
Controller Area Network Intrusion Prevention System
Leveraging Fault Recovery

Habeeb Olufowobi
Howard University

Washington, DC

habeeb.olufowobi@howard.edu

Sena Hounsinou
Howard University

Washington, DC

sena.hounsinou@howard.edu

Gedare Bloom
University of Colorado Colorado

Springs

Colorado Springs, CO

gbloom@uccs.edu

ABSTRACT

The ever-increasing demand for safety, comfort, and automation in

the automobile has increased their vulnerability to cybersecurity

risk and attacks. Automobiles now embed several electronic devices

to perform these functions, and the complexity in the design of

these systems increases along with the functionalities they offer.

These devices communicate through the vehicular networkÐsuch

as controller area network (CAN) and local interconnect networkÐ

which are attractive targets for cyber attackers. In this paper, we

propose a novel algorithm to detect and recover from message

spoofing attacks aimed at distorting the operation of the CAN bus.

Using the predictable run-time behavior of CAN message frames

in our recovery process, we leverage the error handling capability

(bus-off state) of the CAN bus in a reboot-based recovery process

of the compromised network node. We implement this algorithm

in tandem with a hardware CAN controller as a detector node,

and we evaluate its effectiveness and performance in detecting and

recovering a compromised node.

CCS CONCEPTS

· Security and privacy → Intrusion/anomaly detection and

malware mitigation; Malware and its mitigation;

KEYWORDS

CAN, Intrusion Detection Systems, Intrusion Prevention System,

Automotive Security, Reboot Recovery, Data Injection
ACM Reference Format:

Habeeb Olufowobi, Sena Hounsinou, and Gedare Bloom. 2019. Controller
Area Network Intrusion Prevention System Leveraging Fault Recovery. In
ACM Workshop on Cyber-Physical Systems Security & Privacy (CPS-SPC’19),
November 11, 2019, London, United Kingdom. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3338499.3357360

1 INTRODUCTION

Recent development in the use of embedded devices and Inter-
net connectivity in the automobile has brought vehicles into the
Internet of Things (IoT). The vehicles reliant on these electronic
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CPS-SPC'19, November 11, 2019, London, United Kingdom
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6831-5/19/11…$15.00
https://doi.org/10.1145/3338499.3357360

devices for primary functions bring concerns about their security.

Nowadays, a high-end automobile may embed up to 100 differ-

ent electronic control units (ECUs) to enhance the functionalities

and operations of the vehicle. The attack surface of vehicles con-

tinues to grow in proportion to each of these functionalities and

their concomitant increase in the complexity of the automobile

system. These ECUs communicate through the in-vehicle network

which includes the controller area network (CAN), local intercon-

nect network (LIN), FlexRay, and media oriented systems transport

(MOST). The CAN bus is the most commonly used network system

in the automobile, and it connects ECUs through a message broad-

cast protocol. The CAN bus was initially designed for automotive

applications and has been adopted in other applications such as

industrial automation. Unfortunately, the CAN bus implements no

security mechanism for the ECUs and their applications.

CAN bus has been shown to be vulnerable to remote and physical

attacks [5, 9, 12, 15] as it allows unauthorized node communica-

tion and the transmitted message frames between ECUs are not

encrypted or authenticated. Physical attacks can be accomplished

through the on-board diagnostic (OBD-II) port, while remote at-

tacks are achieved through the use of the wireless connectivity to

the network. Koscher et al. [12] were the first to demonstrate and

perform possible attacks on the vehicles by reverse engineering of

the ECU codes to control a range of vehicle functions. Similarly,

Checkoway et al. [5] andMiller and Valasek [15] have demonstrated

the evolution of cyber threats against automotive networks by re-

motely connecting to the vehicles to take over vehicular functions.

While other threats are still emerging, experience related to the

detection and defense of these threats remains low.

The design of security for the in-vehicle network has been chal-

lenging because the requirements for security are not accurately

defined while also considering the constraint of the available band-

width of the vehicular network protocols. Recently, standards such

as ISO/SAE 21434 [2] are being developed and the published J3061

cybersecurity guidebook for cyber-physical vehicle systems by Soci-

ety of Automotive Engineers (SAE) is a much-anticipated standard

to fill this gap in security engineering of modern vehicles [17]. An

essential requirement in considering a security mechanism for the

automotive in-vehicle is the algorithmic requirement of the lim-

ited computational power and memory resources of the system.

Hence, a security mechanism for the in-vehicle network should be

lightweight and computationally efficient while respecting network

errors and fault-tolerance.

Prior art has demonstrated a plethora of intrusion detection

system (IDS) approaches for CAN bus [21]. However, the response

mechanism of such IDSs has been woefully ignored, and designers

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

63

are left to wonder how to utilize an IDS alert in an automotive

system. In this paper, we describe an intrusion prevention system

(IPS) that can leverage an existing IDS and extend it with a reboot-

based attack mitigation and recovery mechanism. We leverage the

inherent error handling capability of the CAN bus called the bus-

off state to maneuver a compromised node into a recovery state

while it is under an active attack. Bus-off is a state in which the

ECU is disconnected from the network and not allowed to transmit

messages until in most cases it undergoes a reset.

The main contributions of this paper are:

(1) A practical approach for blocking and terminating malicious

message attacks while they transmit on the CAN bus.

(2) A method demonstrating how the error handling capability

of CAN bus may recover nodes under attack.

(3) Prototype and evaluation of the effectiveness and perfor-

mance of the proposed IPS.

The remaining portion of this paper is organized as follows:

Section 2 defines the threat and attack model and the underly-

ing assumptions of our proposed approach; Section 3 presents the

background on the CAN bus, its error handling capability, and the

security challenges. In Section 4, we describe the proposed detection

and recovery approach while Section 5 presents the implementa-

tion details of the IPS. Section 6 shows the experimental validation

and results while Section 7 discusses the related work. Section 8

concludes this paper and describes future work.

2 THREAT MODEL AND ASSUMPTIONS

The attack scenario considered in this paper is a spoofing attack

in which a malicious node impersonates another node on the net-

work to launch attacks or infiltrate the network operations. A node

represents an ECU connected to the CAN bus that can transmit

and receive message frames. We assume that the adversary is able

to access the bus to perform receive and transmit operations. Ac-

cess is achieved by penetrating the CAN bus through remotely

accessible nodes on the bus. Typically, these nodes transmit on a

low-speed CAN bus, but the adversary is using this medium as

a foothold to gain access to the high-speed CAN bus in order to

affect the operation of the safety-critical nodes that control driving

functionality.

We examine the typical effect of multistep attack scenarios where

the adversary’s goal is to control the safety-critical nodes on the

high-speed CAN bus. The adversary starts by intercepting mes-

sages from healthy nodes transmitting on the low-speed bus. An

interception operation involves a malicious node reading message

frames. When access to this bus is established, the adversary sends

masqueraded messages targeting safety-critical nodes on the high-

speed bus. Since any node can broadcast messages on the CAN bus

and each receiving node now determines if the message is meant

for them or not, the adversary can successfully spoof messages

targeting a specific node controlling the critical operations of the

vehicle without authentication. When these target nodes accept

any of the spoofed messages, the adversary has succeeded in the

attack.

We assume that:

• All CAN controllers are trustworthy, i.e., the hardware con-

troller behaves correctly with respect to the CAN protocol.

1 11 6 0­64 15 1 7 3

SOF ID CTRL	
Field

Data	
Field

CRC	
Field

ACK
Slot EOF IFS Bus

Idle
Bus
Idle

CRC	
Deli
miter

R
T
R

ACK	
Deli
miter
111

Data	FrameRecessive

Dominant

Figure 1: The Standard CAN data frame format

• A network may consist of several separate buses connected

through the gateway, and the safety-critical ECUs are con-

nected through the CAN bus.

• ECUs attached to both the CAN bus and a remotely accessible

interface are configured to reboot when put in bus-off state.

3 CONTROLLER AREA NETWORK (CAN)
BACKGROUND

The controller area network is a standard serial communication bus

developed for use in automotive applications that interconnects

ECUs through a broadcast bus. It implements carrier sense mul-

tiple access with collision detection and arbitration on message

priority (CSMA/CD+AMP) and it is the most commonly used com-

munication protocol in the modern automobile. CAN efficiently

implements static fixed priority non-preemptive scheduling of mes-

sage frames through bus arbitration. Message frames sent on the

bus are broadcast to all nodes, i.e., ECUs, on the network. Every

message broadcast contains a unique ID which represents its prior-

ity and meaning. Messages with lower ID in the bus have higher

priority and get to transmit first. The message frames are of four

different types: the data frames for sending data between nodes (de-

picted in Figure 1), remote frames for requesting transmission of a

data frame with the same identifier, error frames used in signifying

detected errors, and overload frames used to provide for an extra

delay between frames.

CAN bus transmits signals of 0 or 1, where the term dominant

bit represents the logical 0 and recessive bit denotes the logical 1

signal. When the voltage difference between the two wires (CAN

high and low) is large, the state is dominant. The state is recessive

when the voltage difference is small between the two wires. When a

node transmits a dominant bit and another transmits a recessive bit,

this will result in the transmission of the dominant bit. Automatic

arbitration is built into the CAN protocol as all nodes must monitor

the state of the bus during transmission and halt transmission if a

dominant bit is observed when transmitting a recessive bit.

Typically, CAN buses are either high speed or low speed. High

speed CAN bus communicates at a fixed rate of up to 1 Mbps. A

high speed bus is terminated with 120-ohm resistors on each end

to avoid transmission reflection within the bus, and it is used as

a high throughput bus. Low speed CAN bus operates at a fixed

rate of 125 Kbps and every node has its own termination. The low-

speed bus is often referred to as fault-tolerant CAN bus as it allows

communication to continue in case of a wiring failure on the CAN

bus lines.

3.1 CAN Error Handling

CAN protocol implements error handling feature for nodes trans-

mitting on the bus in order to monitor the health of the bus. This

error handling feature is essential for fault-tolerance, which is vital

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

64

for maintaining the functionality of system components despite fail-

ures and errors. In the CAN protocol, this feature allows nodes on

the network to exercise actions like raising error flags, and retrans-

mitting or discarding frames when an error is detected. The CAN

protocol defines the following error types for error handling [3]:

• Bit error: Nodes transmitting frames on the bus also moni-

tor the bus and compare the bit level to be transmitted with

that monitored on the bus. A bit error occurs if these bits

are different except during message arbitration.

• Stuff error: A stuff error occurs when six consecutive equal

bits is observed in the data field which should have been

coded by the method of bit stuffing.

• Cyclic Redundancy Check (CRC) error: A CRC error is

raised when the CRC received for a message frame is differ-

ent from the one calculated by the receiver for the frame.

• Form error: A form error occurs when a fixed-form bit field

of a message frame contains illegal bits.

• Acknowledgment (ACK) error: ACK error is raised when

a transmitting node receives no dominant bit issued by a

receiver in the ACK slot.

When a node detects an error on the bus, it flags the corrupted

message and transmits an error frame. An error frame initiates the

termination of an erroneous data or remote frame. It signals the

detection of an error condition by a receiving or transmitting node.

If a node is in error active state, an active error frame is transmitted

which is six dominant bits signaled on detecting an error on the

network. Otherwise, a passive error frame is transmitted, which is

six recessive bits transmitted by a node detecting an active error

frame on the bus. The transmission of the faulty message will abort

and attempt to retransmit at the next bus idle time.

Each node implements two error counters: transmit error counter

(TEC) and receive error counter (REC). These counters start at zero,

and they increment when an error is observed or decrement when-

ever the controller successfully transmits or receives a message

according to the predefined rules specified by the CAN protocol.

When an error is detected at the sending node, a sending node TEC

is increased by 8, and the other nodes’ RECs are increased by 1.

When an error is detected at a receiving node, the receiver node

REC is increased by 8. For a successfully transmitted message, the

TEC and RECs of both the sending and the receiving nodes are

decreased by 1, respectively.

The values of the TEC and the REC affect the error handling of

the CAN bus as nodes change their error status. The transitions

between the error states is shown in Figure 2. In error active state,

the node is said to be in a healthy state when the TEC ≤ 127 and

REC ≤ 127. A node will transition into the error passive state when

the TEC > 127 or the REC > 127. A node in this state can partake

in the bus communication but can only transmit a passive error flag

when an error is detected. The error flag in this state is changed

to 6 consecutive recessive bits to avoid any impacts on the bus

operation and must wait before initiating further transmission. In

general, a value of an error count that is higher than 96 indicates

an extremely disturbed bus.

The bus-off state is an error state of the CAN controller set by the

transmitting node when the TEC exceeds 255. In this state, the node

is switched off from the bus and can not transmit or acknowledge

Error
Active

Error
Passive

Bus	Off

TEC	<=	127	and	
REC	<=	127

TEC	>	127	or	REC	>	127

TEC	>	255	Reset	

Figure 2: Flowchart of CAN Bus Error Counter

frames compulsorily. This error state is usually a result of critical

hardware or software problems. A node in a bus-off state is not

allowed to influence the bus operation and can only rejoin the

network by transitioning to error active when its error counters

are set to zero after monitoring 128 occurrences of 11 consecutive

recessive bits on the bus.

3.2 Security Challenges of CAN

CAN architecture was designed to be a closed system of nodes

that communicate within the vehicle. Therefore, the CAN bus is

implemented with no authentication protocol to allow free flow of

messages to all the nodes and these messages are sent in the clear.

When a node receives a message, it decides whether the message is

for it. The broadcast nature of CAN allows each node connected to

the bus to broadcast and receive messages sent with no verification

of the source and the destination. An attacker with bus access can

eavesdrop on the messages since they are unencrypted. Also, the

bus is unsegmented allowing a mix of safety-critical and non-safety-

critical nodes to communicate on the same bus. This is a significant

concern as it allows for an unauthorized node to transmit spoofed

messages which can be used to compromise the safety-critical nodes.

Furthermore, the CAN bus is vulnerable to a denial of service attack,

which can be realized by leveraging the arbitration process of the

bus and transmitting highest priority messages continuously to

paralyze the operation of the bus. These vulnerabilities of the CAN

bus can be exploited to perform several attacks which include data

injection, spoofing, and replay attacks. Also, a malicious node can

be placed on the bus to transmit anomalous messages that could

compromise the entire operation of the bus.

4 INTRUSION PREVENTION SYSTEM DESIGN

Performance, reliability, and safety are crucial features of safety-

critical applications such as automotive networks [11]. A significant

challenge for designers is to balance the requirements of safety,

security, and functionality. The priority of safety is the passenger’s

well-being, and to ensure safety, even in the worst of conditions, cer-

tain features of the vehicle must remain operational such as airbags

and collision avoidance systems. This implies that the safety of

critical features and operation have priority over security. However,

what follows in situations where one of these safety features is

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

65

Message
Frame

Compromised
Node

Normal
Node

Start	REC
Counter	

The	Detector

Transmit
Error	Frame

TEC	Counter
>	255	

Start	TEC
Counter	

Bus­Off
State

Reboot­Based
Recovery

Trusted	ECU
Node

Figure 3: Process steps of the proposed recovery approach

compromised or is the target of an attack? To ensure the security

of the vehicle in such situations, some features and operations may

need to be limited or brought down into a degraded state while the

vehicular systems maintain operational safety.

We present a reboot-based intrusion prevention approach for

security covering arbitrary faults of network nodes that are under

attack and also considering the effect of attack propagation in the

CAN bus. Presently, our focus is on message spoofing attacks that

impersonate or masquerade as a functional ECU on the bus. The

reboot-based recovery is a practical recovery method for ECUs

that have been compromised by a remote adversary. The goal of

this approach is to prevent adversaries from propagating attack

messages further into the network and control the safety-critical

CAN bus operations. The high-level overview of the proposed

recovery method is illustrated in Figure 3. The figure shows the

proposed architectural model of the recovery approach. When a

message is released on the bus, it is broadcast to all the nodes

on the network, including the detector node. The detector node,

which represents the IDS placed strategically to monitor messages

broadcasted on the bus, performs checks and transmits an error

frame if the sent message is anomalous. The compromised node

increments its TEC while the healthy node also increments its REC.

Eventually, incrementing the error counter leads to the process of

reboot recovery as illustrated in the figure.

4.1 ECU Architecture and General System
Model

The architecture of a typical ECU node contains a hardware CAN

controller and transceiver that interfaces the ECU software to the

CAN busÐthe controller manages digital bits in frames, and the

transceiver implements the physical bus access including bus ar-

bitration. We add IPS logic in parallel to the CAN controller that

processes commands and may generate CAN messages as depicted

in Figure 4. This logic monitors the message frame at the controller

CAN	Controller

CAN	Transceiver

CANH

CANL

CAN	Node

IDS

Intrusion	
Prevention	System

Figure 4: ECU Architecture

level and contains a hardware implementation of an IDS and our

proposed recovery approach, which together comprise a CAN bus

IPS.

The primary functionality of the IPS logic is to monitor data

transfers of the bus to protect against unauthorized access. The

IPS has two operating modes: monitor and react. In the monitor-

ing mode, the IDS component observes the bus operations while

receiving message frames without meddling on the bus activities.

When the IDS detects an attack, the IPS enters a reactive mode and

sends an error frame to defend the system.

4.2 Detectors

Our proposed IPS can use any kind of IDS satisfying the requirement

that it can detect an attack message before that message finishes

transmission on the bus. We encapsulate such an IDS in a detector

node, which is responsible for triggering the IPS mechanism. In

this work, we investigate two IDS algorithms for implementation

as a detector: message interval [18] and message response time

analysis [16]. In the following we briefly describe each of these.

4.2.1 Message Interval IDS. Song et al. [18] describe an IDS using

the interval between messages as a feature. By examining the time

interval between messages of the same ID, they evaluate how mes-

sage injection attacks affect the individual time interval of each

message ID. The authors determine that the time interval is a fea-

ture capable of detecting message injection attacks in CAN bus

traffic by computing the time difference in the arrival of every new

message of the same ID transmitted on the bus, and label a mes-

sage as injected if the time interval is shorter than the predefined

normal.

The detector node operation for the message interval IDS is

described in Figure 5a. The controller maintains a lookup table

of the message IDs, their intervals, and the transmission time of

the previous instance of the message. We assume the lookup table

contains the list of messages transmitting on the bus as the detector.

When a new message frame is transmitted, the IDS checks the CAN

ID and computes the time interval from the arrival time of the

previous message with the same ID. If the time interval of the new

message frame is as expected, the previous transmission time of

the ID is updated in the lookup table. Else, if the calculated interval

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

66

Begin

Initialize	Lookup	Table
(Message_ID,	Prev_time,
Interval,	Error_count)

Wait	for
Message

Message_ID	
match	a	Table	

entry?

New_time	­
Prev_time	<
Interval?

Update	Lookup
Table	with
new_time	

(prev_time	=
new_time)	

Transmit
	Error	Frame

No

Yes

No

Yes

(a) Message Interval IDS.

Begin

Initialize	Lookup	Table
(Message_ID,	Release	Times
e1	and	e2,	Period,	Error_count)

Wait	for
Message

Message_ID	
match	a	Table	

entry?
erel	<	e1?

Update	Lookup
Table	with	new

e1	and	e2		
(e1	=	e1	+	Period	
e2	=	e2	+	Period)	

Transmit
	Error	Frame

No

Yes

No

Yes

(b) Message Response Time IDS.

Figure 5: Flowcharts of the detector nodes for each IDS.

is shorter, i.e., the message frame arrives sooner than expected, the

IDS indicates the message is anomalous and transmits the error

frame. By updating the previous transmission time, the controller

can compute the difference between the received and previous

frame transmission time with the stored interval.

4.2.2 Message Response Time Analysis IDS. Olufowobi et al. [16]

introduced an IDS based on estimating the real-time model param-

eters of a set of CAN messages and using response time analysis

to derive best- and worst-case response times for each message.

These response times are then used to predict the arrival window of

periodic messages, and the IDS triggers an attack signal if messages

arrive too soon. An attack is detected when a message with an

unknown ID is transmitted, the release time falls outside of the

acceptable range, or more than one message is received at a period

or in an interval.

Figure 5b shows the system flow diagram of the detector node

operation for the message response time analysis IDS. The con-

troller maintains a lookup table of message IDs, their earliest and

Error_count	
> 0?

Node	State	=
Bus­Off

Node	State	=
Error	Active

Update	Error	Count	
Error_count	=
Error_count	+	8	

Error_count	
> 255?

Error_count	
> 127?

Node	State	=
Error	Passive

No

Yes Yes

Yes

No

No

Receive		
Error	Frame

Figure 6: Flowchart of the behavior of the victim and mali-

cious ECUs

latest release times of the next frame, and their period or inter-

arrival time. We assume that the lookup table contains the list of

all messages that transmit on the same bus as the detector node.

By our attack model, these are non-safety-critical nodes (message

IDs) that can be accessed remotely by an adversary to gain access

to the safety-critical nodes. The inputs to the monitoring node

are the lookup table and the received frame observed through the

controller. When a valid frame is received and is transmitted suc-

cessfully, the next expected release time of the ID is updated in

the lookup table. Otherwise, the error frame is transmitted if the

message violates its periodicity or sporadicity. By incrementing the

counter, the controller can compare the next received message with

the sequence of the message in the updated table. The sequence

helps in validating the authenticity of the message as the counter

should be consistent with the received message.

4.3 Attack Mitigation and Recovery

When the IDS detects an attack, the IPS immediately enqueues an

error frame for transmission. This frame starts with six consecutive

dominant bits, which will have the highest priority during the next

bus arbitration. The nodes in receipt of the error frame will discard

the message they received.

Each time a message is flagged as an attack, the IPS will transmit

the error frame causing the sending node to increase its TEC by 8,

and every other node on the bus will increase its REC by 1. If the

attack continues until the TEC of the compromised node is higher

than 255, it enters the bus-off state. This method is similar to the

attack proposed by Cho and Shin [6] to drive a node to bus-off.

Figure 6 shows the process of steps the compromised node goes

through before entering the bus-off state.

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

67

ECUs in the bus-off must observe 128 times 11 consecutive re-

cessive bits on the bus before they can transition back into the

error active state. Prior to this transition, an ECU may also reset

or reboot itself. We suggest that all ECUs with remote interface

capability undergo a reboot process when they reach bus-off. A

reboot process represents a recovery procedure that provides a

way to restore the initial system state. The reboot process does not

depend on the correct functioning of the rebooted system, is easy

to implement and automate, and returns the software to its initial

state, which is often its best understood and best-tested state [4].

Power-cycling is fast with minimal impact on the time it takes for

the system to recover, and can provide high availability of these

ECUs even when a detection algorithm is prone to false alarms or

when it is unknown if the reboot process can correct the failure.

Also, it should be noted that these ECUs are not the safety-critical

ones, so the impact of rebooting them will not affect system safety,

but perhaps will negatively affect user experience.

The reboot process plays a pivotal role in keeping the node in

a bus-off state alive along with the reboot policy that performs

the actual restart. The reboot policy specifies how the node in

the bus-off state will be restarted, and it will be initiated in the

application layer of the CAN controller. There are different kinds

of reset policies to decide when and how the application layer

should reset the CAN controller. These policies include automatic

reset policy, wait-then-reset policy, and frequency-limited-reset

policy [10].

In automatic reset, the reset is initiated immediately after the

CAN controller enters the bus-off state while the wait-then-reset

requires the application layer to observe a predefined wait period

to recover from the fault condition before starting the reset. In

the frequency-limited-reset, the time between any two subsequent

resets must be greater than a predetermined time interval. When

the CAN controller is in a bus-off state, the reset vector of the

application layer is triggered to initialize the reset, and the CAN

controller observes the predetermined number of recessive bits

before rejoining the network.

4.4 Discussion and Limitations

In a transient attack scenario where the adversary established a

network connection and compromised the ECU in the RAM (i.e.,

malware is RAM-resident), resetting the ECU will neutralize the

attack process. However, perhaps the exploit still exists, so the

attacker can relaunch the same attack. For a persistent attacker,

this process increases the burden on the attacker as there will be a

need to reestablish the attack by re-infecting the ECU every time a

reboot occurs. Resetting the compromised node represents a good

step in a remediation process even if not foolproof.

If the attacker can modify the ROM or flash the ECU, then a reset

will not evict the attacker necessarily but it will disrupt the attack

process. This persistent attack requires a sophisticated process to

accomplish. If the attacker is persistent and the ECU needs to reset

itself several times, a crude way to handle the repeated faults would

be to have an indicator light such as the check engine light to notify

the driver of a potential vehicular malfunction.

Currently, it is not typical for ECUs connected to the CAN bus

with remotely accessible interfaces to have reboot capability when

in a bus-off state. The reboot process is implementation-dependent.

Some ECUs may reboot after a driver-initiated power cycle or a

visit to a service station. Our proposed approach may require the

use of controllers that have this particular feature built-in, and

it is in the manufacturer’s purview to decide whether or not to

include this feature. Also, our assumption about trustworthy CAN

controller can be violated, e.g., in case an attacker can reprogram

the (software/firmware) controller.

5 IPS IMPLEMENTATION

To demonstrate the effectiveness of our approach, we developed

a proof of concept implementation using the Xilinx LogiCORE IP

CAN v5.0 as a reference [20]. This core conforms to the ISO 11898-1,

CAN 2.0A, and CAN 2.0B standards. It is particularly suited for

automotive applications and has user-configurable options that

provide flexibility for multiple ECU applications. It also supports

message prioritization via its high priority buffer (TX HPB) and

readable error counters. As such, it allows for seamless integration

of our detector functionalities. Our implementation targeted the

Zynq-7000 SoC.

The CAN nodes in our network are connected to the CAN bus

via the physical interface (CAN PHY). Each Xilinx CAN node can

operate in stand-alone mode or connected to a Control block or

processor using its AXI4-Lite Interface located inside the CAN

Controller. The Controller has an Object Layer for message storage,

filtering, and status updating. It also has a transfer layer where the

CAN protocol engine resides.

The CAN protocol engine consists primarily of the bit timing

logic (BTL), the bit stream processor (BSP) and the clock prescalar

modules. The BTL synchronizes the operation of the CAN bus and

the BSP. At the appropriate clock tick, the BTL captures a received

bit or places a transmitted data bit on the CAN bus. It also produces

a sampling clock signal for the BSP. The BSP analyzes bus traffic

during transmission and reception, updates the error counters and

the error state when necessary, and manages operations dealing

with CAN message transmission and reception. It captures message

frames from the high priority buffer (TX HPB) or from the trans-

mission queue. It also inserts the error flags (bit, stuff, form, CRC

and ACK errors). The frame’s bits are serialized and constructed

into fields per the CAN core messaging protocols at this stage. The

reverse operation is also completed by the BSP when data is re-

ceived. Message frames are deconstructed and stored in the receive

queue (RX FIFO) where the identifier of the received message (IDR)

can be accessed by the detector node. The IDR register is four bytes

long, and its 11 most significant bits store the message ID from the

message frame. The arrival time stamp (T_arrival) is generated by

a system clock counter which is started after the system’s initial

reset. For each message, T_arrival is also recorded and submitted

to the IPS inside the detector node along with the clock signal (clk),

which is derived from the main CAN engine protocol clock. In our

approach, the IPS module sits at the base of the BSP in the CAN

protocol engine as shown in Figure 7.

The implementation features three modules: Message ID Check,

Check Message Feature and Update State. After the initial system

reset, the Message ID Check module is activated once a message is

received and ready to be read from the RX FIFO. The sender node

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

68

Bit	Stream	Processor Bit	Timing	Logic Physical	Layer
Interface

Message
ID	Check

Check	Message
Feature

Update	State

Tx

Rx

Rx	bits
Tx	bitsTx	Msg

Rx	Msg
Control/

Status	data	

Error_frame
Msg

Release
Signal

T_arrival

Control
Sampling

clk

Clk

Clk	divider

CAN	bus

IPS	Module

Msg
ID

Figure 7: CAN controller with IPS module

identification Msg ID is extracted and compared against entries of

a look-up table containing all known nodes in the network. If a

match is not found in the table, the error_frame signal is activated

to indicate that the node from which the message is received is

unknown so invalidate the message. Upon a successful match, the

detector examines the received message inside the Check Message

Feature, which is where we implement the IDSs used for evaluation.

When Check Message Feature detects an anomaly, the message

is invalidated by signaling the error frame and the error count

update is triggered at the BSP level. In the case T_arrival’s range is

valid, the Update State module becomes active. It updates the stored

state depending on the IDS in use, for example programming the

next expected arrival time of a message or incrementing message

counters.

6 EXPERIMENTAL VALIDATION

Here, we describe the evaluation criteria for our IPS to illustrate

its effectiveness and performance. First, we focus on the latency

required for the detector node to issue a decision after a message

frame has been received at the controller level. We compare the

implementation results of two different IDSs, the interval-based

and response time analysis-based approaches. We also offer an

analysis of the minimum operating speed suitable for various CAN

bus speeds, using different data lengths for a standard message

frame. The experimental network is composed of 6 nodes and a

detector node communicating on the bus. Each node is capable of

transmitting a message to one or more nodes in the network by

broadcasting it through the bus. Each node may also send one or

multiple messages of the same type. However only one message

can be sent at a particular instance. In the case of time response IDS,

the periodicity of each message as well as the expected arrival time

range of the first message originating from each node is known to

the supervisory node. Similarly, the minimum interval threshold

for each message is saved for the detector node during setup.

6.1 Area

Table 1 shows that the IPS only requires 0.03% and 0.14% of slice

registers and LUTs, respectively. The total number of occupied slices

is 6 out of the 4400 available on the platform and only 18 LUT-flip

Table 1: Synthesis area results

IPS Interval IDS Response Time IDS

% of % of % of Total

Resources Available Resources Available Resources Available Available

Used Resources Used Resources Used Resources Resources

Slice Registers 10 0.03% 70 0.20% 88 0.25% 35200

Slice LUTs 18 0.14% 79 0.63% 88 0.70% 12600

Occupied Slices 6 0.14% 23 0.52% 40 0.91% 4400

LUT-Flip Flops 18 - 84 - 114 - -

flop pairs are utilized. The table also shows the area requirements

of the message interval and message response time IDSs. When

compared against each other, the difference in resource usage is

noticeable. The message response time IDS required 18% more slice

registers, 8.5% more slice LUTs, approximately 37% more occupied

slices, and an additional 22.7% LUT-flip flop pairs. However, when

the available resources are taken into consideration, both designs

require very little hardware for implementation. For the message

response time analysis IDS, 0.3% of available slice registers, 0.6%

of slice LUTs and 1.04% occupied sliced were used. In the case of

the message interval IDS, the usage was 0.23%, 0.55% and 0.66%

respectively.

We also compared the resources used in both types of IDS to

the original CAN controller design. As described in [20], the num-

ber of slice LUTs and registers necessary to implement the CAN

controller core increases as the depth of receiver or transmitter

FIFOs increases. Valid values for RX/TX FIFO depth range from

2 to 64. Thus, integrating an IPS module in the CAN core would

have a higher impact on controllers with an RX/TX FIFO depth of

2. Table 2 shows the usage of the unmodified CAN controller (with

a FIFO depth of 2) depending on the number of acceptance filters

available. It also shows the overhead generated by integrating each

IDS. As can be seen, for a CAN controller with no acceptance filter,

the response time detection approach yields a 14.83% and 18.74%

increase in slice LUTs and registers utilization respectively. On the

other hand, for the same size controller, the interval based detection

approach generated a 13.57% and 15.30% overhead respectively.

6.2 Detection Latency

This evaluation considers only the computation time for a single

message at the detector level. The clock signal of the detector block

is derived from the CAN controller clock.

For each message received, the detector node performs various

checks which include message instance ID checks and a check based

on the arrival time. When the message instance passes both checks,

the detector node updates the arrival time of the next instance of

Table 2: Overhead of detector

Slice LUTs Utilization Slice Registers Utilization

Original Response Interval Original Response Interval

Acceptance CAN Time IDS IDS CAN Time IDS IDS

Filters Controller Overhead Overhead Controller Overhead Overhead

0 715 14.83% 13.57% 523 18.74% 15.30%

1 788 13.45% 12.31% 617 15.88% 12.97%

2 794 13.35% 12.22% 620 15.81% 12.90%

3 802 13.22% 12.09% 623 15.73% 12.84%

4 808 13.12% 12.00% 626 15.65% 12.78%

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

69

Time(Sec) ID TEC/REC	Error	Count Data
3.831466 82 7F	8	13	F8	A8	80	40	0

3.831660 446 0	0	0	0	0	0	0	0

3.831707 85 7D	0	80	0	F8	A0	7D	3

3.831822 82 CAN	Rx/Tx	REGS	-	TEC:	8	-	REC:	0 0	0	8					

3.831902 82 CAN	Rx/Tx	REGS	-	TEC:	16	-	REC:	0 0	0	10					

3.831949 42C 8C	0	0	0	31	50	0	0

3.832089 82 CAN	Rx/Tx	REGS	-	TEC:	24	-	REC:	0 0	0	18					

3.832170 82 CAN	Rx/Tx	REGS	-	TEC:	32	-	REC:	0 0	0	20					

3.832287 82 CAN	Rx/Tx	REGS	-	TEC:	40	-	REC:	0 0	0	28					

3.832377 83 0	E0	80	0	0	0	0	0

3.832448 82 CAN	Rx/Tx	REGS	-	TEC:	48	-	REC:	0 0	0	30					

3.832566 82 CAN	Rx/Tx	REGS	-	TEC:	56	-	REC:	0 0	0	38					

3.832663 2A1 FF	FF	FF	FF	0	0	0	0

3.832726 82 CAN	Rx/Tx	REGS	-	TEC:	64	-	REC:	0 0	0	40					

3.832807 82 CAN	Rx/Tx	REGS	-	TEC:	72	-	REC:	0 0	0	48					

3.832897 82 CAN	Rx/Tx	REGS	-	TEC:	80	-	REC:	0 0	0	50					

3.832919 76 3E	7D	C0	80	0	0	0	0

3.833111 82 CAN	Rx/Tx	REGS	-	TEC:	88	-	REC:	0 0	0	58					

3.833165 82 Tx	Error	Warning	-	TEC:	96	-	REC:	0 5	0	60					

3.833194 77 0	0	8	0	7F	F7	F9	FF

3.833352 82 Tx	Error	Warning	-	TEC:	104	-	REC:	0 5	0	68					

3.833411 7D 0	0	FE	10	0	3F	EF	FE

3.833512 82 Tx	Error	Warning	-	TEC:	112	-	REC:	0 5	0	70					

3.834098 82 Tx	Error	Warning	-	TEC:	120	-	REC:	0 5	0	78					

3.834259 213 FF	FF	8	4	80	11	FF	41

3.834494 82 Tx	Error	Passive	-	TEC:	128	-	REC:	0 10	0	80					

3.834729 214 80	0	0	0	0	0	7E	10

TEP = 0.002672 s

Figure 11: Log showing node 0x82 (in red) transition into er-

ror passive state. The yellow and brown lines indicate the

transmission of the first error flag and the transition into

error passive state respectively. TEP represents the time to

error passive

deploy for modern vehicles that may contain over 100 ECUs. Also,

adoption of this scheme is unlikely since these ECUs are sourced

from different original equipment manufacturers. Since ECUs need

software modification to execute the node authentication and key

exchange, the ECUs might not have enough computational power

or memory to execute such an algorithm.

Matsumoto et al. [14] proposed an approach for preventing unau-

thorized message transmission in CAN bus using the error frame. In

their approach, each ECU detects unauthorized data transmission

using its message ID by monitoring the data on the bus. The ECU

transmits an error frame to override the message if it detects that

the message is unauthorized before it finishes transmission.

Dagan and Wool [7] proposed the Parrot system to mitigate

spoofing attacks in CAN bus. In their approach, the Parrot defense

launches a counter-attack of carefully crafted collisions to damage

the spoof message and drive the compromised ECU into a bus-off

state. This solution can be implemented as a software patch to each

ECU.

Abbott-McCune and Shay [1] proposed an intrusion prevention

system that monitors the CAN bus to detect invalid messages by

matching the message start-of-frame field with the one prepro-

grammed in the ECUs connected to the CAN bus. When a match

is detected while the connected ECU is not transmitting, the ECU

identifies a replay attack and sends an alert to the detector to signal

a replay attack. In this approach, each segment of the network re-

quires a device that can be implemented in the gateway to monitor

the network activities and compare the message IDs transmitted

Time(Sec) ID TEC/REC	Error	Count Data
3.834869 447 20	0	0	4B	0	0	0	0

3.835027 82 Tx	Error	Passive	-	TEC:	136	-	REC:	0 10	0	88					

3.835110 82 Tx	Error	Passive	-	TEC:	144	-	REC:	0 10	0	90					

3.835225 92 6F	A0	6F	92	0F	A0	E6	14

3.835354 82 Tx	Error	Passive	-	TEC:	152	-	REC:	0 10	0	98					

3.835497 216 0	0	0	2	82	0	0	0

3.835625 82 Tx	Error	Passive	-	TEC:	160	-	REC:	0 10	0	A0					

3.835770 217 0	0	0	0	0	0	0	0

3.835860 82 Tx	Error	Passive	-	TEC:	168	-	REC:	0 10	0	A8					

3.836001 415 0	0	D8	F6	0F	FF	0F	FF

3.836193 82 Tx	Error	Passive	-	TEC:	176	-	REC:	0 10	0	B0					

3.836314 4B0 BB	0	0	0	10	0	0	FE

3.836490 82 Tx	Error	Passive	-	TEC:	184	-	REC:	0 10	0	B8					

3.836619 82 Tx	Error	Passive	-	TEC:	192	-	REC:	0 10	0	C0					

3.836742 78 5	9	80	0	0	0	0	0

3.836980 82 Tx	Error	Passive	-	TEC:	200	-	REC:	0 10	0	C8					

3.837124 82 Tx	Error	Passive	-	TEC:	208	-	REC:	0 10	0	D0					

3.837380 82 Tx	Error	Passive	-	TEC:	216	-	REC:	0 10	0	D8					

3.837606 82 Tx	Error	Passive	-	TEC:	224	-	REC:	0 10	0	E0					

3.837833 202 4	F2	52	71	60	0	0	0

3.838093 82 Tx	Error	Passive	-	TEC:	232	-	REC:	0 10	0	E8					

3.838220 204 E8	0	7D	0	0	F2	0	0

3.838387 82 Tx	Error	Passive	-	TEC:	240	-	REC:	0 10	0	F0					

3.838543 82 Tx	Error	Passive	-	TEC:	248	-	REC:	0 10	0	F8					

3.838760 82 Tx	Bus	Off	-	TEC:	0	-	REC:	0 20	0	0					

3.839603 82 Tx	Bus	Off	-	TEC:	0	-	REC:	1 20	1	0					

3.839910 82 Tx	Bus	Off	-	TEC:	0	-	REC:	2 20	2	0					

⋮ ⋮ ⋮ ⋮

3.843522 82 Rx	Error	-	Tx	Bus	Off	-	TEC:	0	-	REC:	116 23	74	0					

3.843601 82 Rx	Error	-	Tx	Bus	Off	-	TEC:	0	-	REC:	120 23	78	0					

3.843722 82 Rx	Error	-	Tx	Bus	Off	-	TEC:	0	-	REC:	125 23	7D	0					

3.843805 82 CAN	Rx/Tx	REGS	-	TEC:	0	-	REC:	0 0	0	0					

3.844057 82 Msg	Error 7F	8	14	0	92	80	0	0

3.844300 82 7F	8	14	0	92	80	0	0

TEP = 0.003732 s

Figure 12: Log showing node 0x82 transition into bus-off

state and resetting the error counters. The yellow and ma-

genta lines indicate the transmission of the first error flag

from the error passive state and the transition into bus-off

state, respectively. The orange and green lines indicate the

error counter reset and the first successful message trans-

mission after the reset, respectively. TEP represents the the

time to bus-off.

to the valid ID, then flag non-matching ones as anomalous. The

authors briefly mention the possibility for the detector to emit a

burst of dominant bits in case of a detected attack to cause an error

that will eventually cause the attacker to shut down. However, they

do not provide details or evaluation of this mechanism, which may

cause unintended negative side effects on the CAN bus as it does

not conform to CAN specifications. Souma et al. [19] proposed a

countermeasure to bus-off attacks in the CAN bus using a similar

approach of a burst of dominant bits.

The prior approaches require modification to the software stack

interfacing the CAN controllers with the bus, which implies modi-

fied software and hardware for each ECU in the vehicle. In contrast

to existing centralized IDSs that have misdetection errors, prior

work [1, 7, 14] that rely on the authentic ECUs to detect an attack

have the potential for perfect classification when the authentic ECU

is not compromised. Our approach, while similar in nature, does not

require authentic ECUs to act as part of the defense scheme. Thus,

our method has a lower adoption cost and greater practicality.

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

72

8 CONCLUSION

We presented a novel IPS for CAN bus that can prevent remote

message injection attacks from succeeding and can trigger reboot-

based recovery of a remotely-compromised ECU. We synthesized

previously proposed CAN IDSs and measured their ability to detect

attacks at latencies within bus line speeds, and we analyzed the

effectiveness of using the CAN error handling mechanisms to drive

an active attacker off the bus. Our detector node is capable of

deciding on the message frame being broadcasted between the

transmission of the last bit of the arbitration field and the end of

the message frame. We provided a case study with message ID

0x82 which has an authentic period of 20ms . In this case study, the

recovery mechanism transitions the anomalous node into a bus-off

state within approximately 6ms which is less than the periodicity

of the legitimate message frame. Future work will integrate the IPS

in a real automotive system, determine the impact of false positives

on attack mitigation, and measure the performance degradation of

reboot-based recovery.

ACKNOWLEDGMENTS

This material is based upon work supported by Northrop Grumman

and the NSF under Grant CNS-1646317 and OAC-1839321.

REFERENCES
[1] S. Abbott-McCune and L. A. Shay. 2016. Intrusion prevention system of auto-

motive network CAN bus. In 2016 IEEE International Carnahan Conference on
Security Technology (ICCST). 1ś8. https://doi.org/10.1109/CCST.2016.7815711

[2] Angela Barber. 2018. Status of work in process on ISO/SAE 21434 Automotive
Cybersecurity Standard. presentation, ISO SAE International, April 10 (2018).

[3] Robert Bosch et al. 1991. CAN specification version 2.0. Rober Bousch GmbH,
Postfach 300240 (1991), 72.

[4] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Ar-
mando Fox. 2004. MicrorebootśA Technique for Cheap Recovery. arXiv preprint
cs/0406005 (2004).

[5] Stephen Checkoway, Damon Mccoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In USENIX SECURITY. USENIX.

[6] Kyong-Tak Cho and Kang G Shin. 2016. Error handling of in-vehicle networks
makes them vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 1044ś1055.
[7] Tsvika Dagan and Avishai Wool. 2016. Parrot, a software-only anti-spoofing

defense system for the CAN bus. ESCAR EUROPE (2016).
[8] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. 2007. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and revised.
Real-Time Systems 35, 3 (2007), 239ś272.

[9] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. 2008. Security threats to automo-
tive CAN networksśpractical examples and selected short-term countermeasures.
In International Conference on Computer Safety, Reliability, and Security. Springer,
235ś248.

[10] Shengbing Jiang, Mutasim A Salman, Michael A Sowa, and Katrina M Schultz.
2017. Approach for controller area network bus off handling. (March 21 2017).
US Patent 9,600,372.

[11] John C Knight. 2002. Safety critical systems: challenges and directions. In Proceed-
ings of the 24th international conference on software engineering. ACM, 547ś550.

[12] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. 2010. Experimental Security
Analysis of a Modern Automobile. In 2010 IEEE Symposium on Security and
Privacy. 447ś462. https://doi.org/10.1109/SP.2010.34

[13] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro
Miyashita, and Satoshi Horihata. 2014. CaCAN-centralized authentication system
in CAN (controller area network). In 14th Int. Conf. on Embedded Security in Cars
(ESCAR 2014).

[14] Tsutomu Matsumoto, Masato Hata, Masato Tanabe, Katsunari Yoshioka, and
Kazuomi Oishi. 2012. A method of preventing unauthorized data transmission in
controller area network. In 2012 IEEE 75th Vehicular Technology Conference (VTC
Spring). IEEE, 1ś5.

[15] C. Miller and C. Valasek. 2015. Remote exploitation of an unaltered passenger
vehicle. Unknown Journal (2015).

[16] Habeeb Olufowobi, Gedare Bloom, Clinton Young, and Joseph Zambreno. 2018.
Work-in-Progress: Real-Time Modeling for Intrusion Detection in Automotive
Controller Area Network. In 2018 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 161ś164.

[17] Christoph Schmittner, Zhendong Ma, Carolina Reyes, Oliver Dillinger, and Peter
Puschner. 2016. Using SAE J3061 for automotive security requirement engi-
neering. In International Conference on Computer Safety, Reliability, and Security.
Springer, 157ś170.

[18] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. 2016. Intrusion detection
system based on the analysis of time intervals of CAN messages for in-vehicle
network. In Information Networking (ICOIN), 2016 International Conference on.
IEEE, 63ś68.

[19] Daisuke Souma, Akira Mori, Hideki Yamamoto, and Yoichi Hata. 2018. Counter
Attacks for Bus-off Attacks. In International Conference on Computer Safety,
Reliability, and Security. Springer, 319ś330.

[20] Xilinx. 2016. CAN v5.0 LogiCORE IP Product Guide. (August 2016). https://www.
xilinx.com/support/documentation/ip_documentation/can/v5_0/pg096-can.pdf

[21] Clinton Young, Joseph Zambreno, Habeeb Olufowobi, and Gedare Bloom. 2019.
Survey of Automotive Controller Area Network Intrusion Detection Systems.
IEEE Design & Test (2019).

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

73

	Abstract
	1 Introduction
	2 Threat Model and Assumptions
	3 Controller Area Network (CAN) Background
	3.1 CAN Error Handling
	3.2 Security Challenges of CAN

	4 Intrusion Prevention System Design
	4.1 ECU Architecture and General System Model
	4.2 Detectors
	4.3 Attack Mitigation and Recovery
	4.4 Discussion and Limitations

	5 IPS Implementation
	6 Experimental Validation
	6.1 Area
	6.2 Detection Latency
	6.3 Time to Error Passive and Bus-Off States
	6.4 Case Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

