach for polymorphic
circuit replacement called random Boolean logic expansion (RBLE),
which applies Boolean logic laws (of reduction) in reverse. We
compare this approach against another proposed method of poly-
morphic replacement that relies on static circuit libraries. As a
contribution, we show the strengths and weaknesses of each ap-
proach, examine initial results from empirical studies to estimate the
uniformity of polymorphic distributions, and provide the argument
for how such algorithms can be readily applied in software contexts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03...$15.00
hitps://doi.org/10.1145/3341105.3374031

of arbitrary input, output, and gate size. We report initial findings
for studying variants produced by this method and, from empirical
evaluation, show that RBLE has promise for generating distribu-
tions of unique, uniform circuits when size is unconstrained, but for
targeted size distributions, the approach requires some adjustment
in order to reach potential circuit variants.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; Soft-
ware security engineering;

KEYWORDS

software protection, indistinguishability obfuscation, random cir-
cuits, Boolean logic, polymorphic generation

ACM Reference Format:

Jeffrey T.McDonald, Trinity L. Stroud, and Todd R. Andel. 2020. Polymorphic
Circuit Generation Using Random Boolean Logic Expansion. In The 35th
ACM/SIGAPP Sympostum on Applied Computing (SAC '20), March 30-April
3, 2020, Brno, Czech Republic. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3341105.3374031

1 INTRODUCTION

Intellectual property (IP) is currently embedded in both software
and hardware that are used in almost every area of society today.
As companies can typically have billions of dollars invested in
such IP [1], the theft of IP has become a major concern for tech
companies and countries around the world [17]. Malicious reverse
engineering, copying, cloning, and tampering form the major tech-
nical threats that adversaries can use when they are legitimate
end-users and have full powers to control the execution environ-
ment of the software [4, 5]. The primary technical means to achieve
protection against such man-at-the-end (MATE) attacks has been to
increase the cost of malicious reverse engineering by introducing
programmatic-level protections through transformation techniques
generally referred to as obfuscation [3]. In this paper, we focus in
particular on the means by which transformation takes place and
consider how such transformations might defend against adversar-
ial reverse engineering and, ultimately, IP theft.

We consider programs that come in the form of Boolean logic
gates and primarily consider transformation algorithms that make
incremental changes by taking small subsets of the program and
replacing them with more complex versions that are semantically
equivalent. We extend the work of McDonald et al. [13, 14] that
first posed this approach called iterative sub-circuit selection and
replacement (ISR). ISR works by selecting a subset of gates (a sub-
circuit) from a combinational logic circuit program and replacing

https://doi.org/10.1145/3341105.3374031
https://doi.org/10.1145/3341105.3374031
https://doi.org/10.1145/3341105.3374031

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

that selection with a semantically equivalent version. This process
is repeated over and over again (iteratively) until some desired level
of overhead or security is reached. McDonald et al. sought to use a
uniform, random replacement sub-circuit by pre-generating static
libraries of circuit families based on their input, output, and gate
size. From these families, a truly random circuit can be chosen out
of the set of all possible functionally equivalent versions which
have been pre-enumerated and stored. As a negative, such static
libraries grow in factorial storage size and time to generate [13]:
thus, replacement libraries are limited to small input and small gate
size families. As a result, only small gate selections (2-5 gates) with
small input sizes (2-5 bits) are possible for ISR.

In [13], McDonald and Kim describe three abstractions targeted
by malicious circuit reverse engineers: topology, signals, and com-
ponents. ISR targets the efficient recovery of these abstractions
from gate-level netlist programs. McDonald and Kim also identify
two trade-off spaces in the design of an obfuscator: maximizing
randomness in the obfuscation algorithm and maximizing the se-
curity of the obfuscated variants produced by an obfuscator. On
one hand, the algorithm should be publicly known, consistent with
Kerckhoff s principle [20] that security of a cryptosystem should
only rest on keeping its key secret and not its algorithm (thus avoid-
ing the practice of security by obscurity). On the other hand, to
achieve a measurable degree of hiding program abstractions, deter-
ministic algorithms can be used produce targeted results (boundary
blurring, component encryption, etc.) [13, 15], but have the risk
that an adversary can devise targeted deobfuscation algorithms to
undo transformations. By maximizing random (non-deterministic)
choices of the obfuscator (much like in a normal crypto-system), a
public algorithm has less chance of producing predictable structural
patterns that can be leveraged by an adversarial deobfuscator.

McDonald and Kim [13] point out that the greater the selection
space of potential replacement circuits reached by an obfuscator,
the less of an advantage an adversary has to create pattern and
rule-based approaches that would reverse or undo transformations.
Simonaire [21] modelled an ISR algorithm as a term rewriting sys-
tem (TRS) to illustrate how larger selection and replacement sizes
in an ISR algorithm would cause a TRS to not coalesce, essentially
defeating a deobfuscator based on term rewriting. The ideal ISR al-
gorithm should allow an arbitrary sub-circuit selection (of any gate
or input size) and an arbitrary replacement sub-circuit of any gate
size (above that of the original selected sub-circuit). If circuits used
for replacement are fully enumerable, adversaries are more likely
to use this knowledge to target circuit features that are produced as
artifacts in circuit variants. McDonald et al. [16] demonstrated that
a pattern-based circuit reducer could reduce ISR circuit variants
created from 2-gate selection and 3-gate replacement from 60 to
80%. However, 4-gate replacements were reduced only between
20 to 30%. Thus, we are motivated to find methods for generat-
ing semantically equivalent, larger sub-circuits as replacements in
ISR, while maximizing the random selection space and minimizing
either storage or generation time of replacement families.

This paper introduces an efficient algorithm with linear run-time
and no storage requirement for generating sub-circuit replacements
that allows selected sub-circuits to have arbitrary sizes for inputs,
outputs, and gate size. The technique relies on representing sub-
circuits in Boolean logic form and then iteratively applying Boolean

McDonald, Stroud, and Andel

logic laws in reverse. Whereas Boolean logic laws have traditionally
been used for purposes of reducing or simplifying Boolean equa-
tions, we use them to expand or increase the Boolean expression.
We call this technique random Boolean logic expansion (RBLE)
and consider it as the means by which replacement circuits can be
generated in ISR algorithms. We provide initial results of empirical
experiments for using RBLE in ISR scenarios. The remainder of
the paper provides motivating scenarios to frame the context of
the work (Section 2), general background related to RBLE concepts
(Section 3), and a description of the approach (Section 4). Section
5 describes our experimental framework for initial characteriza-
tion of the approach and section 6 provides analysis of the results.
Section 7 provides our conclusions and future work.

2 MOTIVATING CONTEXT

We provide two motivating scenarios that give context to this work:
one primarily hardware-based and one primarily software-based.
Nohl et al. [18] were some of the first researchers to illustrate the
relative ease of physically reverse engineering hardware implemen-
tations of integrated circuit boards to recover gate level programs
(also known as netlists). In their work, they analyzed the Mifare
Classic RFID cipher that was used as part of a public transit system
card. Once these gate level constructs were recovered, design level
components could be reverse engineered to reveal the implementa-
tion of the cipher itself which led to discovery of numerous flaws
in the cryptographic design. Obfuscation of gate-level netlist pro-
grams through algorithms such as ISR would offer one potential
countermeasure to design-level recovery of components: this specif-
ically involves preventing recovery of the number, type, and inter-
connectivity of building block components used to create more
complex circuits. In prior work, the effectiveness of component
recovery algorithms against ISR-based transformations has been
evaluated based on tractable limits of small selection/replacement
sizes [15, 19], and thus RBLE would provide new directions for such
research.

Although our focus is primarily on circuit-to-circuit transfor-
mation, ISR with RBLE-based replacement has implications for
software-to-software transformation. First, we note two different
domains where software is converted into hardware representation.
In the area of secure multi-party computation (MPC) [8], the pre-
dominant question of interest is how to securely compute a joint
function on private inputs from distrusting participants, while re-
vealing nothing more than the result of the function. MPC schemes
beginning with the seminal work of Yao on garbled circuits [23]
have traditionally taken the joint function of interest and repre-
sented it in a standard circuit form consisting of AND, OR, and
NOT gates. The cryptographic aspect of MPC protocols involves
garbling the circuit in such a way that its evaluation by two or
more parties results in privacy of inputs as well as intermediate
computations. MPC research has seen a rebirth of interest in recent
years as well as a multitude of practical implementations that sup-
port translation of functions into circuits in Boolean, arithmetic, or
formula form. Fairplay [10] was one of the first implementations of
a two-party protocol: it included a high level procedural language
that allows translating the secure function into a one-pass (com-
binational) Boolean circuit. Since then, multiple implementations

Polymorphic Circuit Generation Using Random Boolean Logic Expansion

of software-to-circuit compilers for MPC construction based on C
and C++ have appeared [8].

In the domain of systems design and synthesis, the distinction
between hardware and software has become less clear for some
time. The advent of field programmable gate arrays has moved
the defining aspect of hardware programs into a more fluid form,
where reprogramamble hardware is becoming the norm. Almost
20 years ago, Wirth [22] pointed out the ease by which traditional
software constructs (sequence and choice) are easily translatable to
combinational logic while looping constructs can be handled with
sequential logic forms. He was one of the first researchers to argue
for a common language to express both software and hardware
constructs. Since then, several realizations of this concept have
made their way into commercial synthesis tools and systems design
thought. SystemC represents one of the earliest examples of this
hardware/software marriage and is now an IEEE standard.

The growing use of software-to-hardware programming environ-
ments for both MPC and systems design provides context for how
circuit transformation algorithms can be used for software protec-
tion against MATE attacks. In particular, software-based hardware
abstractions pose an ideal method to frustrate traditional software
analysis and reverse engineering techniques [11, 12] because soft-
ware constructs are fundamentally transformed into circuit repre-
sentations, but are realized as software statements. In this approach,
software constructs such as if statements or math expressions are
represented in code as circuit abstractions. Such abstractions are
not currently handled by traditional static and dynamic software
analyzers, beyond recovery of the hardware netlist itself. Such a
dichotomy would hinder traditional software reverse engineering
until appropriate tools integrate analysis for both software and
circuit constructs. Thus, RBLE has the potential to translate directly
into software protection schemes, though this is not the focus of
this paper.

3 BACKGROUND & RELATED WORK

The primary motivation for our research was whether an efficient
(deterministic) circuit generation algorithm could be used to create
polymorphic circuit variants. Ideally, this algorithm should pro-
duce distributions that approach a random, uniform selection from
the set of all possible choices of semantically equivalent circuits.
We compare our approach against a known static enumeration
approach, that despite its ability to generalize to arbitrary circuit
selections, does generate random, uniform distributions.

3.1 Boolean Logic Laws and Expressions

A Boolean function is a function with a domain of values {0, 1}
and of a finite number of variables of value {0, 1}. Boolean logic
laws express identities on the set B = {0, 1} with binary operations
conjunction (V, OR, +) and disjunction (A, AND, %), and unary oper-
ation negation (x, NOT, x"). Such laws include annihilation, identity,
commutativity, associativity, idempotence, absorption, distribution,
complementation, involution, and De Morgan’s [6].

A typical way to represent Boolean functions are with Boolean
expressions, which are logical statements that, upon evaluation,
have a value of either 0 or 1, false or true. For notation purposes,
we express the three primary operators within Boolean expression

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

as follows: disjunction (V, OR) with +; conjunction (A, AN D) with
*; and negation, (x, NOT) with x’. There is an additional operator,
XOR, represented in our notation as the programmatic binary XOR
("), which is a derived operation based on disjunction, conjunction,
and negation rules as follows:

x XOR y=(xAy)V(xAy)

with our notation for the above expression being:

x M y=(xxy’)+(x" *y).

Boolean laws are normally applied repeatedly to reduce Boolean
expressions to their simplest form, although the process is complex

because pattern matching is required and a correct ordering of
applied laws is required to achieve complete simplification [7].

Criginal Reduction Law

1 AFA | = A |dempotence
2 A+A | =| A Idempotence
3 A*B | =| B*A Commutativity
4 A+B [=| B+A Commutativity
5 AYB*C) | =| (A¥B)*C Associativity
6 A+(B+C) | =| (A+B)+C Associativity
7 A*¥(A+B) | =| A Absorption
b3 A+(A*B) | =| A Absorption

9 A*(B+Q) | =| (a*B)+(A™0O) Distributivicy
10 A+(B*C) | =| (A+B)*(A+0) Distributivity
11 A*0 | =| 0 Annihilation
12 A+D | =| A Identity

13 ArMD | = A Identity

14 A*1 | =| A Identity

15 A+l | =1 Annihilation
16 ArT | =| A Negation
17 A*A | =0 Complementaticn
18 AvA | =1 Complementation
19 AY | = A Involution
20 (A+B) | =| A'*B' De Morgan's
21 (A*B) | =| A'+B' De Morgan's
22 (A+B] *[A"+B) | =| A"B Derivation
23 (AYB)+(AYB) | =| A™B Derivation
24 (A+B)+(a*B) | =| (a"B) Negation
25 AMA | =] 0 Annihilation
26 (an~ay | =1 Annihilation
27 (A*B)+(a*B) [=| A Annihilation
28 (A'*B)+(A*B) | =| A Negation
29 (A+B)*(A+B) | =| A Annihilation
30 (A'+B)*[AT+B) | = A Negation

Table 1: Boolean expression reductions

3.2 Digital Logic Circuits

Combinational circuits directly implement Boolean logic via a set
of logic gates (called the basis set Q) such as AND, OR, XOR, NOT,
NAND, NOR, and NXOR. Structurally, they can be expressed in
a number of ways including textually in netlist languages such
as BENCH format [9] and visually in schematic form. Figure 1
illustrates a small 5 input, 2 output, 6 gate combinational circuit in
schematic form with corresponding BENCH netlist. Behaviorally,
an n-input, m-output circuit combinational circuit can be seen as
an array of Boolean functions f; : B" — {0,1}, where i = 1..m [7].

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

A Boolean expression can directly represent combinational logic
netlists by assigning each circuit output a function, assigning circuit
inputs as Boolean variables in the expression, and directly translat-
ing each circuit gate to its corresponding logic expression. Thus,
combinational circuits are equivalently represented structurally as
a Boolean expression [2, 7]. Figure 1 illustrates the corresponding
Boolean expression for the circuit structure.

Circuit Schematic

BENCH Netlist

INEUT (1)
INEUT (2)
INEUT (3)
INEUT (&)
INEUT (7)

OUTPUT (22)
QUTPUT (23)

10 = NAMD(1, 3)
1 = AND(3, &)
oR(2, 11)
HOR (11, 7)
XOR ({10, 16)
NXOR (16, 19)

Boolean Expression

024 = ((i1 * i3)' ~ (iz + (i3 * 1i&)))
025 ((i2 + (i3 * ie)) ~ ((i3 * ie) + i7)")"

Figure 1: Equivalent circuit representations

Logic circuits are typically grouped in families based on their
input, output, and gate sizes. We use the notation dy_y to de-
fine the set of all circuits the same input size X and output size
Y. We use the notation dx_y_s to represent families of circuits
with gate size S. We assume circuits that are within a family are
derived from a common basis set Q, where typical basis sets may
include Q = {AND,OR,NOT}, Q = {NAND}, Q = {NOR}, or
Q = {AND,OR,XOR,NAND, NOR, NXOR}. The fan-in of a gate
is the number of unique inputs fed to the gate. For purposes of
generating legal circuits within a family, we use the following rules
to govern circuit properties related to their structure:

(1) Symmetry: GATE(X1,X2) equivalent to GATE(X2,X1)?

(2) Redundancy: Gates with same fan-in and gate type?

(3) Constant Signals: Allow constants 0 or 1 as nodes?

(4) Degeneracy: Gate inputs originate from same source gate?

(5) Fan-in: Allow gate fan-in greater than 2?

(6) Basis: What are allowable gate types Q7

(7) Size: Do sets contain gates with exact size or less?

(8) Outputs: Allow gates with non-zero fan-out as outputs?

Given answers to these constraints, different circuit families
can be produced, with more relaxed constraints producing larger
numbers of circuits in the same identical family. We generate cir-
cuit families statically that minimize redundancy, disallow degen-
erate conditions and constant signals, use exact size, and allow
only binary gates: these properties are typical for standard build-
ing blocks in larger combinational circuits. Figure 2 illustrates
the legal family of §3_1_1 circuits with this rule set given basis
Q = {AND,ORXORNANDNOR,NXOR}, which consists of only
the six basic logic gates themselves.

McDonald, Stroud, and Andel

Figure 2: ,_;_; circuit family

4 BOOLEAN REDUCTION AND EXPANSION

Decades of research have been devoted to finding efficient algo-
rithms for reducing circuit logic functions to their smallest size,
thereby minimizing power and layout space in realized physical cir-
cuits. All reductions can ultimately be related to the application of
one or more Boolean logic laws. Random Boolean logic expansion
(RBLE) works by applying these laws in reverse. The list of Boolean
logic laws used by the RBLE algorithm to perform expansion versus
reduction can be reduced to include only those logic laws which ac-
tually change the structure of the circuit. For example, associativity
or distributivity laws or laws which change the number of variables
or values represented in part of the overall Boolean expression re-
sult in polymorphic variation. Laws such as commutativity would
not, and therefore we can remove laws #3 and #4 from Table 1,
leaving us with an optimized and reordered list of Boolean logic
laws seen in Table 2. The laws have been rearranged such that
their original expressions are ordered by lowest-to-highest form.
This ordering allows us to easily recognize that, for example, the
Boolean value 0 has 3 possible expansions, the Boolean value 1 has
3 possible expansions, and any Boolean variable A has 10 possible
expansions.

To perform RBLE, we take a candidate circuit C and represent its
circuit structure as a Boolean expression BE. The Boolean expres-
sion is then profiled to provide a potential set of logic expansions
that may be applied, based on the presence of original expressions
in BE seen in Table 2: 0, 1, A, A", (A + BY', (A + B, (A"B), (A"B)’,
A+(B+C), A+(B+C), (A+B)*C, and (A + B) + C. In Table 2,
the (A + B)’ expression in rule 20 represents a 2-input NOR gate,
whereas (A * B)' in rule 21 represents a 2-input NAND gate. In
rule 22 and 23, (A"B) represents a 2-input XOR gate and (A"B)’
represents a 2-input NXOR gate. In rules 17-19, A’ represents the
presence of a NOT gate that receives a signal from some part of
the circuit netlist. Thus, each original expression corresponds to
a basic digital logic gate or input to a logic gate (some variable A)
in the circuit netlist. For purposes of expansion, 0 and I represent
constant 0 or 1 signals, which are kept in Boolean expression form
until the circuit structure is realized in its final form. At that point,
any 0 and 1 in the Boolean expression are replaced with a circuit
netlist structure that generates the constant signal. So, for example,
any 0 signal can be replaced with (A"A) or (A * A”), where A is
any arbitrary variable that is already present in the expression.

Polymorphic Circuit Generation Using Random Boolean Logic Expansion

i3 Qriginal Expansion Law Relative Gates
1 0|l =] A0 Annihilation COMNSTD

2 0= A*N Complementation COMSTD

3 o= 4anA Annihilztion COMNSTD
a4 1| =] A+l Annihilztion COMSTL

5 1] =| a+4A Complementation COMNSTL

4] 1| =] (A~A) Annihilation COMNSTL

7 Al =] AFA ldempotence AND

g A =] A+A Idempotence OR

9 Al =] A*(a+B) Absorption AND.OR
10 Al =| A+t(A*B) Absorption OR, AND
11 Al =] A+D Identity OR, CONSTD
12 Al =] AnD Identity XOR, CONSTO
13 A = A*1 Identity AMND, CONSTL
14 A= (&) Involution NOT

15 Al =] (a*B)+{A*=B) Annihilation AND,OR,NOT
16 Al=|(ate)riatm) Anninilation AND,OR,NOT
17 At = ANl MNegation XOR, CONST1
18 Al = | (A'TE)+(A'7B) Negation AND,OR,NCT
19 a | = | (ar+m) (e Negation AND,OR,NOT
20 (A+B)' | = | A'FB' De Morgan's NOR

pal [a*B) | = | A'+BE Da Morgan's MAND

22 AMB | = | (A+B)*(A'+B) Derivation XOR

23 AMB | = | (a'*B)+{a*B Derivation XOR

24 (AnB)' | = | (A+BI+(A=E) Megation NXOR
25 AT(B+C) | = | (ATB)+|ATQ) Distributivity AND,OR
26 A+(B*C) | = | (a+B)*({a+C) Distributivity OR,AND
27 (A*B)*C | = | A*iB*Q) Assodativity AND

28 (A+Bj+C | = | A+(B+C) Asspciativity aOR

Table 2: Boolean expression expansions

For multiple output circuits, each output is represented as its own
Boolean logic expression.

Algorithm 1 provides a summary of the RBLE approach. Given
the profile of a Boolean expression BE and the set of its potential
expansions, one is chosen pseudo-randomly and then applied to
the expression. The new expression then becomes the input to the
next round of expansion. Application of Boolean logic laws guaran-
tees semantic equivalence of all intermediate Boolean expression
forms. Each expansion thus produces a new Boolean expression,
semantically equivalent to BE, based on the number of expansions
that are applied, until some constraint is reached. We express con-
straints in the form of an input to the RBLE algorithm that we
term expansion policy (P) with three possible values: STRICTSIZE,
TARGETSIZE, and HXED. The expansion policy value (n) is pro-
vided as input to the RBLE algorithm alongside the policy choice
P. The condition for completion can be on the basis of either the
number of expansions performed or on the size of the resulting
polymorphic circuit. Given a candidate circuit (C) with Boolean
expression represented as (BE), policy choice (P), policy value (n), a
number of maximum expansions (MAXEXPANSIONS), a number of
maximum attempts (MAXATTEMPTS), RBLE will produce as out-
put a polymorphic circuit variant C’. Expansion policies (P) and
policy value (n) are defined as:

(1) FIXED: Apply a fixed number of expansions (n) to BE, which
results in an ordered list of intermediate Boolean expression
forms: BE — BE;, BEs, BEjs, ..., BEy,. The final circuit C’ is
directly realized by gate level realization of the expression
BEp.

(2) STRICTSIZE: Apply expansions to BE until the correspond-
ing gate size of C’ is exactly equal to strict size n. This re-
sults in a potential sequence of intermediate Boolean ex-
pression forms: BE — BEj, BEjy, BEs, ..., BEpiA XEXPANSIONS»
where MAXEXPANSIONS is some limit of expansions. Each

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

intermediate Boolean expression form BE, is converted to
its circuit netlist form C’ and size of the circuit is computed.
If the size(C’) = n, the algorithm terminates and returns C’.
If the limit MAXEXPANSIONS is reached, the process is re-
peated with a fresh set of Boolean expansions starting with
BE. The algorithm will terminate when a maximum num-
ber of attempts (MAXATTEMPTS) have been reached, which
may result in failure to produce a polymorphic circuit C’
with gate size size(C") = n.

(3) TARGETSIZE: Apply expansions to BE until the correspond-
ing gate size of C’ is greater than or equal to target size n.
This results in a potential sequence of intermediate Boolean
expression forms: BE — BEj, BEj,..., BEpa XEXPANSIONS, Where
MAXEXPANSIONS is some limit of expansions. Each inter-
mediate Boolean expression form BE is converted to its
circuit netlist form C” and size of the circuit is computed.
If the size(C’) >= n, the algorithm terminates and returns
C’. If the limit MAXEXPANSIONS is reached, the process
is repeated with a fresh set of Boolean expansions starting
with BE. The algorithm will terminate when a maximum
number of attempts (MAXATTEMPTS) have been reached,
which may result in failure to produce a polymorphic circuit
C’ with size(C’) >= n.

Of the three policies, STRICTSIZE and TARGETSIZE are non-
deterministic in the sense that they could fail to generate a poly-
morphic circuit variant with an exact or target gate size within
pre-determined bounds, and thus they also have non-deterministic
runtimes. However, the FIXED expansion policy is determinis-
tic and will always produce a variant in some predictable, linear
amount of time. The profile function returns the set of all poten-
tial subexpressions within a Boolean expression which can have
a Boolean expansion applied to it. The function convert takes a
circuit netlist and returns a Boolean expression consistent with
the structure of the circuit. The function realize takes a Boolean
expression and returns a circuit netlist, where all constant 0 and 1
signals are converted into logic gate constructions. The function
apply takes as input a Boolean expression and a selected part of
the expression that corresponds to a legal Boolean expansion rule,
then applies the expansion and returns a new Boolean expression.
The function select takes as input a set of legal Boolean expansions
that can be applied to the current Boolean expression and returns a
random choice from the set. Table 3 provides an example of apply-
ing a FIXED policy on a Boolean expression where 5 expansions
are applied to the expression oI = (i0 * iI). Figure 3 illustrates cir-
cuit realization of the corresponding Boolean expressions created
through expansion in Table 3.

5 EXPERIMENTAL EVALUATION

To provide an initial evaluation of the efficacy of RBLE in com-
parison to pre-generated static libraries, we ran three types of
experiments that generated distributions of replacement circuits
using both approaches. The goal of the experiments were to un-
derstand the limits of RBLE in approaching a uniform distribution
similar to what is possible with fully enumerating all possible cir-
cuit structures and storing them statically, thus being able to choose
a replacement randomly from the set of all possible functionally

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Algorithm 1: Random Boolean Logic Expansion (RBLE)
input :C.Pn
output:C’, where Vx : C(x) = C'(x)

1 BE « convert(C); done < false;

2 fixed « 0; attempts « 0; numexp «— 0;
3 while not done do

4 expansions < profile(BE);
5 expansion « select(expansions);
6 BE « apply(BE, expansion);
7 C « realize(BE);
8 if P == FIXED then
9 fixed «— fixed + 1;
10 if fixed = n then
1 | C' é; done « true ;
12 end
13 else
1 if (P == STRICTSIZE and size(C) = n) then
15 | C’ « C; done « true;
16 else if (P == TARGETSIZE and size(C) >= n) then
17 | C' é; done « true ;
18 else
19 numexp <— numexp + 1;
20 if numexp > MAXEXPANSIONS then
21 BE « convert(C);z « 0;
22 attempts «— attempts + 1;
23 if attempts > MAXATTEMPTS then
24 C’ « null; done « true;
25 end
26 end
27 end
28 end
29 end
30 return C’;
ol = (i0 *i1) size(C)=1

1: ((i0 + i0) * i1)

2: (((i0 + i0) + 0) * i1)

3: (((i0 + i0) + (i1 * 0)) * i1)

4: (0 + i0) + (i1 * (i0 " i0))) * i1)

5: (((i0 + i0) + (i1 * (i0 " i0))) * (i1 * i1))
o1 = (((i0 + i0) + (i1 * (i0 " i0))) * (i1 * i1))

rule 8, size(C’)=2
rule 11, size(C’)=6
rule 1, size(C’)=7
rule 3, size(C’)=5
rule 7, size(C’)=6
size(C’)=6

Table 3: Example Boolean expansion sequence

equivalent polymorphic variants (referred to as CIRCLIB [16]). We
also wanted to evaluate the new possibility of creating polymorphic
variants with sizes well beyond the current size limits of the static
chosen-circuit approach. We exercised the algorithm on simple cir-
cuits to initially assess the characteristics of RBLE distributions. For
this study, we only considered replacements for the six basic logic
gates in the §2_1_; circuit family, which are seen in Figure 2. Figure
4 provides a visual reference to our experimental framework, which

McDonald, Stroud, and Andel

Size: 1 2 6 7 5 6
Expansion: 1 2 3 4 5

Figure 3: Example Expansion Circuit Realization

we expand next. To generate circuit variants, we implemented RBLE
in a Java-based code suite and utilized the open source version of
CIRCLIB created by McDonald et al. to generate static circuit li-
braries [15, 16]. All experiments were performed on an HP ZBook
17 G2 laptop with an Intel i7-4710MQ 2.50 GhZ CPU and 32GB
installed RAM.

Experiment 2
2-1-3 Replacement
Up to 10 Expansions

Target Size 5

Experiment 1
2-1-1 Replacement

STRICT SIZE
Expansion

Figure 4: Empirical evaluation framework

5.1 Experiment 1: Strict Size Replacement

We first evaluate RBLE under a STRICTSIZE expansion policy, as
this is the closest comparison to a chosen-circuit approach with
CIRCLIB. For each of the 6 basic gate types in the §z_1-1 family,
we performed two sets of generations that created a sum total of
188,000 circuits:

(1) 1000 variants from CIRCLIB and 1000 variants from RBLE,
totalling 6,000 circuits for each gate type and method, of
target size 2, 3, 4, and 5. The only exception was that the
82_1—2 family has no valid semantically equivalent XOR or
NXOR circuits that have gate size 2, so only 4,000 circuits
were created for this target size family. In total, 22,0000 cir-
cuits were generated for analysis. In results notation, we
refer to this as the 1K distribution set.

Polymorphic Circuit Generation Using Random Boolean Logic Expansion

(2) 10000 variants from CIRCLIB and 10000 variants from RBLE,
totalling 60,000 circuits for each gate type and method, of
target size 2, 3, and 4. The only exception was that the 6, _;_»
family has no valid semantically equivalent XOR or NXOR
circuits that have gate size 2, so only 40,000 circuits were
created for this target size family. In total, 160,0000 circuits
were generated for analysis. In results notation, we refer to
this as the 10K distribution set.

5.2 Experiment 2: Fixed Expansion/Targeted
Replacement

We evaluate RBLE under a FIXED expansion policy, using six pairs
of circuits chosen from the §z_1_3 family, where each pair of §2_1_3
circuits (C1,Cz) are semantically equivalent to one of the basic gate
circuits in the 8,_;_; family (AND,0OR,XOR,NAND,NOR,NXOR).
For each circuit in each circuit pair (Cy,C2), we create 100,000 vari-
ants chosen from CIRCLIB libraries with a target gate size of 5. For
RBLE, we create 100,000 variants of each circuit with number of
expansions n ranging from n = 1 .. 10. For CIRLIB, each circuit in
the pair (Cy,C3) resulted in 100,000 variants of size 5, for a total of
200,000 per basic gate type, and 1,200,000 total circuits. For RBLE,
each circuit in the pair (Cy,C3) resulted in 1,000,000 variants given
10 possible expansion values, for a total of 2,000,000 per basic gate
type, and 12,000,000 circuits total. As a result, a total of 13,200,000
circuits were generated for this experiment.

5.3 Analysis

For analysis purposes, we refer to CIRCLIB variants as chosen re-
placement and RBLE variants as expanded replacements. We stored
the results of the circuit distributions for each experiment type in
BENCH netlist circuit files. Analysis was then performed on the
BENCH files corresponding to each experiment type. We created a
form of structural hash to uniquely identify the structure of each
circuit netlist so that circuits with the same structure could be easily
identified and grouped together. As part of the study, we learned
that static CIRCLIB libraries contain structurally identical circuits
that are semantically equivalent, even though CIRCLIB creates dif-
ferent netlist circuits for them in the static libraries. We explain the
ramifications of this more in the Results section. For Experiment
2, we also recorded sizes of the various circuits that were created
based on different numbers of expansions being applied to the origi-
nal circuit. We made special note of circuits that matched the target
gate size (5) which the CIRLIB algorithm used. As a result of using
variable number of expansions with RBLE, an original circuit with
100,000 variants will only have some percentage that match target
size 5, which we explore further in the Results section.

6 RESULTS

We report first the results of Experiment 1 distributions. Figure 5
shows the results of 1K distributions of the four circuit types which
are possible for (gate size = 2) replacements of AND, OR, XOR,
and NAND gates that are part of the (gate size = 1) §3_1_1 family.
Given standard circuit creation options for CIRCLIB (described in
section 3.3), each original gate only has 4 possible variants in the
8212 family. The replacement circuits as seen in Figure 5 show

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

2-1-2 Polymorphic Circuits
300

250
2
1
1

2-1-1 AND

of Circuits
5 8

8

8

2-1-1 NAND 2-1-10R
W Chosen ™ Expanded

2-1-1 NOR

Figure 5: Number circuits for §2_;_; Strict Replacement-1K

that both RBLE and CIRCLIB create roughly equal distributions for
all 4 circuits, for all 4 gate types.

Circuits # Circuits # Circuits
&0
AND a0 OR XOR
n 10 &
» b a0
10 | ‘ ‘ 10 h 0 |
0 |||| 11 TITITL A | o Al II.III||||||||||||||............| o Iinnnnndunnnal.
Circuits # Circuits # Circuits
BO 50 60
50 a0
© NAND 0 NOR } » NXOR
" 0 I

o 1
o Ml

P LI T PR 0 ”IIIIIIII Eihaan.

B Chosen ® Expanded

Figure 6: Number circuits for §2_;_3 Strict Replacement-1K

Figure 6 shows the results from Experiment 1 where 1,000 vari-
ants of size 3 were created for the original AND, OR, XOR, NAND,
NOR, NXOR gates in d;_1_1. The chart shows a combination of
number of circuits for both methods, where circuits with the same
structure are aligned. CIRCLIB variants follow a fairly uniform
distribution for all 6 gate types, whereas RBLE replacements only
represent a small number of the same circuits from the CIRCLIB
potential set, with non-uniform distribution ranging from 3 - 10
circuits of size 3. The RBLE difference is due in part to the fact that
only a small subset out of the 28 possible expansions may result in
size 3 circuits.

Figure 7 shows the results from Experiment 1 where 1,000 vari-
ants of size 4 were created for the original AND, OR, XOR, NAND,
NOR, NXOR gates in §2_1_1. The chart shows a combination of the
number of circuits for both methods, where circuits with the same
structure are aligned. CIRCLIB variants follow a fairly uniform
distribution for all 6 gate types with 1-2 circuits being chosen from
70-80 possible variants. RBLE creates circuits that overlap between
5-10 of the same circuits that CIRCLIB produces (roughly 8% of
the CIRCLIB sets). RBLE replacements of size 4 have a roughly uni-
form distribution ranging from 3 - 10 circuits from 50-60 possible
variants. This size distribution reveals how RBLE construction can

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

Circuits # Circuits # Circuits
5 B 10
P AND OR s XOR
3 4 §
2 2 4
1 2
] | | n | | o
Circuits # Circuits # Circuits
6 3
* NAND NOR] NXOR
B 4 I
4 4
2
H | 2
o o [}

M Chosen ™ Expanded

Figure 7: Number circuits for §;_1_4 Strict Replacement-1K

reach circuits that are not part of the CIRLIB family because of cre-
ation rules: in particular, RBLE allows degenerate circuit conditions
such as 2-input gates that have the same source. Most of the RBLE
circuits are thus disjoint from the CIRCLIB variants.

Circuits # Circuits # Circuits
8 0 15
R AND s OR XOR
1w
4 10
2 | s 5
[! ! 0 0
Circuits # Circuits # Circuits
5 8]
a NAND . NOR . NXOR
3
4 4
2
1 2 2
o o o

M Chosen m Expanded

Figure 8: Number circuits for §;_;_5 Strict Replacement-1K

Figure 8 shows the results from Experiment 1 where 1,000 vari-
ants of size 5 were created for the original AND, OR, XOR, NAND,
NOR, NXOR gates in §;_1_1. The chart shows a combination of
number of circuits for both methods, where circuits with the same
structure are aligned. CIRCLIB variants again follow a fairly uni-
form distribution for all 6 gate types, whereas RBLE replacements
have a similar distribution as with size 4 replacements. Given that
only 1000 variants were created for RBLE, the amount of variability
is clearly less than what is possible with CIRCLIB variants, and
certain circuit variants are created under RBLE with above aver-
age frequency. For size 5 replacements, the distributions show no
overlap at all between the variants chosen by CIRCLIB and those
expanded by RBLE.

Figure 9 shows the results from Experiment 1 where 10,000
variants of size 3 were created for the original AND, OR, XOR,
NAND, NOR, NXOR gates in §z_1-1. The chart summarizes the
number of circuits (each bar representing an identical matching
circuit between the RBLE and CIRCLIB methods) for all gate types,
ordering variants in descending order by the frequency with which
they are chosen by CIRCLIB. In a larger set of circuit replacements
(10,000 attempts vs 1,000 attempts), it can be seen that CIRCLIB
circuits do not follow a purely equal distribution. This is due to that

McDonald, Stroud, and Andel

8000
Ex-NXOR
7000 » Ex-NOR
6000 H Ex-NAND
Ex-XOR
5000 = Ex-OR
4000 m Ex-AND
Ch-NXOR
3000 Ch-NOR
2000 Ch-NAND
® Ch-XOR
1000 = Ch-OR
0 m Ch-AND

I3 0w 7 9 11 13 1y 17 19 F1 23 2% 37 29 31 33 3% 37 39 41 43 a3

Figure 9: Number circuits for §;_;_3 Strict Replacement-10K

fact that there are overlaps of structurally equivalent circuits in
CIRCLIB, so that certain circuits have a higher probability of being
chosen. We observe also that for size 3 replacements, allowing larger
distributions (in this case 10,000 variants) shows that there are more
overlaps with CIRCLIB variants that are chosen, depending on the

gate type.

2000
1800
Ex-|
1600 x-NXOR
W Ex-NOR
1400 ™ Ex-NAND
. Ex-XOR
1200 ®Ex-OR
1000 W Ex-AND
Ch-NXOR
80O Ch-NOR
' Ch-NAND
600 "
 Ch-XOR
200 | ch-oR
| A m Ch-AND
200 “.
T \ i
ol bl o,

Figure 10: Cumulative circuits &, ;4 Strict Replacement-
10K

Figure 10 shows the results from Experiment 1 where 10,000
variants of size 4 were created for the original AND, OR, XOR,
NAND, NOR, NXOR gates in §;_1_1. The chart summarizes the
number of circuits (each bar representing an identical matching
circuit between the RBLE and CIRCLIB methods) for all gate types,
ordered by the highest frequency that the variant is chosen by
CIRCLIB. RBLE replacements do not follow the same distribution
as CIRCLIB, but overall both approaches select circuits from the
same range of unique circuits for each gate type.

Figure 11 provides a more precise view of size 4 replacements
created by the two methods for the 10K distribution set following
strict expansion policy. In this view, the spiky nature of the RBLE
replacements that are generated are compared against the same
identical circuit that is chosen by the CIRCLIB algorithm. The chart

Polymorphic Circuit Generation Using Random Boolean Logic Expansion

120 AND OR XOR
150
300
w0 I 200
50 “ i “ ‘L wo |
0 WJ&*J.! 0 WM
250 200 500
200 NAND NOR . NXOR
150 300
100
100 200
s0 | 50 100
o 0 Mlﬂh 0

B Chosen ™ Expanded

Figure 11: Number circuits §;_;_4 Strict Replacement - 10K

is ordered based on highest frequency of CIRCLIB variants that
were generated. As a strength, around 60% of unique CIRCLIB
circuits are also created by expansion, but with RBLE producing a
higher frequency of those variants in comparison to RBLE. Strict
size expansion policy, being non-deterministic, may result in failure
to produce a variant: for these experiments, there were no maximum
attempt failures.

Experiment 1 Summary: To summarize analysis for Experi-
ment 1, we observed that RBLE distributions are not completely
uniform in comparison to CIRCLIB variants. Given replacements in
the §z—1—z family, they are nearly identical. Beyond that, distribu-
tions vary considerably based on the number of variants generated
(1K vs 10K). This is partially because the set of potential semanti-
cally equivalent replacements is above 1000 for each of the original
11 circuits for sizes 4 and 5. RBLE does generate a reasonable
subset of potential CIRCLIB variants under strict expansion policy
for all gate types, for target gate sizes 2 through 5. The spiky nature
of the distributions and lack of ability to produce near matching
distributions do point to weaknesses in the RBLE algorithm in re-
gard to uniformity. We believe this is because only expansions were
included in the RBLE algorithm (see Table 2). In order to reach a
larger potential set of circuits, we believe that both reductions (see
Table 1) and expansions should be used, as some circuits are not
possible to create without both sets of Boolean laws.

We report next the results of Experiment 2 distributions. We
look first at the comparable set of circuits for all expansion pos-
sibilities that are created by RBLE and chosen with CIRCLIB that
matched our target gate size of 5. Figure 12 and Figure 13 show the
distribution results, per gate type, for replacements in the 6215
family. We can observe in Figure 12 the distribution of CIRCLIB
replacements, where the number of actual CIRLIB circuits of a given
structure are compared against the number that are generated by
the chooser algorithm. This shows that certain CIRCLIB circuits are
over-represented, and thus the distribution among 200,000 variants
of each gate type is not completely uniform. Figure 13 shows a
summary of expanded circuits. We do not show expansions of 7
through 10 because they resulted in only a few or 0 circuits being
produced that have gate size 5. This shows the closest comparison
to CIRCLIB selection where the size is exact. The two figures also
show the stark difference between potential unique circuits which

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

0.300% o 0300
2-1-5 AND 2-1-50R 2-1-5 XOR
amms (%3 oS0
oL.00% (T ey
—Cncun [} —Cinrin
Chosen Chosen Chasen
a150% s

0A00% (a0 Y
Qs DUETS
0.000% : T .
5069 Unigue Circuits 5069 Unigue Circuits 3901 Unigue Circuits
030T% 0300% 0.300%
2-1-5 NAND 2-1-5NOR 2-1-5 NXOR
[Q250% 0.750%
D00 | 0200 0.200% |
—cncun ———)
Chosen Chosen Chosen
0.150% Q50
DI07% 0.300%
D apsm

0.000%
4140 Unigue Circults 4139 Unique Circuits 3901 Unigue Circults

Figure 12: Distributions for §;_;_5 Chosen Replacement

b 2-1-5 AND . 2-1-50R - 2-1-5 XOR
bl s %
= L
o %
el

5% %
. ‘ ol ¥
% (Mt 0% ;""'I. e
. || I " """ll il "

83 Unigue Circuits 68 Unigue Circuits 107 Unigque Circuits
- 2-1.5 NAND " 2-1-5NOR | Z15NXOR
% || " uy |
F=i aw -
i i |
g 4L aon |l 5%
10% I | o i i |
5% | | | . || |
P M Mlwdtdden | | o it ot || e I

86 Unigue Circuits 72 Unique Circuits 93 Unique Circults

Expansions m N1 mN2Z w N3 mN4 = NS

Figure 13: Distributions for §,_;_5 Expanded Replacement

can be reached by either approach. For each of the 200,000 variants
chosen through CIRCLIB, all of the potential semantically equiva-
lent versions for each gate type were reached: this includes 5069
AND variants, 4140 NAN D variants, 5069 OR variants, 4139 NOR
variants, 3901 XOR variants, and 3901 NXOR variants. Figure 14
provides a summary of the unique variants reached through expan-
sion, where the gate size was 5. For example, with 3 expansions,
RBLE produced 78 AN D variants, 82 NAND variants, 64 OR vari-
ants, 71 NOR variants, 95 XOR variants, and 84 NXOR variants.
The smallest number of unique variants was produced with 1 and 7
expansions.

Experiment 2 Summary: One of the primary benefits of RBLE
is its ability to create variants of much larger size than what is
feasible with the static CIRCLIB approach. Figure 15 illustrates the
total distribution of circuits produced by RBLE for all gate types as
part of Experiment 2, regardless of size. With 1 expansion, circuits
between size 3 and 8 can be reached, whereas with 10 expansions,
circuits between size 6 and 37 can be reached. The chart summarizes
the distribution of the 1,200,000 circuits produced for 6 pairs of
82_1_3 circuits with each pair being semantically equivalent to

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

i 2-1-5 Total Circuits it 2-1-5 Unique Circuits

50000 120
40000 100
= AND-COUNT = AND-UNIGUE
30000 wnanpcouny 50 = MAND-UNIQUE
= OR-COUNT &0 = OR-UNIQUE
20000 ™ NOR-COUNT a0 = NOR-UNIGUE
. = HOR-COUNT 20 H - XOR-UNIGUE
= NXOR-COUNT = MXOR-UNIIUE
o i . o il .|
N1 N2 N3 N4 N5 N6 N7 N1 N2 N3 N4 N5 N6 N7
Number of Expansions Number of Expansions

Figure 14: §,_;_s5 expanded replacement summary

the original six basic gate types. This figure only shows unique
circuits that are produced, ranging up to 153,303 for 5 expansions.
Of the 12,000,000 circuits generated by RBLE, 8,253,348 circuits were
unique, which speaks more to the uniform possibilities of RBLE
when replacement size is not a limiting factor. The ability to reach
larger circuit replacement possibilities opens up new potential for
iterative sub-circuit selection and replacement as a result. A static
approach, for example, would be limited by conventional disk file
storage system constraints to libraries for §;_;_ x no greater than
size 7 [16].

Unique 2-1-X Expanded Circuits for 2-1-3 Replacement

180000 -
1,200,000 Circuits
160000 Chasen 200,000 AND
Limit 200,000 NAND
140000 200,000 OR
200,000 NOR
120000 200,000 XOR
200,000 NXOR
100000
80000
60000
40000
20000
[=a

345678 910111213141516171819202122232425262728293031323334353637 Circuit Size
~+1 =2 +3-4-5+6 7 8 9 10 #Expansions

Figure 15: Unique expanded replacements (200,000 per type)

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel method for generating poly-
morphic circuit variants based on inverse application of Boolean
logic laws: random Boolean logic expansion (RBLE). We generated
and studied 13,360,000 circuit variants as semantically equivalent
replacements for simple §,_1_; and §2_3_3 circuits. Our initial em-
pirical study shows that RBLE exhibited instances of uniformity
when a specific sized circuit is required (strict size expansion pol-
icy), but can only reach a small percentage of comparable circuits
from a static library selection when fixed expansions are used. How-
ever, when size is not a factor, RBLE has ability to generate a large
number of unique variants uniformly when various expansion sizes
are used. Based on these initial results, our future work will focus
on addressing the inability of RBLE to reach certain circuits in a
possible population of alternatives: we expect that the addition of
reduction laws alongside expansion laws will address this problem.
If we considered the presence of constant 0 and 1 signals as valid,

McDonald, Stroud, and Andel

this would also provide greater flexibility to reach circuits of certain
size, as the signals are typically considered to be provided outside
the circuit.

8 ACKNOWLEDGEMENTS

This work is partially supported by National Science Foundation
awards 1811560 and 1811578 in the NSF 17-576 Secure and Trust-
worthy Cyberspace (SaTC) program.

REFERENCES

[1] 2016. BSA Global Software Survey: Seizing Opportunity Through License Com-
pliance. https://globalstudy.bsa.org/2016/. Accessed: 2019-08-12.

[2] R.Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Comput. C-35, 8 (Aug 1986), 677-691. doi: 10.1109/TC.1986.1676819.

[3] C.Collberg. 2018. Code Obfuscation: Why is This Still a Thing?. In Proc of the 8th

ACM Conference on Data Application Security and Privacy (CODASPY '18). ACM,

New York, NY, USA, 173-174. doi: 10.1145/3176258.3176342.

C. Collberg, J. Davidson, R. Giacobazzi, Y. Gu, A. Herzberg, and F. Wang. 2011.

Toward Digital Asset Protection. IEEE Intelligent Systems 26, 6 (Nov. 2011), 8-13.

doi: 10.1109/MI5.2011.106.

C. Collberg and]. Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking,

and Tamperproofing for Software Protection (1st ed.). Addison-Wesley.

[6] Y. Crama and P. Hammer. 2011. Boolean Functions: Theory, Algorithms, and
Applications. doi: 10.1017/CB0O9780511852008.

[7] G. De Micheli. 1994. Synthesis and Optimization of Digital Circuits (1st ed.).
McGraw-Hill Higher Education.

[8] D. Evans, V. Kolesnikov, and M. Rosulek. 2018. A Pragmatic Introduction to
Secure Multi-Party Computation. Foundations and Trends in Privacy and Security
2, 2-3 (2018), 70-246. doi: 10.1561/3300000019.

[9] M. Hansen, H. Yalcin, and J.P. Hayes. 1999. Unveiling the ISCAS-85 Benchmarks:
A Case Study in Reverse Engineering. IEEE Des. Test 16, 3 (July 1999), 72-80. doi:
10.1109/54.785838.

[10] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. 2004. Fairplay—a Secure Two-
party Computation System. In Proc. of the 13th Conference on USENIX Security
Symposium (SSYM'04). USENIX Association, Berkeley, CA, USA.

[11] R. Manikyam. 2019. Program Protection Using Software Based Hardware Absirac-
tion. Ph.D. Dissertation. University of South Alabama.

[12] R. Manikyam, J. McDonald, T. Andel, and M. Yampolskiy. 2019. Poster: Ana-
lyzing Program Protection Using Software-Based Hardware Abstraction. In 3rd
Workshop for Women in Hardware and Systems Security (WISE).

[13]]J. McDonald and Y. Kim. 2012. Examining Tradeoffs for Hardware-Based Intel-
lectual Property Protection. In Proc. of the 7th Intrnl Conference on Information
Warfare and Security 2012 (ICIW 2012). 192-202.

[14]]. McDonald, Y. Kim, and M. Grimaila. 2009. Protecting Reprogrammable Hard-
ware with Polymorphic Circuit Variation. In Proceedings of the 2nd Cyberspace
Research Workshop, June 2009, Shreveport, Louisiana, USA.

[15]]J. McDonald, Y. Kim, D. Koranek, and J. Parham. 2012. Evaluating component
hiding techniques in circuit topologies. IEEE International Conference on Com-
munications, 1138-1143. doi: 10.1109/ICC.2012.6364542.

[16]]J. McDonald, E. Trias, Y. Kim, and M. Grimaila. 2010. Using logic-based reduction
for adversarial component recovery. Proceedings of the ACM Symposium on
Applied Computing, 1993-2000. doi: 10.1145/1774088.1774508.

[17] T. Miracco. 2016. The Hidden Cost Of Software Piracy In The
Manufacturing Industry. https://www.manufacturing.net/article/2016/02/
hidden-cost-software-piracy-manufacturing-industry/. Accessed: 2019-08-12.

[18] K. Nohl, D. Evans, Starbug, and H. Plotz. 2008. Reverse-engineering a Crypto-
graphic RFID Tag. In Proceedings of the 17th Conference on Security Symposium
(55'08). USENIX Association, Berkeley, CA, USA, 185-193. doi: 10.1109/54.785838.

[19] J. Parham, J. McDonald, M. Grimaila, and Y. Kim. 2010. A Java based Component
Identification Tool for Measuring the Strength of Circuit Protections. In Proc. of
the 6th CSIIRW 2010, Oak Ridge, TN, USA, April 21-23, 2010. 1.

[20] F. Petitcolas. 2011. Kerckhoffs’ Principle. Springer US, Boston, MA, 675-675. doi:
10.1007/978-1-4419-5906-5_487.

[21] E.Simonaire. 2008. Sub-Circuit Selection and Replacement Algorithms Modeled as
Term Rewriting Systems. Master’s thesis. AF Inst of Technology, WPAFB, OH.

[22] N.Wirth. 1998. Hardware compilation: translating programs into circuits. Com-
puter 31, 6 (June 1998), 25-31. doi: 10.1109/2.683004.

[23] A. Yao.1986. How to Generate and Exchange Secrets. In Froc. of the 27th Annual
Symposium on Foundations of Computer Science (SFCS '86). 162-167. doi: 10.1109/
SFC5.1986.25.

[4

[5

https://globalstudy.bsa.org/2016/
10.1109/TC.1986.1676819
10.1145/3176258.3176342
10.1109/MIS.2011.106
10.1017/CBO9780511852008
10.1561/3300000019
10.1109/54.785838
10.1109/ICC.2012.6364542
10.1145/1774088.1774508
https://www.manufacturing.net/article/2016/02/hidden-cost-software-piracy-manufacturing-industry/
https://www.manufacturing.net/article/2016/02/hidden-cost-software-piracy-manufacturing-industry/
10.1109/54.785838
10.1007/978-1-4419-5906-5_487
10.1109/2.683004
10.1109/SFCS.1986.25
10.1109/SFCS.1986.25

	Abstract
	1 Introduction
	2 Motivating Context
	3 Background & Related work
	3.1 Boolean Logic Laws and Expressions
	3.2 Digital Logic Circuits

	4 Boolean Reduction and Expansion
	5 Experimental Evaluation
	5.1 Experiment 1: Strict Size Replacement
	5.2 Experiment 2: Fixed Expansion/Targeted Replacement
	5.3 Analysis

	6 Results
	7 Conclusions and Future Work
	8 Acknowledgements
	References

