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C L I M A T O L O G Y

Emergence of an equatorial mode of climate variability 
in the Indian Ocean
Pedro N. DiNezio1*, Martin Puy1, Kaustubh Thirumalai2, Fei-Fei Jin3, Jessica E. Tierney2

Presently, the Indian Ocean (IO) resides in a climate state that prevents strong year-to-year climate variations. This 
may change under greenhouse warming, but the mechanisms remain uncertain, thus limiting our ability to predict 
future changes in climate extremes. Using climate model simulations, we uncover the emergence of a mode of 
climate variability capable of generating unprecedented sea surface temperature and rainfall fluctuations across 
the IO. This mode, which is inhibited under present-day conditions, becomes active in climate states with a shallow 
thermocline and vigorous upwelling, consistent with the predictions of continued greenhouse warming. These 
predictions are supported by modeling and proxy evidence of an active mode during glacial intervals that favored 
such a state. Because of its impact on hydrological variability, the emergence of such a mode would become a 
first-order source of climate-related risks for the densely populated IO rim.

INTRODUCTION
Predicting changes in the pattern and magnitude of sea surface tem-
perature (SST) fluctuations over the tropical oceans is critical for 
attributing changing climate variability and extreme weather over 
large parts of the world (1). Observations show that the Indian Ocean 
(IO)—a tropical ocean long considered a minor driver of climate 
variability relative to the Pacific or the Atlantic oceans (2)—is ex-
periencing changes in its mean state that could favor stronger SST 
variations (3–5). These long-term changes appear to be forced by 
increasing greenhouse gas (GHG) concentrations (5–7); however, 
models are inconclusive on whether SST variability will increase 
or not (8–12). Paleoclimate records show that SST variability in 
the eastern IO has increased since the 1850s (13), a trend that, if 
continued, could exacerbate the already sizable climatic impacts of 
subtle variations in IO temperatures over surrounding land masses 
(11, 14–17). While the changes in mean state—particularly a shoaling 
thermocline in the eastern IO—are likely to strengthen the coupled 
feedbacks governing SST variability (9–12), the lack of model con-
sensus limits our ability to attribute the observed trends and pre-
dict future changes.

The tropical IO exhibits much weaker SST variability than the 
tropical Pacific and Atlantic oceans (Fig. 1A). Unlike these oceans, 
where the El Niño–Southern Oscillation (ENSO) phenomenon and 
the Atlantic Niño drive pronounced basin-wide SST anomalies 
(SSTAs), variability in the IO is restricted to the western side of the 
basin and along the coast of Sumatra and Java (18). Large SSTAs 
spanning the equatorial IO are extremely rare because the uniform-
ly deep thermocline (Fig. 1B, shading) and a lack of equatorial upwell-
ing (not shown) hinder coupled ocean-atmosphere interactions in 
this ocean (19). Depending on the season, the dominant mode of SST 
variability in the IO has a uniform warming pattern over the entire 
basin. This IO Basin (IOB) mode is not generated via ocean dynam-
ical processes and instead is forced by El Niño events via changes in 
evaporation and cloud cover (20–23). The IO Dipole (IOD) is the 

second mode of variability in terms of explained SST variance and 
has SSTAs restricted to the western IO and the off-equatorial re-
gion along the coast of Sumatra and Java (18). SSTAs driven by 
IOD events do not reach the equatorial IO, which only responds 
during very rare extreme cold events, such as during 1997 (11).

The intensity and spatial pattern of SST variations in the IO are 
thus determined by the direction of the prevailing winds along the 
equator, which are weakly westerly (Fig. 1C, vectors), and by the 
subtle east-west SST gradient underlying them (Fig. 1C, shading). 
Model simulations show that continued greenhouse warming could 
alter these features, and the IO could evolve into a mean state similar 
to the Pacific or Atlantic oceans (5, 7, 10). Historical observations 
support this prediction, showing a tendency for easterly winds along 
the equator, an eastward shoaling thermocline, and a reversal of the 
east-west SST gradient since the 1950s (3–6). These changes should 
be accompanied by increased SST variability along the equatorial IO 
(19); however, model predictions are not consistent with this theo-
retical expectation (8–11). Furthermore, the possibility that the IO 
could harbor stronger modes of climate variability has remained 
largely unexplored.

Here, we address these questions using numerical simulations of 
past and future climate changes in which the mean state of the IO 
could favor stronger variability. Our goal is to assess physical pro-
cesses that could cause new modes of variability to emerge in the IO 
under continued greenhouse warming as well as the potential ex-
istence of these modes during past climate intervals. We analyze an 
ensemble of simulations of 21st-century climate performed by 
36 models participating in the Coupled Model Intercomparison 
Project 5 (CMIP5). These simulations were run under increasing 
GHG concentrations following a “business as usual” high-emission 
scenario (see “Data” and “Methods” sections). These models accu-
rately reproduce the observed patterns of variability in the southeastern 
IO (fig. S1) as well as long-term changes in the east-west gradient 
over the 1900–2017 period (fig. S2), lending credibility to their pre-
dictions of an altered mean state under continued greenhouse warm-
ing throughout the second half of the 21st century (see Supplementary 
Text 1 for additional model evaluation).

We also analyze simulations of the climate at the Last Glacial 
Maximum (LGM)—a past climatic interval ∼21,000 years before 
present when the IO exhibited a similarly altered mean state featuring 
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stronger upwelling and an eastward shoaling thermocline (24, 25). 
The LGM simulations were performed with the Community Earth 
System Model version 1.2 (CESM1) (26), a model that simulates 
changes in IO mean state supported by multiproxy syntheses from 
this climate interval (24) and consistent changes in variability (27). 
To our knowledge, CESM1 is one of the very few climate models 
capable of simulating physical processes in the IO amplifying re-
gional climate changes during the LGM (24), justifying the use of a 
single model for this part of our study. Despite being triggered by 
exposure of continental shelves due to lower glacial sea level (28), these 
changes result in changes in IO mean state and variability (24, 25, 27) 
analogous to those simulated under greenhouse warming, albeit in a 
globally colder climate. Additional CESM1 LGM simulations are 
used to isolate changes associated with both emergent and existing 
modes (Materials and Methods).

RESULTS
Our simulations indicate that under greenhouse warming and LGM 
conditions, the IO can exhibit increased SST variability in the eastern 
equatorial IO (EEIO) (Fig. 2, A and B). This pattern of intensifica-
tion resembles modern variability in the other tropical oceans and 
represents a pronounced departure from current variability in the 

IO, which is minimal along the equator (Fig. 1A). The increase 
in gSST variability occurs during late boreal summer (August-
September-October) following changes in the mean state favoring 
stronger coupled interactions during the preceding months. In-
creased equatorial upwelling and an eastward shoaling thermocline 
during July-August-September (JAS) (Fig. 2, C and D) favor the 
development of SSTAs in the EEIO. The changes in mean state are 
also part of a coupled ocean-atmosphere response. Equatorial winds 
become more easterly under greenhouse warming and glacial con-
ditions (Fig. 2, E and F, vectors), a response that is reinforced by the 
changes in the underlying SST gradient (Fig. 2, E and F, shading) via 
the cooling effect of a shallower thermocline. These coupled re-
sponses are initiated by different atmospheric processes: a reversal 
of westerly winds over the eastern IO driven by a weaker Walker 
circulation, for greenhouse warming (7); and an atmospheric re-
sponse to shelf exposure, for the LGM (28). Despite the different 
triggering mechanisms, the same coupled feedbacks amplify the 
changes in both cases, generating an oceanic mean state reminiscent 
of the eastern equatorial Pacific and Atlantic oceans, with a shallow 
equatorial thermocline and vigorous upwelling favoring stronger 
air-sea interactions and SST variability (19).

The CMIP5 models show a direct link between the changes in 
mean climate and the increase in variability under greenhouse warming. 
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Fig. 1. Observed variability and mean state over the tropical oceans. (A) SST variability, (B) annual mean subsurface ocean temperature along the equator (5°S to 5°N), 
and (C) annual mean SST (shading) and surface wind stress (vectors). SST variability is computed as the SD of monthly anomalies relative to the monthly mean seasonal 
cycle. In the tropical oceans, a metric of variability that is dominated by variations occurring on interannual time scales. SST and surface wind stress are from TropFlux (46) 
and subsurface ocean temperature data are from ORAS-S4 (37).  on July 20, 2020
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The magnitude of the increase in SST variability, measured by the 
change in SD of SSTAs averaged over the EEIO, is strongly anti-
correlated with the changes in zonal wind stress along the equator 
(r = −0.73, P <0.001; Fig. 2G). This indicates that greater easterly wind 
stress leads to a larger increase in variability, a relationship that 
reflects the influence of zonal winds on seasonal upwelling and 
thermocline depth over the EEIO. Most CMIP5 models predict in-
creases in variability and more easterly winds for the second half of 
the century (Fig. 2G); however, the magnitude of these responses 
differs by an order of magnitude. Some CMIP5 models predict pro-
nounced changes in equatorial winds accompanied by increases in 
SST variability of up to 100%. In these models, the magnitude of the 
changes represents a reversal of the climatological winds, i.e., absolute 
easterlies develop across the equatorial IO along with seasonally 
colder SSTs over the EEIO. A similar wind reversal and seasonal 
“cold tongue” is simulated under LGM conditions (not shown), re-
sulting in the largest changes in variability among all simulations 
(Fig. 2G, red circle). These seasonal variations are similar to those 
occurring in the modern Pacific and Atlantic oceans, which sustain 
the ENSO and Atlantic Niño modes. Likewise, the simulated changes 
in the IO give rise to its own El Niño–like variability.

Under the altered mean states of the LGM and high-emission 
scenarios, climate variability in the IO manifests as warm and 
cold events that are physically different from those associated with 
the IOD—currently a dominant mode of IO climate variability 
(18, 29)—although superficially similar to very extreme IOD events.  
To isolate the dynamics of the emergent mode, we use our subset of 
LGM simulations in which ENSO and IOD modes are disabled (see 
“Methods” section). Results from these simulations show that events 
associated with the emergent mode are independent from the IOD 
(fig. S3) and, more importantly, that they are triggered by a distinct 
atmospheric precursor on the western IO (fig. S3A). Because addi-
tional simulations cannot be run with CMIP5 models, we isolate the 
events associated with the emergent mode using a methodology based 
on this wind precursor (fig. S4; also Materials and Methods). The 
CMIP5 simulations also show that these events are driven by a cou-
pled mode that has not been observed in historical observations and 
could become active under continued greenhouse warming.

Unlike IOD events, which are triggered by wind fluctuations in 
the southeastern IO along the coast of Java and Sumatra (16, 30), 
events associated with the emergent mode are initiated remotely by 
an atmospheric circulation anomaly over the western IO and Arabian 
Sea (Fig. 3, left; vectors). This atmospheric precursor develops 
during late boreal spring and influences the EEIO via propagation 
of downwelling oceanic Kelvin waves along the equator (Fig. 3, left; 
contours). For warm events, the atmospheric precursor has a westerly 
wind stress anomaly along the equator that drives a Kelvin wave 
response characterized by a thermocline deepening toward the East 
(Fig. 3, A and C, contours). This response suppresses climatological 
cooling over the EEIO during late boreal summer, when the thermo-
cline is seasonally shallower and upwelling is strong (Fig. 2, C and D), 
driving an initial warming in the EEIO. An anomalous zonal SST 
gradient is established along the equatorial IO, further weakening 
surface winds. These wind changes drive oceanic responses, thermo-
cline deepening, and reduced upwelling that continue the warming 
of the EEIO until its peak during late boreal summer (Fig. 3, B and D, 
shading). Such coupled responses are akin to the positive feedback 
loop proposed by Bjerknes (31) for the growth of El Niño events in 
the Pacific Ocean.
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Fig. 2. Simulated changes in IO climate variability and mean state under glacial 
conditions and greenhouse warming. Changes in (A and B) SST variability, (C and 
D) subsurface ocean temperature (shading, m), vertical velocity (contours, m/day), 
and (E and F) SST (shading) and surface wind stress (vectors). Glacial changes (left) 
are computed from a simulation of LGM relative to a simulation of preindustrial (PI) 
climate, both performed with the CESM1. Changes under greenhouse warming are 
computed for the 2050–2100 interval in high-emission scenario [Representative 
Concentration Pathway 8.5 (RCP8.5)] simulations performed by 36 CMIP5 models 
relative to the 1850–1950 interval from historical simulations. The changes in vari-
ability are computed as the difference in SD of SSTAs during the August-September-
October (ASO) season. Changes in mean state are computed for the JAS season. The 
changes under greenhouse warming are the average among the changes simulated 
among all 36 CMIP5 models. Dashed and solid red curves in (C) and (D) indicate the 
depth of thermocline in the reference (PI and historical) and altered (LGM and RCP8.5) 
climate states, respectively. (G) Relationship between changes in SD of SST anomalies 
in the EEIO (70°E to 95°E, 2.5°S to 2.5°N) during the ASO season and zonal wind 
stress in the equatorial IO (50°E to 80°E, 2.5°S to 2.5°N) during the JAS season for 
each model simulated response to greenhouse warming (blue circles) and LGM 
boundary conditions (red circle). Models with mode activation are outlined in red.
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At their peak, westerly wind anomalies coupled to the underlying 
SST gradients span most the basin (Fig. 3, B and D, vectors). These 
anomalous winds keep the thermocline anomalously deep in the 
EEIO (Fig. 3, B and D, contours) and suppress equatorial upwelling 
(not shown) sustaining the positive SSTAs in the EEIO. The pro-
nounced equatorial signature of these events is consistent with the 
pattern of SST variability increase (Fig. 2, A and B), and their activa-
tion occurs under large changes in mean state, such as under LGM 
conditions (Fig. 2G, red circle), and in the subset of simulations of 
future climate with the largest increases in variability (Fig. 2G, blue 
circles with red outline). The changes in mean state also favor the 
emergence of equatorial cold events with negative SSTAs exhibiting 
similar magnitude, spatial patterns, and underlying dynamics as the 
warm events (fig. S5; see Supplementary Text 2). Observations do 
not show an active mode under current conditions (Fig. 3, E and F, 
and fig. S5, E and F) because the mean state is not favorable for 
large-scale coupled interactions (see Supplementary Text 2).

The emergence of the equatorial mode could drive rainfall vari-
ability with stronger amplitude and altered patterns over the IO and 
surrounding land masses relative to currently experienced. Warm 

events, with their positive SSTAs spanning much of the equatorial 
IO, could drive rainfall deficits over the Horn of Africa as well as 
over Southern India, in addition to increased rainfall over Indonesia 
and Northern Australia (Fig. 4C). Rainfall anomalies with such pat-
terns and magnitudes have not been observed during the historical 
period because warm IOD events are extremely weak and their rain-
fall impacts are restricted to the southeastern IO (Fig. 4A). On the 
other hand, cold events associated with the equatorial mode could 
drive rainfall anomalies with a similar spatial pattern and magnitude 
as the warm events, but with opposite polarity and subtle, yet im-
portant differences for terrestrial precipitation (Fig. 4D). For example, 
cold equatorial events are associated with increased rainfall over 
peninsular India and thus drive a response opposite to the impacts 
of a typical cold IOD event (Fig. 4B). These high-amplitude rainfall 
impacts have only been observed in 1997, during the strongest, cold 
IOD event on record (11)—the only observed event with SSTAs 
reaching the EEIO. The emergence of the equatorial mode could 
make these high-amplitude SSTAs a common occurrence by the 
second half of the 21st century when CMIP5 models predict two to 
four events (warm or cold) per decade (range was estimated from 
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the subset of models with mode activation). Over Sumatra and Java, 
the associated rainfall fluctuations could represent a surplus (or deficit) 
of 30 to 50% of current seasonal rainfall during the JAS season. Thus, 
predicting and attributing changing distributions of future extremes 
in a warming climate must consider these dynamical changes in rainfall 
variability alongside with thermodynamic effects (32).

DISCUSSION
In addition to revealing previously unrecognized dynamics of the 
IO, our results explain the lack of consensus in model predictions of 
future changes in SST variability in this ocean (9–12). Not all models 
show increasing SST variability under future greenhouse warming 
because the equatorial mode does not become active because of 
muted changes in mean state. Activation might require a change in 
direction of surface winds along the equator—at least seasonally—so 
that large-scale upwelling can be established along the equatorial 
IO. Larger changes rather than just a reversal in winds might be re-
quired so that the balance of positive and negative feedbacks in the 

EEIO favors unstable growth of SSTAs. Addressing these questions 
could help clarify the interpretation of model simulations, which 
show consistent predictions of a strengthening thermocline feed-
back, yet equivocal results regarding changes in SST variability 
(9–12). Additional questions must be answered to accurately predict 
this disruptive outcome, such as whether the changes in the mean 
state after 2050 will be sufficiently large to favor activation of the 
equatorial mode. The magnitude of these changes will depend on 
whether they are amplified by coupled feedbacks, an issue that re-
mains hotly contested (33, 34). All available observational evidence, 
however, supports predictions of large changes in mean state poten-
tially amplified by coupled feedbacks (fig. S2). Historical observations 
show pronounced changes in the east-west SST gradient, particu-
larly during the season when coupled feedbacks are stronger (3–5). 
Here, we showed that only models with equatorial mode activation 
can simulate changes in the SST gradient as observed (fig. S2). Further-
more, multiple paleoclimate datasets from the LGM show large 
changes in mean state potentially amplified by coupled feedbacks 
(24) along with much stronger climate variability (27), attesting to 
this ocean’s ability to experience large changes in mean state and 
variability via coupled feedbacks.

In summary, we have demonstrated that the IO can sustain 
an equatorial mode of climate variability under altered mean states 
predicted for the second half of the 21st century. This mode manifests 
as cold and warm interannual events with large-scale SSTAs spanning 
the central and EEIO. These events, particularly warm ones, repre-
sent a marked departure from current variability, characterized by 
weaker and more spatially confined warm IOD events. Because 
of their basin-wide and stronger SSTAs, future warm events could 
drive unprecedented hydrological extremes across the basin. They 
could bring more frequent droughts to East Africa and southern 
India, in addition to increased rainfall over Indonesia, exacerbating 
the effect of a warmer climate on these hydrological extremes (11). 
Cold and warm events are governed by physical processes similar to 
those driving El Niño and La Niña and could therefore be predict-
able at least a season in advance. However, further research on its 
predictability and global impacts will be needed to improve adapta-
tion efforts to climate change. The emergence of the equatorial mode 
is supported by a consistent link between changes in variability and 
mean state across climate models, although a sufficiently large change 
is required for its activation. These predictions are supported by 
paleoclimate data from the LGM, which show mean state changes 
of a magnitude comparable to those predicted under high emissions 
(24) along with an active equatorial mode (27). Furthermore, the 
activation of the equatorial mode appears to be less sensitive to 
common biases in the simulation of seasonal climate by CMIP models 
(fig. S6 and Supplementary Text 3), supporting our conclusion that 
this disruptive outcome will be largely determined by the magnitude 
of the changes in mean state. Further work is needed to accurately 
assess threshold behavior in this key component of the climate 
system, particularly under lower-emission scenarios or past climatic 
states other than the LGM. Present-day conditions do not favor the 
coupled interactions required for the mode’s emergence, and in-
deed, historical observations do not show evidence of the occurrence 
of these extreme events. A potential activation under greenhouse 
warming, however, could lead to record-breaking SST and rainfall 
fluctuations, rendering the emergence of the mode a main factor 
determining future climate risks, including more frequent and devas-
tating wildfires, flooding, and droughts.
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each mode, September-October-November (SON) for the Dipole Mode and August-
September-October for the Equatorial Mode. Observed Dipole Mode events are 
selected and composited on the basis of SON values of the Dipole Mode Index (18) 
with a 0.5 threshold. Equatorial Mode events are selected and composited on the 
basis of indices of the western IO atmospheric precursor and the peak SSTA in the 
EEIO during the ASO season with a 0.5 threshold (see “Data” and “Methods” sections). 
Both criteria combined isolate events that evolve into large-scale SST anomalies. 
Dipole Mode composites are based on the Global Precipitation Climatology Project 
(42) and TropFlux (36) observational datasets over the 1980–2017 period. Equatorial 
Mode composites are based on output from CMIP5 rcp85 simulations over the 
2050–2100 period composited for each model run and then averaged across the 
10 models with mode activation.

 on July 20, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


DiNezio et al., Sci. Adv. 2020; 6 : eaay7684     6 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 9

MATERIALS AND METHODS
Data
Our main dataset consists of output from 36 simulations of the 
21st-century climate performed with different climate models par-
ticipating in CMIP5 (35). These simulations were run following 
the high-emission business as usual Representative Concentration 
Pathway 8.5 (RCP8.5) scenario, providing an upper bound for the 
rate and magnitude of global greenhouse warming and associated 
regional climate changes. We used output from these rcp85 simula-
tions to study changes in the IO mean climate state and variability 
predicted for the 2050–2100 period. The baseline to assess these 
changes was obtained from historical simulations performed with the 
same models under varying natural and anthropogenic radiative 
forcings over the 1850–2005 period. These simulations were also 
used to evaluate each model against instrumental observations (see 
section S2). For each model, one realization, typically member r1i1p1 
of the rcp85 and historical simulations, was used in the analysis 
of mean state and variability changes (e.g., Fig. 2). All available 
members were used to study the dynamics of the equatorial mode 
via precursor and composite analysis (e.g., Fig. 3). A total of three 
members from CESM1-CAM5 and MPI-ESM-LR, two members 
from FGOALS-s2, and one member from all other models exhibited 
mode emergence.

The following 36 models with available monthly resolution SST, 
surface wind stress, rainfall, and subsurface ocean temperature fields 
from both the rcp85 and historical simulations were included in the 
analysis: ACCESS1-0, ACCESS1-3, BCC-CSM1.1, BCC-CSM1.1(m), 
BNU-ESM, CCSM4, CESM1-BGC, CESM1-CAM5, CMCC-CESM, 
CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, 
FGOALS-s2, FIO-ESM, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, 
GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC, HadGEM2-AO, 
HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL-
CM5A-MR, IPSL-CM5B-LR, MIROC5, MPI-ESM-LR, MPI-ESM-
MR, MRI-CGCM3, MRI-ESM1, NorESM1-M, and NorESM1-ME. 
The CanESM2, MIROC-ESM, and MIROC-ESM-CHEM models 
were excluded from the final analysis because they exhibit obvious 
deficiencies in the simulation of the seasonal cycle of key oceanic 
and atmospheric features in the eastern IO. Further details on this 
model validation are provided in section S3.

We focused our analysis on the JAS season, when the changes in 
mean state drive large changes in variability during the subsequent 
August-September-October season. For each model, we computed 
changes in ocean and atmospheric mean states as the difference 
between a given climate variable averaged over July to September 
during years 2050 to 2100 from the rcp85 simulation minus the cor-
responding average over years 1850 to 1950 from the historical sim-
ulation. Changes in SST variability were quantified by computing 
the difference between the SD of the detrended SSTAs over the same 
intervals of the rcp85 and historical simulations. Anomalies were 
computed as departures from the monthly mean seasonal cycle of 
each climate variable during the corresponding time interval.

We also analyzed changes in mean state and variability in re-
sponse to LGM boundary conditions. These changes were computed 
using simulations performed with CESM1 under LGM and pre-
industrial (PI) conditions. The LGM boundary conditions correspond 
to 21 thousand years before present and include modifications to the 
following: seasonal and latitudinal insolation, reduced GHG con-
centrations based on ice core measurements, the effect of a 120-m 
sea level drop on coastlines and key ocean passages, and the effect of 

continental ice sheets (surface albedo and orography) based on 
the ICE-6GC LGM reconstruction. The implementation of the LGM 
boundary conditions is fully detailed in previous work studying 
changes in mean and seasonal climate during this interval (24, 28). 
The simulation of PI climate was run with external forcings (solar 
irradiance, GHGs, and land use) set constant to 1850-year values. 
Our analysis focused on 600 and 500 years of equilibrated climate 
from each simulation, respectively.

These CESM1 simulations were augmented by a subset of iden-
tical LGM and PI simulations in which modes of climate variability 
influencing the IO were sequentially disabled (table S1). We used 
these simulations to attribute the processes driving the increase in 
interannual climate variability seen in the full LGM simulation and 
ultimately identify the emergence of the equatorial mode presented 
in this study. The ENSO phenomenon was disabled in a pair of 
LGMXENSO and PIXENSO simulations by restoring SSTs to their 
monthly mean seasonal cycle over the equatorial band of the Pacific 
Ocean (110∘E–90∘W, 10∘N–10∘S) computed from the respective 
LGM and PI simulations. A restoring tendency was applied to the 
top ocean temperature at every time step during model computation 
with a damping time scale of 0.5 days. This ensured efficient damp-
ing of SSTAs to the climatology of each simulation, preventing the 
growth of ENSO events in the equatorial Pacific.

The same procedure was applied to an additional pair of 
LGMXENSOXIOD and PIXENSOXIOD simulations in which both ENSO 
and the IOD—the leading mode of variability in the modern IO—
were disabled. To accomplish this, we applied a restoring tempera-
ture tendency over the southeastern IO (95°E to 110°W, 10°S to 
2.5°S)—over the center of action of the IOD. SSTs were not restored 
northward of 2.5∘S to allow coupled interactions along the equatorial 
IO. This procedure effectively removed climate variability associated 
with the IOD. The PIXENSOXIOD simulation exhibits negligible SST 
variability over the IO (not shown), confirming that ENSO and the 
IOD are the main drivers of climate variability under PI conditions. 
Disabling ENSO also removed variability associated to the IOB mode. 
These simulations were run for 200 years and used in the analysis in 
full. No equilibration time was needed because SSTs were restored 
to the corresponding LGM or PI climatologies over the ENSO and 
IOD domains.

Multiple observational datasets were used for illustrating key 
features of modern IO climate and its variability (e.g., Figs. 1 and, 3, E 
and F) as well as validating the CMIP5 simulations (e.g., figs. S1 
to S3). Annual mean climate conditions in the equatorial oceans 
(Fig. 1) were computed from the TropFlux dataset (SST and surface 
wind stress) (36) and the ORAS4 ocean reanalysis (subsurface ocean 
temperature) (37) over the common 1979–2017 period. TropFlux 
and ORAS4 were also used to compute the wind stress and thermo-
cline depth in the EEIO over (fig. S6), as well as the oceanic response 
to the western IO wind precursor (Fig. 3, E and F). In these cases, 
TropFlux data over the 1979–2017 period were used. Observed 
long-term changes in SST discussed in section S1.2 are computed 
using the following SST reconstructions: HadISST1.1 (38) and ver-
sions 3b, 4, and 5 of the Extended Reconstructed Sea Surface 
Temperature (ERSST3b, ERSST4, and ERSST5) (39–41). Observed 
rainfall impacts of the IOD (Fig. 4) were computed using version 2.2 
of the Global Precipitation Climatology Project dataset (42). Observed 
IOD events were identified and composited on the basis of the 
Dipole Mode Index (18) computed using detrended TropFlux SST 
data. The depth of the thermocline, ZTC, is computed as the location of 
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the maximum vertical temperature gradient for observations and 
model simulations. SST, surface wind stress, and ZTC anomalies are 
computed as departures from their respective monthly mean seasonal 
cycle. SST variability is quantified by (SSTA), the SD of the SSTAs. 
This metric includes variability at all time scales other than seasonal 
and is typically dominated by interannual variations.

Methods
We used a combination of simulations and diagnostics to isolate the 
processes driving the pattern of equatorial intensification seen in 
rcp85 and LGM simulations (Fig. 2, top). The simulations of LGM 
and PI climate with disabled modes described above and listed in 
table S1 allowed us to isolate modes of variability as follows. The 
equatorial mode of variability was isolated by compositing anomalies 
from the LGMXENSOXIOD simulation in which ENSO, the IOD, and 
other related modes of variability are disabled. The average spatio-
temporal evolution of the equatorial mode was studied, composit-
ing anomalies based on an index of SSTA in the EEIO (75°E to 95°E, 
2.5°N to 2.5°S). Warm (cold) equatorial mode events were selected 
for EEIO SSTA larger (less) than 1 (−1) SD during the JAS season. 
By design, this mode is independent from the IOD and ENSO. We 
contrasted the evolution of this mode (fig. S3, top) with the IOD 
(fig. S3, bottom) as follows. IOD events are known to be influenced 
by ENSO but also occur independently of it (43, 44). Therefore, we 
computed an IOD composite evolution independent from ENSO us-
ing the LGMXENSO simulation. We selected warm (cold) events when 
the dipole index (18) is less (larger) than 1 (−1) SD. By construction, 
the LGMXENSO simulation includes the equatorial mode active in the 
LGMNOENSONOIOD. Therefore, we removed the influence of equa-
torial mode events from the IOD by subtracting the composite anom-
alies derived from the LGMXENSOXIOD simulation from the IOD 
composite anomalies derived from the LGMXENSO simulation.

These composites show that warm equatorial mode and IOD 
events have different SST and wind stress patterns at their peak (fig. 
S3, right), as well as different atmospheric precursors (fig. S3, left). 
Equatorial mode events are preceded by an anomalous surface wind 
circulation in the western IO and Arabian Sea (fig. S3A, vectors). 
These anomalous winds have a westerly component over the western 
equatorial IO, which drive a thermocline deepening along the equa-
torial IO and initiate the warming over the EEIO. This triggering 
mechanism is discussed in great detail in the main text (Fig. 3). In 
contrast, IOD events are preceded by northwesterly wind anomalies 
over the southeastern side of the basin (along the coast of Java and 
Sumatra, fig. S3C), consistent with the triggering mechanism of ob-
served IOD events (16, 30, 45).

The peak SST patterns associated with the equatorial mode and 
the IOD show additional differences. The equatorial mode exhibits 
peak SSTA concentrated over the EEIO (fig. S3B, shading), whereas 
the IOD exhibits SST off the coast of Sumatra. Warm IOD events 
also show SSTA reaching the equator along with westerly wind stress 
anomalies over the central equatorial IO. This equatorial enhance-
ment of the IOD is likely to be caused by the LGM changes in mean 
state favoring the growth of SSTA in the EEIO; however, it is much 
weaker than the SSTAs associated with the equatorial mode. Further-
more, the triggering mechanisms are distinct, confirming that the 
equatorial mode and the IOD are independent modes.

The analysis of the LGM simulations shows that, while the equa-
torial mode and the IOD are independent modes of variability, their 
SST patterns are not entirely orthogonal. This could certainly com-

plicate their isolation in the CMIP5 simulations, particularly under 
altered mean states when the IOD could exhibit a stronger equatorial 
imprint. Our analysis of the LGM simulations, however, shows that 
the equatorial mode is triggered by a distinct atmospheric precursor 
in the western IO. Therefore, we used this precursor to isolate the 
equatorial mode in the CMIP5 rcp85 simulations. We focused our 
analysis on the 2050–2100 period when the changes in mean state 
and variability are largest. In each model run, we identified equatorial 
mode events via their atmospheric precursor through an index of 
zonal wind stress anomalies averaged over the western IO (40°E to 
60°E, 5°N to 5°S). We selected precursor events during the April-
May-June (AMJ) season when this index is larger (lesser) than 
(minus) 0.5 SD of the full AMJ-averaged index.

We explored whether and how these wind anomalies trigger 
large-scale warming (and cooling) events in the EEIO via composite 
analysis of surface wind stress, SST, and ZTC anomalies on the months 
and seasons following the atmospheric precursor. This procedure 
was applied to the subset of 10 rcp85 simulations with strong changes 
in mean state (Fig. 2G, blue circles with red outline) over the 2050–2100 
period. Approximately 10 westerly and 10 easterly precursors were 
selected from each model run. Composite surface wind stress, SST, 
and ZTC anomaly maps were produced for the event onset (cen-
tered in May) and the event peak (centered in August) for each 
model (fig. S4). The composite anomalies from all 10 models show 
the atmospheric precursor in the western IO with westerly wind 
stress along the equator (fig. S4, left; vectors) and an anomalously 
deep thermocline to the East (fig. S4, left; contours). All but one 
model (NorESM1-M) show peak warming in the EEIO 3 months 
after the AMJ season. The models show that this anomalous warm-
ing is associated with an anomalously deep thermocline and westerly 
winds driven by the underlying SST gradients. Together, these fea-
tures are indicative of a positive Bjerknes ocean-atmosphere feed-
back involved in the development of these events. The consistency 
of this mechanism in all models supports our conclusions that suf-
ficiently large changes in mean state could lead to the activation of 
the equatorial mode in the IO via stronger coupled interactions in 
the eastern side of the basin.

We averaged the composite anomalies from each model to pro-
duce multimodel ensemble-mean wind stress, SST, and ZTC anom-
alies for the onset and peak of warm (Fig. 3, A and B) and cold 
equatorial mode events (fig. S5, A and B). These events show off-
equatorial warming (cooling) in the southeastern IO, the center of 
action of the IOD. However, they do not show alongshore winds as 
during IOD events, indicating that the coastal warming (cooling) 
during these events is likely to be forced by coastal Kelvin waves but 
does not play a role in the development of the equatorial anomalies. 
Therefore, air-sea coupling in this region is not essential for the 
growth of equatorial events.

The same procedure was applied to PI simulations (not shown) 
and available observations (Fig. 3, E and F, and fig. S5, E and F) to 
seek evidence for an active equatorial mode under current conditions. 
In both cases, we found that the atmospheric precursor is not followed 
by large-scale climate anomalies as seen in the LGM and rcp85 sim-
ulations, confirming that the equatorial mode is not active under 
current mean state conditions. Observations do not show evidence 
for warm equatorial events following westerly wind anomalies in the 
western IO. In contrast, they show that the easterly wind precursor 
(fig. S5E) is followed by a weak cooling anomaly off the coast of Java 
(fig. S5F), consistent with one of the triggering mechanisms of the IOD.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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