Evaluating Security of Executable Steganography for
Digital Software Watermarking

J. Alex Mullins
School of Computing
University of South Alabama
Mobile, AL

jam1201 @jagmail.southalabama.edu

William R. Mahoney
School of Computing
University of Nebraska at Omaha
Omaha, NE

wmahoney@unomaha.edu

ABSTRACT

Man-at-the-end (MATE) attacks against software programs are
difficult to protect. Adversaries have complete access to the binary
program and can run it under both static and dynamic analysis to
find and break any software protection mechanisms put in place.
Even though full-proof protection is not possible practically or
theoretically, the goal of software protection should be to make it
more difficult for an adversary to find program secrets by
increasing either their monetary cost or time. Protection
mechanisms must be easy to integrate into the software
development lifecycle, or else they are of little to no use. In this
paper, we evaluate the practical security of a watermarking
technique known as Weaver, which is intended to support software
watermarking based on a new transformation technique called
executable steganography. Weaver allows hiding of identification
marks directly into a program binary in a way that makes it difficult
for an adversary to find and remove. We performed instruction
frequency analysis on 106 programs from the GNU coreutils
package to understand and define Weaver’s limitations and
strengths as a watermarking technique. Our evaluation revealed
that the initial prototype version of Weaver suffers from limitations
in terms of standard benchmarks for steganography evaluation,
such as its stealth. We found that this initial prototype of Weaver
relied heavily on one type of instruction that does not frequently
occur in standard programs, namely the mov instruction with an 8-
byte immediate operand. Our instruction frequency analysis
revealed a negative impact due to Weaver’s over-reliance on this
mov instruction.

1. INTRODUCTION

Software piracy has been a steadfast problem in today’s digital age.
Software piracy is defined as “the unauthorized use such as
possession, copying, distribution, buying and selling of software
without the consent of the developer or the developing company”
[10]. It is a heavy burden on U.S. based software companies trying
to sell their products worldwide. The Commission on Theft of
American Intellectual Property reported in 2017 that “IP theft is one
of the most pressing issues of economic and national security facing

J. Todd McDonald
School of Computing
University of South Alabama
Mobile, AL

jtmcdonald @southalabama.edu

Todd R. Andel
School of Computing
University of South Alabama
Mobile, AL

tandel@southalabama.edu

our country.” [4] The total estimated global monetary damages due
to software piracy in 2015 amounted to $52.2 billion with a “low-
end estimate for the cost to U.S. firms is $18 billion” [4].

Not only is software piracy causing monetary damages, but it is also
a vector to spread malware to those people using pirated software.
The BSA Software Alliance states that “it is increasingly clear that
these malware infections are tightly linked to the using unlicensed
software — the higher the rate of unlicensed software use, the higher
the likelihood of debilitating malware infection.” [5] There is a 29%
chance of being infected with a piece of malware when a person
installs unlicensed, pirated software [S]. Malware infections are a
significant problem for businesses. It is estimated to cost them $359
billion worldwide to deal with malware infections of their computer
systems [5]. In some parts of the world, software piracy is very
prevalent. During his 2007 thesis research, Zhu reported that some
countries have piracy rates as high as 92% [26].

Software developers rely on surreptitious software protection
techniques to combat software piracy and protect their intellectual
property. Five general techniques can be employed to protect a
program from an adversary: code obfuscation, software
watermarking, fingerprinting, birthmarking, and tamper-proofing
[9]. Surreptitious software protection is a branch of computer
security and cryptography [9].

Code obfuscation deals with the ability of an adversary to analyze
a program’s semantic meaning. The goal of code obfuscation is to
transform the original code (source or binary) into a semantically
equivalent form that is harder for an adversary to analyze or reverse
engineer. Harder to analyze means increasing the cost to the
adversary. That could mean monetary, time, or computational cost.

Tamper-proofing handles the case where an adversary has made
changes to a program. The program can run self-verification
routines to validate its integrity. These self-verification routines are
usually implemented by hashing code sections and comparing the
resulting checksum to the checksum computed at compilation. If
the self-verification routine fails, then the program will quit or
behave unexpectedly, rendering the software useless.

Watermarking, fingerprinting, and birthmarking are all considered
"after-the-fact" techniques because they are used in the
identification of stolen intellectual property rather than in
preventing adversarial attacks. Watermarking embeds a mark
inside of a program such that it can be extracted at a later time to
prove program authorship. Watermarking is well-known outside of
executable programs. For example, there are watermarks for
images, videos, and audio. Figure 1 below is an example of an
image watermark [24]. Fingerprinting is similar to watermarking.
It embeds a mark inside a program to identify the valid user/owner
whom the program author has given a license to use the software.
Birthmarking is used to detect code similarity. All of these
techniques are designed so that they can be used as evidence in a
court of law where a program author brings a case of intellectual
property theft against a defendant. Collberg discusses one such case
where IBM used birthmarking to sue a competitor for stealing their
PC-AT ROM code [9].

Figure 1. Example image watermark [24]

Software watermarking is one of the focus areas in this paper.
Software watermarking was a popular topic in the research
literature and took off in the late 1990s and early 2000s. Outside of
the research literature, there is not much talk of software
watermarking or software watermarking implementations used for
protecting general purpose applications. If a company uses
software watermarking, they most likely keep quiet about that fact
to not draw the attention of adversaries. Software watermarking
intends to embed a secret mark into a piece of software and
identifies the program author. However, a software watermarking
algorithm needs an extraction component to be truly useful. If a
watermark cannot be extracted, then it provides no use in a court
setting where a program author is trying to prove his case to a judge.
Zhu and Thomborson formalized the concepts of embedding and
extraction, which are shown in Table 1 [25].

For any of the software protection techniques discussed above to be
used by software developers, they need to be implemented in tools
that are easy to use. Most of the obfuscation, tamper-proofing, and
watermarking solutions discussed in the research literature lack
usability. If a tool is not easy to use and does not integrate into
existing build systems, then there is no chance that a developer will
touch it. While there exist software protection solutions in the form
of usable tools, they are often restricted to specific programming
languages, limiting their usability.

Table 1. Watermarking concepts [25]

Concept Definition

Embedding Inserting a watermark into a program

Extraction Successful extraction of the inserted
watermark

Blind Extraction requires no additional

extractability information

Informed Extraction requires extra information such

extractability as the original unwatermarked program

Tigress is a tool initially built to test the idea of code diversity as a
method of overwhelming an adversary in a Remote Man-at-the-end
(R-MATE) attack [7]. It has also been used to test the ability of
obfuscated programs to reduce the effectiveness of symbolic
execution analysis by causing path explosion, path divergence, and
complex constraints [2]. Tigress is a C diversifier and obfuscator
that applies obfuscating transformation at the source level. It takes
in a C source file and applies several different transformations to it
and then outputs an obfuscated C source file. Tigress has an
impressive number of transformations. These include code
virtualization, code jitting, dynamic code jitting, control flow
flattening, function merging, function splitting, function argument
reordering, opaque branching, integer, and string literal encoding,
integer data encoding, integer arithmetic encoding, and more.
These obfuscation transformations could slow down an adversary.
However, the most significant disadvantage to Tigress is that it is
dependent on the C source file to apply the obfuscation
transformation successfully.

Sandmark is “a tool developed to aid in the study of software-based
software protection techniques.” [6] It provides many software
protection techniques that have been talked about previously. It
provides static program analysis, software watermarking, tamper-
proofing, and code obfuscation. However, these protections are
only available for Java bytecode.

Obfuscator-LLVM, as its name implies, is an obfuscation tool with
“a set of obfuscating transformations implemented as middle-end
passes in the LLVM compilation suite.” [16] This means that any
language that targets LLVM IR can use the code transformations
provided by Obfuscator-LLVM. This list of front-end languages
includes Ada, C, C++, D, Delphi, Fortran, Haskell, Julia,
Objective-C, Rust, and Swift. Also, Obfuscator-LLVM can be used
with any backend that LLVM supports. That architecture list
includes x86, x86-64, PowerPC, PowerPC-64, ARM, Thumb,
ARM-64, Sparc, Alpha, and MIPS [16]. The list of obfuscating
transformations that Obfuscator-LLVM provides is instruction
substitution, bogus control-flow insertion, basic block splitting,
procedure merging, and code tamper-proofing [16]. Because the
transformations target the LLVM IR level, many languages and
architectures are supported and can be used by a large audience. An
early version of it made a debut being used to obfuscate the
evasiOn7 jailbreak for iOS devices.

Weaver is a tool built to provide software watermarking protection
for programs. It is a collaborative effort between faculty and
students at the University of Nebraska at Omaha and the University
of South Alabama. It is in a similar vein as Obfuscator-LLVM and
targets the LLVM IR level to apply the watermark and

steganography transformations. The wide array of languages and
architectures available to LLVM is very appealing for a general-
purpose software protection tool. Weaver has undergone an update
from the first version to a new version, which changes the
steganographic technique used to hide the watermark. The first
version used an executable steganography technique termed
instruction weaving [18]. The second version of Weaver uses basic
block insertion and opaque branches to hide the watermark.

In this paper, we intend to show that version one of Weaver was
insufficient for hiding a watermark because of the lack of stealth
provided by its instruction weaving technique. The lack of stealth
would allow an adversary to spot the ‘hidden’ watermark easily.
This paper is organized as follows: Section 2 gives background on
software protection techniques and Weaver; Section 3 will detail
the approach we took to analyze the Weaver’s stealth; Section 4
details our results; Section 5 gives our conclusions; Section 6
provides avenues for future work.

2. BACKGROUND

The techniques discussed previously, such as watermarking,
steganography, and obfuscation, have been thoroughly explored in
the research literature. These techniques are implemented in
software to protect secrets in program code by slowing down an
adversary from reverse engineering important algorithms or data
structures which the program author considers as their intellectual
property. It is important to note that these techniques cannot prevent
an adversary from eventually recovering these secrets. Collberg et
al. said, “there are no known algorithms that provide complete
security for an indefinite amount of time. At present, the best we
can hope for is to be able to extend the time it takes a hacker to
crack our schemes." [9]

2.1 Software Watermarking

Software watermarking is an anti-piracy technique that helps a
program author prove authorship of code obtained through
illegitimate channels. During a court proceeding, the program
author uses an extraction tool that has specific knowledge of the
embedded watermark. This tool pulls out the watermark, which is
presented to the court as evidence of program authorship.

Many of the first software watermarking techniques were published
in patents filed by Davidson and Myhrvold [11], Moskowitz and
Cooperman [21], and Samson [22]. Afterward, there was a surge of
research work done in the late 1990s and early 2000s, focusing on
software watermarking.

Software watermarking embeds a secret watermark M into a
program P giving us Pp. Collberg and Thomborson define
watermarking as [8]:

embed(P, W, key) = Pw
extract(Pw, key) = W

Hamilton and Danicic give five properties that they consider a
“good” software watermarking system should have, which are
outlined in Table 2 [14].

Table 2. Properties of Good Watermarking

Metric Condition

Program Size Program size must not be

increased significantly

Program Efficiency Program runtime must not be

decreased significantly

Resiliency Resistant to semantic
preserving transformations

Invisibility Sufficiently well-hidden to
avoid removal

Extraction Easy to extract by author

Zhu discussed the taxonomy of watermarking in his thesis work and
classified them along many axes, and they are presented in Table 3
[26].

Table 3. Watermarking Taxonomies

Classification Subclass

Purpose e Prevention

e Assertion

e Permission

e Affirmation
Extraction Technique e Static

e Dynamic
Fragility e Robust

e Fragile
Visibility e Visible

o Invisible
Detection Method e Blind

e Informed
Tamperproof-ness e Tamperproof

e Not Tamperproof

Classification by extraction technique (static vs. dynamic) is how
many papers in the research literature differentiate software
watermarking algorithms. Static watermarking schemes place a
watermark directly in the code of an executable that can be
extracted without running the program. An example of a static
watermark would be the Monden et al. method of inserting a
watermark in the Java bytecode of a program [20]. On the other
hand, dynamic watermarking schemes place a watermark in the
runtime execution state of the program, and it can only be extracted
during the program’s runtime. The most well-known dynamic
watermarking scheme is the CT algorithm developed by Collberg,
Thomborson, et al. [8]. The high-level algorithm flow shown in
Figure 2 is from their paper "Dynamic graph-based software
watermarking.”

P=

addEdge (n2, n3

Figure 2. CT Algorithm of dynamic watermark built-in memory

From Figure 2, a graph is built beforehand that represents a unique
watermark. This graph is transformed into code which can build the
chosen graph. This code is then embedded into program P. Once
the code is run, the graph will be built in the program’s heap
memory. The graph in memory is considered the actual software
watermark.

Collberg and Thomborson cover three types of attacks against
software watermarking: subtractive, distortive, and additive [8].
These attacks are performed by an adversary looking to remove a
watermark from a watermarked program. In a subtractive attack, a
watermark is wholly removed from the program. In a distortive
attack, the program's code is semantically transformed to the point
that the watermark cannot be extracted from the program. Additive
attacks involve an adversary embedding their own watermark into
an already watermarked program. An additive attack reduces the
original author’s claim in court because now an adversary can
extract his watermark too.

2.2 Executable Steganography

Steganography is the age-old problem of trying to hide a secret
message in a cover message. Steganography has a slightly different
goal than that of cryptography as “... classical cryptography is
about concealing the content of messages, steganography is about
concealing their existence” [1]. Steganography is modeled by the
Prisoners’ Problem that was first discussed in this context by
Simmons [23]. The problem is described as two inmates, Alice and
Bob, who both want to plan a secret prison break, but they can only
communicate through written messages that must pass through the
prison’s warden, Wendy. So, Alice and Bob must resort to
embedding their secret plans in cover messages to not raise
suspicion from Wendy. Wendy can read each message passed
between the two inmates and can either allow the message to pass
through or trash the message if she suspects anything nefarious.

Collberg and Thomborson give the strength of a steganographic
algorithm by measuring its data rate, stealth, and resilience [8].
They go on to say, "data rate expresses the number of bits of hidden
data that can be embedded within each kilobyte of cover message,
the stealth expresses how imperceptible the embedded data is to an
observer, and the resilience expresses the hidden message's degree
of immunity to attack by an adversary" [8]. They go on to say that
all of these metrics are trade-offs between each other.

There have been a few examples of hiding hidden messages in
executables. The most well-known is Hydan created by El-Khalil
and Keromytis [12]. It can embed a hidden message in
“functionally-equivalent instructions” of a program’s binary code
and can be used to hide a static watermark, fingerprint, or any other
secret message [12]. The downside of Hydan is its low data rate.
The scheme can embed data at a 1/110 bit encoding rate (1 bit of
hidden message data for 110 bits of cover message data) [12].

Executable steganography hides secret executable code inside a
cover program’s regular executable code. Figure 3 below is from
the RopSteg paper and shows an excellent example of executable
steganography [17].

2 bytes shift

- ——» :neg eax :mov cl,ebh:sbb eax,eax:ret:
unintended form . K

| 3D 23°F7 D8B1 EB 1B CO:C3:02| |

@eax, B lD8F723hl(jmp Shom rol bl. 02h

Figure 3. Executable steganography, hiding instructions

original

intended form

As can be seen, if instruction decoding starts at the byte 0x3D, then
it would produce an instruction sequence of a cmp, jmp, and rol.
However, if instead, instruction decoding starts at byte 0xF7, then
a different instruction sequence is produced consisting of a neg,
sbb, and a ret. This is what executable steganography is all about —
hiding a different instruction sequence within a cover instruction
sequence.

A novel executable steganographic technique discussed by Lu,
Xiong and Gao uses return-oriented programming (ROP) to
produce hidden code within a cover program [17]. They named
their technique RopSteg.

2.3 Software Obfuscation

Software obfuscation is a software protection technique that
transforms a program P into a semantically equivalent program P’.
Effective obfuscation means the resulting program P’ should be
much harder to understand and analyze than the original program
P [26]. Collberg et al. point out that obfuscation is a double-edged
sword because it can be used by good guys to protect their IP, but
can also be used by malware writers to hide their program’s

malicious intent [9]. Zhu lays out four types of obfuscation
techniques, which are detailed in Table 4 [26].

Table 4. Obfuscation Types

Obfuscation Type Description

Design Class merging, class splitting,
and type hiding

Data Split variable, merge variable,

flatten array, fold array, etc.

Control-flow Flattening, block reordering,

method inlining, etc.

Layout Lexical formatting, renaming,

etc.

Obfuscator-LLVM is a well-known obfuscating compiler that
offers obfuscation transformation for program protection [16].
Another implementation of an obfuscating compiler is from
Mahoney, who used the GCC compiler to add obfuscation
transformations [19]. Specifically, Mahoney’s obfuscating GCC
compiler provides three obfuscation techniques: jump hiding, block
shuffling, and junk insertion [19]. He is also one of the authors of
Weaver.

2.4 Weaver — Version 1

Weaver is an implementation of executable steganography
developed by faculty and research students at the University of
Nebraska at Omaha and the University of South Alabama. It has
gone through a rewrite, but the first version is described in the paper
“Leave it to Weaver” [18]. For the rest of this paper, we will refer
to the first version of Weaver as (WV1) and the second version as
(WV2).

WV1’s executable steganography technique can hide secret code
by exploiting the variable-length instructions of the Intel x86-64
instruction set architecture (ISA). ISAs are generally divided into
two broad categories: complex instruction set computer (CISC) and
reduced instruction set computer (RISC). A RISC architecture
usually has fixed width instructions. For example, ARM ISA is a
RISC architecture and has an instruction width of 4 bytes (in non-
Thumb mode). The fixed width means that the starting address of
every instruction will occur on a 4-byte boundary, making
instruction decoding very simple.

On the other hand, Intel x86-64 is a CISC architecture and has
variable width instructions that can be anywhere from 1 byte to 15
bytes [13]. The authors of Weaver conducted an empirical study
and found that the Intel x86-64 instruction length of Linux
executables averaged 2.57 bytes [18]. This variable width
instruction encoding means that a valid instruction can occur at any
byte boundary and can produce complications when disassembling
[15]. WVI1 takes advantage of this property to hide secret
instruction sequences inside of cover instruction sequences.

Specifically, WV1 tries to hide the secret instructions in the bytes
corresponding to large immediate operands of particular
instructions in the cover program [18]. This hidden code can be
jumped to so that it starts executing instead of the original code in
the cover program. Without variable-width instructions, it would
not be possible to jump in the middle of an instruction to the
location of the hidden instruction. A high-level view of WV1 can
be seen in Figure 4.

Stealth

Hiding
Instructions

Figure 4. The high-level view of WV1

Weaver takes a specially crafted carrier (cover) program C that
contains candidate hiding instructions HI that will eventually have
their large immediate operands replaced with the instruction bytes
from the stealth program S, which contains the stealth instructions
SI. This carrier program is specifically made to contain candidate
HI, and it is not part of the original program binary. WV1 only
considers instructions from C with constant operands, and it
classifies these instructions into two broad categories: immediate
and relative offset operands. It further divides these instructions
by the operand byte size. Table 5 shows the breakdown of these
classifications [18].

Table 5. Classification for HI

Category Byte Size Operand Type

Immediate

Immediate

Immediate

Immediate

Relative offset

Relative offset

Relative offset

R K| N = 0o | N —

I
J
K
L
W
X
Y
Z

Relative offset

WV1, in theory, could use the relative offset instructions. However,
it does not because "they suffer from the drawback that 1) they are
usually too short, and b) represent addresses which are not resolved
until the program is linked." [18] And in fact, WV1 limits itself
further due to the average Intel x86-64 instruction length of 2.57
bytes leaving just K and L category instructions that are useable as
candidate HI [18].

Once WV1 has identified all of the candidate HI in C, it will replace
the operand bytes of the HI with the binary code of SI. One
requirement of WV1 is that it must insert a relative jump instruction
as the last two bytes of each embedded sequence of SI to string
together all the S/ in C. Figure 5 shows an example of WV1 hiding
code in the 8-byte immediate operands of the mov instructions. The

candidate H1 is placed inside of a dummy 'hash' function (the carrier
program) that is linked into the program’s binary at compile time.
This dummy ‘hash’ function does not provide anything useful to
the binary other than to provide HI to hide SI. As can be seen, the
2-byte jump is necessary to avoid executing the add, or, and xor
instructions that follow the immediate operands. Because of the
required 2-byte jump, there are effectively 6 bytes to hide S/ in HL

00400796
00400797 mov

rbp {__saved_rbp}

rbp, rsp {__saved_rbp}

00400792 sub rsp, 0x20

0040079e mov qword [rbp-06x18 {var_20}], rdi

00400722 mov rax, qword [rbp-0x18 {var_20}]

00400726 mov edx, Oxa

©004007ab mov esi, 0x0

004007b0 mov rdi, rax

004007b3 call strtoull

004007b8 mov qword [rbp-6x8 {var_10}], rax

004007bc mov rax, 0x9007eb3bb0ce3148

004007c6 add qword [rbp-0x8 {var_10_1} {var_10}1, rax
004007ca mov rax, 0x90909009ebf63148

004007d4 or qword [rbp-0x8 {var_10_2} {var_10_1}], rax
004007d8 mov rax, 0x90909009ebd23148

004007e2 add qword [rbp-0x8 {var_10_3} {var_10_2}], rax
0040076 mov rax, 0x9007eb0000OOE0E8

0040070 and qword [rbp-0x8 {var_10_4} {var_10_3}], rax
0040074 mov rax, 0x90900cebalc7835f

004007 fe xor qword [rbp-0x8 {var_10_5} {var_10_4}], rax
00400802 mov rdx, qword [rbp-0x8 {var_10_5}]

00400806 mov rax, 0x9090909089eb050f

00400810 mul rax, rdx

00400814 mov qword [rbp-0x8 {var_10_6}1, rax

00400818 mov
0040081c leave
0040081d retn

rax, qword [rbp-0x8 {var_10_6}]
{__saved_rbp}
{__return_addr}

Figure 5. ST hidden in the HI of C

From Figure 5, when instruction decoding starts at 0x4007bc, a
mov instruction is found:

mov rax, 0x9007eb3bb0c03148

However, when instruction decoding start 2 bytes further at
0x4007be (the start location of the 8-byte immediate operand) a
new instruction sequence is found (the hidden SI):

XOr rax, rax
mov al, 0x3b
Jjmp 0x4007cc

The jump to 0x4007cc puts the instruction pointer at the start of the
next S/ sequence in the middle of the mov instruction at address
0x4007ba.

2.5 Limitations

WV1 has a few limitations. First, the executable steganography
technique is highly specific to the Intel x86-64 ISA. This keeps it
from being employed on Android and iOS applications in which
both run on the ARM architecture. One of the goals of Weaver is
to be used with a wide variety of languages on various
architectures. So this reliance on Intel x86-64 variable-width
instructions makes that goal unrealistic.

Second, WV1 has a small pool of possible candidate A/ from the K
and L categories. The example code above in Figure 5 only uses the
mov instruction with an 8-byte immediate operand (category L)
that provides a total of 6 bytes for embedding S/ and 2 bytes for the
relative jump. WV1 can use candidate H/ with 4-byte immediate
operands (category K), but that leaves only 2 bytes for embedding
ST with the last two bytes going to the required relative jump. As
noted, there is an average instruction length of 2.57 bytes making
the category K HI not usable in most situations. This means that in
practice, WV 1 only uses the category L HI to embed SI. The “Intel
64 and IA-32 Architectures Software Developer’s Manual” only
specifies one instruction that can take an 8-byte immediate operand,
and that is the mov instruction [13]. This is a pretty impactful
limitation because it potentially weakens the stealth of the
executable steganography because there would need to be many of

these 8-byte mov instructions to hide the SI. If 8-byte immediate
operand mov instructions do not frequently occur in standard
program code, then this might stick out to an adversary.

Both of these limitations of WV 1 make it an unappealing solution.
A move to rewrite Weaver to version 2 is underway. However,
there was never an empirical test to see if the second limitation of
WV1 possibly made the executable steganography stick out to an
adversary. As Collberg and Thomborson noted, the stealth of a
steganography system measures how imperceptible the hidden
secret is from an adversary [8]. That is what this paper will look at
in the next few sections. Do mov instructions with 8-byte
immediate operands occur often enough in standard applications so
that the HI does not seem out of place?

3. APPROACH

To test whether many 8-byte mov instructions will stick out to an
adversary, we will perform an instruction frequency analysis on
106 binaries from the GNU coreutils (version 8.31) to see how
often 1, 2, 4, and 8-byte immediate mov instructions occur. The
GNU GCC compiler was used with an optimization level of 2. Bilar
conducted a similar opcode frequency analysis to try to detect
malware [3].

We will gather statistics on the 1, 2, and 4-byte immediate mov
instructions to get a relative comparison to how often the 8-byte
immediate mov instruction occurs. We assume that we have 600
bytes of SI that need to be hidden inside of the mov instruction’s 8-
byte immediate operands. These 600 bytes of instructions would be
the graph code that would build a watermark in a program’s heap
memory. We arrived at 600 bytes by building a simple doubly
linked list example in C with 32 nodes inserted (this closely
resembles a graph-like structure). Each 8-byte immediate operand
mov instruction will have effectively 6 bytes to hide S/. This means
that at least 100 8-byte immediate operand mov instructions will be
required to embed S7 fully.

So, for instance, if standard applications only contain five 8-byte
immediate operand mov instruction, then these 100 8-byte
immediate operand mov instructions will be very noticeable.

The Binary Ninja disassembler will be used to gather the
disassembly for each binary, and a Python script will be written to
extract out the instruction frequencies from those binaries. If a mov
instruction occurs, we first test whether it is moving an immediate
value into a register or memory location and if so, we then classify
that mov instruction based on a 1, 2, 4, or 8-byte immediate value.
The Capstone disassembler tool will be used to classify each mov
instruction.

4. RESULTS

After running the instruction frequency analysis, we gathered some
interesting data. There was a total of 757,678 instructions contained
in all 106 binaries. That number was spread over 138 unique
instructions. The top ten most frequently encountered instructions
are shown in Table 6.

Of the total 757,678 instructions, 253,521 (33.46%) of them were
mov instructions. Of the 253,521 mov instructions, only 59,159
(23.33%) of them had immediate operands. The break-down of
those mov instructions is shown in Table 7.

We categorize a mov instruction as one that does not have an
immediate operand or has a 1, 2, 4, or 8-byte immediate operand.

The mov instruction with an 8-byte immediate operand occurred
1,928 times throughout the total 757,678 instructions or just 0.25%
of the time.

Table 6. Top 10 Instructions

Instruction Count Percentage
mov 253521 33.46%
call 47421 6.26%
cmp 47056 6.21%
xor 44188 5.83%
lea 40750 5.38%
jmp 40668 5.37%
test 34151 4.50%
je 33097 4.37%
pop 27825 3.67%
add 26568 3.51%

Table 7. Break-down of MOV instructions and percentage of
total instructions

Type Count Percentage
1-byte 12138 1.61%
2-byte 13 0.002%
4-byte 45080 5.95%
8-byte 1928 0.25%
No Imm 194362 24.65%
Estimated Number of MOV Instructions
650
600 595

2975

of MOV Instructions
8

150 148.75

29.75
125 25 6.25. 125, i
500 1000 2500 5000 10000

Total # of Instructions

8-byte Imm MOVs 4-byte Imm MOVs

Figure 6. Estimated Number of MOV Instructions in
Programs with Varying Number of Total Instructions

Figure 6 shows a graph of the estimated number of mov instructions
with 4 or 8-byte immediate operands based on their respective
computed averages in a program with varying numbers of total
instructions of 500, 1000, 2500, 5000, and 10,000.

Based on the computed averages, a program with a total of 10,000
instructions would have roughly 25 8-byte immediate operand mov

instructions and roughly 595 4-byte immediate operand mov
instructions.

5. CONCLUSIONS

Based on the collected results, it seems that WV1 lacks the
instruction diversity to stay hidden due to only using the 8-byte
immediate operand mov instruction. To hide the 32-node
watermarking code (600 bytes) would take around 100 8-byte
immediate mov instructions as candidate HI. This means that to be
effectively hidden (based on the computed average of 0.25%), a
program would need to have around 40,000 instructions.
Furthermore, this just takes into account the 8-byte immediate
operand mov instructions added to the program’s binary code to
hide the watermarking code. It is expected that a program of that
size would have additional mov instructions with 8-byte immediate
operands that normally occur in the program’s code. If WV1 were
to use 4-byte immediate operand mov instructions to hide the
watermarking code, it would need to use 300 mov instructions.
However, it is not feasible to use 4-byte immediate operand mov
instructions because of the average Intel x86-64 instruction length
of 2.57 bytes. Most instructions would not fit in the left-over two
bytes of the immediate operand after the 2-byte jump is inserted
[18]. This conclusion shows that the Weaver author’s suspicions
were right that there is not enough stealth in the instruction weaving
technique to stay hidden from a determined adversary.

6. FUTURE WORK

There is future work to be done in analyzing WV?2 to test its security
features. Especially looking at its ability to stay hidden from an
adversary. WV2 is still being developed, and analysis work will
start soon. Early prototypes of WV2 use LLVM/IR more heavily in
its embedding process. The executable steganography technique
being used is a basic block insertion algorithm that is hidden behind
opaque predicates. Future work includes testing if these opaque
predicates can be identified to narrow down the possible basic
blocks of the hidden watermarking code.

7. ACKNOWLEDGMENTS

This research is supported by the National Science Foundation
under the Secure and Trusted Computing (SaTC) grant CNS-
1811578 and CyberCorps Scholarship for Service grant DGE-
1564518. The project is a collaborative effort between the
University of Nebraska at Omaha (UNO) and the University of
South Alabama (USA).

8. REFERENCES

[1] Anderson, R.J. and Petitcolas, F.A. 1998. On the limits of
steganography. [EEE Journal on selected areas in
communications. 16, 4 (1998), 474—481.

[2] Banescu, S. etal. 2016. Code Obfuscation Against Symbolic
Execution Attacks. Proceedings of the 32Nd Annual
Conference on Computer Security Applications (New York,
NY, USA, 2016), 189-200.

[3] Bilar, D. 2007. Opcodes as predictor for malware.
International Journal of Electronic Security and Digital
Forensics. 1,2 (2007), 156-168.

[4] Blair, D.C. et al. 2017. Update To The IP Commission
Report - The Theft of American Intellectual Property:
Reassessments of the Challenge and United States Policy.
The National Bureau of Asian Research.

[15]

[16]

Business Software Alliance 2018. Software Management:
Security Imperative, Business Opportunity. Business
Software Alliance.

Collberg, C. et al. 2007. An empirical study of Java bytecode
programs. Software: Practice and Experience. 37, 6 (2007),
581-641.

Collberg, C. et al. 2012. Distributed Application Tamper
Detection via Continuous Software Updates. Proceedings of
the 28th Annual Computer Security Applications
Conference (New York, NY, USA, 2012), 319-328.
Collberg, C. et al. 2004. Dynamic graph-based software
watermarking. TR04-08, Department of Computer Science.
(2004).

Collberg, C. and Nagra, J. 2009. Surreptitious Sofiware:
Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Addison-Wesley Professional.

Das, M. 2019. Sofiware Piracy. Metropolia University of
Applied Sciences.

Davidson, R.I. and Myhrvold, N. 1996. Method and system
for generating and auditing a signature for a computer
program. US5559884A. Sep. 1996.

El-Khalil, R. and Keromytis, A.D. 2004. Hydan: Hiding
information in program binaries. International Conference
on Information and Communications Security (2004), 187—
199.

(first) 2018. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Intel.

Hamilton, J. and Danicic, S. 2010. An evaluation of static
java Dbytecode watermarking. Proceedings of the
International Conference on Computer Science and
Applications (ICCSA’10), The World Congress on
Engineering and Computer Science (WCECS’10), San
Francisco (2010).

Hanov, S. 2009. Static analysis of binary executables.
University of Waterloo. (2009).

Junod, P. et al. 2015. Obfuscator-LLVM - Software
Protection for the Masses. Proceedings of the IEEE/ACM

[17]

(18]

[19]

[20]

(21]

(22]

(23]
[24]

[25]

[26]

Ist International Workshop on Sofiware Protection,
SPRO’15, Firenze, Italy, May 19th, 2015 (2015), 3-9.

Lu, K. et al. 2014. Ropsteg: program steganography with
return oriented programming. Proceedings of the 4th ACM
conference on Data and application security and privacy
(2014), 265-272.

Mahoney, W. et al. 2018. Leave It to Weaver. Proceedings
of the 8th Software Security, Protection, and Reverse
Engineering Workshop (2018), 6.

Mahoney, W.R. 2015. Modifications to GCC for increased
software privacy. International Journal of Information and
Computer Security. 7, 2—4 (2015), 160-176.

Monden, A. et al. 2000. A practical method for
watermarking java programs. Proceedings 24th Annual
International Computer Software and Applications
Conference. COMPSAC2000 (2000), 191-197.
Moskowitz, S.A. and Cooperman, M. 1998. Method for
stega-cipher protection of computer code. US5745569A.
Apr. 1998.

Samson, P.R. 1994. Apparatus and method for serializing
and validating copies of computer software. US5287408A.
Feb. 1994.

Simmons, G.J. 1984. The prisoners’ problem and the
subliminal channel. Advances in Cryptology (1984), 51-67.
Watermark Software 2019. Watermark Tiling for Strong
Protection.

Zhu, W. and Thomborson, C. 2006. Extraction in software
watermarking. Proceedings of the 8th workshop on
Multimedia and security (2006), 175-181.

Zhu, W.F. 2007. Concepts and techniques in software
watermarking and obfuscation. The University of Auckland
New Zealand.

