A LAGRANGIAN INTERIOR REGULARITY RESULT FOR THE INCOMPRESSIBLE FREE
BOUNDARY EULER EQUATION WITH SURFACE TENSION

MARCELO M. DISCONZI, IGOR KUKAVICA, AND AMJAD TUFFAHA

ABSTRACT. We consider the three-dimensional incompressible free-boundary Euler equations in a bounded domain and
with surface tension. Using Lagrangian coordinates, we establish a priori estimates for solutions with minimal regularity
assumptions on the initial data.

1. INTRODUCTION

We consider the free boundary Euler equation of incompressible flow defined on a moving three dimensional
domain Q(t) C R3, which read

ug+ (u-V)u+Vp=0inD (1.1)
divu = 0in D (1.2)
p=0oH onID (1.3)
(O + udy,)|op € TOD (1.4)

where D = (<, {t} x Q(t), u is the fluid’s velocity and p its pressure. The symbol & > 0 denotes the surface
tension parametieriand ‘H is, for each ¢, the mean curvature of the boundary 9Q(t) embedded into R3. Also, TOD
stands for the tangent bundle of 9D and (1.4) expresses the condition that the boundary moves with the speed equal
to the normal component of u. The initial data are given by

u(-,0) = ug (1.5)
Q(0) = Q. (1.6)

Our aim in this paper is to obtain a priori estimates for a local-in-time existence result of solutions to this system
with minimal regularity assumptions on the initial data and when o > 0.

The first existence results for (1.1)—(1.6) are those of Nalimov [65] and Yosihara [78], who considered regular
irrotational data. In the case of zero surface tension, i.e., ¢ = 0, Ebin has shown in [36] that the problem is ill-
posed without the Rayleigh-Taylor stability condition. The problem of well-posedness under the Rayleigh-Taylor
condition and in the case of zero surface tension was solved by Wu [74, 75]. Regarding optimal regularity of the
initial data, Wang et al obtained in [73] the local existence under the sharp Sobolev regularity H2->+9 for the zero
surface tension case, extending the previous result of Alazard et al [6], who considered irrotational data. For the
Euler equations in R? or R3, the sharpness of the exponent 2.5 + § was shown in [15].

The well-posedness of the non-zero surface tension problem, although requiring no additional stability condition,
is challenging on its own right and has to be approached differently. While the surface tension has a regularizing
effect, the boundary evolution contributes to the energy estimates at top order. Controlling such top order boundary
terms, which would automatically vanish in the 0 = 0 case, requires an intricate analysis of several boundary terms
that express the coupling of the boundary geometry with the interior evolution. Such analysis is particularly delicate
in low regularity spaces in that the ellipticity provided by the mean curvature cannot be exploited to same extent as
in higher regularity due to the presence of rough coefficients in the mean curvature equation.
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from a Discovery grant administered by Vanderbilt University.
IK is partially supported by the NSF grants DMS-1615239 and DMS-1907992.
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Consequently, currently, one does not have estimates that close in spaces near the threshold H2-°%9 in the case
o > 0, with exception of the simpler situation of irrotational data, for which Alazard, Burq, and Zuily established a
full local-wellposedness result with optimal regularity [4].

Regarding rotational fluids with ¢ > 0, Schweizer [69] constructed solutions with rotational data in H*® with
an additional vorticity condition at the surface. Coutand and Shkoller [25] used the Lagrangian formulation and
constructed solutions with H*-® initial data without this restriction. At the same time, Shatah and Zeng obtained in
[70] a priori estimates for H? data in Eulerian coordinates using techniques of infinite dimensional geometry in the
spirit of Ebin and Marsden [37] (see also [71], where the authors showed how to use their a priori estimates to obtain
a local existence result). Ignatova and the second author obtained in [47] a priori estimates with interior regularity
in H3-®, using the Lagrangian (direct) approach, while Ebin and the first author established a local-existence result
in H3-5+9 using a combination of the Lagrangian approach, infinite-dimensional geometry, and semi-group theory
[34].

For other results on irrotational fluids with surface tension see [2, 3, 5, 11, 12, 13, 17, 48, 31, 41, 45, 52, 79].
Further related results with non-zero surface tension, including the case of rotational fluids, vortex sheets, two-
phase fluids, and singular limits, are [22, 27, 32, 33, 39, 51, 66, 68]. Free-boundary problems constitute a very
active and fast-growing area of research, and a complete, or even thorough review of prior works is beyond the
scope of this paper. A partial list of references relevant to the above discussion and the results of this paper is
[1,7,8,9,10,6, 14,18, 19, 20, 21, 23, 28, 26, 29, 30, 40, 43, 44, 46, 49, 50, 56, 57, 58, 60, 61, 62, 63, 64, 67, 76, 77].

In this manuscript, we use the Lagrangian variables and derive a priori estimates assuming that the initial velocity
is in H25%9 where 0 < § < 0.5. Some further minimal assumptions on the data are also necessary in order to
obtain that the second time derivative of the velocity is in L? (cf. Remark 4.3 below).

Unlike in the zero surface tension case, when ¢ > 0 the interface regularity is driven by the regularity of the
pressure, which can be controlled as a solution to an elliptic problem with Neumann boundary condition, in terms of
the velocity time derivative. The control of the velocity and its time derivatives is established using a combination
of time and tangential energy estimates. Such time and tangential estimates for the velocity lead to some crucial
boundary terms whose control is technically challenging (we stress that such boundary terms are absent if o = 0).
Exploiting the non-linear structure of the equations and of the boundary condition, we are able to obtain an estimate
that reads schematically as

d d = d =245 d d
%||3EU|\2L2(Q)+%||38t(U'N)H%2(aQ)+%||8 (U'N)||%2(ag)5§/P1+dt/ Py + P3,

where v is the Lagrangian velocity, P} and P are polynomial expressions on the Lagrangian velocity, the Lagrangian
pressure, and their time derivatives, Ps is a polynomial in several norms of the fluid variables, O are derivatives
tangent to the boundary, N is the unit outer normal to 052, and ¢ is a small number. Upon time-integration, the term
Pj is treated by a standard Gronwall argument. The remaining two terms on the right hand side, however, do not
have a definite sign. To control such terms we need to show that they can be bounded by lower order terms plus top
order terms with small coefficients. Unfortunately, it turns out that this does not seem possible.

However, if we define “non-linear energies” that involve powers of the velocity and its derivatives, we arrive at

d d =246 d d
1050 + 1000 Moy + 100 Nl < 7 [ Pt 5 [ Pt P

for certain a, b, ¢ > 0 (and possibly different P;, P», and Ps3). Now, using a combination of interpolation, Sobolev
embeddings, and Young’s inequality, we obtain that, after time integration, the right hand side is bounded by

246
eo([107 ]| Z2(q) + 100 (v - N)||L2 o) 107 (- N)llpn) + / b

where € is a small number and «, 3, and v depend on a, b, ¢ and . The problem then reduces to the algebraic
question of whether it is possible to choose a, b, ¢, so that the powers on both sides match. This turns out to be
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possible' precisely when 0 < § < 0.5 which, unwrapping all definitions, corresponds to estimating v in H?2->+9
(this can be seen explicitly in the last estimate, see equations (11.11) and (11.12)). Note that these energies control,
aside from 97v in the interior, only tangential derivatives of the normal component of the velocity on the boundary.
But once these have been controlled, a bound for the full norms of v is obtained via div-curl estimates, with control
of the divergence coming from the divergence-free condition, control of the curl from the Cauchy invariance, and
control of the normal components given by the above energy estimate.

To treat the case of a general bounded domain, we employ local coordinates near the boundary and suitably cho-
sen cut-off functions. Such localization techniques are not straightforwardly adapted to the framework of fractional
derivatives that we need to employ to obtain estimates in H2-°+?. Therefore, we consider the problem in two steps.
First, we take the initial domain 2 to have the simpler topology

Q="T2?x[0,1]
and denote its bottom and top boundaries by I'y and I'y, respectively. Assume that the lower boundary

o =T2% x {0}
is rigid, while the upper boundary I'; (¢) evolves in time according to the unknown flow map

n(z1, 2, 1,¢): 't — T'i(2)

and is such that I'; (0) equals

Iy =T2%x {1}.
We then establish our result for this type of domains, see Theorem 2.1. This simplified setting already presents all
the main difficulties of the problem, but makes it easier to focus on its core aspects without being distracted by the
technicalities caused by the use of fractional derivatives in local charts and their interaction with cut-off functions.

Then, we show how to adapt the estimates leading to Theorem 2.1 to a general domain, stated as Theorems 12.1
and 12.2.

2. THE LAGRANGIAN VARIABLES AND THE MAIN STATEMENT
We assume that )(¢) is initially the 1-periodic channel
Q(0) = Q =T2 x [0,1], 2.1)

with the rigid bottom boundary I’y = T? x {0}. The top boundary I'; (¢) evolves and is initially equal to I'; =
T? x {1}. (The general case is discussed in Section 12 below.) We use 7 to denote the Lagrangian variable and a
the inverse of the matrix V7). The Lagrangian formulation of the Euler equations then reads

0 + a"*0,q =01in Q x [0, 7] 2.2)
a®Pdpvp =0in Q x [0, 7] (2.3)
om=vinQ x [0,7] (2.4)
d1a®? + a®1d,v,aM = 0in Q x [0, T] (2.5)
a"“N,q+ U|aTN|Ag77°‘ =0onTy x [0,T] (2.6)
v"N, =0onTq x [0,T], 2.7

where N is the unit outward normal vector to 92 and A, is the Laplacian induced on 0€2(t) by n|r, i.e.,
1 .
Ay() = —=0;(1/99" 0;(+)), (2.8)
a() 7 (+v9979;())
where

gij = 3m“aﬂ7m (2.9

n the presentation of the results it is not necessary to work with such general a, b, and c¢. Having found the correct exponents, we already
define our energy with them; see (2.14).
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while g is the determinant of the matrix [g;;]; j=1,2. Above and in the sequel, we use the summation convention on
repeated indices. The Greek letters run from 1 to 3, while the Latin go from 1 to 2.

The following is the main statement in which we establish a priori estimates for the local existence of solutions
with initial data vo = (v}, v3,v3) € H*%T¢, where € € (0,1/2),

Theorem 2.1. Let 0 > 0 and ¢ € (0,1/2). Assume that vq is a smooth divergence-free vector field on ). Then
there exist constants C.., T, > 0 such that any smooth solution (v, q) to (2.2)—~(2.7) with initial condition v, defined
on the time interval [0, T, satisfies

[ollzr2sse + 100llzr1s + 1070 ] L2 + llall 22542 + [0l < Cs, (2.10)

where T, C, > 0 depend only on ||vo|| grz.s+<, |03 |r, || m2.5(ry), and o > 0.

Above and in the sequel, if the domain of the Sobolev space is not designated, it is understood to be {2, while
other domains (typically I';, I'g, and 0f2) are explicitly noted.

In Remark 4.3 below we show that the condition ||vg|r, || zr2.5(r,) < oo can be replaced by || Aovi|r, || go-sry) <
oo, where A, is the boundary Laplacian. This last condition is not only sufficient but is also necessary for 87vy €
L2,

Instead of working with € > 0, we introduce, for simplicity of notation, the parameter v = 1/2 — ¢ and thus
consider

vg € H*™V (2.11)
where we assume
v €10,0.5).
By introducing v, many exponents and Sobolev parameters have simpler forms. Note that we include also the value
v = 0 since all the results below hold for this borderline value as well.
The proof consists of a series of estimates on v and ¢ involving the energies

Eo = ||v] g2s-vr2 (2.12)
and
By = [[0v] s + [|070]| 22 (2.13)
It is also convenient to introduce the total energy
E=E+E; +1. (2.14)

Note that in (2.14) Ej is squared while E} is not.
Since o > 0 does not vary, we set o = 1 from here on.
As usual, in what follows, the symbol a < b stands for a < Cb, where C is a constant.

3. PRELIMINARY ESTIMATES
In the first lemma, we collect a priori estimates on the map 7 and the cofactor matrix a = (V)L

Lemma 3.1. Assume that ||v|| o0, 1);15- () < M. If
1
<
- CM
where C > 1 is a sufficiently large constant, then the following statements hold:
(D) |l gs-» < C fort €[0,T],
(ii) ||a|| gr2—» < C,
(iii) ||0sall s < C||Vvllgs for 0 < s < 2 — v with
107 all gro.s—v/2 < CU|0w0 gr5-vr2 + [0l 2|Vl r2-v/2) and |07 all grvre < C[100] grivorz + vl 20l gr1.ster2),
and
(iv) For every €y € (0, 1], we have ||a — I|| g2—v < €9 and ||V — I||g2-+ < €g provided T < 1/CegM.

T (3.1

Since the proofs follow easily from (2.4) and (2.5), we only briefly outline them.
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Proof of Lemma 3.1. (i) By (2.4), we have

t
s < lells-s + | [ o
0

and the rest follows from the choice (3.1).

(ii) From (2.5), we get ||a||g2—» S 1+ M fot llal|3;2-., and the claim is obtained using the Gronwall lemma.
(iii) Follows directly from (2.5).

(iv) To obtain the claim, weuse a — I = f(f Ora and then apply (ii) to obtain

S1+TM
H3-v

t t
la - Il < / 1wl ger < / Vol < co
0 0

fort <T' =¢/CM. Similarly,

t t
IV — Tlaes < / IVollgzr < / ol o < 0
0 0

under the condition ¢t < ey/CM. O

4. PRESSURE ESTIMATES

For reference, we state the trace inequality for the vector fields with the square integrable divergence (cf. [24, 72]).

Lemma 4.1. Let ¢ be a 3D vector field in L*(Q), and a(z) a matrix function with components a** € L>(Q). If
0, (at¢y) € L2(Q) and a"*¢,, € L*(Q) for p = 1,2,3, then a"*$,N,, € H~/?(0Q) and
3
@ GaNpll gr-1/200) S 10u(a"*ba)llL2(@) + Z @ ballL2(0)-
p=1

Next, we derive elliptic estimates satisfied by the Lagrangian pressure g and its time derivative 0;q.
Lemma 4.2. (i) For the Lagrangian pressure q, we have

t
1-v/3 3
lallzzas-cro S ol [oll o s-vro + 1850t 00l 72 +IIQ(0)HH1+1+/ 1Oeall - (41)
0

(ii) For the time derivative of the Lagrangian pressure, we have

1— 3 2 3 3—3 2 3 2
10eqll e S 1020122 + 180l S5 2 100G 2 0l 2o o + Joll G C 70 o) 318570),

+ ||quzsfu/z||qu<2*2”*”°>/ B g (et 200/ (3= 4.2)

ol st ol s s lalle +1).

Above and in the sequel, J9 > 0 denotes an arbitrarily small constant. In most places it appears when bounding
the L°° norm of a quantity with a suitable Sobolev norm.

The exponent 2.5 — /2 in (4.1) is not the highest regularity of the pressure one may obtain (which is 3 — v). It s
chosen because it is the highest Sobolev exponent for ¢ which can be estimated in terms of ||v|| g2.5-+/2, for which
in turn we have control based on Section 7 and the properties (9.1) and (10.4) below.

Using the notation (2.12) and (2.13) and introducing

F = ||ol] s

we may rewrite (4.1) and (4.2) in simpler forms as

t t
G= HqHHQ.ES—V/2 S Po + <P0 +/ P) (Eo + .E1 V/3) +/ P
0 0
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and

t
H =0wqllp < E1+ (Po +/ P)
0
% (E§2+U)/3EO +E§/(2_V) +EOG(1+V+250)/(371/) JrFV/(lfu)Eél—QV)/(l—V)).

Above and in the sequel, Py denotes a generic polynomial in ||vg||gs—v, ||0:v(0)|| 1.5, and ||0?v(0)|| 2, while P
denotes a generic polynomial in ||v||zs—v, |00 f15, ||ql| g2.5-v/25 ||Oeql|f1s and ||0?v| 2. Using the notation
(2.14) and v < 1/2, we then have

t
G< (PO +/ P) EG=/3 (4.3)
0

and

t
H§E+(P0+/ P)
0

% (E(7+2u)/6 1 E3/(4-2) | p1/2G(14v+200)/(3-v) +Fu/(lfu)E(1721/)/(272u)>.
Since (7 + 2v)/6 > 3/(4 — 2v), we get
t
H<E+ (Po _|_/ P) (E(7+2u)/6 1 BY2GU+r+200)/(3-v) _|_Fu/(l—u)E(l—2y)/(2—2u))7 (4.4)
0

where, as pointed out above, §; > 0 denotes an arbitrarily small constant.
Before the proof of the lemma, we recall the Piola identity

9,a"* =0 (4.5)
(cf. [38, p. 462]).

Proof of Lemma 4.2. First, we apply a*“0) to the equation (2.2) and obtain
a)‘o‘ﬁ'A(a“aauq) = —a’0\Dva = 010 %OV, (4.6)
where we used the divergence free condition (2.3) in the last step. Isolating Ag, we obtain the Poisson equation
Aq = 0,0 O\v, + (5>‘a - am)ax@éi@uq) + a)\aaA(((gg - a”a)auq)
= O\ (0:a*va) + OA((0™* — a**)0aq) + Ox (a™* (8% — a*4)Duq)
=0 (8tamva + (5” — a ) 0aq + am(%‘ — a“a)auq) =: O\
on €2, in addition to the boundary conditions
03q = (6°% — a*®)0pq — 00> =: hy on T 4.7
and
d3q = (6°% — a®3)Dqq =: hy on T, (4.8)
which result from restricting (2.2) to I'; and I'y, respectively. Moreover, from the boundary condition (2.6), we have
q=(1-a*)q—0;(v/99"9;n*) on T} x [0,T]. 4.9)
We now invoke the estimate for ¢ from [47, 35] whereby

lallrzs-vr2 S NONf A gro.s-vr2 + [Pl gi-vrzgeyy + B2l mra—vrzrg) + lall2ry)- (4.10)
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Note that
103 M 05072 S 1000 Onval|pro5-vr2 + [1(87 = a**) Bl o512
+[1a**Ora" a8,ql| go-s-v 2 + (@™ (8 — ¥ o)020pdll| o5z
S 118102 0xvallgo.s-vz 4 167% = (| 15450 10007l 0.5+
+ (|| 5450 070" 0 0l ro.5-v/2 + 0™ || grrsvao |05 — a¥a | 15450 1020l o5 2

S 100 Onvallgros-vrz + 3 €0l|0aOrgll o2
A

+ ) 1050”0 0udll gros—viz + €0 Y 10304 pros-vsz,
A A
where we used a multiplicative Sobolev inequality || fg|lgr < || f]| grs+so||gl|ar for 0 < r < 1.5. Also, ¢g > 0
denotes everywhere a constant which can be made arbitrarily small by choosing 7" > 0 sufficiently small as in
Lemma 3.1(iv) above. Therefore,
1Oxf M os—vrz S 0eall [0l gr2-vrz + €olldllrzs-vrz + llallz—v llal gasvra.
Using (4.10) with (4.7)-(4.9), we get
lallgz.s-v/2 S 0callgrl[vll 2-vrz + €ollqll mzs-vrz + gl gasvre
+ I = allgr+so )y IVall gr-vrz gy + 10l gr-vrz ey + 1 = all grvso o) [Vl zr-vrz )
+ {11 = a® || grrso oy llall L2 (ryy + 10:(3/997 ;1% | L2y
whence, by Lemma 3.1 (in particular ||a — I|| g1.5+50 < €9),
lallzr25-v/2 S [0l m2l|vllr2-v/2 + €ollgll gzo-vrz + gl gzevrz + (00l grrs-viz + QUIDN | Loe o) 0|2 ()

S lollarsllvlles-vrz + eollgll gzs-vrz + llql gasere

1—v/3 v/3
+ 18032 2180175 + QUIDA| poe o) Il 22 )

where () denotes a rational function in the indicated argument and where we used

[vllzz S ol Gos G ol 320, @.11)

and [[v]| go-vs2 < [0l 0l 5a 22237 in the last step. Finally, note that Q(|| D1jl| < (ry)) |0l 2(ryy S 1 and

t
lallzrz+vr2 < eollgllrzs-vr2 + Cllgllm < €ollgllzs-vr2 + Cllg(0) [ + C/ 10 12
0

(i) Differentiating 0 (a)‘aa"aﬁﬂq) = 0\ (0;a**v,,), we obtain that the time derivative of the Lagrangian pres-
sure satisfies

8,\(a’\”‘a"a8u3tq) = 8>\(8,52a)‘ava) + aA(ataMatva) — 5‘>\(8ta)‘°‘8aq)
+ 8,\(8,5@)‘0‘(55 —aly)0,q) — 8,\(amata“aauq) = O
in €. The boundary conditions, which are deduced from (2.2) and (4.9), read

a3aa“a<9u8tq = —a* vy — 0,a>*Opvy — 8t(a3aa“a)3uq =: hyonTy

4.12)

and

a3°‘a“aauatq = —a"0?vq — 0,a>*Opvy — at(a?’"‘a“a)@ﬂq =: hy on [y
with

g = 0 (1 — a**)g + (1 — a*)dq — 0;0:(\/997 9;1*) on Ty x [0, T].
Thus we may invoke the estimate

10eqll e S I F N2 + 1l -2y + (B2l =12 (rg) + 1100l 2(ry)
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from [47] and obtain

10rqll e S Z(H@famva\\m + 010 Opval 2 + 1010 Dagll 2

A
+ [0 (8% — a”0)Ougl L2 + IIGAaata“aauqlle)
392 3o 3o 1 (4.13)
+ la** O vall g-1/2(ry) + 100 Ovall g-1/2(ry) + 10:(a”a* ) 0uall gr-1/2(ry)
+ 6> 07 vall g-1/2(rg) + 110:° Orvall gr-172(rg) + 106(a** @ 0) Bl gr-1/2(ry)
+118:a® gl 20, + 10:(8:(Vag” 9;0° )|l L2(ry)-
Denote by S the sum in A. Then
S S ||8t2a||H,,/2 HU||H1,57L//2 + ||ata||H1.57u/2 Hat’UHHu/z + ||8ta\|H1.57V/2 ||Vq||Hu/2. (414)

It turns out that all three terms on the right side of (4.14) appear in the upper bounds (4.15) and (4.16) below thus
not leading to any additional terms compared to (4.15) and (4.16). Next, we estimate ||/11 || 7-1/2(r, (the bound for

hs is the same). We write

||i~Ll||H—1/2(F1) S 1602 vall g-1/2(r,) + 10:0°0vall r-172ry) + 106(a®*a"0)Budll 1721y
=T+ 15+ Ts.
For the first term, we have
Ty S [la?*07vall > + 105(a”*0Fva) |2 = > la”*07val 1> + la”* 0307 va L2
B B8
S llallpe |07l 2 + [’ 8507 vallL2 S 1070l L2 + 1070’ Opval L2 + 1|0:a”* Os0rval| L2
4.15
S 1102vll 22 + 102all o2 0] .53 + 10eall rr.ovrs [Bsll s oo (19

S07vllzz + 10wl grsvrzllvll gs-vre + W0l a2Vl gassorl[vll s —vre + [0l 2o Ol e

1— 3 2+ 3 3—3 2— 3 2
S 11020] 22 + 1001 21000 | B2 0l ra.sme + o]l G2 O o 22740,

where we used Lemma 4.1 in the first step and the divergence condition (2.3) in the fourth. Also, we used (4.11)

and |[v|| g1stv/2 S ||1;HH1 E=)y ||VH/225 Z/)Z For Ty, we apply Lemma 4.1 and estimate

Ty 5 105(0:a”*0pva) L2 + > 10:a7*Ohva L2 = (010" 0g0pvallLe + D [10:a”*Byva | 2
B B
5 ||8ta||H1.57V/2 HathHHu/z.

Observe that this upper bound already appears in (4.15). For T3, we simply use multiplicative Sobolev inequalities
to write

T3 ,S ||8t(a3aa“a)6uq||Ho.5+50 5 ||ata||H1.5—u/2Hq||H1.5+u/2+50 (416)
for an arbitrarily small parameter dy > 0. Therefore,

1— 3 2 3 3—-3 2— 3/(2—v)
Ty +To + Ty S 1|020] 2 + 100057 21000l G2 0] o5z + o]l 22/ @0 o) 2/221),

2—2v—246 3— 1+v+26 3—
[0l 25w ]| G 27200 B | g G 200)/(B=)

4.17)

Finally, we estimate the last two terms in (4.13), representing an upper bound for ||0;q|| z2(r, ). In this case, we have

2

10eall L2,y S 10:a® gl goseso + D 10:(+/997 05m°) | s wis)
i=1 .

v 1 1/ 1—2v 1 v
S Nrallmslallas + lollaes < Tl ol Ge 28 (gl g + 1)

where we used

l//(lfl/)H ||(1 21/ l/).

||U||H2'5 5 HU”HB—V H2-5— 1//2
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Combining (4.13), (4.14) (cf. the comment right after), (4.17), and (4.18) then leads to (4.2). O

Remark 4.3. Here we sketch an argument showing finiteness of the energy £(0) under given conditions on the
initial data. First, by (2.2), (2.6), and (4.6), we have

Ag(0) = 9% 0\v4 (0) in Q

q(0) = —Aon®(0) =0on T

03g=0onTy
implying ¢(0) € H*~" and thus, by (2.2), 9;v(0) € H3>~". Now, based on (4.12), evaluated at ¢ = 0, we have

Adyq(0) = 92a**(0)0rva (0) + 0:a™*(0)0; 0504 (0) — 8;a™*(0)0,0rq(0)
— 0x0;a"*(0)9,,¢(0) — 3ya*(0)9,0xq(0) € H*™",
with the boundary conditions
19(0) = d3v3(0)q(0) — Agv®(0) on T, (4.19)
and
930;q(0) = —0;a**9,q(0) on Ty

which follow from (2.6) and (2.2) respectively. Note that d;a(0) = —Vv(0) € H?>™" and 8%a(0) = —9,Vv(0) +
Vo (0)Vo(0) € H?~V, from where, using

Agv®(0)|r, € HY2(Ty), (4.20)

which in turn follows from v(0)|r, € H*?(Ty), we get 9,q(0) € H', from where §7v(0) € L*(Q).

As pointed out above, the condition (4.20) is not only sufficient, but also necessary for 92v(0) € L?(f2). To show
this, assume that 97v(0) € L?(Q). Then 9,¢(0) € H* implying d;¢q(0)|r, € H'/?(T). Using (4.19), we get that
(4.20) holds.

5. A COFACTOR TYPE CANCELLATION

In the energy estimate on 9?v, the highest order term is the one where all the derivatives fall on a. Thus we need
to treat the term

t
T:/ /qDa“aD(“)ﬂva, 6D
o Ja

where v = 0;n. Here D represents a differential operator, commuting with spatial and time derivatives. We shall
use this with D = 9?2. In this section, we rewrite (5.1) using the cofactor form of a and applying cross-integration
by parts.

First, note that we have

a'® = N hm\Osn,, a2 = —€* T ONADsn,, a3 = N n\Oan, (5.2)

and thus, expanding in p and using (5.2),
t t
T:/ /qeo‘)‘TD(ﬁgn)ﬁgnT)Dalvaf/ /qea“p(amagm)pazua
0 Jo 0 JQ

t
+/ /QEMTD@N?A@%?T)D%%
0o Ja



10 DISCONZI, KUKAVICA, AND TUFFAHA

from where

t t
7= [ [ e oDnomopu+ [ [ oumopn0u,
0 Q 0 Q

t t
—/ /qe”‘”@le@gm@gDUQ—/ /qeo‘)‘Taln,\agDmﬁgDva
0 Jo 0 Ja

(5.3)

t t

+/ /qea/\TaleagnT&gDva—i—/ /qea”almagpmagmw@
0 Jo 0 Ja

=T+ 4T+ 1L
where
t
L:/ /qeaAT(D(azT})\agnf)—32DT)A337)T—5‘277)\33DT)T>D31UQ

0 Jo
t

—/ /qe“”(D(@m,\agnT)—81Dn,\83nT—8177,\837)7]7)7)6211& (5.4)
0 Ja

¢
+ / / qe?T (D(aﬂhaﬂ%) — 01D Oanr — 3177>\32D77¢>D3311a
o Ja

represents the sum of the lower order terms that appear when we distribute D on the product eo‘”&lmaﬂm and all
derivatives do not fall on a single 7.
In order to proceed, we need for D to contain at least one time derivative. Thus we now restrict our attention to

D = &0, (5.5)
where £ is a linear differential operator, for which we assume
[£,0:] =0 (5.6)
and
[€,0,] =0, a=1,2,3. 5.7)

Further below we apply the resulting identity to £ = 9.
We group the leading terms in (5.3) as

t t
T+ Ty = / / qe“ " 931,92 D\ O Dvg — / / e 931,01 D2 D,
0 Q 0 Q

t t
T5 +Ts / / qeaA762n>\83DnT81Dva —|—/ / qea/\TagnTaan,\ﬁgDva
0 Jo 0 Jo

t t
Ty + T = —/ / qeakTaln)\ag'DT}TaQD’Ua +/ / qe‘”‘Tam,\E)gDmé)gDva.
0 JQ 0 JQ

Here we present the treatment of the sum 75, + T5; the two other pairs are treated similarly (see below). Thus
consider

t t
T2 + T5 = / / qe“’\Tagn,\agé'vTalé’atva -I—/ / qea”ﬁgnTﬁlgv,\&;Eatva
0 JQ 0o JQ

t
— [ e oumdngoongva |y - [ [ ae oumdongo,orv,
Q 0 Jo (5.8)

t t
—»/f /[ez(qeaATaznA)aggvTalsva +-][ j/ qe™N Don D1 EVND3E DV
0 JQ 0 JQ
=11+ 12 + I3+ 14,

where we integrated by parts in ¢ in the first integral. By relabeling the indices, we may rewrite the fourth integral as
I, = fg Jo 46710201 E00, 03EDyv, = f(f Jo 4“7 92301 E04,03E By~ and the last expression cancels with 1.
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Next we treat the first term on the far side of (5.8) evaluated at ¢ by writing

¢
Il|t=/qe“”@w,\@gfwalé‘va :/qea27835v7615va—|—/ qe ™ (/ 621))\) 03E0,01E 0,
Q Q Q 0

where we used dom) = dax + fg 02wy in the last step.

Note that 7} + T3 is obtained from 75 + 75 by switching z2 and z3 and multiplying by —1, while T + T is
obtained from 75 + Ty by switching z; and z2 and also multiplying by —1.

We summarize the above derivation in the following statement.

Lemma 5.1. Consider the integral T = fQ q€0,at* E0;0,,v4, where & is a differential operator which commutes
with 0; and 0y, i.e., (5.6) and (5.7) hold. Then we have

T = / q€*? T 95Ev, 01 Evq ‘f —/ qe*3T 0,Ev,01E v, |t —/ g€ T 95Ev,02E 4 |t
Q ’ Q Q
t t
—/ 8t(qeo‘>‘78277,\)335v7815va—|—/ O (qe® ™ D3m) ) D€, 01 Evq
o Ja 0 Ja

t
+ / / D1 (qe™ A1y ) D3E v, 2E v,
0 JQ

t t
—|—/ qe™NT </ 8211,\> 03EV;01EV, — / qee™ </ 831»\) 02Ev,01Ev,
Q 0 Q 0
t
—/qea’\T </ (9111,\> 03EV,05E v,
Q 0

- / qe®?T95Ev,01E v, |0 Jr/ qe*3 T 05E0,01E 4 |0 +/ g€ 0380, 05E v, ’0 +L,
Q Q Q

5.9

where L is given in (5.4).

It is helpful to expand the commutator term L using (5.5). We thus have
L= / qe™T (5(8211,\6‘3177) — 82511,\837)T>53t310a + / qeT (5(82%6‘3117) — 8217,\835117)58,5310@
Q Q
- / qe’™T (5(311);\837%) - 8151))\33777)5&5211(1 - / qe™ (8(817])\831)7—) - 8177>\83507>55't82va
Q Q

+ / e (5(81UA3277T)falemaQnT))sataguﬁ / qea”(g(almagm)famaggvf)satagva.
Q Q

6. A BOUNDARY INTEGRAL ESTIMATE

In Sections 7 and 8, we obtain two integrals of the form K = — fl“l Ed(a"*q)EDwa N, = fl“l E0,(\/gAgn™)EDyv,
(I4 and Jy4 in (7.4) and (8.1) below, respectively), where £ is as in the previous section, i.e., a differential operator
which commutes with spatial and time derivatives. Using the identity

Ou(/5,m") = 0i(V59" (55 — g0 dmn) 00 + /(g g™ — 9 g™ )Oym” s didr)

from [35] and v = 07, we get

K= Sé’tvac‘?@i(\/ﬁg”@i‘ — g" OOy ) 0,0 + /(9" gk — g”g““)ajn“@km@zﬁ)
Iy

- 6i58tva5(\/§g”((5f\‘ — g“aknaamk)ajvk) (6.1)

— | 0E0waE (Vg7 — g™ )0m  dumdr® ) = Ki + Ko,
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We denote by II the projection onto the normal of the moving boundary, given explicitly by
M5 = 6% — " Okn . (6.2)

In Section 10, we show how estimates on IIv (and its time derivatives) yield estimates on the normal component of
v (and its time derivatives). Using II, we thus have

K = — / 5(\/§giinf;ajvk)aigatva
ry

=~ | VagTSEN 0,0 — / (£(/59"1130;0%) ~ Va9 TIEED;0* ) 0,E0v0 = Kt + K.
Iy

Iy
By II = Hf}Hf\L (cf. [35]), we may rewrite the first term as

Eu =~ [ gg"lIho;€0 150,E0va
1Y
1 .
:*ia/ VIgITIRO; EVMIS 0 Eva + +3 9(\/79" 1) ;€07 0, v,
Iy

1d P ) o

= ——— \/EQJHAang II%0;Ev, + = 8t(\/§g J)H}\ajgv 0:Ev
2dt r, H 2 I,
T3 | Vg O (TIR)0;E0 D€ va.

We thus obtain

1d i =
Kns=55 ) \/ﬁg”ﬂﬁaﬁvkﬂﬁaﬂ‘?va + P([[nll gr25+50 ) |[V]] 2.5+ [TTOEV T

+ P(||77||H2'5+‘50)HU||H2~5+50 €01 Zs,

where
0 =Vsy=(01,09). (6.3)
Next, we consider the second term in (6.1). We have
Ke=-| V(g7 g — g g™) 01 OO E v D E Dyva
1
—/F (5(\@(9“9“ — g"g")0n" maO*)
— V(g7 g" — gljgik)ajnaakﬁ/\algv)‘) 0;€0:vq = Ko1 + Koo.
As in [25] (cf. also [35]), we may write Ko = — [1. /G (6t det A' + det A% + det A%), where

Al_ 3177,L815v" (9177“82511# 2 alvualfv 8177“8251)” 3 _ 61%8151)“ 311)“(925’[)”
o 8277#815’0“ 82?7#828'0“ - 821}#8150# 82?7#82511” - 8277#8151)“ 82’0#825’UM ’

Therefore,

1 1
Ko = — Oy | — det A1> / 0, () det A — / —det A% — — det A3
2 /F1 ! <\/§ ' F1 I \/g

= Koi1 + K212 + Ko13 + Koua.

Note that ||0; (/g < P(|Inll gr2.5+50 ) ||0|| r2.5450 Since also | det At| < |0n|?(E0v)?, we get

Moy
Kotz S P(Inll 2 5+60) [Vl 72 5400 1003, S Pl 72 5400 ) [0 22 340 | €0l -

Similarly,

1 _
/F —=(det A% + det A%)| < P(|[n]l gzs+30)[€00][ 2 r,y S P[0l g2-5+50 )1 E0][ 15
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The term K51, requires more care since if we bound det A' as above, we obtain the term ||E0v 12, (ry) which cannot
be absorbed into the left side. Instead we integrate by parts and obtain

1 1
. ﬁ det A' = /Fl ﬁ(amlﬁzmalgv”azgv)‘ — 817]/5827])\82511”8151))‘)

1
:/ — (— 011 0amrEV D1 02EV™ + 011 amaEVF D201 E0)
Iy \/g
QZ/\(&%(‘;QT})&J”@&M
IS
- Qix(gn,yn)é’v“@ié’vA,
IS}

where Q!5 (9n, 0%n) is a rational function, which is linear in 5277 and can thus be written as Q,, (9n, 0%n) =
Qi (817)8277 with Q a rational function. Hence, K511 = (d/dt) Jr, Qi (0n)*nEvtd;Ev*, and thus

Ko 5 5 [ Q@ e + Pllnlsess)[vlssess + DI

We summarize the above derivations in the following statement.
Lemma 6.1. Consider the integral K = — fFl E0¢(a**q)E0va N, where & is a differential operator which com-
mutes with 0y and 0O,, i.e., (5.6) and (5.7) hold. Then we have

— E0y(a"*q)E0wa N,

Iy

< _Ld \/ggijnl;gajmngeaiva + i/ QL,\(57))5217&)“82-5@A
2dt Jr, d Jr,

- / (599" M30,*) = Vg T5E0;0* ) 0,010
Iy (6.4)

_/ (5(\/5(9”9“ —gljgik)ama@kn)ﬁlv’\)
IS

— V(g7 g — gljgi’“)ajnaaknxalw) 9,EDsvq

+ P(llnll 25450 ) (vl 2540 + DI EV]Fs-

Note that the third and the fourth terms are of commutator type. Since it is needed in the next two sections, we
show here an estimate for the time integral of the second term on the right side of (6.4). We have

Q O PnEt0,E0™ [ < N1Q)un (Bl 1050 (0 |EVH || 105400y |0:€0M [ 20y

- _ 6.5
< 1Q@n) 80|l 0.5 (0 1€ 054+ 01 |0 | 20 ©5)
< (10@n) |z + 1G@M 111 (1)) 1820l 0.5 (0 |0 | 7055 () |05E ] 120
where we used
lAB| gos—vr,) S (1AllLe @y + 1Az @)1 Bl go-5-v(ry) (6.6)

in the last inequality. Note that (6.6) follows by a simple application of the Kato-Ponce fractional chain rule. Using
that 1% (T';) is an algebra, we obtain from (6.5)

Qlt)\(aﬁ)a T]gvl‘a Ev? ‘t |87]||H1+60(F1 )||8277||H05 v Fl)HgUHHlJrquUHHls

(1-2v)/3 542v)/3
< P(lnll gzseso) 0l o [ 0] | £0) G2

< P(nll o) <||8v<o>||%z 4 / ||eatv|%2> T eoll€olns,
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from where, by Lemma 3.1(i),
t
Qi (0n)0*nEvd;Ev < ||Ev(0)] 17 +/ €0 |32 + €0l Ev]| 31 (6.7)
Iy 0

7. THE TANGENTIAL ESTIMATE ON 0;v

In this and the next sections, we perform energy estimates on the quantity ||£0;v|| 2 with € = §'~¥/2 and
& = 0, respectively, where 0 = (I — Ay)'/? with Ay = §? + 03 denoting the horizontal Laplacian. In both cases,
we apply £0; to (2.2), multiply the resulting equation with £0;v, and integrate, obtaining

1d
5%”5@0”%2 = —/ E0¢(a"0,,q)EO v, = / E0y(a"*q)E0L0yva — EDy(a'*q)EDwa N, (7.1)
Q Q I

since — fFo Ed(a"*q)EDwwa N, = 0 by (2.7) and a®! = a3? = 0 on 'y due to a®* = 917*0an® — G2n?01m® and
a3? = 6277181773 _ 317]182773. i

In this section, we set £ = 9*~*/2. The most important assertion in the next statement is that it provides control
of ||| gr2-v/2(r, ) needed further below.

Lemma 7.1. The Lagrangian velocity v and its derivative Ov satisfy
t
10" 728,022 + 100" 20| Zar,) S Po+ €ollvl s/ +/ p, (1.2)
0

where P is a polynomial in ||v|| gs-v, |00 g5, |||l g2.5-v/2, and ||0¢q|| g2, while Py is a polynomial in ||vo)| grs—v
and ||0yv(0) || g1.5.

Using the notation (2.12)—(2.14), the inequality (7.2) implies
t
||H881_”/2v||%2(m) < EOEg + Py + / P, (7.3)
0
where, as mentioned above, ¢y > 0 denotes an arbitrarily small constant.

Proof of Lemma 7.1. From (7.1), we have the equation

1d =
5@”3171'/2@””%2 =1+ I+ I3+ 1y,
where
I = / 51_”/2(8ta“o‘q)51_”/28t8uva, I = / a”"‘é?_”atq@tauva
v N @ ) ) (7.4)
Iy = / (0* (@ 0iq) = a8 01q)Odva, L=~ [ 80,(a"q)0"POwa N,
Q I'y

Using multiplicative Sobolev inequalities, we have

I = / 0" (0,1 q) 0P 0p0pva S Y _||0MT (00 )| . 10wl
Q

TN

< SN0 || oo N0 e S N0vallarz-o lall s 1Oell s + [Dsallen gl sz Ovolarns S P
TR

using L? based Kato-Ponce type estimates (fractional product rule), as in [56, 57]. For the second term in (7.4), we
use the divergence-free condition (2.3) to write

I = 7/ ata“aéhatqauva = 7/ ata“aaﬂvacg)‘l*”éﬁtq = 7/51*”(5}@““6#1)&)58@
Q Q

< 110" (9ea"*0uva)ll 2 |1eal 111

S 10" 0 | | 0wvall mosl|Oeall s + 100’ | 111 10" Bvallrro-s Dol S P,
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again using the fractional chain rule. The last interior term I3 is estimated as
I3 S 0% (a"*0hq) — a"* 0> 3yq] 121|080l s S Nlall sz 1|0l 1 100l 1= S P (1.5)

For completeness, we show the validity of the second inequality above as the Kato-Ponce inequality can only be
applied in the first two variables. We do so by the successive integration. For any fixed z3 € (0, 1), we employ the
Kato-Ponce inequality to obtain

0%~ (a"*0uq) — aﬂ‘lé?—”atqHLi/fmZ S ||52_”0L||Lg1 10eqll g,

;T T

o + 100l e 197 Dul g oo

(cf. [53, 42, 55, 59]), where Lghm denotes the L? norm in (x1,x2). Taking the sz norm of both sides and
applying the Holder inequality in the x3 variable gives

027 (a"8rq) — a"*I*~ Dyq|| 132
S 0% v all 2

HatQHL,G

2 e 2, 0y 132 + (100l s 10" Orgll yorca2n | 512
S 110%7al| 2110kl o + [19all Lo/ 1420 |07 Dra|| Los a2
S N10* " al| 2 10eql o + llall g2+ |Ovqll
where we used the Sobolev inequality in the last step.
Finally, we use Lemma 6.1 with £ = O'=/2 o write
1d L N d L .
Iy 5 _77/ \/ggijH/;al—u/Qaj,U)\Haal—v/2aiva + 7/ QZ,\(817)827781_”/20“81-81_”/21)A
2dt Jr, " dt Jp, "
_/ (51_”/2(\/59”1_[?53'@)—\/ﬁgijﬂfél_”ﬂaﬂf‘)81‘51_”/2875%
I
Al—v i P a 7.6
—/ (31 2 (Valg"g" — 6" g™)0n  Okmdn™) (7.6)
Iy

_ \/g(gijgkl . gljgik)ajnaak,rb\alélV/Q,U)\) 81_5171//2(%”&
+ P([nll gzs+50 )0l 25400 + Dl[vll32.5-02

where, recall, §p > 0 is arbitrarily small. The first term in (7.6) leads to the second term of (7.2). Namely, using

L 1
VI9UGE = G (e R? (1.7)
for ¢ as in Lemma 3.1(iv), we get

1 1] 3l—v AT al—v 1 L Al—v AT Ql—v 1 3/al—v
3 5 \@gyﬂgal /2ajv Hual /231.1;&25 . Hl/\al 29,0 Hﬂal /2@%:6”116(81 /21,)\\%2(“).

In order to establish (7.7), we write g/ &;&; = [£]* + (/99" — 6Y)&;&; and appeal to Lemma 3.1(iv).

Note that the last term in (7.6) is dominated by P. We integrate the inequality (7.6) in time on [0, ¢] and then
integrate by parts in time in the third and the fourth terms. Since both integrals are treated the same way, we only
estimate the time integral of the third term. Denoting

At — 51—v/2(\/§gijniz8jv>\) _ \/ggijnizél—u/Qaj,UA,
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we have
A 220,y S 102 (Vag" T | arasn @y 1050 | para—o oy
+ 10(v/3g" ) | s vz (0 102050 | pasa—20 ry)
S0V 2 (Vag I -2 oy 1050 | g+ 2oy
+ 10/ T | 12722 (0 1072050 | g2y
SN0 2 (ag " T | gy 050 | a2
+110(v/gg T | 1= 1072050 [ ree S Pl s ) [0l przsere

where we used the commutator inequality (2.11) in [54]. Now, the time integral of the third term on the right side of
(7.6) may then be estimated using integration by parts in time as

t
_A A (al—u/2(\/§gz,jni¥8ﬂ]}\)_\/ggzjnixal—umajv)\)aial—V/Qatva
t t
:_/ / A9, 29,0, :_/ Ai0,81v/2y,, |g+/ 9, A9,91V/2,
0 I I 0 r,
— _/ Aiaaigl—u/Qva ‘3
Iy
t
+/ /F (6171//2(\/‘5‘91]1-[?8],8)51})\)_\/ggzjnizalfu/QajaﬂP)aialfu/Q,Ua
0 1
t
+/ / (alfV/Z(at(\/ggijﬂi)ajvk)78t(\/ggijng)alfu/Qajv)\)aialfu/zua
0 Iy
t
S By Pl olssesslollgoso + [P

t
,S Py + EOHU||?{2.5—V/2 +/ P.
0

We estimate the fourth term in (7.6) the same way. For the second term on the right side of (7.6), we use (6.7) and
obtain

t
QLA (O nd'Puh9,0' P < Py + / P+ eo||v]/2s-0ya (7.8)
I 0

Collecting all the estimates and using the bound (7.8), we obtain fg Iy < P+ 60||”U||§12.57V/2 + fg P, and (7.2)

~

follows. O

8. THE L? ESTIMATE ON d%v

We have (7.1) with € = 4, i.e.,
1d

3ot = [ @ ato,0, — | SR adRu.N,.

Iy
We rewrite this as
1d
5@”8?’0“%2 =Ji+J+J3+Jd4
where

J = / 33&“"‘(]3?8“11&, Jo :2/ ﬁta“aatqaf(?ﬂv(,
@ @ 8.1

J3 = / a9} q0} 0, v, Jy=— | 0}a"*q)0}vaN,.
0 Iy
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Lemma 8.1. The time derivative of the Lagrangian velocity Oyv and its second derivative O%v satisfy

10701172 + 1108, v]|7s r,

3 2 2 1/(2—
< llall s ol S 0| 4220, 10yl .o

H2.5-v/2
t
v—26 3—v 1 26 3 1/ 2/3 4/3
T lgl) B2 B g 02800 =) 5, 203,47 (1+ / P)
v)/(2—v 1/(2—v 2—260)/3 14280)/3
+ 1ol G O o |, 10rgl s 190 | 5220 R Dy ) 8.2)

+100ll52 " 1001425 1 el [0l 25— o

1 v 2—v 1/(2—v
+ |l HHJ“ ol 0l 25 | Oeall e

21/ 22V
o) 2270

t
+ Il ool + eolOrwlfs + Po+ [P
0

where P is a polynomial in ||v|| gs-v,

0v(0)| g1, and ||02v(0) ]| 2.

lvoll 13—,

We recall that 0 is given by (6.3). With the notation G' = ||q|| y2.5-»/2 and H = ||0;q|| z11, the equation (8.2) may
be rewritten as

107 v][72 + IT100v |21,
< 60]312 + <Po +/t P) (Eé/(Q_”)El +G(1+250)/(3—V)E11/3 +Eé/(2_”)HE§1+25°)/3
0
+EVPHE,+ EY* ™V H + EY*VE + 1),
from where, taking the square root
1870l 2 + [T108,v|| L2(r,)
< coBr + <P0 + / t p) (Eé/zeu) B2 4 G200 /2G-0) 213 | pl/202—0) g1/ p+200)/0
0
LBV EIREL? L e e | /G gl 1>7
and then using Young’s inequality
1070 22 + |10 ]| L2r, )

t
S €ofr + (Po +/ P) (Eg/<2—v>  GBOF200)/23-v) | p3/(5-200)(2=) pr3/(5-260)
0
L ) 60 | gl e | g2l 1).

Using the notation (2.14), i.e., F = Eg + E; + 1, this may be rewritten as
10702 + T80, v| L2 (ry)

t
SekE + (Po +/ P) (E1/2(2—v) + G3(14200)/2(3—v) 4 F3/2(5-260)(2—v) py3/(5—260)
0

| p3/(6=v) g3/2(6-v) | pl/4C—v) [1/2 | pl/(2-v) 1),
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where dg > 0 is arbitrarily small. Using Young’s inequality on the terms involving E7, where vy € [0, 1), we get

107 ]l 2 + [IT100ev | 2y

t

< coF + <PO+/ P) <G3(1+250)/2(3—V) +H6(2—u)/(2(5—260)(2—1/)—3)
0

+ HG/(9—2I/) +H2(2—1/)/(7—4u) + 1>

It is easy to check that the exponents of H are all less than 3/4 for §p > 0 sufficiently small. (In order to verify
6(2—v)/(2(5—2600)(2 —v) —3) < 3/4, for §, sufficiently small, first set §o = 0 and check that 6(2 — v)/(10(2 —
v) —3) < 3/4forv € [0,1/2).) Therefore,

t
||3t21)||L2 + ||H58tv|\L2(pl) <eFE+ (Po +/ P) (G3(1+26o)/2(3—u) + g3/ 4 1) ) (8.3)
0

Proof of Lemma 8.1. Let Jy, Jo, J3, J4 be as in (8.1).
Treatment of .J;: For .J;, we apply Lemma 5.1 with £ = 9; (that is D = 9?). We start with the term L in (5.4),
which, with D = a,?, reads

t t t
L:2/ /qea”ama;;mafawa —2/ /qea”amagmafaﬂ;aJrz/ /qea”amamafagva
0 Ja 0 JQ 0 JQ
=Li+ Lo+ Ls.

We only treat the first term as the other two are handled similarly. Integrating by parts in time, we have
t
L1 =2 / qea)‘Tagv)\ag’U.,-atalva |t0 72/ / 8tqea’\732v,\83m8t61va
Q 0 JQ

t t
—2/ /qea”aﬁmag%atalva—z/ /qea”@wagatwatawa
o Ja 0 Ja
S llall e ol Fnms 0ol s |, +Hlglle |0l Fns 0] as |,

t t
+/ 10eqll e N[0l 20l -5 | Ocvl [ -5 +/ gl 100l s o]l a2 1 Ocvl -5
0 0

t
o
0

where we used ||v|| 175 < ||v\|§31__52”)/(4_2") \|U||}{/§iifl/’g in the last step. On the other hand, the right side of (5.9)
without L is bounded by

3—2v 2— 1/ 1 2 v
< Po+ llalla ol G2 o | 27 100 | s

a5+ 196013 + 19(0) 150 10 O)] 3
t
4 [ (10l Wl 10solF s+ Nl ol 1050l ) + Nl W00l / ol 25450
0

2—v—24 3—v 1 25 3 I/ 2/3 4/3
< Py + [lgl| 200 ) g G 2500/ 50 9y 2 ||atv||H/u( / ) / P
(8.4)

where dg > 0 is arbitrarily small. Note that the second term on the right side of (8.4) is an upper bound for both the
first and the fourth terms on the left. Therefore, we conclude

t t
/ Ji S Py |al| G200 B G200 LB g0 | 22 [0 512 (1+ / P)
0 0

t
3—2 2— 1 2
T Nl ol 2 ol 22, ol s |, + / P
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Treatment of J,: Now we bound fot Jo =2 fot Jo 0:a#*8,q0,07v4. Using integration by parts in z,, and the

Piola identity (4.5), we get

t t t t t
/ Jy = —2 / / 0,040,000 Ve, + 2 / 010" 0,q02vo N, = / Jor + / Jaa.
0 0 JQ 0 JI'y 0 0

The first term is estimated using Holder inequality as

t t t
/ T < / 16vall o550 10l a1 201l 2 < / P
0 0 0

For the second term in (8.5), we integrate by parts in ¢, leading to

t t
/ Joz =2 | 0,a"8qdyvaN, | —2 /
0 I 0

t t
= Ja21 +/ J222 +/ Ja23.
0 0

For the pointwise in time term, we have

Iy

Joo1 e S ||3taHH1/2(r1)||3tQHH1/2(r1)||3tv||L2(F1)
S 0eal [0l 100l grrvso S (vl a2 10eg| (| 0¢v ]| grr2es

1—v 2—v 1/(2—v 2—26, 3 1426 3
S ol G o) ) 18l [|0e0]| o222 0| 20007,

We emphasize that (2.5) and (2.6) should not be used to treat Jo22. Instead, we write

t t t
/ Jogg = 72/ atza“aatqc?‘tvaNH = 72/ 8fa3a8tq8tva.
0 0 Jry 0 Jry

From [35], recall the formula for the third row of the matrix a, which reads
a® = [01?0m® — Oon?Orn®,  Oan'Oin® — Oin'Oan®,  O1n'0an® — ontorn?] .
It is essential that only tangential derivatives appear in each entry. Therefore, for all « = 1,2, 3,

107 a* 200y S 100l ir1+30 (o) 1000 L2ryy + 10V Fros
S Il mz+so oy 100l a2 ey + N0llrs ey
S Il gzsvso [0l s + [vllze S NOwlmrs + vl < P.

Thus we have

t t t t
[ 2 s [10Falawlddlim sy 0wl S [ 102l plolm ol < [ P
0 0 0 0

t
8fa”a0tq8tvaNﬂ - 2/ ata”aafqatvaNﬂ
0 Jr,

(8.5)

(8.6)
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using (8.6) and the trace inequality. Lastly, we consider J223, for which we use (2.5) and (2.6):

t t
/ Joo3 = 2/ / a"PO\vpa**02q0va N,
0 o Jry

t t
= 2/ 8,52(Nua“5q)8>\v/3a’\"8tva — 2/ 8t2a“5q6>\vﬁa)‘a6tvaNu
o Jr, 0

Iy

t
— 4/ Ota“ﬁatqa,\vﬂamatval\fu
0o Jry

t t
= 2/ 02(0i(\/99" 0;m°))Orvsa™* Opve — 2/ 0%a3P qO\vsa* O,
0 Fl 0 1_‘1
) (8.7)
— 4/ 8ta3’88tq8,\v5a/\0‘8tva
0o Jry

t
_2/ 07 (v/99" 9;1%)0i(Orvpa*Oyvq)
0 I

t t
— 2/ 8752&35(]8)\1)[;(1)‘&8,511@ — 4/ 8ta3B6tq8,\v5a)‘°‘8tva
o Jr 0

1 I'y
t t t
:/ J2231+/ J2232+/ J2233.
0 0 0

The term fot J2231 may now be estimated with fg P by simply expanding. For the second term, we use (8.6), after
which it is also bounded by [ P. The third term is also bounded directly, and thus [, Jass < [ P. Collecting all

the inequalities, we get

t t
1—-v)/(2—v 1/(2—v 2—24, 3 1+26 3
/ Jo S Po+ [0l G ol 10vq 1 0s0l) 202 |00 020003 4 / P.
0 0

Treatment of J3: Here we estimate J3 = fQ a“aﬁfqﬁfauva. Using (2.3) and (2.5), the term .J3 can be expressed
as

Jo= — / 020102, v — 2 / 0,0 020, 0yve
Q Q
= / a'P 95,0405 02 q0, v +/ A (a'Pa**)0\v507 0,04
Q Q
- 2/ 01" 970,040 = J31 + J3z + Ja3.
Q
To treat the term .J3;, we integrate by parts in x obtaining
J3 = —/ OnaP Bvga™* 0290, v0 — / a'P 0yvpa* )02 g0, v
Q Q

— / a“ﬁatvgamafqa,\auva —|—/ a“ﬁatvga)‘o‘ﬁfqﬁuvaNA (8.8)
Q I
= J311 + J312 + J313 + J314

where we used (4.5). Integrating in time the first term and then treating it by integration by parts in time, we get
' _ w8 Ao t ' w8 Aa
J311 = — | Oha"" Owpa™*0,q0,vq ’0 + 0 (Ora"" Dyvpa™®) 0y g0, V0
0 Q 0 Jo

t
—|—/ /aAaW@tvlga’\“@qﬁuatva.
0 Jo
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The pointwise in time term in the above sum may be bounded as
— 8Aa“58tv5a)‘a8tqauva ’t’s ||CL||H1.5 ||(9tU||Hu/2 ||6tQHH1 ||1}||H2.5—u/2 5 ||atU||Hu/2 ||8tq||H1 ||U||H2.5—u/2,

Q
by Lemma 3.1(ii), and we obtain

t t
1-v/3 3
/ Js11 S Po+ |10w|32" 2 00)/ 72100 o 0] r2.s-vre + / P (8.9)
0 0

where we used Lemma 3.1(ii). Similarly, using the divergence condition (2.3), we have a*aaAana = —8Nama,\va,
and the third term in (8.8) can be rewritten as J313 = fQ atP Orvg 8ua’\“8t2q6>\va. Note that it has the same structure
as J311 and it thus satisfies the same estimate.

In the term J3;2, we integrate by parts in time, obtaining

¢ t
/ J312 = */ auﬂatvﬁaAaaAatqauva |g +/ / at(a”ﬂatvﬁa)‘a)ﬁxatqauva
0 Q 0 Jo

t
—|—/ /a“ﬁatuﬁamamtqa”awa.
0 Jo

The pointwise in term satisfies

t
7/ a"? 00507 0n0a0yva oS 110v0l o2 102l 2 0]l 2.5 vz + 10¢v oz | Orall s [0l 2502 |, (5.10)
Q .

< Po+ [10w0l32" P |00l

3tq||H1 ||U||H2A57V/2
where, in particular, we used Lemma 3.1(ii). (Note that this has the same upper bound as in (8.9).) Therefore,
t t
[ iz < Pot 00l ool s+ [P
0 0

The boundary term J314 can be expressed as

t t
/ J31a = / / a'? 9yvpa 07 40, va N
0 0 I

t t
:/ 3?(N>\a)‘°‘q)a“ﬁ8tvgaﬂva7/ / 9%arqa" 9,050,,v4 Ny
0o Jr, 0o Jr,
t
—2/ 8ta/\“8tqa“ﬂ8tvgaﬂva]\7)\.
0 Jry

Note that all three terms have the same structure as the three terms in (8.7) and are treated analogously, leading to
the same upper bounds.

The term J3, is treated by using integration by parts in time (and no integration by parts in space). Since all the
terms are treated in a straight-forward way, we only estimate the pointwise in time term, which equals

/ 0e(a"?a**)0xvs0eqyva < || Ocallm l[vl7p s | Oeall
Q

1— 2— 1/(2—
Beallmr S G ol 2= ol 2s

< ol gz llvllz s Orql e

by (4.11).
It remains to consider J33. We first integrate by parts in x,, leading to

¢ ¢ ¢ ¢
/ J33 = —2/ / 01" 0290, 0pv0 = 2/ / 0yat* 0} 0,,q0yva — 2/ 9,a* 07 qdyva N,
0 o Jo o Jo o Jr,

t t
/ J331 + / J332.
0 0



22 DISCONZI, KUKAVICA, AND TUFFAHA

The second term is identical to f(f Jogs. For Js31, we integrate by parts in time. The integrated in time terms are

controlled by fot P, while the pointwise in time term evaluated at ¢ reads

2/ 8ta“”‘6t3“q8tva ’tS ||8ta\|H1.s_V/2||3th||Lz||8tv||Hy/2.
Q

Note that this is the same upper bound as in (8.10).
Treatment of J,: It only remains to consider the boundary term J4, in which case we use (6.4) with £ = 0;.
Thus

< _ -2 TJTTH ATTCO m
Ju S th/ \fgﬂat@vﬂatava dt/Q 87}8773,51) 8;0,0

- / (0:(va9"TI30;0%) ~ /59" TI30,0;0* ) 0,6} v
I'y

- [ (a(vates - gg 0 aumnn)
I

— V(g7 g — g gik)ajnaakm@z@tvk) 0:07va
+ P(|[nll 2550 ) (0]l 25450 + D1 0r01 715
Note that the last term is dominated by P. Therefore,

t
[ 555 [ Varmaomaoe. |+ [ Guondwaoan;
0
t
‘/ Oh(\/39"TI5) 000,07 v

/ 01 (V/alg"7g" — 1 g™)0y0° Dun ) 0,0 v + / P
'

t

:J41+J42+/J43+/J44+ P.
0 0 0

As for I, in the previous section, the first term Jy; is the coercive term leading to the second term on the left side
of (8.2) by simply using (7.7). The second term J45 is bounded in (6.7) as Jyo < Py + fo P—|—60||8tv||H1 5. For Jy3
and .J44, we integrate by parts in time, yielding

/Ot J43+/0t Ju== | 3(\/99" 1) 0,09 0va | +/Ot : 02(,/g9"T1$)9;0* ;0,0
+ /O t : 9:(v/99" 1) 00,0 0;04v4
—/ 5t(f(g"‘g’“ g“gik)ﬁjn“@km)Bzvkaiatva B (8.11)
/ ; 82 \/§ gljgik)ajnaakm>310’\3i3tva
+/0 . 8t \/g(gijgkl*gljgik)ajﬁaakm>5'15{0’\31@%

whence

t t t
[+ [ s B lolietonlme + [ P
’ ’ 0 (8.12)

S Py + o] 245 = o220 100 s + / P
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after a short calculation. Note that both pointwise in time terms in (8.11) are estimated by the second term on the
far right side of (8.12). The proof of the lemma is thus complete. a

9. DI1v-CURL ESTIMATES AND THE CAUCHY INVARIANCE

In this section, we use the Cauchy invariance property and the div-curl estimates to the norms ||v|| g2.5-v/2,
[v]| g5, and [|0|| 1.5 in terms of |03]] ra—v/2(pyys |02 || 25—+ (1y)» and [|0403]| g1 (p, ) respectively.
We summarize the resulting inequalities in the following statement.

Lemma 9.1. For the velocity v, we have

lollgz.s-vr2 S Po+ 0%l 2-vrzqry) ©.D
and
[oll s S Po+ [0° |25 0y 9.2)
while for the derivative Oyv, we have
100l 15 S NollFe + 1000° a2 oy 9.3)

Proof of Lemma 9.1. First, let py € {1.5 — v/2,2 — v}. By the Cauchy invariance property

eaﬁyagv“&ynﬂ = (curlvg)® (9.4)
(cf. [58]), we obtain
(curlv)® = e dgu, = *PVDp0H (8, — Dym,) + (curlvg)®. 9.5)
Similarly, from the divergence condition (2.3), we get
dive = (6 — a*?)0,v5. 9.6)

Using the elliptic estimate
1 X zs < [l curl X[ gs—1 + || div X[ gs—1 4+ [|X - N || ga—0.50,ur0)> s>1 9.7
([16, 21, 25]) along with (2.7), (9.5), and (9.6), we arrive at

[Wllzrors S N1V = Tl g2=e Vol meo + lla = Il 2= [|V0]l oo + [ curlvollzso + [0 | groosiryy. (9.8)

Assuming that the time 7" > 0 is sufficiently small as in Lemma 3.1(iv), the first two terms on the right side of (9.8)
may be dominated by the left, and we obtain

ol ro+1 < || curl vol| greo + ||v3||Hp0+o.5(F1), po € {1.5—v/2,2—v}.

Therefore, we obtain (9.1) and (9.2).
Next, we apply the Cauchy invariance to 0;v, i.e.,

eam@g@tv“&ym = —eaﬁyaﬁv“&yv”, 9.9)
obtained by differentiating (9.4) in ¢, which we may rewrite as
(curl ;v)* = €*PV9500v, = PV D0 H (5 — Oyny) + €277 050,0"0ym),
= *P1950,0" (8, — Oyny) — €*P10501 0,0,
using (9.9) in the last step. On the other hand, the divergence condition for ;v may be rewritten as 9 Ovg =
(698 — a*F) 00w — 9;a%P D,vp. Using the div-curl elliptic estimate (9.7) with X = J;v and s = 1.5, we get
0wl grs SNV = Il 2= VO os + [la = I 2=+ |V Opv| o5
+lollze + 10allm llvllzz + 10:0° 2

SNIVn = I 2= [[VOw| gos + lla = I gr2=v |V 00| o5 + [0l 32 + (1040|111 (1)
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and thus, if 7" is sufficiently small as in Lemma 3.1(iv), we obtain (9.3). (Il

10. RELATION BETWEEN THE PROJECTION AND THE NORMAL COMPONENT OF v AND J;v

In order to close the estimates, we need to connect the projections and the normal components of the vector fields
v3|p, and dyv3|p,. We first address the comparison between I1X and X - IV, where X shall be chosen as certain
derivative operators of v and 0;v.

From (6.2), recall that T15 = 62 — g*'9;.1° 9yn,,. Therefore, (T1X)3 = 13 X = 63 X — g* 911, 0xn> X<, from
where X3 = (ILX)? + g* 8,0y X . Using 7 = 72 (0) + [y v = a® + fg v3, and thus 9> = fot Ov®, we get

¢
X3 = (IIX)3 + g’“aknaxa/ ove. (10.1)
0
Applying the formula (10.1) with X = 99;v. From 090> = (1100;v)3 + g* 010 00;v fg O;v® we obtain

t
Haat’u?)HLQ(Fl) S HHaat'U”LQ(Fl) + Hgklaknaaatva/ 6[’()3
0

L2(Ty)
The first term on the right side is estimated in Section 8. For the second term, we have

t
Hgklawaé@v“/ v’

t
0 < 1lg™ 3l ey 19000 2oy / 18]l 2= 0y

L2(Th)
t t

S Qllmsssso) 0wl [ Nollsssso S Wuols [ s
0 0

where we used ||7|| 2.5+, < 1 from Lemma 3.1(i). Therefore, [|00;0° || 12(r,) S 11000 || p2(r,) +|0pv]| 15 fg P.
Adding ||9;v3|| L2(r,) to both sides then gives

t
100|210y < T80 2oy + 19s0l o550 + Br0] e /O P
t
S.; ||H86thLz(p1) + ||8t’l)||L2 + 6()”815’[)”]{1.5 + HB,gvHHl.s) / P
0

t t
< ||H88tUHL2(F1) + Py —|—/ P+ ¢||Owv]| grrs + ||(9t1}||H1.5/ P,
0 0
where we used interpolation and Young’s inequalities in the second step. We may rewrite the resulting inequality as
t
||8tv‘5||H1(F1) S ||H68tv||Lz(pl) + EoHat’UHHl.s + PO + (1 + ||a[;’U||H1A5)\/ P (102)
0
Next, we apply (10.1) with X = 99" ~*/20, leading to 0" /%03 = (1A' ~*/20v)3 + gFdy1a 00 ¥/ 21 fg e,

Then [|09""/203|| 12(r,) S (IO */20| La(r,y + |[v]| g2.5-ws2 [ [0]| y2.5+50 - Note that the first term on the right
side is estimated in Section 7. Adding ||v*||z2(r,) to both sides gives

t
[0* | 22,y S IO 20l 2(ry) + [l0ll e + IIUIIHz.sw/z/ p
0
t
5 ||H8817V/21)HL2(F1) + €0||UHH2.5—V/2 + H’U||L2 + HU||H2.S—I//2 / P.
0

We rewrite this as

t
HU3||H27V/2(F1) 5 ||H881_V/2U||L2(F1) + €O||U||H2,57V/2 + Po + (||’UHH2.57V/2 + 1)/ P. (103)
0
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Combining (9.1) with (10.3) and choosing ¢, sufficiently small, we get

t
||/U||H2.57V/2 S ||H881_V/2’U||L2(p1) + PO + (||(U||H2.57V/2 + 1)/ P. (104)
0

Combining (9.3) and (10.2) with €y > 0 sufficiently small, we obtain

t
18]l s S 00| 2 (ry) + |0l Frz + Po + (1 + H(’)thHl.s)/ p
0
S 00wl e,y + [olts"™ ™ ol (10.5)

t
+ Py + (1 + ||8t’U||H1.5)/ P.
0

11. THE CONCLUDING ESTIMATES

Now, we are ready to combine all the available inequalities to prove Theorem 2.1.

Proof of Theorem 2.1. Squaring (10.4) and using (7.3), we get

t
E§5PO+(E§+1)/ P. (11.1)
0

Also, combining (8.3) and (10.5), we get

t t
E1 < €0E+E/ P+ (PO _|_/ P) <G3(1+250)/2(3—u) —|—H3/4 +E1/(2—V) + 1)
0 0

from where, using Young’s inequality,

t t
Ey < eoF + E/ P+ (PO +/ P) <G3(1+250)/2(3‘”) + H3* 1) (11.2)
0 0

Finally, we add (11.1) and (11.2) and choose ¢ sufficiently small so we can absorb 2¢g E, obtaining

t t

E< E/ P+ <P0 +/ P) <G3<1+250>/2<3V> + H3/4 4 1). (11.3)

0 0
Now, we turn to establishing the control of ||v|| g3-.. From [35], recall the identity
\/ggz]a2 3 \[gml-wk:akv?)
= —at(fg”)awn — Bt(@gijffj)akns — 0ya**N,,q — a"*N,0,q on T4,

which follows from differentiating (2.6) in ¢ and setting o = 3. We rewrite the equation above as

Av? = (67 = /gg") O + /99" T,000° — 0:(\/99")O5m?

— at(\/ggijl"fj)akn?’ — 0ya**N,,q — a"*N,0,q on T4
from where, by ellipticity,
[0 | 25w o1y S 1067 = \/99™)070% | o5 ry) + 1V/G9 T35000° | o5y

+110: (V997212 | 05—+ 01y + 1106 (/99 T5) Ok | #r0.5-v (1)
+ H(")ta“?’ MqHHo.sﬂj(pl) + Ha“ NuatqHHo.Euﬂ/(pl).
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Using (6.6), we get
P s S 320169 = vag7 e + 159 — v/l o) 0% lias-vey)
(2%

+ IVag" T3 s o) |0k 0? || vy

+ (10:(v/99) |z + 10: (Va9 e o)) 10507 (| o5 1y

+10: (/a9 T ) 0.5+ oy (10673 | Lo + 1106?11 (1))

+ 10" Nyl 2w oy llal o5 o) + 1@ Nyl 2o o) 10edl o5 r, -

Since [|6% — /gg" || Lo + ||6Y — /99" || 2 < €0 by Lemma 3.1(iv) (ensuring that 7" < 1/C M), and using (recall
that n(0) is the identity) [|0xn*|| L + [|Okn” | g1 (r,) < €0, also by Lemma 3.1(iv), we get

t
2| rz5-v(ry) S €ollv®la—v + lalle + 10eall i + [0ll 25450 + Po +/ P
0

. (11.4)
< B+ loualas + eolleo + [ P
(Note that [|g[| 1 S Po + [y P and [[v]| 25400 S ol|vl| s + Po+ [y P)
Combining (11.4) with (9.2) and setting ¢y > 0 sufficiently small, we obtain
F=llisee S Pot 0l + [ P BB+ [P (1s)
while by (11.3) we have
E< E/t P+ (PO + /t P) <G3<1+250>/2<3—"> + H3* 4 1). (11.6)
Also, (4.3) reads i i
G< (Po + /t P) EG=/3, (11.7)
0

Substituting (11.7) in (11.6) and using Young’s inequality then yields

t t
EgE/ P+(PO+/ P) <H3/4+1>. (11.8)
0 0
Next, we have (4.4), which is

t
H<E+ (po +/ p> (E(mu)/ﬁ 1 p1/2GOHr+200)/(3-v) | Fu/(l—mE(l—zu)/(z—zu))

0

The inequality (11.7) then gives

t
H<E+ (P0+/ P) (E(7+2u)/6 1 p+2w+480)/6 | pr/(1-v) p-2v)/(2-2v)
% (11.9)
<E+ (R]+/ P) (E(7+2V)/6+FV/(1—V)E(1—2V)/(2—2V))
0

where we used Young’s inequality and (5 + 2v + 40¢)/6 < 1 in the last step. Replacing (11.5) into (11.9), we get

t
H<E+ <P0 Jr/ P> (E(7+2u)/6+Hu/(lfu)E(172v)/(272u))
0

from where, using Young’s inequality to absorb H*/(1=*) into the left side (note that /(1—v) < 1 by the restriction
on ), we get

t t
H<E+ <P0 +/ P) (E<7+2V>/6 + E1/2) <E+ (PO +/ P) ET+2)/6. (11.10)
0 0
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We need to combine this inequality with (11.8). Observe that

7T+2v3
- <1 11.11
<L (1L.11)
which follows from 0 < v < 1/2. Thus, we may choose € > 0 such that
2
7+6 ”%(1+€)<1 (11.12)

Then replacing (11.10) in (11.8), we get

t t t t
FE 5 E/ P+ <P0 +/ P) <E3/4 +E3(7+2V)/24) S E/ P+ (PO +/ P) (E3/4 +E1/(1+€))
0 0 0 0

(11.13)

where we used (11.12) in the last step. Using Young’s inequality on (11.13), we get
t
E§PO+E/ P (11.14)
0

Note that P here and below depends on F, F, G, and H, i.e., P = P(E,F,G, H). The inequality (11.14) is
combined with (11.10), i.e.,

H< <P0 + /t P) E(T+2v)/6 (11.15)
0
In addition, we have an inequality for F', which is (11.5) with (11.15) applied to it,
F< (PO + /t P) E(T+20)/6 (11.16)
0
Finally, by (11.7), we have
G< (Po—i-/tP) EG=1/3, (11.17)
0
A barrier technique applied to (11.14)—(11.17) then leads to the boundedness of F, F', G, and H for a sufficiently
small 7" > 0 and the proof is concluded. (]

12. THE CASE OF A GENERAL DOMAIN

In this section, we show how to adapt the ideas used to prove Theorem 2.1, where the initial surface was flat,
to the case of a general bounded domain. The physical situation which we have in mind is that of a water droplet
with surface tension. In this case the fluid domain does not have a rigid bottom, and thus only equations (2.2)—(2.6)
are considered. Note however that the presence of a rigid bottom can also be handled with minor modifications.
If U is a domain in R3, ||OU |5 is the H® norm of the boundary of the domain, defined in the usual way via local
representations as graphs.

Theorem 12.1. Let o > 0 and € € [0,1/2). Assume that vy is a smooth divergence-free vector field on a bounded
domain Q C R® with smooth boundary T, and denote by N the unit outer normal to I'. Then there exist C, > 0 and
T. > 0, depending only on |[vol| 2.5+, ||vo - N[ g25r), 0 > 0, and ||T'|| gs.75+/2, such that any smooth solution
(v, q) to (2.2)—(2.6) with the initial condition vy and defined on the time interval [0, T | satisfies

||1}||H2,5+e + ||(9t1}||H1.5 + ||6t21}||L2 + ||qHH2.25+e/2 + ||(9tqHH1 S C* (121)

Moreover, |T'(t)|| gz+e < Cy fort € [0,Ty], where T'(t) = n(t)(T).



28 DISCONZI, KUKAVICA, AND TUFFAHA

As in Theorem 2.1, the dependence of C., and T, on |[vg - N|| 2.5y occurs to guarantee that 97 v belongs to L?
at time zero. More precisely, solving for 9?v(0) in terms of v(0) and ¢(0) as in Remark 4.3, we can bound 92v(0)
in L? in terms of the initial data if vy - N € H?3(T"). However, instead of solving for time-differentiated quantities
in terms of the initial data to determine regularity conditions on the latter, many times it is preferable to directly
state the a priori estimate upon the assumption that the energy we seek to bound is finite at time zero, as done for
example in [25]. Therefore, introducing

N(t) = o)l mzs+e + 10w (B |z + 10700 L2 + ()| r2254er2 + [0ea(B) 1 1,
we have the following.

Theorem 12.2. Let o > 0 and € € [0,1/2). Assume that vy is a smooth divergence-free vector field on a bounded
domain Q C R? with smooth boundary U. Then there exist Cy, > 0 and T, > 0 depending only on N(0), o > 0,
such that any smooth solution (v, q) to (2.2)—(2.6) with the initial condition vy and defined on the time interval
[0, Ty] satisfies N (t) < C,.

We remark that Theorem 12.1 entails some derivative loss for the boundary, i.e., a H37>+¢/2 initial boundary
I yields only a H3*¢ moving boundary I'(¢). This loss of regularity is known to be prevented in H* for s > 4
[25, 70]. It seems challenging, however, to avoid some loss of derivatives for the boundary evolution when working
in such low regularity spaces as presented here. It should be stressed, however, that some regularity of the boundary
is propagated, namely, I'(¢) is in H3*€, thus more regular than the flow n|r which is guaranteed to be only in
H* ().

We now turn to the proof of Theorems 12.1 and 12.2. The crucial observation is that in appropriate coordinates
that flatten the boundary near a point, the equations take exactly the same form as (2.2)—(2.6), with 0;, fori = 1,2,
being tangent to the boundary, as in the case of the domain (2.1).

More precisely, given yo € 02, we take coordinates that flatten the boundary near yo. This means that there
exist 7, R > 0 and a diffeomorphism ¥: Br(0,0,1) N {z® <1} — B,(yo) N such that (after a rigid motion and
relabeling the coordinates if necessary) we have ¥ (!, 22, 2%) = (2!, 2%, 22+ (2!, 22)), where ¢o: Br(0)N{z3 =
1} — R is a smooth function. Note that det D¥ = det D¥~! = 1. Consider the Lagrangian map 7: 2 — Q(t),
and set 77 = 1 o U, which is defined in the domain of ¥. Then 0;7j = ;o ¥ = uono W = vy o7, where u is
the Eulerian velocity, i.e., the velocity in the moving domain (t). It follows that if we introduce ¥ = u o 7 and
q = p o1, where p is the Eulerian pressure, then v and ¢ satisfy equations (2.2)—(2.6) with all variables replaced by
their respective ~ counter-parts — except that these equations are now defined only locally, i.e., in Br(0)N{z3 < 1}.
We thus use suitably chosen cut-off functions to produce local estimates, passing to a global estimate by a simple
addition procedure. In order to simplify the exposition, we will omit tildes from all quantities and continue to label
7, v, and ¢, which are only locally defined, the Lagrangian map, velocity, and pressure, respectively.

We need expressions for 7(0), a(0), and g;;(0), which now are slightly more complicated than in the case of the
domain (2.1). We have

77(03 -T) = (1'173723 133 + w(xlvxz))v azn#(o) = 65‘ + 6#381'1/}’ gZ](O) = 573 + 87w8]w7
and g(0) = 14 (919)% + (321)?,

where we recall that g is the determinant of (g;;). Also,

1 0 0
“1yy 1 14 (02h)*  —0100a1) _
g (0)= 14 (0190)2 + (Da1h)? | =012 1+ (O19))? a(0) = —gﬂb —312¢ (1)

In the proof of Theorem 2.1, for which ¢ = 0, we used the above quantities at time zero to produce some small
parameters in the energy estimates. In order to apply the same argument here, we need V1) to be small. This can be
achieved as follows. Without loss of generality we may assume that Vi (0, 0, 1) = 0. Reducing R and invoking the
mean value theorem, we may make || V4[| () as small as we wish provided that ¢ is bounded in H?%9, where
6 > 0, which is consistent with Theorem 12.1. Note that the compactness of I" assures that we may take R > R
for some fixed Ry.
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We shall derive estimates near the point (0,0, 1), with the variables defined in the ball of radius R/2, where
R > 0 is as introduced above in the construction of the local parameterization of 2. Let 6 be a smooth cut-off
function such that 0 < 6 < 1 with § = 1 on Bg/5(0,0,1) and suppf C Bp/4(0,0,1). In what follows, all
integrands carry a cut-off function of this type. Therefore, extending all quantities to be identically zero outside
Bpry4(0,0,1), we may consider the equations and variables defined on the domain Q="T2x [0, 1]. This will make
it easier to adapt the estimates from Section 7. Also, as in that section, we shall denote the upper boundary of Q
by I'; and the lower boundary by I'y. However, unlike Section 7, no integral over Iy is present since all variables
vanish there in view of the way they have been extended.

We now apply the energy estimates of Section 7 with ,

E=0d""2@0.). (12.2)
obtaining
%%neatw\; _ / £0,(a"0,q)EDyva — — / 511200, (a9, 0)) 512 (09rva)
Q Q
_ / 00, (a"9,,q)5° " (0002
Q
= / 00, (a"*q)0*~ (09,0,,v0) — / 00,(N,,a"* )" (00,v4)
Q Iy
+ / 8,00, (a"*q)5* ¥ (00yva) + / 00, (a"*q)9> " (8,004,
Q Q
from where

1d
ia‘lgaﬂ)niz = [ Eat(a“o‘q)c‘f@taﬂva */ Eat(N#a’w‘q)E@tva
@ n (12.3)

+ / %°7(0,00;(a"q)) 0+ (00,v4) + / 5700, (0" q)) 0 (,00,v4).-
Q Q

By (12.3), we have  40'~/2(00v)||2. = I + I + I3 + L4 + I5, where

I = / V200" q) 0 % (00100,
Q

I, = / a'* 9> (00,q)00;0,,v4
Q

Iy = / (62—”(961/‘“8@) - a“a52_”(98tq))90t8uva
Q
Iy =~ / 0 ¥/2(00,(N,a"*q))0* /% (00yva)
Iy

Is = / 9%577(0,00;(a"“q)) 0" (004v4) + / %5700 (a"q)) 0" (9,,001v4).-
Q Q

The first term is rewritten as

I, = / 957 (0010 q)9°° (00,0,va) < ||0"°77 (001aq)|| 1100, V|| gro.5.
Q

Now, let § be a smooth cut-off function such that 0 < § < 1 with supp§ C Bp/3(0,0,1) and § = 1 on supp §. We
need this cut-off function for an application of the fractional product rule below, as each separate term needs to be
properly cut-off. Having 6 = 1 on supp 6 assures that we may introduce 6 without altering given expressions. We
have

104577 (60vaq)|| . = (0" (00,a8q)|| 1. < [100eall r2-110q| 2 + [168sal| 111 (|6l 2
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where we used the fractional product rule. Also,
|00:Vv||gos < |[V(000) | gos + || VOO gos < ||6708tv|\H1.5 + ||9_V98tv||H0,5
g ||9||H1A5+50 ||§3tv||H1A5 + ||V9||H1,5+50 ||0_8tUHH0»5 S ||0_(9t1)||H1.5

Therefore, we get I; < ||00;al| gr2—v |04 1 ||00:v|| 15 + ||00¢al| g1 ||0q|| gr2—v ||00¢v|| 15 Next, by the divergence-
free condition (2.3) we have

I =~ | 00" 0> (00,0)00, 00 = — / 87 (0,0 00,,0,)9(00,q)
Q Q

- / 'V (00,a"00,0,)0(09,q) < ||0 7 (0010 00,04 || 121084 1
Q
and thus, using the fractional chain rule, I> < [|00;a"*|| g1.5 (|00, v || gr1-+[|00:q|| g1 . For I3, we have, as in (7.5),
s = (5271/ aPpNILed AL Ha2—v
3= [ (0a"*00,q) — 0a**0=""(00.q) | 00,0,,v4
Q
< [|9%7(0a"00,q) — 0a" 5>~ (00,q) || 13/2|00:0,0|| 13
< 10all g2+ 100:q| 1 (100,00l s S 110l v [|00:q| 11 000 | 1.5
where we used

100180, s < [10,,(00,v) | L5 + [|0,00sv]| s = [0, (00,v) | L5 + 1108,00,v]| s
< 18,0000 s10:5 + 18000115 < 1005015 + 1000ll 05 < [|000]| 1.5

in the last step.
Before treating the most difficult term 14, we bound the lower order term I5 which is the sum of two terms,
denoted by I5; and I55. For the first one, we write

I5 = / 9%°7(0,00;(a"*q)) 0" (00,v4) < 1|0°°7(8,00:(0a”0q))|| 120" (00rva)]| L2
Q
S 01 gr2.5+60 00sall gras— 12 10| gro.5—v /2 100y va || 111 5
+ ||0HH2,5+50 ||0a||H1.57u/2||98tqHHo.57y/z H98tva|\H1.s

while for the second one we have similarly
I = / %2700 (a"*q))0*°(9,00:va) < 1|0°°7 (00:(0a"0q))|| 120" * (0,,00:v4)]| 12
Q

SJ ||9||H1.5+50 HéataHH1.57V/2 Hé(]HHo.sfu/Q ||§8tva||H1.5 + ||9||H1.5+50 Héa||H1.5—u/2 ||978tq||H0.57u/2 ||é6tva||H1-5~

Now, we turn to the term I, for which we modify the considerations in Section 6. With £ defined in (12.2), we first
obtain the first equality in (6.1), i.e.,

I, = / 55:571@551'(\/&79”(5? — g"om™omx) 0,0 + /g(g” g** — gljgik)ajﬁaakm@sz)
I

—— | oiorwaE (Vg (65 — g own om0,

I'y

—~ 8i58tva5(\/§(g”g“ - gljgik)ajnaaknAasz)

Iy

— [ E0wad' (81‘9\/59”(5? - gklﬁknaalnA)ajUA)

Iy

- EDwa 0t /2 (8i9(\/§(9ij9kl - g”g““)@m“amawk)) = I41 + Iyp + Iy3 + Iu4.
Iy
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Using (6.2), we rewrite

L == [ 87/2(0/5g"TI50;0")0,0' /2 (00104)

I

S /F §i-v/? (éﬁgi-fngeajvk)51—'//2(051-@%)
- /F 31*”/2(eﬁgijniajv*)51*V/2(aieatva)
S /F é\/ggijngélfm(eajw)élf"”(aaﬁtva)
- /F (51—”2(5\/@9”11393]-&) —é@giﬂ‘ngél—y/?(eajmo51—”2(9@@%)

— 5171’/2 (0\/?]91.]‘1_[?\‘8]"0)\)5171’/2(81'98{0&) = I411 + I412 + 1413.
Iy
Using II§ = HfjHi , the first term equals
Liui = — | 0/gg"TI50" /200,020 ~/2(00,01v4 )
Iy

=/ 0\/9g" IO /20 (0™ IO /20, (00,va) + Lo.t.

1d [ - o - -
= 2L a6 00 0 ) + Lot
I8

It is easy to check that I4;5 and 1413 constitute lower order terms. We thus obtain

1d o . 5
T ==y [ VB 0,3 050 00) + Lo
IS}

1d iin _ o A
= T3a s V9(0)g701150;0" /2 (0v*) T1%:0,0" /2 (0. )
1d _ . B B ~
3% 0(\/!391] _ \/mg”(0))H’;ﬁjal*”/z(Gv’\)Hfj@ialﬂ/z(eva) T lot.
Iy

The first term on the right hand side leads to the needed coercive term, providing the control of the H2~¥/2 (T") norm
of ITv. The second term is, after the time integration, dominated by the coercive term by Lemma 3.1(iv). As in
Section 6, we have

10 = —/ 0/9(g" g™ — g" g™*)0n* Okna 01 EV 0;E Dy
11

- / (5 (01/9(g" g™ — g" ™) 0" Oknr00™) — 03/g(g" g* — g4 g™* )amo‘akmaszA) 8;ED,v4
I
= Iyo1 + I420.

Also, as in Section 6, we have

0
I :—/ — (9, det A' + det A% + det A®
21 F1\@( ) )

where

Al 010 EvH 011,02 42 010, EVH 01 02EVH 43— O1n01EVH 01v,02EV*
8277H(915U“ 8277M828U” ’ 821}H815U“ 8277M828U” ’ 8277“8151]” 821}“8281}” ’
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and we obtain

0 0 0 0
I401 = —/ 0 ( detA1> —|—/ 0 () det AT — fdetAQ—/ — det A®
“ r\Vg v \Vg r V9 r, /9

= Iyo11 + L4212 + L4013 + Is214.

As above,
10 (0/v/9) | oy S P20 0]l 272550
and | det A!| < |0n|?(£0v)?. Therefore,
Lizia S P(nll 5450 [[0] 240 1€ Far,y S PUInll 25450 0]l 240 1€ 0I5

as well as

1 _
/F —=(det A% + det A%)| < P(|[n]l gzs+30)[€00]Zar,y S P[0l gz-5+50 )1 E0][ 315

The rest is the same as in Section 6. We integrate by parts and write

0 0
/F1 E det A = /F1 %(51UM8277A81EUM(925U’\ — alnu3277A325v“(915v’\)

:/ jg(—amuagmgv“&(%é'@ + amuagn,\é'v“@g@lgv)‘) — éQL/\(gn,52n)8v“8i5v>‘
Fl 1_‘1

=— | 0Q)\(0n,0°n)Ev"0:E0*

Iy

where QL 1 (0n,9%n) is a rational function, which is linear in 0. Therefore,
d [ —~ _
g1 = — / 0Q° \ (9n)D*nEvtd;E0™,

and we obtain

d I

Iyo1 < %/ QQL)\(an)az?]gv“aiSv)‘ + P(||nll gr2-5+50 ) (||| gr2-5+60 + D)||EV|| gr1-5-
Iy

Thus we have shown how to adapt the result in Section 7 to the case of the curved domain.

After covering I' with finitely many balls {B,, (y¢)}¥_, the procedure described above yields the desired es-
timates near the boundary. In order to obtain the full estimate, we need to bound the solution in the region of 2
not covered by B = UéV:O B,,(y¢). This is done by covering Q\ B with further open sets and again reducing the
problem to estimates on T? x [0, 1]. However, for these estimates no integrals on either I'; or 'y will appear.

Using again cut-off functions and the local parameterization of Q described above, the L? estimate for 9?v in
Section 8 is easily adapted to the present situation since only an integer number of derivatives is used in those
estimates. The later sections, including the div-curl estimates and the Cauchy invariance property, are also easily
adaptable. This establishes Theorems 12.1 and 12.2, except for the statement ||'(¢)|| g3+ < C., which we now
prove.

Let yo € n(£2). We choose coordinates (y',y?,y>) in the ambient Euclidean space such that, possibly after a
rigid motion and relabeling of the coordinates, ¥ is identified with the origin and 7(£2) is locally given by a graph
y® = h(y', y*). Denote by ¥ the portion of 7(€2) that is written as the graph of . We can further assume that 9,,:,
fori = 1,2, are tangent to ¥ at yo = (0,0,0) and that 0,1 h(yo) = 0y2h(yo) = 0.

Recall that we denote by H: 7(2) — R the mean curvature of 7(£2). In terms of local coordinates (z!, 22, z3)
near ' (yo) we have the known formula —A,n® = H o nn® o n, where n is the unit outer normal to 7(£2). Con-
tracting with n® o 7, invoking (2.6) and (12.1) (which is the part of Theorem 12.1 that has already been established)
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we have || H|| g1+ < C. (here, and in what follows, we relabel the constant C, if necessary). On the other hand,
setting w = h — y3, we have the following expression for the mean curvature expressed in y-coordinates:
g 1 o Owdlw
AY (Vw)0;0;w = —— | 0Y — —=——— ] 9;0;w = H o h, 12.4
v = o (5 G ) oy = e ey

where 9' = §**9j.. From the way we constructed h, we have A% (yy) = 6. We already know that ||3|| g2+ < C.
since we have a bound for 7, thus we may assume that ||wl||o1. < C,. It follows that A% is uniformly elliptic near

the origin and bounded in C% for some 0 < 3 < . Elliptic regularity then implies that ||w|| s+« < C., as desired.

We remark that the application of elliptic theory in the previous paragraph is not entirely immediate, and has to
be carried out in steps due to the low regularity of the coefficients A%. First, one uses Schauder theory and the
embedding H'*¢(X) ¢ C%A(%) to conclude that w is in C%#. Then the coefficients A are in fact C*#. Using
that the right hand side of (12.4) is in H' we can then apply LP estimates to obtain w € H?3. Thus, A¥ is now in
H?, and we can interpolate between estimates for elliptic operators with coefficients in Sobolev spaces of integer
order to finally conclude the result.
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